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Abstract: The continuous Hull of a repetitive tiling T in R
d with the Finite Pattern Con-

dition (FPC) inherits a minimal R
d -lamination structure with flat leaves and a transversal

�T which is a Cantor set. This class of tiling includes the Penrose & the Amman Benkker
ones in 2D, as well as the icosahedral tilings in 3D. We show that the continuous Hull,
with its canonical R

d -action, can be seen as the projective limit of a suitable sequence
of branched, oriented and flat compact d-manifolds. As a consequence, the longitudi-
nal cohomology and the K-theory of the corresponding C∗-algebra AT are obtained as
direct limits of cohomology and K-theory of ordinary manifolds. Moreover, the space
of invariant finite positive measures can be identified with a cone in the d th homology
group canonically associated with the orientation of R

d .At last, the gap labeling theorem
holds: given an invariant ergodic probability measure µ on the Hull the corresponding
Integrated Density of States (IDS) of any selfadjoint operators affiliated to AT takes on
values on spectral gaps in the Z-module generated by the occurrence probabilities of
finite patches in the tiling.

1. Introduction

Let L be a discrete subset of R
d . Following the ideas developed in [32] for r > 0, L is

r-uniformly discrete whenever every open ball of radius r meets L on one point at most.
For R > 0, L is R-relatively dense whenever every open ball of radius R meets L on
one point at least. L is a Delone set [32] if it is both uniformly discrete and relatively
dense. L is repetitive whenever given any finite subset p ⊂ L, and any ε > 0 there is
R > 0 such that in any ball of radius R there is a subset p′ of L which is a distance at
most ε of some translated of p. L has finite type whenever L− L is discrete.

With each discrete set L is associated the Radon measure νL ∈ M(Rd) supported
by L and giving mass one to each point of L [8]. The weak∗-topology on M(Rd) (seen
as the dual space of the space Cc(R

d) of continuous functions with compact support),
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endows the set of discrete subsets of R
d with a metrizable topology. For such a topology

the subset of an r-uniformly discrete set in R
d is compact [8]. If L is r-uniformly dis-

crete let � be the closure of the set {taL = L + a; a ∈ R
d} of its translated. � is

compact. Then (�, R
d , t) becomes a topological dynamical system called the Hull of

L. If ω ∈ �, let Lω denote the uniformly discrete subset of R
d corresponding to ω. The

subset � = {ω ∈ �; 0 ∈ Lω} is called the canonical transversal.
The Hull of an r-discrete set L ⊂ R

d is minimal if and only if L is repetitive [32]. In
such a case L is necessarily Delone. If, in addition, L has finite type, then its canonical
transversal � is a Cantor set.

The Hull can also be seen as a lamination [20] or a foliated space [34], namely a folia-
tion with non smooth transverse structure. On the other hand [41], the construction of the
Voronoi cells from the point set of atomic positions, leads to a tiling of R

d by polyhedra
touching face to face, from which the point set can be recovered by a dual construction.
Hence, the construction of the Hull can equivalently be performed from three equivalent
complementary point of view: (i) as a dynamical system, (ii) as a lamination or foliated
space, (iii) as a tiling. This latter point of view permits to select constraints using the
tiling language more easily than using the language of point sets. The tilings that have
mostly attracted attention are those with a finite number of bounded patches modulo
translations, the so called finite pattern condition (FPC) and satisfying repetitivity. Such
tilings are equivalent to repetitive finite type Delone sets. The Penrose tiling in 2D, the
Amman Benkker (or octagonal) one or the various icosahedral tilings used to describe
quasicrystals [28] belong to this class. However the pinwheel tiling [39] is excluded of
the present study but is the subject of a future publication [12]. In this work we prove
the following results whenever L is a repetitive, finite type Delone set in R

d :

Theorem 1.1 (Main results). Let L be a repetitive Delone set of finite type with Hull �.

1. There is a projective family · · · → Bn+1
fn+1→ Bn → · · · of compact, branched, ori-

ented, flat manifolds (BOF) of dimension d , with the fn’s being BOF-submersions
(in particular, Dfn = id), such that the Hull of L is conjugate by an homeomorphism
to the inverse limit lim← (Bn, fn). The R

d -action is induced by the infinitesimal parallel

transport by constant vector fields in each of the Bn’s.
2. Let Hd(�, R) be the d-longitudinal homology group defined as the inverse limit

lim←
(
Hd(Bn, R), f ∗n

)
. Then Hd(�, R) has a canonical positive cone induced by the

orientation of the Bn’s, which is in one-to-one correspondence with the space of
R

d -invariant positive finite measures on �.
3. If the ‖f ∗n ‖’s are uniformly bounded in n, the Hull is uniquely ergodic. If, in addition,

dim Hd(Bn, R) = N < ∞ there is no more than N invariant ergodic probability
measures on �.

4. Let A = C(�) � R
d be the crossed product C∗-algebra associated with the Hull.

Then through the Thom-Connes isomorphism, K∗(A) = lim→
(
K∗+d(Bn), f

∗
n

)
.

5. Any R
d -invariant ergodic probability measure µ defines canonically a trace Tµ on

A together with an induced measure µtr on the transversal � [16]. Then the image

by Tµ of the group K0(A) coincides with
∫

�

dµtr C(�, Z), namely the Z-module

generated by the occurrence numbers (w.r.t. µ) of patches of finite size of L (gap
labeling theorem).
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The main motivation for such a work comes from the description of aperiodic solids
[8]. The discrete set L corresponds to the positions of the atomic nuclei in the limit of
zero temperature. The notion of uniform discreteness corresponds to the existence of a
minimum distance between atoms due to the Coulomb repulsion of positively charged
nuclei. The relative density of L expresses the absence of empty regions of arbitrary
radius. Hence, a solid or a liquid can be represented by a Delone set. The notion of finite
type is a restrictive way of expressing the rigidity of the solid. Many aperiodic solids,
such as perfect crystals or quasicrystals, can be described by Delone sets of finite type.
The repetitivity expresses the existence of a long range order.

It has been argued [4, 5] that the mathematical description of aperiodic solids can be
made through the construction of the so-called Noncommutative Brillouin Zone (NCBZ)
to replace the Bloch theory used for periodic crystals. It has been shown that the C∗-
algebra A = C(�) � R

d is the non-commutative analog, for aperiodic solids, of the
space of continuous functions on the Brillouin zone for periodic solids. Then A inherits
a structure of a Noncommutative Riemannian Manifold [4, 5, 10]. The present work
gives a lot of details about the topology of such manifolds. In particular, it raises the
problem of whether or not this topology is accessible to physical experiments in one
way or another.

The present paper also solves a longstanding conjecture, known by physicists since
the mid-eighties and given explicitly in [8] concerning the gap labeling theorem. It was
proved for the first time by Johnson & Moser [29] in 1982 for the Schödinger operators
with almost periodic potentials and simultaneously by Bellissard [3] for two dimen-
sional electrons on a square lattice submitted to a magnetic field. The relation with the
K-theory of the NCBZ was established immediately [3] (see [5] for other references).
It was established in full generality for d = 1 in [5] using the Pimsner-Voiculescu exact
sequence [36]. The same method was used in [23] to extend the result for d = 2. In
[7], the result for d = 2 was reestablished by using the Kasparov spectral sequence.
In the case for which the Hull is given by a Z

d -action on a Cantor set X, Hunton and
Forrest [21], using the technique of spectral sequences, have proved that the K-group is
isomorphic to the group cohomology of Z

d with values in the group C(X, Z). While this
latter result does not lead to the computation of the set of gap labels in general, it permits
to compute the K-group in many practical situations that occur in physics [22, 24] as
well as the set of gap labels for d = 3 [9]. The proof of this conjecture for tilings that
satisfy repetitivity and FPC in an arbitrary dimension is one of the main results of this
paper. It is important to notice that similar results have been obtained independently and
almost simultaneously by Benameur & Oyono [11] and by Kaminker & Putnam [30] for
the case of a Z

d -action on a Cantor set. However, the Hull of a repetitive Delone set of
finite type is in general not conjugate to the suspension of a Z

d -action on a Cantor set.
Nevertheless a recent result by Sadun & Williams [40] shows that it is orbit equivalent
to such an action. Therefore the result by Hunton & Forrest applies to the present case.

This paper is organized as follows. In Sect. 2, the basic notions on Delone sets, tiling
theory and laminations are summarized. Section 3 is devoted to the notion of branched
oriented flat manifolds (BOF). In particular some details are given on the way to com-
pute their homology, cohomology. It is shown that the homology of highest degree
admits a positive cone canonically associated with the orientation. Section 4 is devoted
to the notion of expanding flattening sequences that permits to built the projective family

· · · → Bn+1
fn+1→ Bn → · · · . In particular the various limits for the homology and the

cohomology groups are analyzed in detail. Moreover it is shown how tiling spaces fit in
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this framework. Section 5 concerns the study of invariant measures. The last Sect. 6 is
devoted to the K-theory of the C∗-algebra canonically associated with the Hull and to
the proof of the gap labeling theorem.

2. Delone Sets, Tilings and Laminations

In this section, basic notions on Delone sets, Tilings and Laminations are reviewed.

2.1. Delone sets. Let L be a discrete subset of R
d . Then [32, 8]:

Definition 2.1. 1. L is uniformly discrete if there is r > 0 such that any open ball
B(x; r) of radius r meets L on at most one point. Then L will be called r-discrete.

2. L is relatively dense if there is R > 0 such that any closed ball B(x;R) of radius R

meets L on at least one point. Then L will be called R-dense.
3. L is called a Delone (or Delauney) set if it is both uniformly discrete and relatively

dense. If L is r-discrete and R-dense, it will be called (r, R)-Delone.
4. L has finite type if the subset L− L = {y − y′ ∈ R

d ; y, y′ ∈ L} of R
d is discrete.

5. L is repetitive if given any finite subset p ⊂ L any given ε > 0, there is R > 0
such that in any ball B(x;R) there is a subset p′ ⊂ L ∩ B(x;R) that is a translated
of p within the distance ε: namely there is a ∈ R

d such that the Hausdorff distance
between p′ and p + a is less than ε.

6. L is aperiodic if there is no a ∈ R
d such that L+ a = L.

Note that repetitivity implies relative denseness. As in [8], with each discrete set L is
associated the Radon measure

νL =
∑

y∈L
δy.

In the following, any discrete set will be identified with its associated measure. The
set of Radon measures M(Rd) is endowed with the weak-∗ topology relative to the
space Cc(R

d) of complex valued continuous functions on R
d with compact support. It is

proved in [8] that the closure of the space of discrete subsets of R
d is the space QD(Rd)

of point sets with multiplicity, namely the set of pairs (L, n), where L is discrete and
n : x ∈ L 
→ nx ∈ N∗. The identification with Radon measures is given by

νL,n =
∑

y∈L
ny δy.

Such a set can be interpreted as a family of atoms sitting on points of L, where there are
exactly nx such atoms sitting at x. Note that this weak topology induces the following
topology on the set of discrete sets: a sequence (Ln)n∈N converges to L if and only if
for any bounded open set �, the sequence Ln ∩� converges to L∩� for the Hausdorff
metric.

Lemma 2.2 ([8]). The set UDr(R
d) of Radon measures on R

d of the form νL where L
is r-discrete, is compact and metrizable in M(Rd).

The translation group R
d acts on M(Rd) through taµ(f ) = µ(f (.+a)) if f ∈ Cc(R

d).
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Definition 2.3. Let L be an r-discrete subset of R
d . Its Hull � is the closure, in M(Rd)

of the family {νL+a ; a ∈ R
d} of its translated.

It follows immediately from Lemma 2.2 that the Hull of a uniformly discrete set is com-
pact and metrizable. Moreover, R

d acts on � through homeomorphisms. Hence (�, R
d)

is a topological dynamical system [26]. The following result can be found in [8]

Proposition 2.4. Let L be an r-discrete subset of R
d with Hull �. Then any element

ω ∈ � is a Radon measure supported by an r-discrete set Lω such that ω = νLω .
Moreover, if L is (r, R)-Delone (resp. Delone and repetitive, resp. Delone of finite type),
then so are the Lω’s.

An important object is the canonical transversal defined by

Definition 2.5. Let L be an r-discrete subset of R
d with Hull �. Its canonical transversal

is the subset � ⊂ � defined by those ω’s for which Lω contains the origin 0 ∈ R
d .

It is easy to prove that � is closed in �. It is also easy to show that if 0 ∈ M(Rd) is not
an element of the Hull (in which case L0 = ∅), then every orbit of � meet �. Moreover,
the intersection of the orbit of ω with � is precisely Lω if the orbit is identified with R

d :
namely Lω = {x ∈ R

d ; t−xω ∈ �}. The following results can be found in [32, 31]

Theorem 2.6. (i) Let L be an r-discrete subset of R
d with Hull �. Then the dynamical

system (�, R
d) is minimal if and only if L is repetitive (therefore L is Delone).

(ii) Let L be an r-discrete set of finite type, then its canonical transversal is completely
disconnected.

(iii) If L is an aperiodic repetitive Delone set, then for any element ω in its Hull, Lω is
aperiodic.

Note that the transversal may have isolated points. For example, if L is periodic its
transversal is a finite set. Proposition 2.24 [31] below shows however that if L is an
aperiodic finite type and repetitive Delone set the transversal has no isolated point.

2.2. Voronoi tiling. Let L be an (r, R)-Delone set. If x ∈ L the Voronoi cell Vx is the
open set

Vx = {y ∈ R
d ; |x − y| < |x′ − y|, ∀x′ ∈ L \ {x}}.

Concretely, Vx is the intersection of the opened half spaces containing x and bounded
by an hyperplane located halfway between x and another point x′ ∈ L. Therefore Vx

is convex. Moreover, since L is R-dense, Vx is a polyhedron enclosed in the open ball
centered at x with radius R. Since L is r-discrete it contains the open ball centered at x

with radius r . It is easy to see that two different Voronoi cells have empty intersection
while the closure of all Voronoi cells cover R

d . Thus the Voronoi cells gives a tiling (see
Sect. 2.3) of R

d with at most a countable number of prototiles.

Definition 2.7. Let L be a Delone set in R
d . Then its Voronoi tiling is the tiling defined

by the Voronoi cells.

The following result is elementary.
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Lemma 2.8. Let L be an (r, R)-Delone set. If x, x′ ∈ L, the closure of their Voronoi
cells intersect along a common face.

Two points x 
= x′ of L will be called nearest neighbors whenever the closure of their
Voronoi cell intersect along a face of codimension one. They are neighbors if the closure
of their Voronoi cell intersect. The Voronoi graph is the graph with L as a vertex set and
pairs of nearest neighbor sites in L as a bond set. The Voronoi distance of x, x′ ∈ L is
given by the smallest integer n such that there is a sequence (x0 = x, xi, · · · , xn = x′)
of vertices such that xk and xk+1 are nearest neighbors.

A protocell of the Voronoi tiling of L is an open set V such that there is x ∈ L with
Vx − x = V (see Sect. 2.3). A protocell always contains the origin. The following result
is elementary:

Lemma 2.9. Let L be an (r, R)-Delone set. Then L has finite type if and only if it has
a finite number of protocells. In this case, the set of protocells of Lω coincides with the
one of L for any ω in the Hull.

Consequently, the Voronoi tiling of a finite type Delone set satisfies the finite pattern
condition (see Sect. 2.3, Definition 2.14 and Remark 2.16). This is because the Voronoi
tiles touch face-to-face. The notion of repetitivity is similar for tilings and Delone sets
(see Definition 2.21).

Let now L be repetitive with finite type. As before, � will denote the Hull of the
uniformly discrete set L, whereas � will denote its canonical transversal. A box in � is
an open subset homeomorphic to � × U , where � is an open subset of � and U is an
open subset of R

d .

Lemma 2.10. Let L be an r0-uniformly discrete subset of R
d with Hull � and transver-

sal �. Then the map φ : (ω, x) ∈ � × B(0; r0) 
→ txω ∈ � defines a homeomorphism
onto its image.

Proof. Let O be the image of this map, namely

O = {ω ∈ � ; ∃x ∈ R
d , ‖x‖ < r0, t−xω ∈ �}.

The map φ is obviously continuous and onto. Moreover it is one-to-one because, if
t−xω = t−yω′ with (ω, x), (ω′, y) ∈ � × B(0; r0) then Lω′ = Lω + y − x. Since the
origin 0 belongs to both Lω′ and Lω, it follows that x−y ∈ Lω. Since Lω is r0-discrete,
then x = y for otherwise they must satisfy 2r0 > ‖x − y‖ ≥ 2r0. In particular ω = ω′.
On the other hand, let ω ∈ O. Then B(0; r0) ∩ Lω 
= ∅ by definition. But since Lω is
r0-discrete this intersection is made of a unique point xω which depends continuously on
ω. Then νω = t−xωω ∈ �. The map ω ∈ O 
→ (νω, xω) ∈ � × B(0; r0) is continuous
and defines the inverse of φ. ��
Since similar results will be proved later, the following proposition will not be proved
here. It can be seen as a straightforward consequence of the theory of finite type repetitive
Delone sets (see Theorem 2.6).

Proposition 2.11. Let L be a repetitive (r, R)-Delone set in R
d of finite type, with Hull

� and transversal �. Let V be a protocell of L.

(i) Let �V be the subset of � such that the Voronoi cell of the origin in Lω is V . Then
�V is a clopen set.
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(ii) Let BV be the set

BV = {ω ∈ � ; ∃x ∈ V , t−xω ∈ �V }.
Then the map φ : (ω, x) ∈ �V × V 
→ txω ∈ BV is a homeomorphism. In
particular BV is a box.

(iii) Two such boxes have empty intersection, whereas their closure cover �. Moreover,
the closures of two such boxes intersect on a set homeomorphic to � × F , where
F is a common face of the corresponding protocells and � is a clopen subset of �.

2.3. Tilings. This subsection is devoted to a few important properties of tilings in the
usual d-dimensional Euclidean space R

d . Let ‖ · ‖ denote the Euclidean norm in R
d .

The vector space R
d is oriented by stipulating that the standard basis is positive. In this

section, a cell will be a bounded connected open subset of R
d . A punctured cell is a

pair (C, x), where C is a cell in R
d and x ∈ C. A tile (resp. punctured tile) will be

the closure of a cell (resp. punctured cell). In particular, a tile is a compact set which is
the closure of its interior. If t is a punctured tile, then xt will denote the distinguished
point in its interior. Two tiles t1, t2 are i-equivalent whenever there is an isometry of
R

d transforming t1 into t2. Two punctured tiles (C1, x1) and (C2, x2) are i-equivalent
if there is an isometry g such that g(C1) = C2 and g(x1) = x2. They are t-equivalent
whenever there is a ∈ R

d such that t2 = t1 + a (with a similar definition for punctured
tiles). A prototile of type i (resp. t) is an i-equivalent class (resp. t-equivalent class) of
tiles (and similarly for punctured tiles). Let X be a countable set of prototiles.

Definition 2.12. For s ∈ {i, t} a tiling with tile s-types in X is a countable family T of
tiles of R

d such that:

(i) The s-equivalent class of each t ∈ T belongs to X.
(ii) T covers R

d .
(iii) Any two distinct tiles of T have disjoint interiors.

If X is punctured, then the set of points LT = {xt ; t ∈ T } is the set of vertices of the
tiling. A tiling T is polyhedral if all its tiles are closed polyhedron homeomorphic to a
closed ball in R

d .

Note that the tiles of a polyhedral tiling need not be convex. Given a countable set X

of prototiles, it is not known in general whether the set of tilings with type tiles in X

is empty or not. However, many examples of finite X’s are known to give a rich set of
tilings. For example, tiles of the Penrose tiling or the Voronoi tiling of a quasi crystal
[41], belong to finitely many t-types, while tiles of the pinwheel tiling [39] belong only
to two tile i-types but to an infinite number of tile t-types. The following obvious result
establishes an equivalence with Sect. 2.1

Proposition 2.13. Let X be a countable set of punctured prototiles. If the maximum
diameter of a prototile is finite the set of vertices of any tiling with tile types in X is rel-
atively dense. If the distance of the distinguished point of a prototile to its complement
is bounded below uniformly in X then the set of vertices is uniformly discrete.

Given T a tiling with tile s-types in X (with s = i, t), a patch is the interior of a union a
finitely many tiles. A pattern of T is the s-equivalence class of a patch of T . A pattern
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defines a finite collection of elements of X but two distinct patterns may define the same
such collection. The diameter of a pattern is the diameter of any patch it contains: since
two patches define the same pattern if and only if they are isometric, they have same
diameter. In this paper, only tiling with a finite number of tile t-types are considered.

Hypothesis 2.1. 1. The set of prototiles X is finite;
2. If T (X) denotes the set of tilings for which the tile t-type of each tile belongs to X,

then T (X) 
= ∅. T (X) is called the tiling space.

It follows from Proposition 2.13 that the vertices of such a tiling form a Delone set.
The group (Rd ,+) acts on T (X) by translations, namely if a ∈ R

d and if T is a
tiling, then ta(T ) denotes the tiling T = {t + a; t ∈ T }. The tiling space T (X) is
endowed with a distance (hence with the induced topology) defined as follows: let
A denote the set of ε ∈ (0, 1) such that there exist x and x′ in B(0; ε) for which
(T + x) ∩ B(0; 1/ε) = (T ′ + x′) ∩ B(0; 1/ε), then:

δ(T , T ′) = inf A , if A 
= ∅ ,

δ(T , T ′) = 1 , if A = ∅ .

Hence the diameter of T (X) is bounded by 1 and the R
d -action on T (X) is continuous. If

X is punctured, this topology is in general strictly finer than the weak∗-topology defined

on the Delone sets of vertices (see Sect. 2.1). For each T ∈ T (X), o(T ) = tRd

(T )

denotes its orbit. δ restricts to any orbit o(T ) and the induced topology is finer that the
one induced by R

d . The continuous Hull of T is the closure �T of o(T ) in T (X). It
is invariant for the R

d -action on T (X). Thus (�T , R
d , t) is a topological dynamical

system. The following sub-class of tilings is remarkable:

Definition 2.14. A tiling T satisfies the finite pattern condition, and then T will be
called FPC, if for any R > 0, there are, up to translation, only finitely many patterns
with diameter smaller than R.

Remark 2.15. If X is punctured, the set of vertices of any FPC tiling with tile type in X

is a finite type Delone set.

Remark 2.16. Polyhedral tilings in R
d in which tiles are touching face-to-face are FPC

if and only if they have a finite number of prototiles. This applies to the Voronoi tiling
of a Delone set.

Remark 2.17. The set T = {[−1, 1]×2 + (2m, 2n + ξm) ; (m, n) ∈ Z
2} is a tiling in

R
2 with one prototile. If (ξm)m∈Z is a family of independent random variables with

continuous distribution, it is almost surely not FPC.

An equivalence between finite type Delone sets and FPC punctured tilings is given by

Theorem 2.18 ([31]). If a tiling T ∈ T (X) satisfies the FPC, then �T is compact. More-
over, if T is punctured, the weak∗-topology defined by the set of vertices LT coincides
with the δ-metric topology. In particular the continuous Hull �T coincides with the Hull
of LT .

As for Delone sets, if T is FPC, then each tiling in �T is FPC.
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Definition 2.19. Let X be punctured and satisfy Hypothesis 2.1 and let T ∈ T (X). The
closed set �T of tilings T ′ ∈ �T such that one vertex coincides with 0 ∈ R

d is the
canonical transversal.

The following result [31] is equivalent to Theorem 2.6 (ii)

Proposition 2.20. If a punctured tiling T ∈ T (X) is FPC, then its canonical transversal
�T is compact and completely disconnected.

Definition 2.21. A tiling T ∈ T (X) is repetitive if for any patch in T there is R > 0
such that, for every x in R

d , there exists a translated of this patch belonging to T and
contained in the ball B(x;R).

As for Delone set (see Theorem 2.6),

Proposition 2.22. If a tiling T ∈ T (X) is both FPC and repetitive, then �T is minimal,
namely each orbit is dense in �T .

Definition 2.23. A tiling T ∈ T (X) is aperiodic if there exists no x 
= 0 in R
d such that

tx(T ) = T ; it is strongly aperiodic if all tilings in �T are aperiodic.

Consequently [31]:

Proposition 2.24. If an aperiodic tiling T ∈ T (X) is both FPC and repetitive then it is
strongly aperiodic. In this case, any canonical transversal �T is a Cantor set.

Definition 2.25. Tilings that are aperiodic, FPC and repetitive are called perfect.

As the main object is the dynamical system (�T , R
d , t), this suggests the following

equivalence relation on tilings of R
d .

Definition 2.26. Two tilings T and T ′ of R
d are �-equivalent if there exists a homeo-

morphism φ : �T → �T ′ which conjugates the two R
d -actions.

2.4. Tilings versus Laminations. Let M be a compact metric space and assume there
exist a cover of M by open sets Ui and homeomorphisms called charts hi : Ui → Vi×Ti ,
where Vi is an open set in R

d and Ti is some topological space. These open sets and ho-
meomorphisms define an atlas of a (d)-lamination structure with d-dimensional leaves
on M , if the transition maps hi,j = hj ◦ h−1

i read on their domains of definitions:

hi,j (x, t) = (fi,j (x, t), γi,j (t)),

where fi,j and γi,j are continuous in the t variable and fi,j is smooth in the x variable.
Two atlases are equivalent if their union is again an atlas. A (d)-lamination is the data
of a metric compact space M together with an equivalence class of atlas L.

We call a slice of a lamination a subset of the form h−1
i (Vi × {t}). Notice that from

the very definition of a lamination, a slice associated with some chart hi intersects at
most one slice associated with another chart hj . The leaves of the lamination are the
smallest connected subsets that contain all the slices they intersect. Leaves of a lamina-
tion inherit a d-manifold structure, thus at any point in the lamination, it is possible to
define the tangent space to the leaf passing through this point. A lamination is orientable
if there exists in L an atlas made of charts hi : Ui → Vi×Ti and orientations associated
with each Vi preserved by the restrictions fi,j of the transition maps to the leaves. L is
oriented if one fixes one global orientation.
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Definition 2.27. Given a lamination (M, L), a transversal of L is a compact subset �

of M such that, for any leaf L of L, � ∩ L is non empty and is a discrete subset with
respect to the d-manifold topology of the leaf L.

The laminations related to tilings have special properties:

Definition 2.28. An oriented d-lamination(M, L) is flat if:

(i) there exists in L a maximal atlas made of charts hi : Ui → Vi × Ti with transition
maps given, on their domain of definition, by

hi,j (x, t) = (x + ai,j , γi,j (t)) , ai,j ∈ R
d .

(ii) Every leaf of L is an oriented flat d-manifold isometric to R
d .

Definition 2.29. Let (M, L) be an oriented, flat d-lamination. A box is the domain of a
chart of the maximal atlas of L. For any point x in a box B with coordinates (px, cx)

in the chart h, the slice h−1(V × {cx}) is called the horizontal and the Cantor set
h−1({px} × C) is called the vertical of x in B.

Since a transition map transforms horizontals into horizontals and verticals into verticals,
these definitions make sense.

Definition 2.30. A lamination (M, L) is tilable if it is flat and admits a transversal �

which is a Cantor set.

On a tilable lamination (M, L) it is possible to define a parallel transport along each leaf
of the lamination. We denote by Par(M, L) the set of parallel vector-fields on (M, L).
This set is parameterized by R

d . This gives a meaning to the notion of translation in
the lamination by a vector u in R

d , defining this way a dynamical system (M, tL). The
lamination is minimal if such a dynamical system is minimal.

Let T ∈ T (X) be a perfect tiling constructed from a finite collection of protocells
X = {p1, . . . , pk}. For each protocell pi in X, let yi ∈ pi . The family Y = (y1, . . . , yn)

determines a punctured version XY of X. Let �T,Y be the canonical transversal asso-
ciated with Y . From Proposition 2.24, �T,Y is a Cantor set. The following result is
straightforward

Proposition 2.31. Let F(�T ) be the set of compact subsets of �T endowed with the
Hausdorff distance. Then the map Y ∈ p1 × · · · × pk 
→ �T,Y ∈ F(�T ) is continuous.

Let P be a patch containing a cell containing 0 ∈ R
d . Then let CT,P be the set of tilings

in �T,Y the restriction of which to P coincides with P : this is a clopen set. The topology
of �T,Y is generated by the countable family of such clopen sets. Then CT,P is called
the acceptance domain of P .

Theorem 2.32. Let T be a perfect tiling with prototcells X = {p1, . . . , pf }. Then there
is a minimal tilable lamination (�, L) such that:

(i) (�, tL) and (�T , t) are conjugate dynamical systems.
(ii) For any Y = (y1, . . . , yk) ∈ p1 × · · · × pk , the set �T,Y is a transversal of the

lamination.
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Proof. Fix one �T,Y and choose a tiling T ′ in �T,Y and a patch P ′ of T ′ that contains a
cell containing 0. For each such pair (T ′, P ′) let C(T ′,P ′) be the acceptance domain of
P ′. Then a box U(T ′,P ′) = φT ′,P ′(P ′ × C(T ′,P ′)) is defined through the map φ(T ′,P ′)
defined by

P ′ × C(T ′,P ′) 
→ U(T ′,P ′)
(v, T ”) 
→ tv(T ”).

Since T is perfect, the orbit of T ′ is dense so that as P ′ varies, the U(T ′,P ′) form an
open cover of �T . By compactness, a finite subcover U1, . . . , Un can be extracted. Let
P1, . . . , Pn be the corresponding patches, let Ci denote the clopen set C(T ′,Pi ) and let
φi be the map φ(T ′,Pi ). Each clopen set Ci can be decomposed into a partition Ci,j of
clopen sets, where 1 ≤ j ≤ ki , of arbitrary small diameter. Since any tiling in �T is
perfect, this decomposition can be chosen such that

1. For each i = 1, . . . , n, and each j = 1, . . . , k(i) the restriction of φi to Pi × Ci,j is
an homeomorphism onto its image denoted by Ui,j .

2. For each pair (i1, i2) in {1, . . . , n}×2 and for each j1 in {1, . . . , k(i1)} there exists at
most one j2 in {1, . . . , k(i2)} such that Ui1,j1 ∩ Ui2,j2 
= ∅.

If T ” ∈ Ui1,j1 ∩ Ui2,j2 there are (vs, Ts) ∈ Pis × Cis (s = 1, 2) such that φi1(v1, T1) =
T ” = φi2(v2, T2). Moreover, the vector a = v2− v1 is independent of the choice of T ”.
For indeed the transition map φ−1

i2
◦φi1 is defined on Pi1∩(Pi2−a)×Ci1,j1∩(t−aCi2,j2)

and is given by φ−1
i2
◦ φi1(v1, T1) = (v2, T2) = (v1 + a, ta(T1)). It follows that �T can

be endowed with a structure of tilable lamination L, where the leaf containing a tiling
T ′ in �T is its R

d -orbit. By construction, the set �T,Y is a transversal of the lamination
and it is plain to check that any other �T,Y ′ is also a transversal. A translation in the
lamination (�T , L) defined using Par(�T , L) coincides by construction with a usual
translation acting on �T , so the last statement is immediate and minimality is a direct
consequence of the minimality of (�T , t). ��
Remark 2.33. Recently L. Sadun and R.F. Williams [40] have proved that the continuous
Hull of a perfect tiling of R

d is homeomorphic to a bundle over the d-torus whose fiber is
a Cantor set, a much nicer object than a lamination. Unfortunately, this homeomorphism
is not a conjugacy: it does not commute with translations. However this shows that every
tiling is orbit equivalent to a Z

d -action.

2.5. Box decompositions. Tilings may look like very rigid objects. Through their con-
nections with laminations and dynamical systems, however, tiling spaces are easier to
handle. It leads to new results on tilings. For this purpose and by analogy with Markov
partitions in Dynamical Systems, let us introduce the notion of box decomposition of a
tilable lamination.

Definition 2.34. A well oriented d-cube in R
d is an open set of the form (a1, b1) ×

· · · × (ad, bd) with ai < bi real numbers. A block in R
d is a connected set which is the

interior of a finite union of closures of well oriented d-cubes.

Definition 2.35. Let (M, L) be a tilable lamination. Let B ⊂ M be a box of the form
h−1(P × C) in a chart h in L defined in a neighborhood of the closure B where C is a
clopen subset of a Cantor set.



12 J. Bellissard, R. Benedetti, J.-M. Gambaudo

(i) When P is a well oriented d-cube, B is called a box of cubic type;
(ii) When P is a block, B is called a box of block type.

These definitions are independent of the choice of the chart in L.

Definition 2.36. For a box B (of block or cubic type) of the form h−1(P × C) in a
defining chart h, the set h−1(∂P × C) is its vertical boundary.

Lemma 2.37. Let B1, . . . , Bm be a finite collection of boxes of block type in a tilable
lamination. Then, there exists a finite collection of boxes of cubic type in B ′

1 . . . B ′
p such

that:

(i) the B ′
l ’s are pairwise disjoint,

(ii) the closure of ∪l=p
l=1 B ′

l coincides with the closure of ∪j=m
j=1 Bj ,

(iii) if a B ′
l intersects a Bj then it is contained in this Bj .

Proof. The case of two boxes B1, B2 will be considered first. For i = 1, 2, let hi be the
chart defining Bi so that hi(Bi) = Pi × Ci . On its domain of definition, the transition
map h1,2 reads:

h1,2(x, t) = h1 ◦ h−1
2 (x, t) = (x − a, γ (t)) , a ∈ R

d .

Since, for i = 1, 2, Ci is completely disconnected, there is a partition in clopen sets
Ci,j , j = 1, . . . , k(i) with arbitrary small diameters. This partition can be chosen so
that P1×C1,j1 ∩h1,2(P2×C2,j2) = P1 ∩ (P2− a)×C′ (or may be empty) where C′ is
a clopen subset of C1,j1 . Similarly P2×C2,j2 ∩h2,1(P1×C1,j1) = P2∩ (P1+a)×C",
where C" is a clopen subset of C2,j2 . It follows that h−1

1 (P1×C1,j1)∪ h−1
2 (P2 ×C2,j2)

is the reunion of five disjoint boxes of block type A1 ∪ A2 ∪ A3 ∪ A4 ∪ A5, where

A1 = h−1
1 (P1 × (C1,j1 \ C′)) , A5 = h−1

2 (P2 × (C2,j2 \ C”)) ,

A2 = h−1
1 (P1 \ (P2 − a)× C′) , A4 = h−1

2 (P2 \ (P1 + a)× C”) ,

A3 = h−1
1 (P1 ∩ (P2 − a)× C′) = h−1

2 (P2 ∩ (P1 + a)× C”) .

Since P1, P2, P1 ∩ (P2 − a), P1 \ (P2 − a) and P2 \ (P1 + a) are blocks, they are
also finite unions of well oriented d-cubes P ′

1, . . . , P
′
m. This decomposition in d-cubes

induces a finite collection of disjoint (open) cubic boxes with closure given by the clo-
sure of h−1

1 (P1 × C1,j1) ∪ h−1
2 (P2 × C1,j2). Applying the same procedure for all pairs

(i1, j1) and (i2, j2) leads to the desired finite collection of cubic boxes. The result for a
collection of n boxes in general is obtained by induction. ��
Definition 2.38. A tilable lamination (M, L) admits a box decomposition of cubic type
(resp. of block type) if there exists a finite collection of boxes of cubic type (resp. of
block type) B = {B1, · · · , Bn} such that:

(i) the Bi’s are pairwise disjoint,
(ii) the union of the closures of the Bi’s covers M .

Proposition 2.39. Any tilable lamination (M, L) admits a box decomposition of cubic
type.
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Proof. For each x ∈ M , let U contain x and be the domain of a chart h : U → V × T .
Let P be a well oriented d-cube in V and let C be a small clopen set in T such that
x ∈ U ′ = h−1

x (P ×C). This gives a cover of M by boxes of cubic type. Since M is com-
pact, there is a finite subcover by boxes of cubic types. The result is then a consequence
of Lemma 2.37. ��
In terms of tilings, this last result implies that the tilings induced on each leaf of the lami-
nation by the intersection of the leaf with the vertical boundaries of the boxes B1, . . . , Bn

defined in Proposition 2.39 are made with at most n-types of well oriented d-cubes. In
general, it is not true that we recover the whole lamination by considering the hull of
these induced tilings. As it will be shown in [12], expansivity is required for a tilable
lamination to be a tiling space (two distinct leaves cannot stay arbitrarily close one to
the other).

However, when the tilable lamination is already given from a tiling space, Theo-
rem 2.32 and Proposition 2.39 yield with no difficulty:

Corollary 2.40. For any perfect tiling T of R
d there is a perfect tiling T ′ made with a

finite number of well oriented cubic prototiles which is �-equivalent to T .

2.6. Zooming. The last result shows that it is enough to restrict the study to perfect
tilings having a finite number prototiles made of well oriented d-cubes (namely cubic
type tilings). However, several constructions made in this paper require using block type
tilings, namely tiling defined by a finite number of prototiles each being a block. For
these reasons, unless otherwise stated, all box decompositions will be of block type. It is
worth remarking that the constructions that we perform in the following work for tilable
laminations and not only for tiling spaces. Finally, let us notice that the construction
leading to Proposition 2.39 leaves a lot of room. This freedom allows us to introduce
the following definition.

Definition 2.41. Let B and B′ be two box decompositions of block type of a same tilable
lamination (M, L). B′ is zoomed out of B if

(i) for each point x in a box B ′ in B′ and in a box B in B, the vertical of x in B ′ is
contained in the vertical of x in B,

(ii) the vertical boundaries of the boxes of B′ are contained in the vertical boundaries
of the boxes of B,

(iii) for each box B ′ in B′, there exists a box B in B such that B ∩ B ′ 
= ∅ and the
vertical boundary of B does not intersect the vertical boundary of B ′.

Proposition 2.42. Consider a minimal tilable lamination (M, L). Then, for any box
decomposition of block type B, there exists another box decomposition of block type
zoomed out of B.

Proof.

Step 0. Building a finite repetitive Delone set. Let B = {B1, . . . Bn}. Each box Bi of
the box decomposition reads Pi × Ci in a chart. We consider the image Ĉi under the
parametrization of {pi}×Ci where pi is the barycenter of Pi . Let Ĉ = ∪n

i=1Ĉi . Choose
a leaf L of the lamination and a point x in L ∩ Ĉ. Identifying (L, x) with (Rd , 0), it is
clear that the set L∩ Ĉ is a repetitive Delone set in R

d which has finite type. Each point
y in this Delone set is the barycenter of a block Py which is a translated copy of one of
the Pi’s.
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Step 1. Voronoi decomposition. Let δ > 0 be small enough and consider a clopen (closed
open) set Ĉ′

1 in the vertical Ĉ1 with diameter smaller than δ and containing the point x.
Using again the identification (L, x) = (Rd , 0), we easily check that the set L ∩ Ĉ′

1
is again a repetitive Delone set in R

d which has finite type. The clopen set Ĉ′
1 can be

decomposed in a finite number of disjoint clopen sets Ĉ′
1,1, . . . Ĉ

′
1,m which are character-

ized by the property that for each pair of points y and y′ in some Ĉ′
1,i , the Voronoi cells

associated with y′ is the image the Voronoi cell associated with y under the translation
of the vector y′ − y. We denote the translation class of these Voronoi cells V1,j . This
partition of Ĉ′

1 yields a box decomposition BV = {B1,1, . . . , B1,m} of (M, L), called
the Voronoi box decomposition associated with C1, whose boxes read in the charts:

B1,j = V1,j × C′
1,j ,

where {p1} × C′
1,i is the image in the chart of Ĉ′

1,j .

Step 2. Zooming.. We perform the following surgery on the Voronoi cells of the Delone
set L ∩ Ĉ′

1. For each point y in L ∩ Ĉ′
1 with Voronoi cell Vy we associate the block:

P ′
y = ∪

y′∈Vy∩Ĉ
Py′ .

It may happen that there exists y′ in Ĉ which belongs to two Voronoi cells Vz and Vz′ . In
order to get a partition of R

d we have to avoid this ambiguity. For this purpose, we make
a choice in a coherent way, that is to say so that, whenever z and z′ both belong to some
L ∩ Ĉ1,j , then two blocks P ′

z and P ′
z′ are tranlated copies one of the other. We denote

by P ′
1,j the translation class of these polyhedra. This gives us a new box decomposition

B′ = {B ′
1, . . . , B

′
m}, deduced from the Voronoi box decomposition BV and whose boxes

read in the charts:

B ′
j = P ′

1,j × C′
1,j .

It is straightforward to check that, when δ is small enough, the box decomposition B′ is
zoomed out of the box decomposition B. ��
Let now B = {B1, . . . , Bn} and B′ = {B ′

1, . . . , B
′
m} be two box decompositions of the

same tilable lamination (M, L) such that B′ is zoomed out of B and let T and T ′ be the
two tilings induced by both decompositions on the same leaf L of the lamination. The
connected components of the intersection of L with the B ′

j ’s define the tiles of T ′. Each
tile t ′ of T ′ is tiled with tiles of T and surrounded by other tiles of T . The union of the
tiles of T whose closures intersect the closure of t ′ and whose interiors do not intersect
the interior of the tile t ′ is called the first corona of the tile t ′.

Definition 2.43. We say that B′ forces its border 1 if for each tile t ′ of the tiling induced
on each leaf of (M, L) by the box decomposition B′, the first corona of t ′ depends only
(up to translation) on the box B ′

j which contains t ′.

Proposition 2.42 can be improved as follows
1 This concept was first introduced in the context of tilings (see [31]). The present definition agrees

with the standard one.
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Theorem 2.44. Consider a minimal tilable lamination (M, L). Then, for any box
decomposition of block type B, there exists another box decomposition of block type
zoomed out of B that forces its border.

Proof. Consider a box decomposition of block type B′ = {B ′
1, . . . , B

′
m} zoomed out

of B. Since the tiling T and T ′ respectively induced by B and B′ have finite type, it
follows that there exist only finitely many possible first coronas for any tile of T ′. In
particular, fix j in {1, . . . , m} and consider the box B ′

j which reads in a chart P ′
1,j×C′

1,j .
There exists a finite partition of C′

1,j in clopen sets C′
1,j,1 . . . C′

1,j,k of C′
1,j such that,

for all l = 1, . . . , k, the tiles of T ′ which correspond (in the charts) to the connected
components of L ∩ P ′

1,j × C′
1,j,l have the same first corona up to translation. The new

boxes which read in the charts P ′
1,j × C′

1,j,l define a box decompostion zoomed out of
B that forces its border. ��
Corollary 2.45. Let (M, L) be a minimal tilable lamination. Then, for any box decom-
position of block type B, there exists a sequence (B(n))n≥0 of box decompositions of
block type such that

(i) B(0) = B,
(ii) for each n ≥ 0, B(n+1) is zoomed out of B(n) and forces its border.

In terms of tilings, this last result can be interpreted as follows. Let L be a leaf of the
lamination and let n ∈ N. Then let T (n) be the tiling on this leaf induced by its intersec-
tion with the vertical boundaries of the boxes of the box decomposition B(n) defined in
Theorem 2.44. This sequence of tilings is nested, namely

Definition 2.46. A sequence T
(n)
n≥0 of tilings is called nested if the following properties

hold

(i) the t-tiles types of T (n) are defined by a finite number of block prototiles,
(ii) each tile t (n+1) of T (n+1) is a connected patch of P (n) of T (n) and contains at least

one tile of T (n) its interior,
(iii) the patch Q(n) of T (n) made with all the tiles of T (n) that touch P (n) is uniquely

determined up to translation 2,
(iv) the tiling T (n) is �-conjugate to T (0).

Let (M, L) be a minimal tilable lamination with a box decomposition B. Then, two points
in M are equivalent if they are in the same box of B and on the same vertical in this
box. The quotient space is a branched d-manifold that inherits from its very construction
some extra structures. Section 3 is devoted to an axiomatic approach of these objects.
Performing this quotient operation for a sequence of box decompositions zoomed out
one of the others as in Corollary 2.45 gives rise to a sequence of such branched manifolds
whose study is reported in Sect. 4.

3. BOF-d-Manifolds

This section is devoted to the definition and the study of branched oriented flat (briefly:
BOF) d-manifolds. There are several ways of defining these objects. For a polyhedral

2 This is a generalization of the classical definition of “forcing its border” for substitution tilings (see
[31]).
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FPC tiling, the number of prototiles is finite and their faces are parallel to a finite number
of hyperplanes. Hence the local models for branching points will be built out of polyhe-
dral sectors with boundaries parallel to one of these hyperplanes. This is the way chosen
in this work.

In the rest of this paper then, E will denote a family of n ≥ d non zero vectors in
R

d generating R
d . Then given x ∈ R

d let Fe(x) = {y ∈ R
d ; 〈e|y − x〉 = 0} be the

affine hyperplane through x and perpendicular to e ∈ E . The BOF manifolds that will
be considered here are defined through this E-geometry. Cubic type tiling is obtained by
choosing n = d and the elements of E are proportional to the vectors of the canonical
basis of R

d . The case of an octagonal tiling in R
2 corresponds to n = 4 with {e1, e2} the

canonical basis and e3 = (e1 + e2)/
√

2, while e4 = (−e1 + e2)/
√

2. For the Penrose
tiling in R

2, n = 5 and the ei’s are five unit vectors with angle 2π/5 between them.

3.1. Local models. For r > 0, and x = (x1, . . . , xd) in R
d , let B(x; r) be the Euclidean

open ball centered at x with radius r > 0. Instead of using the Euclidean norm, it may
be convenient to use the E-norm defined by

‖x‖E = max
e∈E

|〈e|x〉|.

Since E is generating, this is a norm on R
d equivalent to the Euclidean one. Correspond-

ingly, the open E-ball centered at x of radius r will be defined as

BE (x; r) = {y ∈ R
d ; ‖y − x‖E < r} .

Such an E-ball is a convex polyhedron and there are η± > 0 depending only on E such
that B(x; η−r) ⊂ BE (x; r) ⊂ B(x; η+r).

Remark 3.1. If n = d and if the elements of E are proportional to the vectors of the
canonical basis of R

d , an E-ball is a well oriented d-cube (see Def. 2.34). Since the
elements of E may not have the same length, a well oriented d-cube is not necessarily
an hypercube, namely its sides may have different lengths.

To describe the various sectors separated by the hyperplanes Fe(x)’s in such balls, it
is convenient to use a combinatorial description, through binary code theory. Here Cn

will denote the set {+1,−1}E . An element of Cn is then a family ε = (εe)e∈E with
εe = ±1. Cn is endowed with the Hamming distance dH(ε, ε′) = #{e ∈ E ; εe 
= ε′e}.
A subset A ⊂ Cn is connected, whenever given any two points ε and ε′ in A, there
is a path γ joining them, namely γ = {ε(0) = ε, ε(1), . . . , ε(r−1), ε(r) = ε′} with
dH(ε(s−1), ε(s)) = 1 for s = 1, . . . , r . Such a path is known under the name of Gray
code in information theory. For e ∈ E let ηe : Cn 
→ Cn be one step in the direction e,
namely (ηe(ε))e′ = (−1)δee′ εe′ . It is clear that η2

e = id whereas ηe and ηe′ commute.
Then dH(ε, ε′) = 1 if and only if there is e ∈ E such that ε′ = ηe(ε). Given A ⊂ Cn

connected, a boundary code of A is an ε ∈ A such that there is e ∈ E with ηe(ε) /∈ A.
The set of such points is denoted by ∂A. If ε ∈ ∂A then I (ε) will denote the set of
e ∈ E such that ηe(ε) /∈ A. A code ε /∈ A is adjacent to A if there is e ∈ E such that
ηe(ε) ∈ A. The set of adjacent points is denoted by δA. Two connected disjoint sets A, B

are adjacents, if ∂A ∩ δB 
= ∅. This is equivalent to δA ∩ ∂B 
= ∅ and the adjacency
relation between A and B will be denoted 〈A, B〉.
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Given ε ∈ Cn the set

Oε(x; r) = {y ∈ B(x; r) ; εe〈e|y − x〉 ≥ 0 , ∀e ∈ E} ,
is closed in B(x; r) but, since B(x; r) is open, it is not closed in R

d . It is a convex cone
with boundaries defined by the Fe(x)’s. It may have an empty interior though, as can be
seen on the example of the octagonal tiling. It will be called an E-orthant if it has a non
empty interior. It is clear that the E-orthants of a ball cover it. Let then CE be the subset
of Cn of codes ε ∈ Cn for which Oε(x; r) has a non empty interior. CE is not empty
since the union of all E-sectors is the ball B(x; r). Moreover if Oε(x; r) is an E-orthant,
so is O−ε(x; r) = −Oε(x; r). Hence ε ∈ CE if and only if −ε ∈ CE , whenever −ε

denotes the code (−εe)e∈E .

Lemma 3.2. Two E-orthants of B(x; r) have a union with connected interior if and only
if the Hamming distance of their code is one.

Proof. Let ε and ε′ be the codes of the two E-orthants. Since they are distinct, their
Hamming distance in non zero. If their Hamming distance is one, there is a unique e ∈ E
such that ε′ = ηe(ε). Then Oε(x; r) ∪ Oε′(x; r) is the set of y ∈ B(x; r) such that
εe′ 〈e′|y − x〉 ≥ 0 for all e′ 
= e. This is obviously a convex set so it is connected. Since
it has a non empty interior, by hypothesis, its interior is also connected.

If the Hamming distance is greater than one, there are at least two indices e 
= e′ for
which the coordinates of the two codes disagree and therefore the union of the two orth-
ants is contained in the set C+∪C− of y ∈ B(x; r) where C± = {y ; , ±εf 〈f |y−x〉 ≥
0 f = e, e′}. The intersections of C± with the 2-plane generated by e, e′ are convex
cones Ĉ± that are symmetric around the point of intersection x̂ of the traces of the hy-
perplanes Fe(x) and Fe′(x). Thus these cones intersect on x̂ only and the interior of their
union does not contain x̂ so that this interior cannot be connected. ��
In particular two such E-orthants intersect along a face of codimension 1. As a conse-
quence, since the ball is connected, the set CE is connected.

An E-orthant O centered at x is stratified as follows. A point in ∂O has degree l

whenever it belongs to an affine subspace of dimension l obtained as an intersection of
Fe(x)’s and is not contained in any other such intersection of lower dimension. Then
∂lO will denote this set of points, with the convention that ∂dO is the interior of O. Then
∂0O = {x}. It is simple to check that ∂lO ∩ ∂l−1O = ∅ and that ∂lO = ∂lO ∪ ∂l−1O

for l = 1, . . . , d.
An E-sector S is an open connected subset of B(x; r) which is the interior of the

union of E-orthants. Since S is connected, thanks to Lemma 3.2 the set A ⊂ CE of
codes of the orthants building S is automatically connected. S will then be denoted by
S(x; r, A),

S(x; r, A) = Int

(
⋃

ε∈A

Oε(x; r)
)

.

The boundary ∂S(x; r, A) of this sector is the set of points of its closure that are in B(x; r)
and not in S(x; r, A). This boundary is a finite union of E-orthants contained in some
of the hyperplanes Fe(x) of the form Fe(x; r, ε) = Fe(x) ∩ Oε(x; r) ∩ B(x; r). Then
Fe(x; r, ε) does not depend on εe so that ε can be chosen in Cn(e) = {+1,−1}×E\{e}.
The following result is straightforward
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Lemma 3.3. Given a connected subset A ⊂ CE , ∂S(x; r, A) is the union of the E-faces
Fe(x; r, ε) where ε runs through the elements of ∂A and e ∈ I (ε),

∂S(x; r, A) =
⋃

ε∈∂A

⋃

e∈I (ε)

Fe(x; r, ε) .

Similarly, if A and B are two disjoint adjacent connected subsets of CE ,

S(x; r, A) ∩ S(x; r, B) ∩ B(x; r) =
⋃

ε∈∂A∩δB

⋃

e∈I (ε)

Fe(x; r, ε) .

Clearly each Fe(x; r, ε) defines an orthant in an affine subspace of dimension (d − 1)

corresponding to the set Ee which is made of the projections on Fe of the vectors of E\{e}.
Therefore ∂S(x; r, A) is the closure of a union of Ee-sectors. Thanks to Lemma 3.3 such
sectors are attached to the connected components of ∂A.

As for E-orthants, an E-sector S is stratified in a similar way. ∂dS = S while ∂lS is
the union of points in ∂lO ∩ ∂S for any E-orthant O building S. It is important to note
that ∂lS may be empty for l small enough. An l-face of S is the closure of a connected
component of ∂lS.

In what follows, PE will denote the set of connected subsets of CE and N : PE 
→ N

denotes a map, namely for each A ∈ PE , N(A) ∈ N is a given integer. It will be assumed
that N(∅) = 0. A subset π ⊂ PE will be called admissible if ∅ ∈ π and CE /∈ π . The
subgraph of N is the set

Gπ(N) = {(A, n) ∈ π × N ; 0 ≤ n ≤ N(A)}.
Since ∅ ∈ π it follows that (∅, 0) ∈ Gπ(N). The (π, N)-preball centered at x with
radius R is the set B̂(x; r, π, N) = B(x; r)×Gπ(N). Given (A, n) ∈ Gπ(N)) the sub-
set B(x; r)×{(A, n)} is called a sheet. On such a preball, let∼ be the equivalence relation
defined by (y, A, n) ∼ (y′, A′, n′) if and only if (i) either (y, A, n) = (y′, A′, n′), (ii)
or A 
= A′ and then y = y′ ∈ B(x; r) \ S(x; r, A) ∪ S(x; r, A′). It is straightforward to
check that this is an equivalence relation.

Definition 3.4. An open BOF-E-ball centered at x and of size r is a quotient set of the
form B(x; r, π, N) = B̂(x; r, π, N)/ ∼ for some admissible family π ⊂ PE and some
map N : PE 
→ N such that N(∅) = 0. A closed BOF-E-ball is obtained in the same
way by using the closed ball B(x; r) instead.

Hence a BOF-E-ball is a local model describing branched topological spaces. Actually,
a BOF-E-ball D, with underlying (Euclidean) ball B, is also endowed with a canonical
structure of flat branched Riemannian manifold (with boundary if closed). For indeed D
comes from a preball D̂ which is the disjoint finite union of copies of B (its sheets). Each
such sheet can be seen as a flat Riemannian manifold if endowed with the Euclidean
structure of R

d . Hence, the tangent space at x ∈ D is simply TxD = R
d , and the tangent

bundle is just the trivial one D×R
d . Similarly, D is given a canonical orientation induced

by the one of its underlying E-ball. The canonical map p : [(y, A, n)] ∈ D 
→ y ∈ B is
differentiable. The boundary of D is the inverse image of the boundary of B by p. The
canonical Euclidean metric on R

d (namely ds2 = dx2
1 +· · ·+ dx2

d ) induces a branched
flat metric on D̂ and then on D by projection. Any ball isometric to B embedded in D
with the same center is called a smooth sheet of D.
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A BOF-E-ball D is stratified as follows. Let ∂dD be the set of points of D coming
from the open set S(x; r, A) × {(A, n)} in various sheets of D̂. Then the complement
of ∂dD projects in B into the set of boundaries of E-orthants. Let then ∂lD be the set of
points z coming from ∂lS for S a sheet of D̂. Then

(i) D = ∂dD,
(ii) ∂lD = ∂lD ∪ ∂l−1D for 1 ≤ l ≤ d ,

(iii) ∂lD ∩ ∂l−1D = ∅.

It follows that the family {∂lD ; 0 ≤ l ≤ d} is a partition of D.

Definition 3.5. Let D be a BOF-E-ball, then

(i) the set ∂lD is called its l-stratum,
(ii) D has type p whenever ∂d−pD 
= ∅ while ∂d−p−1D = ∅.

It follows that a type 0 BOF-E-ball is a Euclidean ball. A type 1 BOF-E-ball centered at x
is branching along an hyperplane of the form 〈e|y− x〉 = 0 for some e ∈ E in its under-
lying d-ball. More generally a BOF-E-ball of type p is branching along the intersection
of p distinct such hyperplanes in generic position. Moreover, if D is a BOF-E-ball, any
point in ∂lD is the center of a BOF-E-ball of type d − l.

In order to define a global geometry the next step requires the definition of the rele-
vant class of coordinate transformations. Since the previous geometry is flat and differs
from the usual Euclidean one only because of branching, the following class will be
sufficient

Definition 3.6. A continuous map f : D → D′ between two BOF-E-balls of the same
size r > 0 is a local BOF-submersion (onto its image) if:

1) f is C1 with respect to the branched C1-structures.
2) For every open smooth sheet D of D, f (D) is a smooth sheet of D′.
3) There is a translation t on R

d such that the restriction of f to each smooth sheet of
D coincides with the restriction of t.

Once a basis of R
d is fixed, giving corresponding trivializations of the two tangent

bundles, then the differential dfx of f at any point x of D induces the identity on R
d .

Definition 3.7. A local BOF-submersion f is a local BOF-isometry if and only if it is
bijective. In such a case f (D) is a BOF-E-ball, f−1 is a local BOF-isometry and the
stratification associated with D is mapped on the stratification associated with f (D)

stratum by stratum.

3.2. BOF-d-manifolds. In this section, the local models defined in the previous section
will be used to define global ones. Here again the family E (n = |E | ≥ d) is given and
is supposed to generate R

d .

Definition 3.8. A BOF-manifold of dimension d , B is a compact, connected metrizable
topological space endowed with a maximal atlas {Uj , φj } such that:

1) There is a generating family E of n ≥ d vectors in R
d such that every φj : Uj 
→ Wj

is a homeomorphism onto an open set Wj of some open BOF-E-ball.
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2) For any BOF-E-ball D embedded into φj (Ui ∩Uj), the restriction of φij = φi ◦φ−1
j

to D is a local BOF-isometry onto a BOF-E-ball embedded into φi(Ui ∩ Uj).

Hence for every point x of a BOF-manifold B, there exists a neighborhood U of x and
a chart φ : U → φ(U) such that φ(U) is a BOF-E-ball and φ(x) = 0. The type of
the BOF-E-ball φ(U) is uniquely determined by x. Such a neighborhood U is called a
normal neighborhood of x.

Definition 3.9. The injectivity radius of x ∈ B, denoted by injB(x), is the sup of the
size of any normal neighborhood of x in B. The injectivity radius of B, denoted inj (B)

is defined by:

inj(B) = inf
x∈B

injB(x) .

Definition 3.10. For 0 ≤ l ≤ d , the l-face of a BOF-manifold B is the set of points x in
B for which there exits a chart (U, φ) in the atlas such that x is in U and φ(x) belongs
to the l-stratum of the BOF-E-ball φ(U). This property is independent on the choice
of the chart (U, φ) as long as x is in U . An l-region is a connected component of the
l-face of B. The finite partition of B into l-regions, for 0 ≤ l ≤ d, is called the natural
stratification of B. The union of all the l-regions for 0 ≤ l ≤ d − 1, forms the singular
locus Sing(B) of B.

Note that, in particular, any oriented flat d-torus is a BOF-d-manifold with one d-region.
In general, any d-region of a BOF-manifold B is a connected (in general non compact)
d-manifold naturally endowed with a (X, G) = (Rd , R

d)-structure [13], where the
group G = R

d acts on X = R
d by translation. This means that any region admits a

d-manifold atlas such that all the transition maps on connected domains are restriction
of translations.

All the objects that have been associated with any open BOF-E-ball, such as the tan-
gent bundle, its trivializations, the orientation, the branched C1-structure, the branched
flat metric and so on, globalize to any BOF-d-manifold. In particular, there is a natural
notion of parallel transport on B with respect to the flat metric, whence the notion of par-
allel vector field on B. Let Par(B) denote the set of parallel vector fields on B. Fixing
the canonical trivialization of the tangent bundle T B leads to a natural isomorphism

ρB : R
d 
→ Par(B) ,

defined by identifying R
d with any tangent space Tx̃B, and by associating to every vector

v ∈ R
d the parallel vector field ρB(v) obtained by parallel transport of v, starting from

x̃. This does not depend on the choice of the base point x̃. The following definition is
based on Lemma 3.1

Definition 3.11. A BOF-manifold B of dimension d has cubic faces (resp. polyhedral
faces) if, for each d-region R of B, there exists a C1 injective map f : R 
→ R

d such
that f (R) is the interior of a well oriented d-cube (resp. of a polyhedron homotopic to
a sphere) in R

d and the differential of f , read in the charts of B, satisfies dfx = 1 at
each point x in R.

In particular, the d-regions of BOF-manifolds with polyhedral faces do not carry any
topology (namely there are contractile).
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3.3. BOF-submersion. From now on any BOF-manifold will have dimension d.

Definition 3.12. A continuous map f : B → B ′ between BOF-manifolds is a BOF-
submersion if:

1) f is C1 and surjective.
2) For every x ∈ B and for every normal neighborhood D′ of f (x) in B ′, there exists a

normal neighborhood D of x in B such that f (D) ⊂ D′ and, read in the correspond-
ing charts, f |D : D 
→ f (D) is a local BOF-submersion.

3) For each region R of B, there exists a region R′ of B ′ such that f is a diffeomorphism
from R′ to R. In particular, the singular set of B is mapped into the singular set of
B ′,

Sing(B) ⊂ f−1(Sing(B ′)) .

Remark 3.13. Notice that the pre-image of a normal neighborhood U ′ ⊂ B ′ (with radius
r > 0) is a finite union of disjoint normal neighborhoods U1, . . . , Un in B (with radius
r > 0) and that f : Ui → U ′ is a C1 bijection whose differential is the identity when
read in the charts. This implies in particular that

inj (B ′) ≤ inj (B) .

Remark 3.14. In much the same way, a BOF-submersion f send an l-region into an
l-region as well. This can be seen locally, since then dxf = 1. Globally, this can be
proved by using a covering by normal neighborhoods. Similarly, the inverse image of
an l-region is a finite union of l-regions.

3.4. Cycles and positive weight systems. Let B be a BOF-manifold of dimension d. Let
F be a d−1-region. If x ∈ F , then x admits a neighbourhood D which is homeomorphic
to an open E-ball centered at x of type 1. Namely the singular locus of D is simply D∩F

and can be seen in a chart as the piece of one of the hyperplanes Fe(x) contained in D.
Such a D is divided into two half balls, defined respectively by the sectors S(x; r, Ae,±),
where r is the radius of D and Ae,± is the set of codes in CE such that εe = ±1. Then
denote by D± these two sectors. If D′ is another such ball centered at x′ ∈ F with non
empty intersection with D, then, since the change of charts are isometries, the definition
of D′

± agrees with the one for D±, namely D+ does not intersect D′
−, neither do D−

and D′
+, while D+ intersects D′

+ as well as D− intersects D′
−. Therefore, the union U

of such neighborhoods is an open set containing F and is divided in a unique way into
two disjoint open subsets of U \ F , U+ and U−. These two sets define the two sides of
F . Each side intersects various d-regions branching along F denoted by R±1 , . . . , R±m± .
A family w(R±s ) of complex numbers obeys Kirchhoff’s law at F if

m+∑

s=1

w(R+s ) =
m−∑

s′=1

w(R−
s′ ) . Kirchhoff’s law

Definition 3.15. (i) A non negative (resp. positive) weight w on a BOF-manifold B of
dimension d is a function assigning to each d-region R a non negative real number
w(R) ≥ 0 (resp. w(R) > 0) obeying Kirchhoff’s law at each (d − 1) region.
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(ii) Then W(B), W ∗(B) will denote the sets of non negative and positive weights of B

respectively. The total mass of a weight w ∈ W(B) is the sum of the w(R)’s over
all d-regions. Then, if m ≥ 0, Wm(B) will denote the set of non negative weight of
mass m.

(iii) A pair (B, w) where B is a BOF manifold and w ∈ W ∗(B) will be called a measured
BOF-manifold.

Remark 3.16. Note that the definition of non negative weights does not involve any
region orientation. It makes sense even for non-orientable branched manifolds [14].

If the orientation of a BOF-manifold B is taken into account, then it is possible to define
the homology of B as follows. Each stratum ∂lB can be decomposed into a finite number
al ∈ N of l-regions. Let an orientation of each of them be chosen so that d-regions be
orientated with the orientation induced by B. Let A be a commutative ring, which will be
Z or R in practice. Let then Cl(B, A) be the free A-module generated by the l-regions.
By convention, if R is such a region, −R will denote the same region with opposite
orientation. Moreover, an element of Cl(B, A) can be seen as a map R 
→ f (R) ∈ A

defined on the set of l-regions, such that f (−R) = −f (R). An element of Cl(B, A)

will be called an l-chain of B. Hence Cl(B, A) is isomorphic to the free module A
al .

Remark 3.17. With the exception of the d-regions orientation, there are no canonical
choices for the above orientations in general. On the other hand, it is clear that two
different choices implement a linear automorphism of A

al . However, the rest of this
work is independent of such a choice.

Given an oriented d-region R and an oriented (d − 1)-region F contained in the closure
of R, the two orientations match if F is positively oriented whenever its normal points
outside R. In much the same way, if R is an oriented l-region, R can be seen as an
open set in some l-dimensional real affine space with same orientation. Therefore if F

is an oriented (l − 1)-region contained in its closure, the same definition of orientation
matching applies. If the orientation does not match then−F has a matching orientation.
In such a case, let bR be the set of (l − 1) regions contained in the closure of R with
matching orientation. Let then the boundary operator be the A-linear map defined by

bi+1 : Ci+1(B, A) 
→ Ci(B, A) , (bi+1f ) (F ) =
∑

R;F∈bR

f (R) . (1)

Conventionally,Cd+1(B, A) = 0 so thatbd+1 = 0. It is a well-known fact thatbi◦bi+1 =
0. Therefore, the A-module Zi (B, A) = Ker bi , called the space of i-cycles of B, con-
tains the A-module, Bi (B, A) = Im bi+1, called the space of i-boundaries of B. Then,
the quotient Hi(B, A) = Zi (B, A)/Bi (B, A) is called the ith homology group of B.
A standard result of algebraic topology insures that (up to an A-module isomorphism)
Hi(B, A) is a topological invariant of B that coincides with the ith-singular homology
of B (see for example [43]). As can be seen from Eq. (1), a positive weight w can be
defined as a d-cycle positive on positively oriented d regions. The Kirchhoff law is sim-
ply expressed by bdw = 0. Since bd+1 = 0 such d-cycles are the elements of Hd(B, R).
This allows to introduce the positive cones H>0

d (B, R) and H
≥0
d (B, R) for the positive

and non negative weights so that

W(B) = H
≥0
d (B, R) , W ∗(B) = H>0

d (B, R).
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The dual module Ci(B, A) of Ci(B, A) is called the module of i-co-chains of B. It can
be identified with A

ai using the dual basis of the above distinguished basis of Ci(B, A).
Then the differential are the linear operators transposed to the boundaries, namely

di : Ci(B, A) → Ci+1(B, A) ,

is defined by 〈dic|f 〉 = 〈c|bif 〉 if c ∈ Ci(B, A) and f ∈ Ci+1(B, A). This gives
another complex with Z i (B, A) = Kerdi is the space of i-cocycles, whereas Bi (B, A) =
Imdi−1 is the set of i-coboundaries. The ith cohomology group with cœfficients in A is
Hi(B, A) = Z i (B, A)/Bi (B, A). In particular Zd(B, A) = Cd(B, A) is the free mod-
ule spanned by the characteristic functions of the d-regions. Hence if w =

∑

R

w(R) eR

is a d-chain (where eR is the basis in Zd(B, A) indexed by the d-regions) and if α ∈
Hd(B, A) is represented by the d-co-cycle α =

∑

R

α(R) e∗R (where e∗R is the dual

basis), then

α(w) = 〈w|α〉 =
∑

R

α(R) w(R) .

Remark 3.18. It follows immediately that any d-cohomology class can be contracted
against a positive measure on B. This would not be possible if B were not orientable.
Nevertheless, < w|c > can be defined through the previous formula, without knowing
that w is a d-cycle. Thus the previous formula does make sense if B is not orientable.
If B is orientable, however, < w|c >=< w|[c] >, where [c] is the co-homology class
represented by c. It follows that the natural pairing 〈·|·〉 induces a pairing

〈·|·〉 : W(B)×Hd(B, A) → R , 〈w|α〉 = α(w) .

Thanks to Definition 3.12, the following result is immediate

Proposition 3.19. If f : B → B ′ is a BOF-submersion then:

1) there exists a natural linear map (well defined up to the mild ambiguity indicated
in Remark 3.17) f∗ : Zd(B, A) → Zd(B ′, A) such that f∗(Wm(B)) ⊂ Wm(B ′),
f∗(W ∗,m(B)) ⊂ W ∗,m(B ′), for every m ∈ R

+.
2) There exists a natural module mapf ∗ : Cd(B ′, A) → Cd(B, A) such that [α](f∗(w)) =

[f ∗(α)](w), for every α ∈ Cd(B ′, A), every w ∈ Zd(B, A), where [α] ∈ Hd(B, A)

is the co-homology class represented by the co-chain α.
3) There exists a module map f ∗ : Hd(B ′, A) → Hd(d, A) defined by f ∗([α]) =

[f ∗(α)].

In particular, as a consequence of this definition, the pairing 〈w|α〉 is invariant by an
BOF-submersion.

Lemma 3.20. Let B be a BOF-d-manifold and µ ∈ W(B). Let c ∈ Zd(B, R) represent
a class of Hd(B, Z). Then there exists a family of integers (mR), where R varies in the
family of d-regions, such that

〈µ|c〉 =
∑

R

mRµ(R).

Moreover, all such linear combinations with integer coefficients arise in this way.
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Proof. As µ is a d-cycle the value of 〈µ|c〉 does not change if a coboundary is added to
c. As c represents a class in Hd(B, Z), c differs from a suitable c′ ∈ Zd(B, Z) by a co-
boundary. The first statement of the lemma follows. Since every d-cochain in Cd(B, Z)

is a d-cocycle, the other statement follows. ��

4. Tilings & Expanding Flattening Sequences

4.1. Expanding flattening sequences.

Definition 4.1. A BOF-submersion f : B → B ′ satisfies the flattening condition, if for
every x ∈ B and for every normal neighborhood D′ of f (x), there exists a small enough
normal neighborhood D of x in B such that f (D) ⊂ D′ and, read in corresponding
charts, f | : D → f (D) is a local BOF-submersion that maps D on one single sheet of
f (D).

Definition 4.2. An expanding flattening sequence EFS is a sequence F = {fi :
Bi+1 → Bi }i∈N of submersions such that:

(i) the sequence of injectivity radius of the Bi’s is a strictly increasing sequence that
goes to +∞ with i;

(ii) for each i ∈ N the map fi satisfies the flattening condition.

With an EFS F are associated the following “inverse” or “direct” sequences (A = Z, R):

i) Inverse sequences in homology,

Zd(F, A) = {(fi)∗ : Zd(Bi+1, A) → Zd(Bi, A) }i∈N,

W(F, A) = {(fi)∗ : W(Bi+1, A) → W(Bi, A) }i∈N,

W ∗(F, A) = {(fi)∗ : W ∗(Bi+1, A) → W ∗(Bi, A) }i∈N .

ii) Direct sequences of cohomology,

Cd(F, A) = {(fi)
∗ : Cd(Bi, A) → Cd(Bi+1, A) }i∈N,

Hd(F, A) = {(fi)
∗ : Hd(Bi, A) → Hd(Bi+1, A) }i∈N .

iii) Inverse sequence of parallel transport,

Par (F) = {dfi : Par (Bi+1) → Par (Bi) }i∈N .

Associated with these “inverse” (resp. “direct”) sequences, are their inverse limits (resp.
the direct limits) which will be relevant in the next sections. Given an inverse sequence

of maps X = {Xi
τi← Xi+1}i∈N, its projective limit is defined by

lim← X = {(x0, x1, . . . , xn, . . . ) ∈
∏

i≥0

Xi ; τi(xi+1) = xi , ∀i ∈ N}.

Then for every j ≥ 0 there exists a natural map pj : lim← X → Xj given by the

j th projection. If the Xj ’s are topological spaces and the maps are continuous, the set
lim← X is a topological space if endowed with the finest topology making the pj ’s con-

tinuous. In particular, this topology coincides with the product topology, so that, if all
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the Xi’s are compact, lim← X is compact. Similarly, given any direct sequence of maps

Y = {Yi
τi→ Yi+1}, its inductive limit is defined as

lim→ Y =
⋃

j∈N

{(xj , xj+1, . . . , xn, . . . ) ∈
∏

n≥j

Yn ; τn(xn) = xn+1 , ∀n ≥ j}.

Let ij : Yj → lim→ Y be defined by ij (y) = (yn)n≥j , where yj = y and yn+1 = τn(yn)

whenever n ≥ j . Then if the Yj ’s are topological spaces and the maps continuous maps,
the direct limit set is a topological space with the coarsest topology making the ij ’s con-
tinuous. In general however, the inductive limit of compact spaces need not be compact.
On the other hand, if the factors Xj or Yj are all A-modules and if the maps τn are
module homomorphisms, then so are the projective and inductive limits.

Let F be an EFS. Then its projective limit is a compact space �(F). In much the
same way the corresponding inverse sequences of weight spaces give rise to projective
limits Mm(F) = lim← Wm(F, R), M∗m(F) = lim← W ∗m(F, R). They also give rise to

M∗(F) =
⋃

m∈R+
M∗m(F) , M(F) =

⋃

m∈R+
Mm(F) .

Standard results in cohomology theory lead to

Proposition 4.3. lim→ Hd(F, A) = Hd(�(F), A).

Since M(F) = lim← Z
≥0
d (F, R) and thanks to Proposition 3.19, there is a natural pairing

M(F)×Hd(�(F), R) 
→ R < µ|h >= h(µ)

defined as follows : for h = (hj , . . . , hs, . . . ) with hs+1 = f ∗s (hs), and µ = (µ0, . . . ,

µs, . . . ), then < µ|h >=< µj |hj >.
The following result is a direct consequence of Lemma 3.20.

Corollary 4.4. Let µ = (µ1, . . . , µn, . . . ) be in M(F), c = (c0, . . . , cn, . . . ) be a class
in Hd(�(F), Z) and let s be big enough so that < µ, c >=< µs, cs >, then :

< µ, c >= m1µs,1 + . . . +mp(s)µs,p(s),

where Bs has p(s) d-regions, µs,i is the weights of the ith d-region of Bs and the mi’s
are integers. Moreover, all such linear combinations with integer coefficients arise in
this way.

In the next section it will be shown that �(F) is actually a tilable lamination and that
any tilable lamination can be obtained in this way. In much the same way, the inductive
limit ωF of Par (F) will be shown to act on �(F) to make it a dynamical system sup-
porting an action of R

d which is a semi-conjugacy with the usual action of R
d on tiling

spaces. In Sect. 5, M(F) will be identified with the set of invariant measures on �(F).
In Sect. 6 the direct limit of the K-theory of the Bi will be investigated. The application
to the gap-labeling will follow.
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4.2. From EFS to tilings. From now on, to simplify, let all the BOF-manifolds in the EFS
F have regions given by blocks only. And let ωF be the inverse limit ωF = lim← Par (F)

defined previously.

Proposition 4.5. The set ωF is naturally isomorphic to R
d and acts on �(F) and �(F)

is a tilable lamination.

Proof. For any BOF-d-manifold Bi , there exists a natural isomorphism ρBi
: R

d →
Par(Bi). For any BOF-submersion fi : Bi+1 → Bi , the induced map df : Par(Bi) →
Par(Bi+1) satisfies (ρBi+1)

−1 ◦ df ◦ ρBi
= id . Consequently lim← Par(F) is isomorphic

to the inverse limit lim← R
d associated with the inverse sequence id : R

d → R
d . Thus

ωF is isomorphic to R
d .

Then ωF acts on �(F) as follows. From Remark 3.13, there is r > 0 such that for
each point x = (x0, . . . , xi, . . . ) in �(F), there is a sequence of normal neighborhoods
Ui with radius r around each point xi in Bi such that for each i > 0, f (Ui) is one
single sheet Di−1 of Ui−1 and thus f (Ui) = Di−1. Hence if u ∈ Par(Bi) satisfies
‖u‖ < r , the point xi + u ∈ Ui is well defined and, since fi is a BOF-submersion,
fi(xi + u) = fi(xi) + u ∈ Di−1. This gives a meaning to the notion of “small” trans-
lation of the point (x0, . . . , xi, . . . ). Now, any vector v in ωF can be decomposed into
a sum v = u1 + · · · + um, where ‖ul‖ < r for l = 1, . . . , m. For a point x in �(F),
x + v can be defined as x + v = (. . . (x + u1)+ u2)+ . . . )+ um). It is plain to check
that this definition is independent of the decomposition of v.

For i ≥ 0, let πi : �(F) → Bi . It is plain to check that small neighbors of the
preimages of the d-regions of the Bi’s are the domains of charts of an atlas which give
to �(F) a structure of tilable lamination. ��

Each region of the first BOF-d-manifold B0 is a well oriented d-cube. Let X de-
note the set of prototiles made with all well oriented d-cubes. With any point x =
(x0, . . . , xn, . . . ) in �(F) we associate a tiling h(x) in T (X) made with prototiles in X

as follows:

• Since the injectivity radius of the Bi’s goes to infinity with i, there exists, for i ≥ 0 a
sequence of normal neighborhoods Ui of xi with radius ri , where ri is an increasing
sequence going to infinity with i.

• From this sequence of normal neighborhoods we extract a sequence of (premiages
by chart maps of) sheets Di ⊂ Ui such that Di ⊂ fi(Di+1). These sheets are well
oriented d-cubes centered at xi .

• Consider the translated copies D′
i = Di−xi . The d-cubes D′

i are centered at 0 in R
d ,

they have an increasing radius going to infinity with i. Furthermore all these d-cubes
are tiled with the protoliles in X and, for each i > 0, the tiling of D′

i coincides with
the tiling of D′

i−1 in D′
i−1.

• the limit of this process defines a single tiling h(x) in T (X).

The proofs of the following properties are plain.

Proposition 4.6. (i) The map h : �(F) → T (X) is continuous, injective and real-
izes a semi-conjugacy between the dynamical systems (�(F), ωF ) and (�h(x)), ω)

where ω stands for the restriction of the standard R
d -action on T (X);

(ii) all tilings in h(�(F)) satisfy the finite pattern condition.
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So far, the minimality of the dynamical system (�(F), ωF ) has not been considered.
A simple criterion for minimality is the following. An EFS F verifies the repetitivity
condition if for each i ≥ 0 and each flat sheet Di in Bi , namely the pre-image by a chart
map of a sheet, there exists p > 0 such that each d-region of Bi+p covers Di under the
composition fi ◦ fi+1 ◦ · · · ◦ fi+p−1.

Proposition 4.7. Let F be an EFS that satisfies the repetitivity condition, then the dynam-
ical system (�(F), ωF ) is minimal.

Proof. The proof is exactly the same as the one for tilings (Proposition 1.4). ��

4.3. From tilings to EFS. So far, given a repetitive EFS, a compact space of perfect
tilings made with cubic prototiles has been constructed together with its correspond-
ing continuous Hull. On the other hand, a correspondence between perfect tilings and
minimal tilable laminations has been established in Sect. 2. What is left to show in this
section is to associate with any perfect tiling, made of a finite number of well oriented
cubic prototiles, a repetitive EFS.

Let T be a perfect tiling with the set of prototiles X = {p1, . . . , pn}. Here the pi’s
are well oriented d-cubes. To get the first BOF-d-manifold B0 let B̃0 be the disjoint
union of the prototiles. Then two points x1 ∈ p1 and x2 ∈ p2 will be identified if there
exist a tile t1 with t-type p1 and a tile t2 with t-type p2 such that the translated copy
of x1 in t1 coincides with the translated copy of x2 in t2. This gives B0. Then a map
π0 : �T → B0 is defined as follows: if T ′ ∈ �T is a tiling, let p be the prototile
corresponding to the tile of T ′ containing the origin or R

d ; then x̃ is the point of p ⊂ B̃0
associated with this origin and x = π0(T

′) is the representative of x̃ in B0. Then π0

defines a box decomposition B(0) (see Definition 2.35) of the Hull equipped with its
tilable lamination structure (�T , L): the sets π−1

0 (int (pi)), for i = 1, . . . , n are the
n boxes of the box decomposition. In addition, the tiling T0 = T can be seen as the
trace of this box decomposition on some leaf L of this lamination. B0 can be seen as an
approximation of the Hull. But it is still a poor one.

To improve upon the description of the Hull, a sequence B(i), i ≥ 0 of box decompo-
sitions such that, for each i ≥ 0, B(i+1) is zoomed out of B(i) and forces its border (see
Corollary 2.45). Through the leaf L, this gives a nested sequence of tilings (T (i))i≥0,
where T (0) = T (see Definition 2.46). The BOF-d-manifolds Bi’s are constructed as
follows:

• First the BOF-d-manifold B ′
i is built from T (i) in the same way as B0 from T0. This

gives a map π ′i : �T → B ′
i .

• Since the tiles of T (i) are not well oriented d-cubes, but blocks, the BOF-d-manifold
B ′

i is not necessarily cellular.
• Each region of the BOF-d-manifold B ′

i is tiled with the prototiles in X. The BOF-
d-manifold Bi coincides with B ′

i but is tiled with the prototiles in X. Hence the
d-regions of Bi are prototiles in X.

For i ≥ 0, Bi is a cellular BOF-d-manifold. Its d-regions are well oriented d-cubes.
The map π ′i : �T → B ′

i induces canonically a map πi : �T → Bi and there exists a
canonical map fi : Bi+1 → Bi defined by

fi(x) = πi(π
−1
i+1(x)).
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This definition makes sense since the vertical of a point of (�T , L) in a box of B(i+1) is
included in its vertical in a box of B(i) (see Definition 2.42). Moreover, for each i ≥ 0,
the map fi : Bi+1 → Bi is a BOF-submersion and satisfies

fi ◦ πi+1 = πi.

In addition, this sequence of BOF manifold is an EFS because each box decomposition
Bi , for i ≥ 1 forces its border (see for instance [31]) implying the flattening condition.
Let F denote this EFS, so that �(F) = lim← F and let π : �T → �(F) be the map

defined by π(x) = (π0(x), π1(x), . . . , πn(x), . . . ).

Proposition 4.8. The map π : �T → �(F) is a conjugacy between (�T , ω) and
(�(F), ωF ).

Proof. The proof is straightforward. ��

5. Invariant Measures

So far, the same minimal dynamical system has been described in four different ways:

• as the continuous Hull of a Delone set;
• as the continuous Hull of a perfect tiling;
• or as a minimal tilable lamination;
• or as a minimal expanding flattening sequence.

The interplay between these points of view will provide a combinatorial description of
finite invariant measures of this dynamical system. A description of transverse measures
of a measurable groupoid can be found in [16]. It applies in particular to foliations. In
the context of laminations see [20] for a more complete description.

Let (M, L) be a lamination with d-dimensional leaves. Let an atlas in L be fixed once
and for all, with charts hi : Ui → Vi × Ti , where Vi is an open set in R

d and Ti is some
topological space. As already explained in Sect. 2.4, on their domains of definitions, the
transition maps hi,j = hj ◦ h−1

i satisfy:

hi,j (x, t) = (fi,j (x, t), γi,j (t)),

where fi,j and γi,j are continuous in the t variable and fi,j is smooth in the x variable.

Definition 5.1. Let (M, L) be a lamination. A finite transverse invariant measure on
(M, L) (or, for short, a transverse measure) is a family µt = (µi)i where for each i,
µi is a finite positive measure on Ti , such that if B is a Borelian subset of Ti , contained
in the domain of definition of the transition map γij then

µi(B) = µj (γij (B)).

This definition shows that a transverse measure does not depend upon the choice of an
atlas in its equivalence class. In a similar way, a (longitudinal) k-differential form on
(M, L) is the data of k-differential forms on the open sets Vi that are mapped onto one
another by the differential of the transition maps fij . Let Ak(M, L) denote the set of
longitudinal k-differential forms on (M, L).
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Definition 5.2. A foliated cycle is a linear form from Ad(M, L) to R which is positive
on positive forms and vanishes on exact forms.

With any transverse measure µt , a foliated cycle of degree d can be canonically associ-
ated as follows. If ω ∈ Ad(M, L) has its support in one of the domains Ui of a chart, ω

can be seen as a d-form on Vi × Ti . Then ω can be integrated on the slice Vi × {t} for
each t ∈ Ti , giving a real valued function on Ti that can be integrated with respect to
µi , defining Cµt (ω). In general, a partition of unity {φi}i associated with the cover of
M by chart domains, will allow to decompose any longitudinal d-form into a finite sum
of forms with support in the domain of a chart. This gives a continuous linear form

Cµt (ω) =
∑

i

Cµt (φiω)

from Ad(M, L) to R that, thanks to the compatibility condition satisfied by the µi’s,
does not depend upon the choice of the partition of the unity. Hence Cµt is a current of
degree d. Cµt is positive for positive forms (namely Cµt is positive). Moreover, the invari-
ance of µt shows that Cµt vanishes on exact forms. The foliated cycle Cµt is called the
Ruelle-Sullivan current associated with the transverse invariant measure µt . As shown
in [44], any such positive closed current defines in a unique way a transverse measure.
Thus both points of view, transverse invariant measure and foliated cycle, are equivalent.

Let now (M, L) be a tilable lamination. Parallel transport can be defined along leaves
leading to a meaningful definition of translation by u ∈ R

d , if u is seen as a constant
vector field. Hence, (M, ωL) becomes a dynamical system. Every finite positive R

D-
invariant measure µ on M , defines a transverse measure on the lamination as follows.
For any Borelian subset of a transverse set Ti ,

µi(B) = lim
r→0+

1

λd(B(r))
µ(h−1

i (B(r)× B)),

where λd stands for the Lebesgue measure in R
d and B(r) ⊂ Vi is a ball of radius r .

Conversely, let µt be a transverse measure on (M, L). A finite positive R
d -invariant

measure on M can be defined as follows, Let f : M → R be a continuous function
with support in the chart domain Ui’s. Then the map f ◦ h−1

i is defined on Vi × Ti . By
integrating f ◦h−1

i on the sheets Vi ×{t} against the Lebesgue measure λd of R
d , a real

valued map on Ti is defined that can be integrated against the transverse measure µi to

get a real number denoted by
∫

f dµ. When the support of f is not in one of the Ui’s,

a partition of the unity {φi}i associated with the cover of M by the Ui’s will allow to
extend the definition of the integral as

∫
f dµ =

∑

i

∫
f φidµ.

This defines a positive finite measure on M which does not depend on the choice of the
atlas in L nor upon the chosen partition of the unity. By construction, it is invariant under
the R

d -action. It is also plain that the existence of a finite measure on M invariant for the
R

d -action is in correspondence with a finite measure on a transversal � invariant under
the action of the holonomy groupoid (see [16]). Thus, for a tilable lamination (M, L)

the following four points of view are equivalent:
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• A finite transverse invariant measure;
• a foliated cycle;
• a finite measure on M invariant for the R

d -action;
• a finite measure on a transversal � invariant for the holonomy groupoid action.

From the previous discussion, it is possible to derive the expression of an invariant mea-
sure from the point of view of tilings. Let T be a perfect tiling with well oriented d-cubes
X = {p1, . . . , pq} as its set of prototiles. By the previous construction, let F be the EFS
constructed with a sequence of BOF-manifolds Bn, n ≥ 0 and BOF-manifolds submer-
sions fn : Bn+1 → Bn satisfying the flattening condition. Let M(�T , ω) denote the set
of finite measures on �T that are invariant under the R

d -action. Let also Mm(�T , ω)

denote the set of finite measures on �T with total mass m.
Let Y = (y1, · · · , yn) be a set of points yi ∈ pi , one for each prototile. The transversal

�T,Y is a Cantor set on which acts the holonomy groupoid HT ,Y . Let M(�T,Y , HT ,Y )

denote the set of finite measures on �T,Y that are invariant under the action of the
holonomy groupoid HT ,Y . With any finite invariant measure µ in M(�(T ), ω) can be
associated a finite transverse measure µt in M(�T,Y , HT ,Y ) and this map is one-to-one.

Since �T,Y is a Cantor set, it can be covered by a partition of clopen sets with arbi-
trarily small diameters. Such a partition P is finer than another partition P ′ if the defining
clopen sets of the first one are included in clopen sets of the second one. Let Pn, n ≥ 0
be a sequence of partitions such that for all n ≥ 0, Pn+1 is finer than Pn and the diameter
of the defining clopen sets of Pn goes to zero as n goes to +∞.

Claim. A finite measure on �T,Y is given by the countable data of non negative numbers
associated with each defining clopen set of each partition Pn which satisfies the obvious
additivity relation.

The EFS F provides us such a sequence of partitions Pn as follows. For each n ≥ 0, let
F1, . . . , Fp(n) be the regions of the BOF-d-manifold Bn. Each Fi is a copy of a prototile
in X and consequently there is a marked point yi in Fi . For n ≥ 0, i = 1, . . . , p(n), let

Cn,i = π−1
n (yi).

For n fixed and as i varies from 1 to n(p) the clopen sets Cn,i form a partition Pn of
�T,Y . Furthermore, for n ≥ 0, Pn+1 is finer than Pn and the diameter of the clopen sets
Cn,i goes to zero as n goes to +∞. It follows that a finite measure on �T,Y is given by
the countable data of non-negative weights associated with each defining clopen set Cn,i

which satisfies the obvious additivity relation.
The relation between an invariant measure µ in M(�T , ω) and the associated trans-

verse invariant measure µt in M(�T,Y , HT ,Y ) is given by

Proposition 5.3. For n ≥ 0 and i in {1, . . . n(p)},

µt(Cn,i) = 1

λd(Fi)
µ(π−1

n (Fi)).

These invariant measures can also be characterized combinatorially. Namely let τn :
M(�T , ω)) → Cd(Bn, R) be the map defined by

τn(µ) =
(

µ(π−1
n (F1))

λd(Fi)
, . . . ,

µ(π−1
n (Fp(n)))

λd(Fp(n))

)

,

where the regions F1, . . . , Fp(n) are now ordered and equipped with the natural orien-
tation that allows to identify Cd(Bn, R) with R

p(n).
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Remark 5.4. The coordinates of τn(µ) are the transverse measures associated with µ of
clopen sets Cn,i for some n ≥ 0 and some i in {1, . . . n(p)}.
Proposition 5.5. For any n ≥ 0, the map τn satisfies the following properties:

(i) τn(M(�T , ω)) ⊂ W�(Bn),
(ii) fn,∗ ◦ τn = τn+1.

Proof. (i) Let µ be an invariant measure on M(�T , ω). The invariance of µ implies
that on each edge of Bn the sum of the transverse measures associated with the
regions on one side of the edge is equal to the sum of the transverse measures
of regions on the other side of the edge. These are exactly the switching rules
(or Kirchoff-like laws) that define W(Bn). The fact that the measure is invariant
implies that each region has a strictly positive weight. Thus τn(µ) is in W�(Bn).

(ii) Let F ′
1, . . . , F

′
p(n+1) be the ordered sequence of regions of Bn+1 equipped with the

natural orientation that allows to identify Cd(Bn+1, R) with R
p(n+1). To the linear

map fn,∗ : Cd(Bn+1, R) → Cd(Bn, R) corresponds a n(p)× n(p+ 1) matrix An

with integer non negative coefficients. The coefficient ai,j,n of the ith line and the
j th column is exactly the number of pre images in F ′

j of a point in Fi , leading to
the relations

µ(π−1
n (Fi))

λd(Fi)
=

j=p(n+1)∑

j=1

ai,j,n

µ(π−1
n+1(F

′
j ))

λd(F ′
j )

,

for all i = 1, . . . , p(n) and all j = 1, . . . p(n + 1). This is exactly the condition
fn,∗ ◦ τn = τn+1. ��
If M�(F) = lim← W� the set of invariant measures of (�T , ω) can be characterized as

follows

Theorem 5.6.

M(�T , ω) ∼= M�(F).

Proof. The inclusion

M(�T , ω) ⊂ M�(F)

is a direct consequence of Proposition 5.5. Conversely, let (β0, . . . , βn, . . . ) be an ele-
ment of M�(F). Thanks to Proposition 5.3, it defines a weight on each clopen set Cn,i .
The relation βn = f�nβn+1 means that this countable sequence of weights satisfies
the additivity property and then defines a measure on �T,Y . Since the βn’s are cycles,
namely they satisfy the switching rules, this measure is a transverse invariant measure,
i.e. an element in M(�T,Y , HT ,Y ). The correspondence between M(�T,Y , HT ,Y ) and
M(�T , ω) being bijective, the equality is proved. ��
Corollary 5.7. • If the dimension of Hd(Bn, R) is uniformly bounded by N , then for

all m > 0, Mm(�T , ω) contains at most N ergodic measures;
• if furthermore the coefficients of all the matrices f�n are uniformly bounded then
for all m > 0, Mm(�T , ω) is reduced to a single point i.e. the dynamical system
(�T , ω) is uniquely ergodic.
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Proof. The method used in the proof is standard and can be found in [25] in a similar
situation for d = 1.

To prove the first statement it is enough to assume that the dimension of the
Hd(Bn, R)’s is constant and equal to N . The set Mm(�T , ω) is a convex. Its extre-
mal points coincide with the set of ergodic measures. Since Mm(�T , ω) = M�m(F),
the convex set Mm(�T , ω) is the intersection of the convex nested sets

M(�T , ω) = ∩n≥0Wn,

where

Wn = f�1 ◦ · · · ◦ f�n−1W
�(Bn).

Since each convex cone Wn possesses at most N extremal lines, the limit set Mm(�T , ω)

possesses also at most N extremal points and thus at most N ergodic measures.
The second statement is proved if M(�T , ω) is shown to be one-dimensional. Let x

and y be two points in the positive cone of R
N representing one of the Wn’s. Let T be

the largest line segment containing x and y and contained in the positive cone of R
N .

The hyperbolic distance between x and y is given by

Hyp(x, y) = − ln
(m+ l)(m+ r)

l.r
,

where m is the length of the line segment [x, y] and l and r are the length of the connected
components of T \ [x, y]. It is known that positive matrices contract the hyperbolic dis-
tance in the positive cone of R

N . Since the matrices corresponding to the maps f�n

are uniformly bounded in sizes and entries, this contraction is uniform. Because of this
uniform contraction the set M(�T , ω) is one dimensional. ��
Remark 5.8. If it is easy to construct perfect tilings in dimension d = 1 which are not
uniquely ergodic (see for instance [25]), this question remains unclear in dimension
d ≥ 2.

Since the Ruelle-Sullivan current vanishes on exact d-differential forms, it acts on the
de-Rham cohomology group Hd

DR(�(F)). The same standard arguments as the one
developed in Section 4.1leads to

Hd
DR(�(F)) = lim→ Hd

DR(F).

In other words, every co-homology class [ω] in Hd
DR(�(F)) is the direct limit of

co-homology classes [ωn] in Hd
DR(�(F)). It means that for n big enough

Cµt ([ω]) =
p(n)∑

i=1

µ(π−1
n (Fi))

λd(Fi)

∫

Fi

ωn .

Let In be the standard isomorphism In : Hd
DR(Bn) → Hd(Bn, A) (where A = R or C

depending upon whether the coefficients are in R or C) defined by

< In([ω)], c >=
∫

c

ω ,
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for every cycle c in Hd(Bn, A). It will be important in the proof of the gap labeling
theorem to consider the integral cohomology classes defined by

H
d,int
DR (Bn) = I−1

n Hd(Bn, Z) .

It is the set of classes that take integer values on integers cycles (i.e; cycles in Hd(Bn, Z)

leading to consider the inductive limit

H
d,int
DR (�(F)) = lim→ H

d,int
DR (F) .

Corollary 4.4 and Remark 5.4 then lead to

Proposition 5.9.

Cµt (H
d,int
DR (�(F))) =

∫

�T,Y

dµt C(�T,Y , Z),

where C(�T , Z) is the set of integer valued continuous functions on �T,Y .

6. C∗-Algebras, K-Theory and Gap-Labeling

In the previous section the continuous Hull �T of a perfect tiling of R
d has been described

in terms of expanding flattening sequences. It has been powerful in describing the ergo-
dic properties of the R

d -action on �T . In this section the topology of this Hull will be
analyzed through its K-theory. In doing so, the dynamical system becomes a noncom-
mutative topological space and can be described through its C∗-algebra of continuous
functions that turn out to be noncommutative. The gap labeling theorem [5] will be one
of the main consequences of this analysis.

6.1. Elements of topological K-theory. This section is a reminder about the classical
topological K-theory (see for instance [2]).

For any abelian semigroup (A,+) with zero 0, there is a canonical way to associate
with A an abelian group (K(A),+) (also called the Grothendieck group of A) satisfying
a natural universal property. A simple way to construct K(A) is as follows. Consider the
product semigroup A × A and let � be its diagonal. The cosets [(a, b)] = (a, b) + �

make a partition of A×A. The coset set K(A) = A×A/� becomes an abelian group
under the operation [(a, b)] + [(c, d)] = [(a + c, b + d)]. It is plain to check that it is
associative and commutative while [(a, b)]+ [(b, a)] = [(0, 0)] shows that any element
has an opposite. The map

α : A → K(A), α(a) = [a] = [(a, 0)] ,

is a semigroup homomorphism satisfying the following universal property: for any group
G and semigroup homomorphism γ : A → G there exists a unique homomorphism
χ : K(A) → G such that γ = χ ◦ α. If in addition A satisfies the cancelation rule
(namely a + b = c + b ⇒ a = c), then α is injective. Let K+(A) denote the image
of α. This is a positive cone in K(A) with respect to the Z-module structure of K(A)

generating the whole K(A). Moreover, every [(a, b)] has the form [(a, b)] = [a]− [b].
If for every a, b ∈ A, a + b = 0 ⇔ (a, b) = (0, 0), then K+(A) ∩ −K+(A) = {0},
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hence the relation [a] − [b] ≥ [a′] − [b′] iff [a] − [b] − [a′] + [b′] ∈ K+(A) makes
K(A) an ordered group.

Let X be a compact topological space. The previous construction can be applied to the
semigroup of isomorphism classes of complex vector bundles on X with the operation
given by the direct sum ⊕. The class of the unique rank 0 vector bundle is the neutral
element of this semigroup. The resulting abelian group is denoted by K0(X). So each
element of K0(X) is of the form [E]−[F ], where E and F are (classes of) vector bundles
on X; [E] = [F ] iff there exists G such that E ⊕G = F ⊕G. K+(X) = ({[E]− [0]}
and it is the positive cone of an actual order on K(X). The semigroup does not satisfy the
cancelation rule though. As X is compact, for every vector bundle F there exist n ∈ N

and some other vector bundle G such that [F ]⊕ [G] = εn, where εn denotes the (class
of) trivial vector bundle of rank n. Then G will be called a trivializing complement of E.
Hence [E]− [F ] = [E⊕G]− [εn], so that each element β of K0(X) can be written as
β = [H ]− [εn], for some n ∈ N. If n0 is the minimum of such n, then β ≥ 0 iff n0 = 0.
Moreover if G⊕G′ = εm, then E ⊕G = F ⊕G implies that E⊕ εm = F ⊕ εm. This
can be summarized as follows: [E] = [F ] if and only if E and F are stably equivalent.

Let C(X) denote the ring of continuous complex valued functions on X. If E is a
complex vector bundle over X, let �(E) be the C(X)-module of continuous sections of
E. This defines a functor � from the category B of vector bundles over X to the category
M of C(X)-modules. In particular it induces an equivalence between the category T
of trivial vector bundles to the category F of free C(X)-modules of finite rank. As X is
compact, since for every bundle E there exists a bundle G such that E ⊕ G is trivial,
it follows that �(E) can be seen as the image of C(X)n under some projection valued
continuous map. In particular the category of vector bundles over X coincides with the
sub-category Proj (T ) (which a priori is smaller) generated by the images of trivial
bundles by projection operators on trivial bundles. The category Proj (F) of projective
modules over C(X) is defined in a similar way. Hence � establishes an equivalence
between Proj (T ) to Proj (F) which is by definition the category of finitely-generated
projective C(X)-modules (Swann-Serre Theorem [42, 45]). Hence, the construction of
K0(X) can be rephrased in terms of projective modules instead of vector bundles and
in such a case it is denoted by K0(C(X)).

Another important remark is the following. Let G(n, N) be the Grassmannian man-
ifold over the complex field, namely the set of n-dimensional subspaces of C

N . The
tautological vector bundle over G(n, N) is the submanifold EG(n, N) of G(n, N)×C

N

of pairs (h, ξ) where h is an n-dimensional subspace of C
N , seen as a point in G(n, N),

and ξ ∈ h. Then h is also the fiber above h ∈ G(n, N). Given X a topological space and
E a vector bundle over X, with dimension n, let N ≥ n be such that there is a vector
bundle F such that E⊕F = εN = X×C

N . Then, if x is a point in X the fiber Ex of E

above x is a point in G(n, N) and the map gX : x ∈ X 
→ Ex ∈ G(n, N) is continuous.
Then E can be seen as the pull-back of EG(n, N) through this map.

Chern classes of a vector bundle E over X are even degree closed integral differ-
ential forms ci(β) ∈ H 2i (X, Z) depending only upon the K-theory class β = [E] of
E. If f : X → Y is a continuous map between compact spaces, then there is a natural
map f ∗k : K0(Y ) → K0(X), such that for any β ∈ K(Y), ci(f

∗(β)) = f ∗(ci(β)),
where f ∗ : H 2i (Y, Z) → H 2i (X, Z) is the natural map induced by f on cohomol-
ogy. In particular, the canonical map gX : x ∈ X 
→ Ex ∈ G(n, N), induces maps
g∗X : K0(G(n, N)) → K0(X) and g∗X : H 2i (G(n, N), Z) → H 2i (X, Z) exchanging
the Chern classes. Whenever X is a smooth manifold, Chern classes can be constructed
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as follows: let A be a connection form on E, namely it is a matrix valued one form
such that if s ∈ �∞(E) is a smooth section then ∇s = ds + As defines a linear map
∇ : �∞(E) 
→ �∞(E)⊗�1(X) such that

∇(f s) = f∇(s)+ df · s , f ∈ C∞(X) .

Then ∇2 : �∞(E) 
→ �∞(E)⊗�2(X) is the multiplication by a matrix-valued 2-form
�A called curvature of the connection and it can be shown that

cn = n!

(2π)n
Tr
(
�n

A

)
, 0 ≤ n ≤ dim(X)/2 ,

are closed and integral. Chern’s theorem asserts that their cohomology class depends
only upon the K-theory class of E. A special example is the Grassmannian connection.
Through the Swan-Serre theorem E can be described from a projection valued map
PE : X 
→ MN(C) (if N is large enough so as to allow E to have a trivializing comple-
ment in X × C

N ) as the set of pairs (x, ξ) ∈ X × C
N such that ξ = PE(x)ξ . Then the

Grassmannian connection is given by ∇s = Pds and its curvature is PdP ∧dP , giving

cn = n!

(2π)n
Tr
(
(PdP ∧ dP )n

)
, 0 ≤ n ≤ dim(X)/2 . (2)

The group K1(X) denotes by definition the group K0(SX), where SX is the reduced
suspension of X, i.e. the quotient space X× S1/{x}× S1∪X×{p1}, where x is a marked
point in X and p1 a marked point in the circle S1 (see [2]). Let p : X× S1 → SX be
the natural projection. If f : X → Y is as above, (f × id) : X× S1 → Y× S1 induces
a continuous map Sf : SX → SY which can be used to define f ∗k : K1(Y ) → K1(X).

In particular, the Bott map gives a projection over the suspension in terms of a unitary
valued continuous function over X so that K1(X) can also be represented by homotopy
classes of such maps. If U : x ∈ X 
→ U(x) ∈ U(N) then the odd Chern classes are
given by

cn+1/2 = (−1)n

(2ıπ)n+1

2nn!2

(2n+ 1)!
Tr
(
(U−1dU)2n+1

)
, 0 ≤ n ≤ dim(X)/2 . (3)

For a tiling space given by an EFS F = {(Bn, fn)}n∈N, the K-groups can be obtained
as direct limits,

Ki(�T ) = lim→ Ki(F).

The inductive limit implies that any projection valued continuous map on �T can be
approximate uniformly by a projection valued continuous map over the Bn’s and so is
equivalent to a projection in C(Bn)⊗MN(C) for at least one n ∈ N.
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6.2. K-theory and gap labeling theorem. As was remarked in the early eighties, the
K-theory of locally compact spaces can be expressed entirely through the C∗-algebra
C0(X)⊗MN(C), which is already non commutative. This allows to extend K-theory to
non commutative algebras. In this section only C∗-algebras will be considered, but the
theory can be extended to normed algebras invariant by holomorphic functional calculus
[15].

In the tiling case, the C∗-algebra of interest is the crossed product C(�T ) � R
d . Let

A0 be the dense sub algebra made of continuous functions on �T × R
d with compact

support. If µ is an R
d -invariant probability measure on �T , there is a canonical trace

Tµ defined on A0 by

Tµ(A) =
∫

�T

dµ(ω)A(ω, 0) .

The main object of the gap-labeling question concerns the trace Tµ(P ) of a projection
P ∈ A.

In order to define K0, two projections P, Q ∈ A are equivalent whenever there is an
element U ∈ A such that P = UU∗ and Q = U∗U [15]. If P and Q are orthogonal to
each other, the equivalence class of their direct sum [P ⊕Q] depends only upon [P ] and
[Q], leading to the definition of the addition [P ]+[Q] = [P⊕Q]. To make sure that two
projections can be always be made mutually orthogonal modulo equivalence, A must be
replaced by A⊗ K. Here K is the C∗-algebra of compact operators on a Hilbert space
with a countable basis. It can also be defined as the smallest C∗-algebra containing the
increasing sequence of finite dimensional matrices K = lim→ Mn(C), where the inclusion

of Mn into Mn+m (0 < m) is provided by

A ∈ Mn 
→ in,m(A) =
[

A 0
0 0m

]
∈ Mn+m.

The group K0(A) is the group generated by formal differences [P ]− [Q] of equivalent
classes of projections in A ⊗ K. Then two equivalent projections have the same trace
and since the trace is linear, it defines a group homomorphism Tµ,∗ : K0(A) 
→ R the
image of which are called the gap labels.

Together with K0, there is K1 which is defined as the equivalence classes, under
homotopy, of invertible elements in lim→ GLn(A). In the case of K1(C(X)) this is equiv-

alent to the previous definition in terms of reduced suspensions. Standard results by R.
Bott [15] show that K1(A) is isomorphic to K0(A⊗ C0(R)) and that K1(A⊗ C0(R)),
which is then nothing but K2(A) = K0(A⊗ C0(R

2)), is actually isomorphic to K0(A)

(Bott’s periodicity theorem). Both K0 and K1 are discrete abelian groups. They are
countable whenever A is separable. An important property of K(A) = K0(A)⊕K1(A)

is that it defines a covariant functor which is continuous under taking inductive limits.
Namely any ∗-isomorphism α : A 
→ B between C∗-algebrasinduces a group homo-
morphism α∗ defined by α∗([P ]) = [α(P )] for K0 and similarly for K1. Moreover,
K(lim→ An) = lim→ K(An).

For the purpose of this paper some more details will be needed in connection with the
Bott periodicity. More precisely, a ∗-algebra A is called a local Banach algebra (LB) if
it is normed and if it is invariant by holomorphic functional calculus. Then K(A) can be
defined in a way similar to the case of C∗-algebras. The suspension SA is the set of con-
tinuous maps t ∈ [0, 1] 
→ a(t) ∈ A such that a(0) = a(1) = 0. If A has no unit, let Ã
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be the algebra obtained from A by adjoining a unit. The Bott periodicity theorem is based
on the properties of the following two maps; (i) the Bott map βA : K0(A) 
→ K1(SA),
(ii) the index map θA : K1(A) 
→ K0(SA). The Bott map is defined as follows. For
n ∈ N and for l ≤ n let pl denote the projection

pl =
[
1l 0
0 0

]
∈ Mn(C) ⊂ Mn(Ã).

Let e be an idempotent in Mn(Ã) such that e− pl ∈ Mn(A). Then let fe : t ∈ [0, 1] 
→
fe(t) = e2ıπt e + (1n − e). It is clear that fe ∈ Mn( ˜SA) and is invertible. Moreover,
since fef

−1
pl

− 1nMn(SA) it defines unambiguously an element [fef
−1
pl

] of K1(SA).
It can be shown that it depends only upon the class [e] − [pn] ∈ K0(A) and that the
map βA([e] − [pn]) = [fef

−1
pl

] defines a group homomorphism between K0(A) and
K1(SA) [15].

Similarly the index map θA is defined as follows. Let u ∈ Mn(Ã) be invertible and
such that u− 1n ∈ Mn(A). Then, for t ∈ [0, 1],

z(t) = R(t)

[
u−1 0

0 1n

]
R(t)−1

[
u 0
0 1n

]
, R(t) =




cos

πt

2
sin

πt

2
− sin

πt

2
cos

πt

2



 ,

gives a homotopy between 12n and the matrix

[
u 0
0 u−1

]
by invertible elements such

that z(t) − 12n ∈ M2n(A). Then g(t) is the loop of idempotents defined by g(t) =
z(t)pnz(t)

−1 in M2n(Ã). Since it is clear that g(t)−pn ∈ M2n(A) for all t’s, it defines an
element θA([u]) = [g]− [pn] ∈ K0(SA) that depends only upon the class [u] ∈ K1(A)

of u and θA becomes a group homomorphism between K1(A) and K0(SA) [15]. Using
the Bott periodicity theorem, it can be proved that θSA is the inverse of βA [15]. However
instead of using the Bott periodicity, it is possible to iterate the procedures as follows.
Starting from g0 = e ∈ Mn(A) the previous construction leads to a double sequence (i)
g1, ·, gm, · · · of idempotents with gm ∈ M2mn(

˜S2mA) and gm−p2m−1n ∈ M2mn(S
2mA),

and (ii) u1, · · · , um, · · · of invertible elements such that um+1 ∈ M2mn(
˜S2m+1A) and

um+1 − 12mn ∈ M2mn(S
2m+1A). Moreover the relation between them is that [um+1] =

βS2mA([gm]−[p2m−1n]) whereas [gm]−[p2m−1n] = θS2m−1A([um]). The following result
can be proved by recursion on m

Proposition 6.1. Let A a local Banach algebra with a tracial state T . Then denoting by
�m = [0, 1]×m, the following relations are satisfied:

c2m = 2(−1)m+1 m!2

2m!
c2m−1 , c2m+1 = 2ıπ(−1)m

(2m+ 1)!

m!2 c2m ,

where

c2m =
∫

�2m

T
{
gm(dgm)∧2m

}
, c2m+1 =

∫

�2m+1

T
{
(u−1

m+1dum+1)
∧2m+1

}
,
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As a consequence the following formulæ generalize the one proved by Connes [17]: if
T∗ is the map induced by the trace on K0(A),

T∗ {[e]− [pl]} = 1

(2ıπ)mm!

∫

�2m

T
{
gm(dgm)∧2m

}
, (4)

= (−1)m

(2ıπ)m+1

2mm!2

(2m+ 1)!

∫

�2m+1

T
{
(u−1

m+1dum+1)
∧2m+1

}
. (5)

The Thom-Connes theorem [17, 15, 19] states that given a C∗-dynamical system
(A, α, R) (where α : s ∈ R 
→ αs ∈ Aut(A)), there are group isomorphisms φi

α :
Ki(A) 
→ Ki+1(A�α R). The construction of this isomorphism reduces to the Bott and
index maps when the action is trivial, remarking that the convolution C∗-algebra C∗(R)

is isomorphic to C0(R) through Fourier’s transform and that C0(R) is isomorphic to the
algebra of C(0, 1) of continuous functions on (0, 1) vanishing at 0 and 1. The Connes
construction of φ0

α relies upon the remark that given an idempotent e ∈ A, it is possible
to choose an equivalent idempotent e′ (thus giving the same element in K0(A)) and an
equivalent R-action α′ (thus giving rise to a crossed product isomorphic to A �α R)
such that α′(e′) = e′. Then the construction of the Connes map is identical to the Bott
map. Using naturality and functoriality, the map φ1

α can be constructed similarly. The
formula (5) for m = 0 is then valid provided du is replaced by δu where δ is the generator
of one-parameter group of automorphisms α [17].

Applied to the present situation where A = C(�T ) this gives a group isomorphism
φd between K0(C(�T ) � R

d) and Kd(C(�T )) (with Ki = Ki+2 by Bott’s periodicity
theorem) and the previous remarks lead to

Theorem 6.2. [18] Let P be a projection in A and let [P ] be its class in K0(A).

(i) If d = 2m + 1 is odd, let U be a unitary element of C(�T ) ⊗ K representing
φd([P ]). Let η be the d-form in Hd

DR(�(F)):

η = (−1)m

(2ıπ)m+1

2mm!2

(2m+ 1)!
Tr
(
(U−1dU)2m+1

)
.

(ii) If d = 2m is even, let Q± be a pair of projections of C(�T )⊗ K with φd([P ]) =
[Q+]− [Q−]. Let η be the d-form in Hd

DR(�(F), C),

η = 1

(2ıπ)mm!

{
Tr
(
(Q+ dQ+ ∧ dQ+)m

)− Tr
(
(Q− dQ− ∧ dQ−)m

)}
.

Then, in both cases, η ∈ Hd
DR(�(F), Z)) and

Tµ(P ) = Cµt ([pη]).

Proof of Theorem 1.1: Combining the previous result with Proposition 5.9, we get:

Tµ(K0(A)) ⊂
∫

�T,Y

dµt C(�T,Y , Z).

The converse inclusion is a standard result: the C∗-algebra A is Morita equivalent to
the C∗-algebra C∗(�) of the groupoid of the transversal, so that they have same K-
theory [15]. In this latter algebra the characteristic functions of clopen subsets of �

are projections with trace given by their integral. Since C(�T,Y , Z) is generated by such
characteristic functions, this proves the other inclusion. Hence, the gap-labeling theorem
(see Theorem 1.1 stated in the introduction) is proved. ��
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Remarks about Theorem 6.2: The integral classes defined above are related to Chern
classes. The image, say β, of [P ] by the Thom-Connes isomorphism can be taken either
as an element of K0(Bn), when d is even, or of K1(Bn), when d is odd, for n large
enough. It turns out (this is contained in the proof of the Thom-Connes theorem) that:

1) when d is even η (which actually “lives” on Bn) represents the Chern class c[d/2](β) ∈
Hd(Bn, Z); in fact the choice of the normalization constant kd in Theorem 6.2 ensures
that this class is integral. So

Tµ(P ) =< µn|c[d/2](β) > .

2) When d is odd

Tµ(P ) =< Sµn|c[(d+1)/2](β) > ,

where Sµn is defined as follows. For zµn ∈ Zk(Bn, A), (µn × S1) ∈ Zk+1(Bn × S1 (it
is understood that S1 has the usual counterclockwise orientation). By using the natural
projection pn : Bn × S1 → SBn, (µn × S1) induces a (k + 1) (singular) cycle Sµn on
SBn, which is called the suspension of the cycle µn. ��
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