INSTITUTE OF PHYSICS PUBLISHING CLASSICAL AND QUANTUM GRAVITY

Class. Quantum Grav. 21 (2004) 1237-1251 PII: S0264-9381(04)70619-X

Spacetimes foliated by Killing horizons

1,34

Tomasz Pawlowski' >, Jerzy Lewandowski'>* and Jacek Jezierski>

! Instytut Fizyki Teoretycznej, Uniwersytet Warszawski, ul. Hoza 69, 00-681 Warsaw, Poland
2 Katedra Metod Matematycznych Fizyki, Uniwersytet Warszawski, ul. Hoza 74,

00-682 Warsaw, Poland

3 Max Planck Institut fiir Gravitationsphysik, Albert Einstein Institut, 14476 Golm, Germany
4 Physics Department, 104 Davey, Penn State, University Park, PA 16802, USA

Received 16 October 2003
Published 27 January 2004
Online at stacks.iop.org/CQG/21/1237 (DOIL: 10.1088/0264-9381/21/4/033)

Abstract

It seems to be expected that a horizon of a quasi-local type, such as a Killing
or an isolated horizon, by analogy with a globally defined event horizon,
should be unique in some open neighbourhood in the spacetime, provided
the vacuum Einstein or the Einstein-Maxwell equations are satisfied. The
aim of our paper is to verify whether that intuition is correct. If one can
extend a so-called Kundt metric, in such a way that its null, shear-free surfaces
have spherical spacetime sections, the resulting spacetime is foliated by so-
called non-expanding horizons. The obstacle is Kundt’s constraint induced
at the surfaces by the Einstein or the Einstein-Maxwell equations, and the
requirement that a solution be globally defined on the sphere. We derived
a transformation (reflection) that creates a solution to Kundt’s constraint out
of data defining an extremal isolated horizon. Using that transformation,
we derived a class of exact solutions to the Einstein or Einstein—-Maxwell
equations of very special properties. Each spacetime we construct is foliated
by a family of the Killing horizons. Moreover, it admits another, transversal
Killing horizon. The intrinsic and extrinsic geometries of the transversal Killing
horizon coincide with the one defined on the event horizon of the extremal
Kerr—Newman solution. However, the Killing horizon in our example admits
yet another Killing vector tangent to and null at it. The geometries of the leaves
are given by the reflection.

PACS numbers: 04.20.Ex, 04.70.Bw, 11.10.Ef

1. Introduction

In the standard black-hole theory an event horizon is defined as a boundary of a certain
distinguished region of spacetime. On the other hand, quasi-local definitions of horizons are
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known which lead to a local black-hole physics and geometry [1-10]. Typically, a horizon is
a cylinder formed by 2-surfaces diffeomorphic with the 2-sphere. In the stationary black-hole
case, the cylinder is expected to be a null surface. If the intrinsic geometry of the surface
is preserved by a tangent null flow, then the cylinder is called a non-expanding, shear-free
horizon. If both the intrinsic and extrinsic geometries are preserved by a tangent null flow,
then the cylinder becomes an isolated horizon (see [5, 6] for details). In a very special case,
there is a Killing vector field defined in a neighbourhood of the cylinder and tangent to its null
generators. Then we deal with a Killing horizon. It seems to be expected that a horizon of this
quasi-local type, by analogy with the globally defined event horizon, should be unique in some
open neighbourhood in the given vacuum spacetime. The aim of our paper is to verify whether
that intuition is correct. We would like to prove or disprove the existence of a solution of
vacuum Einstein’s or the Einstein—-Maxwell equations foliated by non-expanding, shear-free
horizons. A metric tensor of this type necessarily belongs to Kundt’s class® [12]. The structure
of Einstein’s and the Einstein—-Maxwell equations in this class is discussed in [12] and a large
family of exact solutions is known. The new issue is the quasi-global assumption that null,
non-expanding, shear-free surfaces foliating a given Kundt solution have spacelike spherical
sections.

We approach this problem in terms of the non-expanding horizons geometry. Vacuum
Einstein’s equations imposed on a metric tensor which admits a foliation by non-expanding,
shear-free horizons induce on each horizon certain constraint equations on the intrinsic
geometry and the rotation 1-form potential. We construct a transformation that maps the
constraints into another set of equations satisfied by the intrinsic geometry and the rotation
1-form potential of an extremal isolated horizon contained in a vacuum spacetime. The inverse
transform applied to the intrinsic geometry and the rotation 1-form potential defined on the
extremal Kerr event horizon provides a solution to our constraints! The vacuum constraints
and the transformation are generalized to the Einstein-Maxwell case. Whereas the nature of
that transformation is somewhat mysterious in the general case considered here, it becomes
clear in the case of the examples we derive later. Next, we extend appropriately every
solution to the vacuum (electrovac) constraint equations into a solution to the vacuum Einstein
(Einstein—Maxwell) equations. The derived class of solutions admits a two-dimensional
Lie algebra of the Killing vector fields generated by Ky, K; which satisfy [Ky, K;] = Ko.
For every value of ug, the vector field uopKo — K; defines a bifurcated Killing horizon
(that is it is tangent to a pair of Killing horizons which share a spherical slice). All the
bifurcated Killing horizons share a single Killing horizon tangent to K. In other words,
the resulting spacetime is foliated by the Killing horizons, and admits one more Killing
horizon transversal to the leaves of the foliation. The transversal Killing horizon equipped
with the Killing vector K is an extremal vacuum (electrovac) isolated horizon. Its intrinsic
geometry, the rotation 1-form potential and the electromagnetic field are related to the data
defined on each leaf of the foliation exactly by the transformation discussed above. Finally,
we derive an explicit form of the solution corresponding to the extremal Kerr—Newman
horizons.

The constraint equations considered as equations of certain data defined on a manifold
diffeomorphic with a 2-sphere are interesting by themselves. According to the results of [13],
the only axi-symmetric solutions are those given by the Kerr—Newman extremal horizon and
the transform. It is not known if there are any other solutions. Some partial results are included
in the appendix.

3> We follow the definition of a Killing horizon presented in [11].
© The class of metric such that there exists null non-expanding non-twisting congruence.
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In conclusion, our results contradict even the belief that a Killing horizon should be unique
in some spacetime neighbourhood. However our examples are quasi-local and their geodesic
extension should be understood.

2. Non-expanding horizons

We recall in this section the definition of the non-expanding horizons and properties relevant
in this paper [6]. A non-expanding horizon is defined to be a null 3-surface A contained in a
four-dimensional spacetime of the Lorentz signature, such that

(i) A is an embedding of S x Z, where the manifolds S and Z are, respectively, the 2-sphere
and the one-dimensional interval,
(ii) for every s € S, the embedding maps {s} x Z into a null curve,
(iii) every null vector field tangent to A is non-expanding.

It follows from the Raychaudhuri equation that if the stress energy tensor satisfies at every
point of A the non-negativity condition

T, "¢" > 0, (D

where £ is a null vector tangent to A, then A is also shear free. It means that the pullback g of
the spacetime metric g onto A is transversal to £ and Lie dragged by ¢,

L1qg =0, Leg =0. 2)

It follows that the spacetime covariant derivative V reduces naturally to a covariant derivative
D defined in the tangent bundle T'A, that is for every two vector fields X, Y tangent to A, so
is Vx Y. It also follows that the null direction tangent to A is covariantly constant, hence for
every null vector field ¢ tangent to A,

Dl=w®¢, 3)

where w is a differential 1-form defined on A, called the rotation 1-form potential. We can
always choose ¢ to be geodesic, that is such that V,¢ = 0. Then necessarily [6]

L-2w=0, Lyw = 0. 4)

Let us fix an orientation and a time orientation in M. An orientation in S is adjusted in
the following way: let £ be a future-oriented null vector tangent to A at x, and n be another
future-oriented null vector at x. A frame (X, Y) tangent to S at p(x), where p : A — S is the
natural projection, has a positive orientation whenever the orientation of the frame (X, Y, n, £)
is positive.

If the non-expanding horizon is contained in an Einstein—Maxwell vacuum, then the
electromagnetic field tensor F defines on A yet another transversal to (and Lie dragged by)
£ object, namely the pullback F of the self-dual part %(F —ix F) of Fonto A,

L-F =0, LyF =L-3dF+d(-+F)=0. (5)

The first equality is a consequence of the Raychaudhuri equation, which implies [15] that
(orthogonal to £) 1-form £ - (F —i« F') isnull on the horizon. Therefore, it must be proportional
to ¢,. The second equality follows from Maxwell equations.

It follows from (2), (4), (5) that, there are defined on S: a metric tensor g, a 1-form @ and
a complex-valued differential 2-form , such that

q=r"q, w = p*o, F=pF. (6)
We call (§,d, F), respectively, a projected 2-metric tensor, a projected rotation 1-form
potential and a projected electromagnetic field 2-form induced on S by (A, £). The 2-form F
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can be represented by a projective complex electromagnetic scalar ®, respectively defined on
S by

F=ide, (7)
where € is the volume 2-form on S defined by the metric tensor ¢ and the orientation.

Note that £ given as above can always be replaced by ¢’ = f¢, where f is a positive
function such that £# f,, = 0. The metric tensor ¢ and the complex-valued differential 2-form
F defined on S are independent of that choice, whereas ' = w + dIn f. We will see below,
however, that in the case of a one-dimensional family of non-expanding horizons foliating a
spacetime, that freedom will be restricted to f = const.

In the example of spacetime found in this paper, we encounter a pair of non-expanding
horizons which share a sphere. If this is the case, the structures induced on S are related to
each other. Indeed, suppose A’ is another non-expanding horizon in M such that AN A" = §,
where § is diffeomorphic to a sphere. Let £’ be a null vector field tangent to A’ such that

el = —1. (8)

The spheres of the null geodesics S and S’ can be naturally identified. Then, the corresponding
projective metric tensors § and g’ and the projective electromagnetic field 2-forms F, ” just
coincide because they are defined by the pullback to the single sphere S of, respectively,
the metric tensor and the self-dual electromagnetic field (F — i « F'). The orientations
of § corresponding to A and A’ are opposite to each other; therefore, projective complex

electromagnetic scalars ®;, ®| are also opposite. The pullbacks g, and a)z 5 of the rotation

1-form potentials w and o’ to § are related in the following way:
w5 = LuVE") 5 = =€, V)5 = —o). ©)

In summary, we have

A

q =4, & = —b, D =—-, orientation’ = —orientation. (10)

3. Foliations by non-expanding horizons

We consider in this work a spacetime (M, g) foliated by non-expanding horizons. Our
considerations are quasi-local, in the sense that we assume that

@) M=Sx7TxT, (11)

where S is a manifold diffeomorphic with the 2-sphere, and 7 is an interval,
(ii) for every u’ € Z, the 3-surface S x Z x {u'} is a non-expanding horizon,
(iii) every curve {s} x Z x {u’} such that s € S and ' € 7 is null.

Every spacetime foliated by the non-expanding horizons can be introduced (quasi-locally)
in this way. Let u be a real-valued function defined on M such that for every u’ € Z, u is
constant on the corresponding non-expanding horizon S x Z x {u’} and

du # 0, (12)

for every x € M. A function u of those properties can be given by any coordinate defined in
R. For every value u of the function u, the non-expanding horizon S x Z x {u’} on which u
takes that value henceforth will be denoted by A, (often we will drop the suffix O at u). The
function u provides in M a null vector field ¢,

o= —gMu (13)
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geodesic,
Vel =0, (14)

and tangent at every x € M to A,(). Therefore, for every non-expanding horizon A, the
results of the previous section apply to the vector field £ defined in (13). In conclusion, for
every leaf A, of the foliation, S is equipped with the metric tensor g, the projected rotation
1-form potential & and the projected self-dual electromagnetic field £ as was explained in the
previous section. The structure (§, &, F) arbitrarily depends on the leaf A,,.

There is still some freedom in the definition of the vector field £ on M. The function « can
be replaced by it = h(u), where £ is an arbitrary function whose gradient nowhere vanishes.
That transformation amounts to the rescaling of £ by a factor 4’ () constant on every leaf A,,.
The transformation leaves (4, @, ) invariant. Therefore, the structure (g, &, F) is uniquely
defined on S and depends only on leaf A, and the spacetime metric tensor g.

4. Constraints

Imposing the Einstein—Maxwell equations on the spacetime foliated by non-expanding
horizons implies interesting constraints on the structures (g, &, F) defined on S. We formulate
and discuss the constraints in this section. The derivation will be presented in section 6 in
which we analyse the full set of Einstein—-Maxwell equations imposed on a spacetime foliated
by non-expanding horizons. Let us begin with the Einstein vacuum case, that is F = 0 in M.

Proposition 1. Suppose (M, g) is a four-dimensional spacetime foliated by non-expanding
horizons in the meaning of the conditions (i)—(iii) of section 3, suppose g satisfies the vacuum
Einstein equations. Then, the following constraint is satisfied on the manifold S for every
leaf A,

Dgéos+ Dadvg — 204005 + Rag = 0, (15)

where we denote by D and R the covariant derivative and the Ricci tensor, respectively, of the
2-metric tensor q defined on S.

In the presence of the electromagnetic field F, a constraint implied by the Maxwell
equations will be added (and the first constraint will be modified by the non-zero F'). It is
convenient to express the Maxwell constraint by the complex structure on S compatible with
the orientation of S distinguished in section 2. Let (z, Z) be a local complex coordinate system
in S such that the orientation of the coframe (Re dz, Imdz) is consistent with the orientation
of S. We decompose every differential 1-form k = k. dz + k: dZ defined on S in the following
way,

k40 =k, dz, KOV =k dz, (16)
and in particular for every complex-valued function f defined on S we define
af =dfro, af =dfOn. (17)

Proposition 2. Suppose (M, g) is a four-dimensional spacetime foliated by non-expanding
horizons in the meaning the conditions (i)—(iii) of section 3; suppose F is an electromagnetic
vector field in M such that (g, F) satisfy the vacuum Einstein-Maxwell equations. Then, the
following constraints are satisfied on the manifold S for every leaf A,

Dpios + Dadp — 20pwp + Rap — 2i0|@11*Gap = 0, (18a)

@ =20"M0, =o0. (18b)
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The rotation 1-form & can be decomposed according to the Hodge decomposition [14]
on the sphere in the following way:

& = %dU +dIn B, (19)

where U, B are real functions. Then constraint (18b) can be easily integrated giving the
following form of ®; as a function of (U, B),

o = EOB2 el Ey = const. (20)

This equation was investigated in more detail in [13].

Obviously proposition 1 is a special case of proposition 2. The proof of proposition 2
follows in a straightforward way from the Einstein-Maxwell equations discussed in section 6.

The constraints considerably restrict possible 2-metric tensors ¢, the rotation 1-form
potential & and electromagnetic field induced on S. Their strength consists in the fact that
solutions have to be defined globally on S.

On the other hand, we will also show in section 7 that for every single solution of the
constrains (18) there exists an electrovac (M, g, F) foliated by non-expanding horizons.

5. A transform providing solutions to the constraints

There is a remarkable mathematical relation between the constraints (15) and the constraints
satisfied by the geometry of a vacuum extremal-isolated horizon [13]. The relation generalizes
to the constraints (18) and the constraints satisfied by the geometry and the electromagnetic
field on an extremal electrovacuum isolated horizon [13]. (By ‘mathematical’, we mean that
the constraints are not the same, but there is a transformation that maps solutions of one set
of the constraints into another.) Let us recall that an extremal isolated horizon (A', £') in a
non-expanding horizon A’ equipped with a tangent null vector field such that

[Le, D] =0, and D'l =0. 21
At A, the vacuum Einstein equations induce the following constraint equations on the metric

tensor ¢’ and the rotation 1-form potential @ projected onto the manifold S [13] (we are still
using the notation of section 2)

D&, + D)@y +2d,&) — R,y = 0. (22)

Comparing the equations above with the vacuum constraints (15) one can easily see the
relation:

Theorem 1. The following map

O o=-a, g —§=q (23)
is a bijection of the set of solutions to the vacuum extremal-isolated horizon constraints (22)
onto the set of solutions to the constraints (15). In particular, the projected metric tensor §’'
and the projected rotation 1-form potential &' induced on the event horizon in the extremal
Kerr spacetime are mapped by the transformation (23) into a solution to the constraints (15).

In the presence of the electromagnetic field F’ at an extremal isolated horizon A’, the
Einstein—Maxwell equations and an assumption that the electromagnetic field is Lie dragged
by the vector field £’ (see [13] for the details) amount to the following constraint equations:

2 YA

D@, + D@y +20,@) — R, p + 2i0| @} *Gap = 0, (24a)

@ +200N o] = 0. (24b)
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A comparison of the equations above with the electrovac constraints (18) shows that
theorem 1 generalizes to the following:

Theorem 2. The map (23) accompanied by
D) > ) =D (25)

is a bijection of the set of solutions to the extremal electrovac-isolated horizon constraints (24)
onto the set of solutions to the constraints (18). In particular, the projected metric tensor §’, the
projected rotation 1-form potential &' and the projected electromagnetic field F' induced on
the event horizon in the extremal Kerr—Newman spacetime are mapped by the transformation
(23), (25) into a solution to the constraints (18).

The relevance of theorems 1 and 2 above consists in establishing the existence of non-
trivial, globally defined on S solutions to the vacuum constraints (15) and, respectively, the
electrovac constraints (18).

Remark 1. Applied to the constraints (18), the transformation (23), (25) is equivalent (up to
change of orientation)’ to the transformation (10) mapping into each other data corresponding
to two intersecting non-expanding horizons. That observation may be considered as an
indication of the possible existence of a non-expanding horizon transversal to one of the
horizons A,. This is exactly what happens in the case of the class of solutions constructed in
the next section.

6. Proof of propositions 1, 2

Every spacetime (M, g) foliated by non-expanding horizons in the sense of the conditions
(1)—(iii) of section 3 can be represented by M = S x Z x T and the following metric tensor
(see section 31.2 in [12] for a general form of spacetime foliated by null, non-expanding,
shear-free surfaces):

g=¢—2du(dv+ W + H du) (26)
where

(a) the function v (respectively, u) is a parametrization of the first (second) factor Z of the
product (11) extended naturally to S x Z x Z,

(b) g is a metric tensor defined on S and depending on the value of u, naturally lifted to the
product § x T x Z,

(c) W (H ) is a differential 1-form (a function) defined on S depending on the values of u and
v and extended naturally to the product § x 7 x Z.

Let z, z be any (local) coordinate system defined on § and extended naturally to some domain
in S x Z x Z. In terms of the coordinate system (z, Z, v, u), equation (26) reads

g =2P %dzdz — 2du(dv+ W dz + W dz + H du) P,=0, 27

where P is a real valued and W is a complex-valued function. The constancy surfaces of u are
non-expanding horizons.

The converse is also true: given a metric tensor (27), a surface A,, = S x Z x {up} is a
non-expanding horizon for every value of u taken by the functions v, u, respectively.
7 Transformation (10) changes the orientation of the 2D slice S preserving spacetime orientation. That transformation

modified to preserve the orientation of the slice changes the spacetime orientation (affecting the Hodge dual in the
definition of ). That modification implies the transformation of ®; to be of the form given by (25).
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We express now all the structures defined in sections 2, 3 by the components of the metric
tensor above. To begin with, the function u is the same as in section 3, and the complex-valued
function z is the same as z in section 4. In this coordinate system the vector field £ (13) is

049, = . (28)
The structures ¢ and & introduced in S for every value taken by the function u are
§ =2P2dzdz, &=1W,dz+W,dz). (29)
Note that equation (4) is equivalent to
W = 0. (30)

Every electromagnetic field ' defined on M which satisfies the conditions (5) can be
written as

F = <I>1(e4 Aed+é? /\el) + &ye? Ae3+31(e4 Aned—é? Ael)+CPT2e1 N P, =0,
(31)

where (e!, €2, €3, ¢*) is the coframe dual to the following null frame
e =& = Pd,, e3 =0, + P2(Wd, + Wd:) — (H + P2 WW)d,, ey =19,. (32)

Then, @, is the same function as the one introduced in section 2 and the complex-valued
differential 2-form F defined in the same section on S is

. o
F = —m dz A dz. (33)

In the construction we have already taken into account a part of the Einstein-Maxwell
equations. Therefore, our metric tensor g (27), (30) and the electromagnetic field F (31)
already satisty

Rag = koTas = 0= R4y = ko141 = Rap = k0Ty2, (34a)

€1J€4Jd(F—i*F)=0=€2J84Jd(F—i*F). (34b)

Every metric tensor given by (27), (30) belongs to Kundt’s class. We apply below the

discussion of the structure of the Einstein—-Maxwell equations for this class which can be found
in [12].

We turn now to the proof of propositions 1 and 2. Consider the following Einstein
equations

(P°W.).: — 3P*(W,)* = Ry = k0T =0, (35a)
2P*(In(P)) ;2 + SPP(Wpo + Wz — W, W) = Rip = koTio = 2k0 @ Dy, (35b)

where in each of the lines above, the first and the third equality is an identity. Using the
relations between P and the 2-metric tensor § and between W, and @ (see (29)), one easily
recognizes equation (18a) and, in the vacuum case, equation (15).

Finally, one of the Maxwell equations reads

1
e3eyte2d(F —ix F) = F(cbl,z - W) =0, (36)

where the first equality is an identity. This is exactly equation (18b). This completes the proof.
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7. A class of solutions to the Einstein—-Maxwell equations

Let us assume in this section that we are given W ,(z, Z, u), P(z, z,u) and ®,(z, Z, u) such
that the constraints (18a), (18b) are satisfied for every sphere u = const, v = const. We turn
now to the issue of the existence of solutions to the full set of the Einstein-Maxwell equations.

The second derivative with respect to v of the function H is given by the (u, v) = (3, 4)
component of the Einstein—-Maxwell equations, namely

H .y = 20| 1> +divd — 24P dadop = 2k0| 11> + S PP (W + Wz —2W, W),  (37)
where div & := §48 D@5 and 48 is the two-dimensional inverse metric.

Similarly, the v derivative of the remaining component ®, is involvedine; - e, 2 eq - d(F —
i F) and the corresponding Maxwell equation gives

Dy = P(P1z+ W, D). (38)
In particular, it follows from (37), (38) that H ,,,, = 0 and &, ,,, = 0. Hence, the most general
form of the functions W, H, ®, is®

Wi(z,Z,u,v) = W,(z,Z, u)v+ Wy(z, Z, u), (39a)

H(z,Z,u,v) = [ko| @1 + PP (Wop + Wz — 2W, W) ] v* + Go(z. Z, w)v + Ho(z. 2, u),
(39b)
®y(2, 2,4, v) = P(P1 2+ W, @)+ DYz, Z, u). (39¢)
The remaining Einstein—-Maxwell equations amount to the following system of equations
on Wy, Gy, Hy, P, W, [12] (the first two equations are explicitly written down in [12], but

to propose a solution we also needed the last equation below, therefore the first two were
included for completeness):

2601 DY = P(P*W°) .: + P[(In(P)),, — 1 P*W — %PZWZO]J
+1P[(P?W,) . WO+ (P*W,,),W°] = 2P-(P*W") .
+ PG + 1P [(WOW,) . — (WOW,) -1+ Py — L PW,, (40a)

POY =P, d)+ Dy, —2(In(P)) , @1 + PI(WODy) , + (WD) -], (40b)

2u0®9PY = 2P HY. + PP [(W,H®) . + (W, H®) :1+2P?s", + P*[(W,s")

sZ

+(W,y59) 21— 2(P2W0) (P2 W), — 2[ P2 WO + O, WP)

+ 110, + (G + PP(WOW,, + WOW,) + 1)), (40¢)
where
s = P2wow? n’ =1P*(W2+W?) — (In(P))... 41)
It is easy to see that the following example defines a solution of (40)
P,=W,u=,=0=W'=G"=H"=a). (42)
Therefore, the following has been shown:

Theorem 3. For every 2-metric tensor q, a differential 1-form & and a complex-valued function
@, all defined globally on S and solving the constraint equations (18a), (18b), the metric tensor

8 For the components of the decomposition we follow the notation of section 31.4 of [12].
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g and electromagnetic field F defined by (42) are a solution of the Einstein—Maxwell equations.
If &1 = 0, then all the resulting electromagnetic field F = 0.

Corollary 1. Combining theorem 3 with theorems 1 and 2, we established the existence of
solutions to vacuum Einstein’s equations foliated by non-expanding horizons, and solutions
to the vacuum Einstein—-Maxwell equations foliated by non-expanding horizons.

We discuss now the structure of the spacetime given by theorem 3 and by a solution
(g, @, @) of the constraint equations (18a), (18b).
The metric tensor g has two Killing vector fields, namely

Ko = 3, and Ki = ud, — v, (43)

For every value of u, the corresponding leaf A, is tangent to the Killing vector field K| —uo K.
Moreover, K| —uoKy is null on A,,,. Therefore, all the leaves are the Killing horizons. Every
(Lug K1 — ugKo) is non-extremal in the sense that on A,

VK —uoko) (K1 — uoKo) = — (K1 — ugKy) # 0. (44)

The Killing vector K is transversal to every leaf A,,. The one-dimensional group of
isometries it generates maps one leaf into another. The spacetime pseudo-norm of K equals

Quu = —2H = —[2k0| 11> + I PP (W + Wz — 2W,, W) Jv°. (45)

Therefore, K, becomes null on the surface v = 0. Let us denote that surface by A°. The
surface A is null itself and tangent to K. Hence A? is yet another Killing horizon. It has a
certain quite special property: there are two distinct null Killing vectors tangent to A°. Indeed,
the other one is the vector field K;. On A° they satisfy

Vi, Ko =0, Vi, K1 = K. (46)

Therefore (A?, Ky) is extremal whereas (A, K;) is non-extremal.

Consider finally the projected metric, projected rotation 1-form potential and the projected
electromagnetic field defined on the sphere S by (A?, Ky) (see section 2). Denote them by
§°, ®° and F°, respectively. Because the horizons A and A, share a sphere, and

g(KOv Z) = uv = -1, (47)
the structure (g°, ®°, F?) is related to the structure q, o, F) (see remark 1)
q°=4q, o’ = —b, ) = P;. (48)

This is exactly the transformation (23), (25).

8. The axi-symmetric example

In the previous section, we constructed a class of solutions to the Einstein—Maxwell equations
labelled by solutions to the constraints (18). We complete now the task of the construction of
an explicit electrovac example by deriving the axi-symmetric solutions to the constraints®.
Let (0, ¢) be a spherical coordinate system on S. We consider now the constraint
equations (18) in the case the data (§, &, F) are invariant with respect to the group of

9 The general solution (¢, &, ®;) of the constraint equations (18) is not known. See [13] and the appendix for a
discussion. The general axi-symmetric solution was derived in [13]. It is given via theorem 2 by the Kerr—-Newman
solution. Since the equation (131a) in [13] contains a misprint made in the process of rewriting the results, we outline
the derivation in this section.
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diffeomorphisms of S generated by the vector field 31 We replace the coordinate function 0
by a function x naturally defined by the area (2-volume) form € corresponding to the metric
tensor ¢, and by the symmetry generator ®, namely x such that

d D€ € 44 A /A (49)
x = ® ¢, X -, = [ &
4 4w S

The complex coordinate z used in the previous section is related to the new coordinates (x, ¢)
in the following way:

dz = %(P2(x) dx +1idg), (50)

so0 x is equivalent to coordinate z defined in (31.41) of [12].
The condition that the 2-metric tensor § (see (29)) is of the class C' on S implies the
following conditions on the function P to be satisfied at the poles:

. 1 .

After applying this coordinate system and equation (20), the constraint (18a) (with &
decomposed by (19)) takes the following form:

! + (P’ + Ue +2k0|Eo|*PB? =0 (52a)
—_— K =0, a
PB) . PB PR

1 U,)?
(_> _W (52b)
B) .. B

Ux>

— :0, (526)
(%),

where (52a) is the trace of (18a), and (52b), (52¢) are the result of splitting the traceless part
of (18a) into the real and, respectively, imaginary part.

The set of solutions to the equations (52) and to the globality conditions (51) can be
labelled by three real parameters o, A, 6y such that

a € [0, 1], A €]0, ool 6o € [0, 27 [. (53)

And the general solution is

2 (1 +a?) A2 + =2 (47 x)?

1+a2

A A? — (4mrx)?

1 —a?x
U(x) = Farctan { 4| ——— |, (54b)
l+a? A

P2(x) =

(54a)

1
1 —o? (4rx)®\
B)=(1+—>—F—] . S4c
*) ( 1+a? A ) (>40)
o () _ i |27 2043 (A2 — =2 (drx)?) £ 214,/ 55 @nx) s
1(X)—e [(_1+a2 5 a2 ) . ( )
0 (A * T2 (47 x) )

It is easy to show [13] that this solution corresponds via the transformation P — P, w — —w,
®; — D)) to the extremal Kerr—Newman event horizon. The case « = 0, 1, in particular,
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corresponds to the extremal Kerr and the extremal Reissner—Nordstrém event horizons,
respectively.

In conclusion, the class of explicit examples of electrovacua foliated by the Killing
horizons is given by the metric tensor (27) and the electromagnetic field (31) such that

2m(1+a?) A+ =2 (4 x)?

b 55
A A? — (4 x)? o
WA —adiA A2 — (4mx)? 1 -0
w o 22 Lk () iiA‘ﬁ(‘lﬂx) v, (555)
(1+a?):  (A2+ %(471)02)2 1+a?
A2+ 0 (40)?)’ — 4120 4242 — (4nx)?
H— 47TA( Tra ( ) ) 1+0;2 ( 3 ( ) )vz, (55¢)
(1+a2)(A2 + =2 (4rx)?)
o _ o [2m 20t (A7 = 5 ) £ 204, 15 () (55d)
1= — '
ko 1+a? (A2 + 12 (4JTX)2)2

2
0, = oo | 220 —e)BTAYx  (A” — CRL i ) v 55e)
Koo (T+ad)d (A2 g ) Lol ’

where dz is given for known P (x) by (50).
In particular, the vacuum solutions are the type D Kundt’s solutions expressed in [12] by

2,72
5 x“+1
— , 56
k(X2 — I2) + 2mx) (56a)
«/Ev
W=—-—vn—— 56b
P2(x —il) (565)
H k + 2r 2 (56¢)
= - v ¢
22412 P2(x2+12)2)
where in our case the parameters k, [, m are real and such that
A
m=0, —k =2l = —. (57)
2

Comparing our results with [12] we may also conclude that the vacuum solutions derived
in this section provide all the vacuum and Petrov type D Kundt’s spacetimes foliated by the
non-expanding horizons.
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Appendix A. A topological constraint

From the geometrical point of view the definition of a non-expanding horizon may be
generalized to an arbitrary compact 2-manifold S. Note that every non-orientable S admits
a double covering by the orientable one. Therefore, we can assume that S is orientable and
fix an orientation in S the same way as in the case of S diffeomorphic to the 2-sphere (see
section 2). Then the definitions of the structures (§, &, ) introduced in section 2 still apply,
as well as propositions 1 and 2. Let as consider that generalization in this section (only) to
prove the following topological consequence of the constraints:

Theorem 4. Suppose (M, g, F) is an electrovac foliated by non-expanding horizons in the
meaning of the conditions (ii), (iii) of section 3 and the condition (i) replaced by the following
assumption: M = S x T x I, where S is a compact, connected, orientable 2-manifold and T
is a manifold diffeomorphic with an interval. Then S is either the torus or the sphere. In the
first case, the only solution of the constraints (18) is

& =0, F=0 (58)
and a flat metric §.

Proof. The trace part of (18a) reads
did + Ké = ("o + 20| D1 ]?)E, (59)
where * and K := %QAB R 4p are, respectively, the Hodge star and the Gaussian curvature of

(S, §), and g*? is the two-dimensional inverse metric. The integral of the equation along §
and the Gauss—Bonnet theorem give the genus of S,

2-2g= / @"Pdadp + 20| P12, (60)

s

It follows immediately that
g< 1. 61)
In the case of g = 1, that is when S is a torus, equation (60) implies that ® and &, are
identically 0. Then, a consequence of (18a) is that the metric ¢ on S is Ricci flat. ]

In conclusion the only compact, orientable 2-manifolds which admit a solution of the
constraints (18) are the 2-sphere and the 2-torus. It is not justified, however, to refer to a
non-expanding null 3-surface whose section is topologically a torus as a ‘horizon’, because a
surface of those properties can be admitted even by a flat geometry, for example, by Minkowski
divided by a discrete subgroup of translations.

Appendix B. The vacuum constraint equations

In this section we will restrict ourselves to solutions to the constraint equations (18) with
®; = 0. This assumption does not restrict us to vacuum spacetimes—null electromagnetic
radiation is still allowed.
By contracting the traceless part of (18a) with ®*@® (where indices of & are raised using
inverse metric g% on S), we obtain the following identity:
G 8o, Dgldf = | divée + |&]*, (62)
where

A2 _ AAB A A S A AABPA A
|0 =g " wadop, divio = G"" Dsdp. (63)
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From this equation and (59) it follows that the following equality holds for each real S:
§"" Da(l@Faop) = 2+ DI@PY — (B + Do K. (64)
That finally implies one-parameter family of integral identities

28 +1
ﬂ—/|@|2<ﬂ+1>e =f1<|a)|2ﬁe. (65)
B+1 Jg s

Suppose & has only a finite set of critical points (that is such that |®| = 0) which are isolated.
Then equation (64) for g = —% takes the form

ap~ Op K

4" Dy = (66)

@] 2|&1

That equation can be integrated over S avoiding the singularities by surrounding the critical
points by small circles and passing to the limit (i.e. shrinking circles to critical points). It
provides the special case of equation (65)

K
/ ¢=0. 67)
S

@]
This condition implies that K must be negative on some open subset of S. The considerations
can be summarized by the following

Theorem 5. There are no solutions to constraints (18) of the following properties:

(a) projected electromagnetic field tensor F vanishes,
(b) rotation I-form @ vanishes only at a finite set of points,
(c) S is a sphere with non-negative Gaussian curvature.

The Gauss—Bonnet theorem implies that ® # 0 on an open non-empty subset. On the
other hand, the solution generated by projected data of the extremal Reissner—Nordstrom
horizon (case ¢ = 1 in (55)) is an example of solutions for Einstein-Maxwell equations
with & = 0, which means that some arguments used above are no longer true for solutions
describing fields other than null radiation.
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