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Introduction. A topological group © is said to act on a topological

space 1{ if the elements of © are homeomorphisms of 'R. onto itself

and if the mapping (<r, p)^>a{p) of ©X^ onto %_ is continuous.

Familiar examples include the rotation group acting on the Car-

tesian plane and the Euclidean group acting on Euclidean space.

The set ®(p) (that is, the set of all <r(p) where <r(E®) is called the

orbit of p. If p and q are two points of fx, then ®(J>) and ©(g) are

either identical or disjoint, hence 'R. is partitioned by the orbits.

The topological structure of the partition becomes an interesting

question. In the case of the rotations of the Cartesian plane we find

that, excising the singularity at the origin, the remainder of space is

fibered as a direct product. A similar result is easily established for a

compact Lie group acting analytically on an analytic manifold. In

this paper we make use of Haar measure to extend this result to the

case of a compact Lie group acting on any completely regular space.

The exact theorem is given in §3. §§1 and 2 are preliminaries, while

in §4 we apply the main result to the study of the structure of topo-

logical groups. These applications form the principal motivation of

the entire study,1 and the author hopes to develop them in greater

detail in a subsequent paper.

1. An extension theorem. In this section we shall prove an exten-

sion theorem which is an elementary generalization of the well known

theorem of Tietze. For the sake of completeness we include the proof

although it proceeds along standard lines.

We recall that a topological space 'R is said to be completely regular

if it is a Hausdorff space and if, for any closed set F and point p(£F,

there exists a continuous, real-valued function / defined on <r\ such

that/(£) = 1 and/(g) =0 if g€EF. If we can choose such a function, we

can choose another which is also non-negative; for example, let h(q)

= max (0,/(g)).

1.1 Lemma. Let F be a closed subset of a completely regular space %.

Presented to the Society, September 9, 1948; received by the editors October 21,

1948.
1 The author began this study thinking only in terms of coset decompositions of

topological groups. He is indebted to Professor Deane Montgomery for suggesting

Theorem 3.4.
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Let C be a compact subset of 1R. disjoint from F. Let X be a positive real

number. Then there exists a continuous, real-valued function g defined on

<r\ such that:

(1) Ogg(q)g\for all qE%

(2) g{q)=0ifq£F.
(3) g(s)=\ if aec.

Proof. For each fGCwe choose a continuous non-negative func-

tion fp such that fP(p) =1 and/„(g)=0 if qEF. Let V(p)=q(fP(q)
> 1/2). Since fp is continuous, V(p) is an open neighborhood of p; hence

C(ZUPQcV(p). C, being compact, is covered by a finite subcollection

of the V{p), say CCU?.! V{p<). Define g(g)=min (X, 2X zZt-i SvM)-
The function g is easily verified to have the required properties.

1.2 Definition. A real-valued function / is said to vanish at in-

finity if, for any e>0, there is a compact set C such that \f(p) | <e for

all p<£C.
The functions which vanish at infinity form a linear class.

1.3 Lemma. Let D be a closed subset of a completely regular space

Let f be a continuous, non-negative function defined on D and vanish-

ing at infinity such that f{p) =k for all pED. Then there exists a func-

tion g defined on    such that;

(1) 0^g(p)gk/3forallpe%.
(2) 0 gf(p) -g(p) =g 2k/3 for all pED.
(3) g vanishes at infinity on D.

Proof. We assume that k>0, otherwise the lemma is trivial. Let

C=p(pED, f(p)^2k/3) and F=p (pED, f(p) gk/3). These sets are
closed. Since /vanishes at infinity the sets C and C\(D — F) are com-

pact. We apply Lemma 1.1 to the sets Cand F, choosing X = k/3. We

obtain a function g which satisfies our requirements. For g vanishes on

all of D except the compact set Cl(£> — F), and the inequalities of (2)

follow from

2*/3 = KP) = k, g(p) = k/3       for PEC,

*/3 = f(p) = 2k/3,    0 = g(p) g k/3       for p E D - C - F,

0 = f(p) = k/3, g(p) = 0 for p EF.

1.4 Theorem. Let D be a closed subset of a completely regular space

5^.. Letf be a continuous, real-valued function defined on D and vanishing

at infinity such that \f(p) \ — k for all pED. Then there exists a continu-

ous, real-valued function h defined on 1{ such that \h(p) \ gk for all

PE%. and h(p) =f(p) for all pED.
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Proof. We assume to begin with that / is non-negative. We apply

the preceding lemma to / and obtain a function gi defined on and

vanishing at infinity on D such that Ogg\(p) gk/3 for all PER

and 0gf(p)-g!(p)=2k/3 for all pED. Since the function f-gi is
defined and vanishes at infinity on D we can apply the lemma again

and obtain a function g2 defined on "R and vanishing at infinity on D

such that 0gg2(p)^2k/32 for all pE%. and 0g/(/»-gi(p)~g2(p)

= 2ik/32 for all pED. Applying the lemma repeatedly, we obtain a

sequence of functions {g„} each defined on 'R and vanishing at in-

finity on D such that:

(1) Ogg„(p) g2"-**/3" for all pE%,
(2) 0£/(♦»- £?-i gi(p) =2»k/3» for all

Put h(p) = Z<-i From (1) it follows that the series is uniformly

convergent and, therefore, that h is continuous; moreover, h(p)=k

for all pE% It follows from (2) that h(j>) =/(/>) for all pED. This
completes the proof in the case that / is non-negative. We note that

in this case the extended function turned out to be non-negative.

In the general case we put /i(£)=max (0, f(p)) and /2(p)

-max (0, —f(p)). Then/i and f2 are non-negative functions which

vanish at infinity on D with the same bound as /; furthermore,

f—fi—ft. Let hi and h2 be non-negative extensions of/i and/2 respec-

tively, obtained as above. Then h = h\ — h2 is the required extension of

/•
In what follows we shall not need the full force of this theorem, but

only the fact that we can extend any function from a compact set to

the whole of %.

2. Topological results. In this section we study the action of a

topological group on a topological space without any assumptions of

an analytic character. Theorem 2.3 is a useful criterion for determin-

ing if the orbit partition is indeed a direct product fibering.

2.1 Lemma. Let & be a topological group which acts on a topological

space % If C is a compact subset of © and Fis a closed subset of then

C(F) is closed.

Proof. Suppose pEC(F). We must show that there is a neighbor-

hood V of p such that VCK~C(F). For each aEC, o-\p)E%-F.
Because the latter set is open, we can choose neighborhoods U, of

a-1 and V, of p such that Ur(Vr) CR—F. C~l, being compact, is

covered by the union of a finite subcollection of the £/„, say

C-1CU?.1L7<r.. Put V = C\".1VCi. C is a neighborhood of p. Now
U^TiCU^V^C^-F; hence C-K^OCUT-i F)CR.-F, from
which it follows that FC^R- C(F).
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2.2 Lemma. Let & be a topological group which acts on a topological

space If C is a compact subset of © and E is any subset of then

C(C1(E))=C1(C(F)).

Proof. For any element a EC we have a(E)EC(E), hence

Cl(o-(£)) CC1(C(£)). Since <r is a homeomorphism, Cl(a(E))

= <r(Cl(£)), hence C(C1(£)) = U,ec <r(Cl(E))CC1(C(E)). On the
other hand, C(E) CC(C\(E)) and, since the latter set is closed by

the preceding lemma, C1(C(£)) CC(C1(£)).

In what follows we shall denote by ©„ the set of all elements of ®

which leave the point p fixed. Evidently ®p is a closed subgroup of ®.

2.3 Theorem. Let ® be a compact topological group which acts on a

topological space <R. Let $ be a closed subgroup of ®. Let C be a closed

subset of <R such that if pEC then ®p = $ and ®(p)HC= {p}. Then
the mapping (<r®, p)-+<r(p) of (®/$)XC onto ®(C) is a homeomorphism.

Proof. It is clear that the mapping (<r$, p)^>o-(p) where pEC

is well-defined. The continuity of this mapping follows from the

continuity of (<x, p)-+<r(p) and the definition of the topology in ©/$.

Suppose that <r{p)=T(q) where p, qEC. Then T~la(p)=q and it

follows that p = q and rVGS; r and a determine the same left coset,

and hence the mapping is one-to-one. It remains to show that it

carries open sets into open sets. For this purpose we may confine

ourselves to open sets of the type UX V where U and V are open

sets of ®/$ and C respectively. Since the mapping is one-to-one we

need only show that the complements of such sets are carried into

closed sets. The complement of UX V is (((©/St) - U) XC)W((®/f)

X(C- V)), and its image is (©- Ui)(C)VJ®(C- V) where Ux is the

complete inverse image of U under the natural map of © onto ©/$.

By Lemma 2.1 this image is closed and the theorem is proved.

3. Principal results. We now consider the case of a compact Lie

group acting on a completely regular space. Beginning with the

simplest case in which we are aided by the existence of analytic co-

ordinates, we show that it is possible to construct local "cross-sec-

tions" ; that is, closed sets which meet the orbit of each nearby point

just once. The importance of these sets is reflected in Theorem 2.3.

The principal weapon is the use of Haar measure to produce an "orbit-

faithful" representation of the group acting on the space.

3.1 Lemma. Let © be a closed subgroup of a Lie group 5TJc. Then there

exists a compact neighborhood N of the identity in Wl and a closed subset

C of N such that every right coset of © which intersects N has exactly

one point in common with C.
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Since this result is standard in the theory of Lie groups, the proof

will not be given here. A proof can be found in Chevalley, Theory of

Lie groups: I, Princeton University Press, 1946, pp. 109-110.s

3.2 Lemma. Let © be a compact group of nXn matrices. We assume

that © acts on the Cartesian space of all nXn matrices by matrix multi-

plication. Then there exists a closed neighborhood N of the identity

matrix and a closed subset C of N each that the orbit of every point of N

has exactly one point in common with C. We can choose N so that it

contains only nonsingular matrices.

Proof. The Cartesian space S of all «X» matrices contains the

group 9Jc of all nonsingular «X» matrices as an open subspace. © is a

subgroup of STJi, and the orbits under © of points in üT/i are just the

right cosets of © in 9K. Being compact, © is a closed subgroup of 9Jc,

which is, of course, a Lie group. We choose the sets N and C as in

Lemma 3.1. Then N is a closed neighborhood of the identity matrix

in S which contains only nonsingular matrices and C has exactly one

point in common with the orbit of each point of TV.

3.3 Theorem. Let & be a compact Lie group which acts on a com-

pletely regular space ^R.. Let p be a point of ^R such that o-(p)9£p unless a

is the identity. Then there exists a closed neighborhood N of p and a closed

subset C of N such that the orbit of every point of N has exactly one point

in common with C.

Proof. Let H be a faithful representation of © as a group of nXn

matrices.3 We shall define a function / on <R with values in the space

of all nXn matrices, that is to say, «2-dimensional Cartesian space.

On the orbit of p let J(o-(p)) =H(a) (the condition that a(p) j^p unless

a is the identity insures against inconsistency) and let J be extended

to the rest of R in any continuous fashion. This extension is possible

by virtue of Theorem 1.4 and the fact that ©(£), as the image of a

compact set, is compact. Define a new matrix valued function K by

setting

where the integration is with respect to the Haar measure of ®. The

8 Our statement of the lemma does not agree with Chevalley's Proposition 1, but

the proof of the latter contains a complete proof of Lemma 3.1.

3 The Peter-Weyl theorem assures us of the existence of a faithful matrix repre-

sentation (cf. Pontrjagin, Topological groups, Princeton University Press, 1939, pp.

87-125).
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hypothesis assures that r(q) is a continuous function of t and q to-

gether, whence it follows easily that K is continuous. The important

relation K(a(q)) =H{o-)K(q) follows from the invariant property of

the integration, for

K(a(q)) = f H(r^)J(ra(q))dT = f H(ap-l)J(p(q))dp
J © J 9

= H(c) f H{p-*)J{p{q))dp = H(r)K(q).
J ®

Moreover, ÜT(J>) = J&H{T~l)H(j)dT = I, the identity matrix.

The group ® acts by matrix multiplication on the space of all nXn

matrices through the medium of the representation H. By Lemma 3.2

there is a closed neighborhood Ni of the identity matrix and a closed

subset C\ of 7Yi such that if M£iVi there is exactly one point of the

form H(a)M which is in &. We may assume that Ni contains only

nonsingular matrices. Let N = K~1(N1) (the complete inverse image

of Ni under K) and C = iC_1(Ci). Then N is a closed neighborhood of

p and C is a closed subset of N.

Suppose now that gGiV. Then K(q)(E.Ni and there is exactly one

point of Ci of the form H(<r)K(q). Since K(q) is nonsingular it can

have only one representation in this form. Thus there is exactly one

element <rE® such that K(p-(q)) =H(a)K(q)ECi; that is, there is

exactly one element a£® such that r(j)£C. This completes the

proof.

3.4 Theorem. Let ® be a compact Lie group which acts on a com-

pletely regular space 5^. Let p be a point of and suppose that ®3 is

conjugate to ®Pfor all qCR.. Then there exists a closed neighborhood N of

p and a closed subset C of N such that the orbit of every point of N has

exactly one point in common with C.

Proof. Let 5 be the subset of f\ consisting of all points left fixed by

every element of ®p. S is closed. If s£S, then ®,D®P, but in a com-

pact Lie group no subgroup contains one of its conjugates properly,

hence ®. = ®p. If qG%., ®q = a®P(T-1 for some aG®. Then ®„_i(a)

= o--1®3<r = ®j>; hence <r_'(g)GS and gG®(5). We have proved that

®(S)=R; moreover, for any set FCK ®(F) =®(Sr\®(F)).

Let § be the normalizer of ®P in ®. § is a closed4 subgroup of @.

$ maps 5 into itself, for, if <rG§ and $G>S, then ®„(t) =<r®,o-_1

= <7®J,o-~1 = ®j„ giving ff(s)G5. Conversely, suppose that s, ICS and

* It can be verified directly that, in any topological group, the normalizer of a

closed subgroup is closed.
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that <r(s)=t. Then ®p = ®t=o-®.o~1=o-®po-1, showing that <r£-§-

From this we derive the formula: if ECS, §(£) =5H®(£).

Since every element of 5 is left fixed by ®p and S is mapped into

itself by !q/®p may be thought of as a compact Lie group acting

on the space S. As a subspace of a completely regular space, S is

completely regular. No element of 5 is left fixed by any element of

&/®P except the identity. By Theorem 3.3, there is a closed neigh-

borhood Ni of p in S and a closed subset C of Ni such that if qGNi,

then (&/®p)(g) = &(q) intersects C in exactly one point. Let

N = ®(Ni). Suppose that rE/V. Then r=a(q) for some <r£® and

qGNu hence ®(r)=@(j). Since CCS, Cn@(r) = Cr\Sr\®(q)
= Cr\lQ(q), which is a one element set. As a closed subset of the

closed set S, C is closed in %. We have now proved everything required

except that N is a closed neighborhood of p. We already know that

it is closed by Lemma 2.1.

To show that 7Y is a neighborhood of p we must show that

p$.C\(%-N) or since pCS, that p$.Sr\Cl(H-N). Using the
formulas obtained in the first and second paragraphs of this

proof, wehave%-N=<R,-®(N1) = ®(<R,-®(N1))=®(S-Sn®(N1))

= ®(5-©(7Vi)). Using also the result of Lemma 2.2, Sr\Cl(R-N)
=snci(®(s-§(/v1))) -sn@(ci(s-$(iv,))) -$(ci(s-$(tfi)))
= Cl(^(5-§(iVi)))=Cl(5-'p(iV1))CCl(5-7y1). Since TYj is a
neighborhood of p in S, p$Cl(S-N,), a fortiori p&SnCl(<R.-iV),
and we are through.

3.5 Corollary. Z,e/ ® be a compact Lie group which acts on a

completely regular space fR_. Let p be a point of 2^. such that ®p is con-

jugate to ®qfor all q throughout a neighborhood of p. Then there exists a

closed neighborhood N of p and a closed subset C of N such that the

orbit of every point of N has exactly one point in common with C.

Proof. Let If be a closed neighborhood of p such that ®9 is con-

jugate to ®p if qGM. The set R' = ®(M) is a closed subset of <R^. If

rCR', then r=a(q) where aC® and qCM. Then ®r = <r®s<r-1 which

is a conjugate of ®„. We apply Theorem 3.4 to the space R' and

observe that the set N which is a closed neighborhood of p in R' is

also a closed neighborhood of p in 5^.. Likewise, the set C, being

closed in R', is closed in ^R..

3.6 Theorem. Let ® be a compact Lie group which acts on a com-

pletely regular space ^R. Let pbea point of "R such that ®p is conjugate to

®a for all q throughout a neighborhood of p. Then there exists a closed

neighborhood of ®(p) which is fibered as a direct product by the orbits.
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Proof. We have only to observe that the set C constructed in the

proof of Theorem 3.4 satisfies the hypothesis of Theorem 2.3, while

®(C) = ®(/V) is a closed neighborhood of @(p).

4. Application to topological groups. We shall now use the previous

results to investigate the nature of coset decompositions in a topo-

logical group. Theorem 4.1 is an immediate corollary of Theorem 3.6,

while Theorem 4.2 extends this result to a broader class of subgroups.

4.1 Theorem. Let SR be any topological group and let ®bea subgroup

which is a compact Lie group. Then there is a neighborhood of ® which

is fibered as a direct product by the cosets of ®.

Proof. We may consider that the group ® acts on the space iff

by setting o-(t) =<xt where <r£® and t£SR. As a topological group,

SR is a completely regular space. Since the orbits of points of SR are

simply right cosets of ©, the theorem follows directly from Theorem

3.6. The same result for left coset decompositions follows by con-

sidering the anti-isomorphism a—*«r_1 of SR with itself.

4.2 Theorem. Let SR be any topological group and let & be a closed

subgroup of SR which is a covering group of a compact Lie group. Then

there is a closed neighborhood of © which is fibered as a direct product

by the cosets of ®.

Proof. We shall construct a closed set C in SR such that the

mapping x: (f. t)—*o~t of ®XC onto ®(C) is a homeomorphism, and

®(C) is a neighborhood of ®.

Let S be a discrete normal subgroup of ® such that § = ®/Ä is a

compact Lie group. Let \b be the natural map of ® onto $ is a dis-

crete subgroup of SR, hence we can form the homogeneous space SR/Ä

of right cosets of $. Let <f> be the natural map of SR onto SR/$. Since Ä is

discrete we can choose a closed neighborhood 5 of e, the identity of

SR, such that SS~ir\$t = {t}. It follows from this that SHpS is void

if p£$ unless p=e. Let <p(S) =SX. Then Si is a neighborhood of <p(e)

in SR/Ä and <p maps 5 homeomorphically onto Si. In fact, <j> maps any

set of the form S<r (trGSR) homeomorphically onto a neighborhood

of <p(o~). Thus, since complete regularity is a local property, SR/Ä is a

completely regular space.

Since $ is a normal subgroup of ®, if o-£® and t£SR we have

(o-®)(®t)=o-®t = ®o-t. It follows that the mapping (^(<r), <£(t))

—kp(<tt) of §X(SR/*?) onto SR/$ is well-defined. It is also continuous

because of the continuity of the group operation and the definition

of the topology £ and SR/$. Thus the compact Lie group § acts on

the completely regular space SR/*? under the convention ^(<r)(<?>(r))
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=<j>((XT). Furthermore, <p(r) =^(<r)(#(t)) =<£(<"") only if <r£$; that is,

if ^(cr) is the identity of By Theorem 3.3, we can choose a closed

set CoC9f/$ which intersects each orbit of a closed neighborhood

of §(<?(«)) in just one point. We may assume 0(e)£Co (if not, we

could replace C0 by er(Co) where a is an appropriate element of Jp).

Let & = Siry\Co. Then G is a closed neighborhood of <b{e) in Co. From

the direct product representation of §(Co) (cf. Theorem 2.3) it fol-

lows that 4>(G) is a closed neighborhood of !&(4>(e)).

Let C = Sr\<p_1(G). Then C is closed in 9t and <p maps C homeo-

morphically onto G. C intersects each orbit of ©(C) exactly once.

For suppose that p<r=r where <r, tEC and p£®. Then <p(r) =0(pcr)

=^(p)<b{<x) where <p(r), <£(<r)EG- It follows that yp{p) is the identity

of § or that p£t. Then rESf^pS, where p£$, but this set is void

unless p=e. Hence er=r. This implies that the mapping x is one-to-

one. Being a restriction of the group mapping, x is certainly continu-

ous. To show that x is a homeomorphism we must show-that it carries

open sets into open sets. It is enough to show that all sufficiently

small open sets containing a given point are carried into open sets.

Consider the composite mapping (<r, r)—*($(<?), <p(t))—*I/(o-)(<p(t))

=d}(ar) which carries ®XConto JpXG onto $(G)- The first of these

steps is a local homeomorphism and the second is a homeomorphism

by Theorem 2.3. Since both steps carry open sets into open sets, the

same is true of the composite which is simply <p ° X- Let coE© and

to EC be fixed and let V be an open neighborhood of <r0ro so small

that <j> restricted to V is one-to-one. Let U be an open neighborhood of

(o-0, To) so small that x(U)C.V. Then x(^) is open, for we know that

<box(U) is open, and x(U) = Vr\<frl(<p o x(U)).
We have only to show that ©(C) is a closed neighborhood of ©

and the theorem will be proved. This follows immediately from the

equation ©(C) ^-^(G)).
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