
SpaceTree: Supporting Exploration in Large Node Link Tree,
Design Evolution and Empirical Evaluation

Catherine Plaisant, Jesse Grosjean, Benjamin B. Bederson
Human-Computer Interaction Laboratory

University of Maryland
College Park MD 20782

{plaisant, grosjean, bederson}@cs.umd.edu
(301) 405-2768

www.cs.umd.edu/hcil/spacetree

Abstract
We present a novel tree browser that builds on the
conventional node link tree diagrams. It adds dynamic
rescaling of branches of the tree to best fit the available
screen space, optimized camera movement, and the use of
preview icons summarizing the topology of the branches
that cannot be expanded. In addition, it includes
integrated search and filter functions. This paper reflects
on the evolution of the design and highlights the
principles that emerged from it. A controlled experiment
showed benefits for navigation to already previously
visited nodes and estimation of overall tree topology.

Introduction
The browsing of hierarchies and trees has been
investigated extensively [Card et al., 1998]. Designers
have demonstrated that many alternatives to the
traditional node link representation (Figure 1) are
possible, but this classic representation of trees remains
the most familiar mapping for users and still is universally
used to draw simple trees. Our goal was to take another
look at this well-known tree representation and see how
visualization advances in zoomable user interfaces and
improved animation principles could lead to a better
interactive tree browser while preserving the classic tree
representation. Such a browser might encourage the
adoption of visualization by a wider range of users (e.g.
families browsing genealogy trees or biology students
browsing taxonomies) or by more traditional work
environments (organization charts for managers or
personal office staff).

We present SpaceTree, a novel interface that combines
the conventional layout of trees with a zooming
environment that dynamically lays out branches of the
tree to best fit the available screen space. It also uses
preview icons to summarize the topology of the branches
when there isn’t enough space to show them in full. This
paper reflects on the evolution of the design and
highlights the principles that emerged from it. A
controlled experiment compares SpaceTree to two other
interfaces and analyzes the impact of interface features on
the time to perform navigation tasks to new and already
visited nodes, and topology evaluation tasks.

Figure 1: The “traditional” node link representation of a tree.
It has a favored direction (here top down). Drawing every
nodes makes very poor use of the available drawing space,

and would fill up a screen before reaching 100 nodes.

Figure 2: SpaceTree allows large trees to be explored
dynamically. Branches that do not fit on the screen are

summarized by a triangular preview. When users select a node
to change the focus of the layout, the number of levels opened is

maximized. In this organization chart example, the 3 lower
levels of the hierarchy were opened at once as users clicked on

“Drilling Manager” (the colored node in the middle.)

Related work
Two large categories of solutions have been proposed to
display and manipulate trees: space-filling techniques and
node link techniques. Space filling techniques (treemaps
[Bederson et al. 02], information slices [Andrews, 1998])
have been successful at visualizing trees that have
attributes values at the node level. In particular, treemaps
are seeing a rapid expansion of their use for monitoring,
from stock market applications (e. g. www.smartmoney
.com), to inventory or network management, to
production monitoring. Space filling techniques shine
when users care mostly about leaf nodes and their
attributes (e.g. outlier stocks) but do not need to focus on
the topology of the tree, or the topology of the tree is

http://www.cs.umd.edu/hcil/spacetree

trivial (e.g. 2 or 3 fixed levels). Treemap users also
require training because of the unfamiliar layout.

Node link diagrams, on the other hand, have long been the
plague of information visualization designers because
they typically make inefficient use of screen space,
leaving the root side of the tree completely empty –
usually the top or left of the screen – and overcrowding
the opposite side. Even trees of a hundred nodes often
need multiple screens to be completely displayed, or
require scrolling since only part of the diagram is visible
at a given time. Specialized tools can help users manage
the multiple pages needed to display those trees (e.g.
www.nakisa.com for organizational chart).

Optimized layout techniques can produce more compact
displays by slightly shifting branches or nodes (e.g.
Graphviz [North, online]), but those techniques only
partially alleviate the problem and are often not
appropriate for interactive applications.

The coupling of overview + detail views with pan and
zoom was proposed early by Beard & Walker [Beard,
1990] and found to be more effective then scrolling.
Kumar et al. successfully combined the overview and
detail technique with dynamic queries to facilitate the
searching and pruning of large trees [Kumar et al., 1995].
The technique allows ranges of depth dependant attribute
values to be specified to prune the tree dynamically.

Another approach is to use 3D node link diagrams. Cone
Trees [Robertson et al., 1991] allow users to rotate a 3D
representation of the tree to reveal its hidden parts. Info-
TV [Chignell et al., 1993] allows nodes and labels to be
removed from sub trees (leaving the links) to show a more
compact view of branches. 3D representations are
attractive but only marginally improve the screen space
problem while increasing the complexity of the
interaction.

A clever way to make better use of screen space is to
break loose from the traditional up-down or left-right
orientation and use circular layouts [Bertin, 83]. The best
known technique is the Hyperbolic tree browser
[Lamping et al., 1995] - now available as StarTree from
Inxight (www.inxight.com) - which uses hyperbolic
geometry to place nodes around the root and provides
smooth and continuous animation of the tree as users
click or drag nodes to readjust the focus point of the
layout. The animation is striking but the constant
redrawing of the tree can be distracting. Labels are hard to
browse because they are not aligned and sometimes
overlap. In addition, the unconventional layout may not
match the expectations of users (e.g. it is not appropriate
to present the organizational chart of a conventional
business.)

Cheops [Beaudouin et al., 1996] overlaps branches of the
tree to provide a very compact overview of large trees.
Labeling is an issue and interpreting the diagram requires
training.

Constrained by limited screen space, WebBrain
(www.webbrain.com) chooses to prune the tree to show
only a very local view of children and parent of the
current selection – and some crosslinks. The nodes have
to be reoriented at each selection.

The benefits of pure zooming are illustrated by PadPrints
[Hightower et al., 1998], which automatically scales down
a tree of visited pages as users navigate the web. The use
of fisheye effects to display branches at varying scales in
the same display was also explored [Noik, 93] [Hopkins,
89].

Expand and contract interfaces as exemplified by
Microsoft Explorer allow the browsing of trees as well.
Similarly, WebTOC [Nation et al., 1997] shows how
information about size or type could be added to the
expandable list of nodes.

Description of the interface
SpaceTree is our attempt to make the best possible use of
the traditional node link tree representation for interactive
visualization. Figures 3 to 6 show a series of screen
captures of the main display area, showing the
progressive opening of branches as users refine their
focus of interest. Branches that cannot be fully opened
because of lack of space are previewed with an icon. Here
we describe an initial design using a preview icon in the
shape of an isosceles rectangle. The shading of the
triangle is proportional to the total number of nodes in the
subtree. The height of the triangle represents the depth of
the subtree and the base is proportional to the average
width (i.e. number of items divided by the depth). The
preview icons can be chosen to be relative to the root (for
ease of comparison between levels) or to the parent (for
ease of local comparison).

Users can navigate the tree by clicking on nodes to open
branches, or by using the arrow keys to navigate among
siblings, ancestors and descendants. Figure 6 illustrates
how SpaceTree maximizes the number of lower levels to
be opened.

Several layout options allow adjustments of the spacing
between nodes, alignment, icon options etc. The choice
of overall orientation of the tree layout, allows designers
or users to match the layout to the natural orientation of
the data. For example organizational charts are often
oriented top down (suggesting power), while the
evolution of species is more likely to be show left to right
(suggesting time) or bottom up (suggesting progress).
Figures 7 and 8 show examples of a left to right
orientation. The choice of the most space efficient
orientation depends on the tree topology and the aspect
ratios of the labels and the window.

Search and filter

SpaceTree also includes integrated support for search and
filter. As users type a string, the location of results is
highlighted on the tree. Then users can navigate the tree,

http://www.inxight.com/

or click on the “prune” button to see a filtered view of the
tree showing only the paths to the matching nodes.

We also implemented dynamic queries [Shneiderman,
1994] to illustrate how dynamic queries allow the rapid
pruning of the tree when attributes are available at the
node level. As users manipulate a slider to limit the value
of an attribute, leaves or branches of the tree are
dynamically grayed out to show the effect of the query.
(Note that the current version supports rudimentary
dynamic queries with only one attribute, but the principle
applies to any number of attributes such as income of
employees, year in the company, or language spoken, etc.
for our organizational chart example).

Figure 3: Top level overview. The triangular preview icons
summarize the branches that cannot be opened. When room is
available, two or more levels might be opened at once. Darker
icons correspond to branches with more nodes. Taller icons (in
this top-down layout) correspond to deeper branches, and wider

icons correspond to a higher average branching factor.

Figure 4: As users change the focus of the layout (i.e. click on a
node – shown darker), more detail is revealed.

Figure 5: The tree is animated to its new layout in tree separate
steps: trim, translate and expand (trim and translate is only done

when needed).

Figure 6: Upon each refocusing, the maximum number of levels
that fit is opened (here 3 levels could fit so they were opened at

once when user selected “drilling manager”).

Figure 7: The tree shown in Figure 6 has been rotated to a
different orientation, then a search for “scientist” was performed

and the location of search results is shown in red.
(not visible in a black and white prints

Figure 8: A click on the “Prune” button displays a filtered view

of the tree, revealing only the branches that lead to scientists,
opened as space permits.

SpaceTree was developed in Java using TinyJazz, a new
toolkit that is an optimized subset of Jazz [Bederson et.
al., 2000], and the tree layout is inspired from [Walker
1990] and [Furnas, 81]

Reviewing early versions and emerging design
guidelines

The SpaceTree was designed with continuous feedback
from our sponsors who had a particular need for hierarchy
browsing at the time of the project. This included
monthly discussions and exchange of prototypes. Through
progressive refinement (about 10 versions were
discussed) we learned lessons that we summarize here as
guidelines for designers.

Semantic zooming is preferred over geometric scaling

(i.e. “Make it readable or don’t bother showing the

nodes”.)

Our first designs attempted to use fixed progressive
scaling down of the nodes – providing a nice overview of
the tree (Figure 9) and continuous geometrical zooming to
allow users to progressively reveal details of lower levels
of the tree. The result was a smooth fly through of the
tree (Figure 9 and 10) but was rejected bluntly by our
users who rightly noted that only one level of the tree was
even readable at a time (lower levels were “visible” but
never readable). Readability and a good use of the screen
space had not been optimized enough. The conclusion
was that instead of continuous scaling, a step approach
was needed: nodes should be either readable or not, and
once they are not readable they could be seen as
individuals or aggregated in an abstract representation.
This was made possible by the semantic zooming
afforded by Jazz. All scaling is therefore calculated on
the fly. Figure 11 shows an example of alternative
previews of a tree branches.

Maximize the number of levels opened at any time

Feedback from users made it clear that they resented
having to open the tree “one level at a time” when there
was room to open more levels at once. This is illustrated
in Figure 6.

Decompose the tree animation

We experimented with several animations of the layout to
reflect the change of focus and found that we received our
most positive feedback with a decomposed animation
following 3 main steps: trim, translate, and grow. When
users select a new focus, SpaceTree evaluates how many
levels of the new branch can be opened to fit in the
window, then 1) trims the tree of the branches that would
overlap the new branch to be opened; 2) centers the
trimmed tree so that the new branch will fit on the
window, 3) grows the branch out of the new focus point.

Maintain landmarks
As the tree is trimmed, expanded or translated it is crucial
to maintain landmarks to help users remain oriented [Jul
& Furnas, 1998]. The obvious candidates for landmarks
are the focus points users selected, i.e. the current focus
and the path up the tree, which usually matches the
history of focus points as users traverse the tree. The
ancestor path of the current focus is highlighted in blue.
The node under the cursor is gold, and its ancestor path is
shown in gold up until it meets the blue one. When users
click on a node, their eyes are already on the gold node,
which remains gold as the tree is animated to a new
layout, and then turns blue to reflect the new focus.

The constant relative position of siblings and the overall
shape of upper tree help maintain the larger context up the
tree (Webbrain.com illustrates how changing the
reorientation of siblings can be disorienting).

Figure 9: Early prototype: overview of the continuously
scaled tree.

 Figure 10: Early prototype: geometric zoom allowed users to fly
through the tree but only made one new level readable at a time,

and poorly used the screen space.

 (a) (b) (c)
Figure 11: Current solution: semantic zooming on multiple

representations of the tree. Previews can consist of a miniature of
the branch (a) when the number of nodes is small or an abstract

representation of the branch like the triangles of Figure 3 .
(b) and (c) are alternatives to the triangle and provide more details

on distribution of nodes in the next level branches.

Take advantage of overviews and dynamic filtering

Search and dynamic query techniques are not new, but
SpaceTree offers a good demonstration of their
application. One option we debated is whether to
dynamically trim the tree of the nodes that would “fall
off” with the query, or just gray them out and give “on
demand pruning” after the query. We chose the later
option that avoids constant and wild animation of the tree.

Use “data-aware” zooming controls

Another of the lessons we learned was the need to provide
data-aware controls. Our initial browser permitted free
zooming by clicking anywhere in the data space (on node
or outside of nodes). This was the default control of Jazz
but was only usable by expert zooming users, others being
rapidly lost in the fog of empty information space. A
second version gave users a preview of the area of the
screen that would come to full view once they clicked
(Figure 12). This helped users to avoid empty areas, but
users complained that the area rarely matched the
topology of the tree. Therefore, the best results were
attained by only allowing users to zoom by clicking on
nodes.

Figure 12: Early prototype: a rectangular cursor matching the
window aspect ratio gave a preview of the area to be enlarged if
users clicked, but didn’t necessarily match a branch of the tree.

This matches our understanding of why the simple link
following web interface is so successful: people can
readily click on a link to see related information, while
more complex interactions are difficult for users and
typically require learning.

Controlled experiment
We conducted an experiment comparing 3 tree-browsing
interfaces: Microsoft Explorer (Figure 13), a Hyperbolic
tree browser1 (Figure 14), and SpaceTree (Figure 15).
Our goal was not to pit the interfaces against each other
(as they are clearly at different stages of refinement and of
different familiarity to users) but to understand what
feature seemed to help users perform certain tasks. We
used a 3x7 (3 interfaces by 7 tasks) repeated measure
within subject design. To control learning effects, the

1 We attempted to use the downloadable version from inxight.com but

could not transform the test data into the required format. Instead we
used an older prototype, and asked three colleagues to compare the 2
versions. The old version was found similar to the current version in
term of the features used in the experiment (e.g. we didn’t use color,
attribute values, graphics or database access in the test tree). Obviously
the current commercial version has many more features that make it a
useful product but that we were not comparing here.

order of presentation of the interfaces and the task sets
were counterbalanced.

Figure 13: Microsoft Explorer, a classic expand and contract
interface. The same window size was used for all interfaces

(1024x768 pixels of display area – excluding menus and control
panels)

Figure 14: The hyperbolic viewer spreads the branches around
the root making 2 or 3 levels of the tree visible. Users can click

or drag a node to dynamically and continuously update the
layout of the tree and quickly explore deeper levels of the tree.

Figure 15: The SpaceTree opened to “mammals” and showing
nodes seven levels down the tree.

Eighteen subjects participated, and each session lasted a
maximum of 40 minutes. Subjects each received $10 for
their participation. To provide the motivation to perform
the tasks quickly and accurately, an additional $5 was
given to the fastest user within each interface (with no
errors). We chose to use computer science students that
could be assumed to have a homogeneous level of
comfort with computers and tree structures. Subjects
were given a maximum of 2 minutes of training with each
interface. In order to see what problems users would
encounter without any training, the experimenter gave no
initial demonstration, but after about 30 seconds of self-
exploration, the experimenter made sure that users had
discovered everything properly. Hyperbolic users were
told that they could continuously drag nodes, and the
meaning of the triangle icons was explained to SpaceTree
users (misunderstanding were first recorded, and then
clarified).

We used a tree of more than 7,000 nodes from the CHI’97
BrowseOff [Mullet, 97]. The three task sets used
different branches of the tree and were carefully chosen to
be equivalent in terms of number of levels traversed and
semantic complexity of the data explored. Three types
of tasks were used. Node searches (e.g. find kangaroo,
find planaria), search of previously visited nodes (return
to kangaroo) and typology questions (e.g. read the path up
the tree, find this branch 3 nodes with more than 10 direct
descendants, and which of the three branches of this node
contain more nodes). To avoid measuring users’
knowledge about the nodes they were asked to find (e.g.
kangaroos) we provided hints to users (e.g. kangaroos are
mammals and marsupials) without giving them the entire
path to follow (e.g. we didn’t give out the well known
steps such as animals). Those hints were also kept similar
in the three sets of tasks. The terminology of the
questions was explained in the initial training.

The size of the window was the same for each interface
(1024x768 pixels for the usable display area). The focus
of the tree layout was initialized at the top of the tree at
the beginning of tasks but was not reset between tasks to
match a normal work session. The entire explorer
hierarchy was re-contracted in between users. After the
short training, users were asked to conduct 7 tasks with
each interface, after which they filled a questionnaire and
gave open-ended feedback about the 3 interfaces. The
dependant variables were the time to complete each task,
the presence of errors (only relevant for 2 questions), and
subjective ratings on a 9-point Likert-type scale.

Results

For each speed and preference dependant variable we
performed a one-way ANOVA followed by a post hoc
Bonferroni analysis. The confidence interval is set at
95% for all ANOVA and post-hoc analysis.

For conciseness our hypotheses are described for each
type of task, followed by a brief summary of the results.
We report mean times in seconds in the following order:
(E) for Explorer, (H) for Hyperbolic and (S) for
SpaceTree.

A) First-time node finding

For finding nodes that had never been seen before, we
hypothesized that SpaceTree and Hyperbolic would be
similar in term of speed and faster than Explorer because
they both provide access to more than one level at a time,
which enables users to select categories further down the
tree. Explorer uses smaller fonts and the size of the
targets is smaller than the 2 other interfaces, but the
distances to travel are also smaller and users are
extremely familiar with the interface. An advantage might
be seen for the SpaceTree because of the alignment of the
labels, allowing faster scanning of the items, but this
advantage may not compensate for the advantage of the
fast continuous update of the tree layout in Hyperbolic,
which allows rapid exploration of neighborhoods.

Results: Only two of the 3 node finding tasks showed
significant differences, Explorer being faster than
Hyperbolic in the 1st task where learning may have been
a factor (in seconds: E=10.5, H=13.2, S=11.1), and
SpaceTree being faster than explorer in the third task
(E=11.3, H=5.6, S=4.7). Observations confirmed that
most users took advantage of the ability of Hyperbolic
and SpaceTree to show multiple levels of the tree by
clicking down often more than one level at a time. The
faster users did continuously drag nodes to reveal details
with Hyperbolic, while with SpaceTree they still had to
select and animate the tree in steps when going deep in
the tree. Explorer users showed their experience by
avoiding using the small icon and clicked on the labels
to expand the hierarchy in the folder view.

B) Returning to previously visited nodes

We had predicted that the SpaceTree would be faster than
the hyperbolic tree because the layout remains more
consistent, allowing users to remember where the nodes
they had already clicked on were going to appear, while
in the hyperbolic browser, a node could appear anywhere,
depending on the location of the focus point. Figure 16
shows 2 examples of different locations for kangaroo.
We predicted that Explorer would be faster than both
TreeBrowser and Hyperbolic when the start and end point
were next to each other because Explorer allows multiple
branches to remain open therefore making it very easy to
go back and forth between 2 neighboring branches. On
the other hand, if the start and end point are separated by
many other branches that remained opened (resulting
from other tasks), scrolling will be required and finding
the beginning and end points will be much more difficult

and frustrating, overweighing the advantage of seeing
multiple open branches.

Results: One of the two tasks (the longer one involving a
return trip between 2 known locations) showed significant
differences. SpaceTree was significantly faster than
Hyperbolic, and Explorer was significantly faster than the
two other interfaces (E=6.5, H=22.7, S=15). Explorer was
favorably helped by the ability to keep several branches
opened. The other very short returning task did not show
any significant differences. Explorer lost its advantage
because other open branches now separated the target
nodes.

 Figure 16: with Hyperbolic the layout changes between visits.

Kangaroo was on the right of screen (a), now on the left (b).
With SpaceTree the relative location of nodes is more

consistent.

For topology tasks:

C) Listing all the ancestors of a node

 We had predicted that the SpaceTree would perform
better than both Explorer and Hyperbolic as all ancestors
are clearly visible and highlighted. Hyperbolic gives
more screen real estate to the local lower levels therefore
often hiding the ancestors, while Explorer keeps the path
visible but the small offset makes it hard to separate
siblings from parents.

Results: SpaceTree was significantly faster than
Explorer (E=11.4, H=9.3; S=6.8). Two users made errors
with Explorer (alignment problems) and one user made an
error with Hyperbolic (skipped a level). Two users
commented that they liked the clear highlight of
SpaceTree along the path, in this path task as well as
during other tasks.

D) Local topology (task: find 3 nodes that have more
than 10 direct descendants):

We predicted that Hyperbolic would be faster that the
SpaceTree, which would be itself faster than Explorer.
With Hyperbolic users would be able to estimate the
number of children by looking at the number of rods
radiating from a node, and navigate through the leaf nodes
by continuously fanning the tree at a varying depth level.

Results: Hyperbolic was significantly faster than the
SpaceTree, but not significantly faster than Explorer
(E=61.4, H=46.8, S=98.3). Hyperbolic users interpreted
correctly the fans of lines, and Explorer users mostly
chance. This task showed that SpaceTree users had not
understood the width coding of the triangles (or didn’t
trust their understanding). Users could be seen intuitively
following wider and darker triangles, but would give up

after following 2 or 3 level down, even though the answer
was often one click away because large fans were usually
at leaf level. A wide base triangle only suggests that
“somewhere” down the tree there are large fans.
Obviously better coding is needed. The experiment was
run with the icon size being relative to the parent, making
it more usable for local comparisons, but also more
confusing as its meaning appeared to change with the
depth in the tree. Icons relative to the root would
probably be more easily understood.

E) Topology overview task (example: Which of the 3
branches of “measurements” contains a larger number of
nodes). We hypothesized that SpaceTree would lead to
fewer errors in the estimation of size because of the icon
representation of the branches. We had first measured the
time to complete the task, but pilot test users spent so
much time with Explorer and Hyperbolic trying to open
every branch of the tree – without great success – that we
gave a time limit and compared error rates.

Results: Users made 12 errors with Explorer (out of 18),
10 with Hyperbolic and only 2 with SpaceTree. Explorer
users mostly made wild guesses or used “properties”.
Hyperbolic users were able to review the tree quickly but
still made many errors, often deciding for a branch that
was less than half the size of the correct answer (150
nodes versus 300). SpaceTree users seemed to have made
errors when the small differences in the shading of the
icons were confounded by size differences.

F) User preferences

Our hypotheses were that users would find the Hyperbolic
Browser more “cool” than Explorer and SpaceTree, but
would prefer to use the SpaceTree.

Results: Users significantly found Explorer less “cool”
than the other interfaces, and no significant difference
were found between SpaceTree and Hyperbolic (mean
ratings on the 9 point scale with 9 being “very cool” were
E=3.9. H=7.7, S=6.6.) There were no significant
differences between interfaces in term of future use
preference (E=5.9, H=5.1; S=6.2 with 9 being “much
prefer to use”).

Summary of results
Our hypotheses were only partly supported, but the
careful observation of users during the experiment was
very helpful to understand differences in user behavior.
There were wide differences between subjects in terms of
speed, leading to only a limited number of statistically
significant results. There were also wide differences in
preferences, confirming the general need for providing
interface options to users. During training, we observed
that users did not guess the 3-attribute-coding of the
triangle that always had to be clarified. Users could guess
that the icon represented the branch below and was linked
to the number of nodes in the branch, but often
misinterpreted the width of the triangle to be proportional
to the number of direct descendants. This

miscomprehension of the meaning of the icons had a
particularly strong effect on the task that asked users to
find nodes with more than ten descendants. Future
research will focus on the design of a simpler preview for
novice users, as well as a set of options for expert users
who should be able to adapt the icon to their tasks.

Conclusions
SpaceTree illustrates that interactive visualization of node
link diagrams can still be improved. It was found more
attractive than Explorer, and performed relatively well for
both navigation and topology tasks, even though no
extreme performance differences were found between the
interfaces. SpaceTree’s consistent layout allowed users to
quickly return to nodes they had visited before, making it
more appropriate for trees that are used regularly. An
example of this would be an organization chart used by a
personal staff. SpaceTree preview icons are unique in
helping users estimate the topology of the tree, and we
will continue improving their design.

For more information see:

www.cs.umd.edu/hcil/spacetree

Acknowledgements
We appreciate the feedback and suggestions to improve
SpaceTree from Cheryl Lukehart and Don Schiro from
Chevron-Texaco and from Jean-Daniel Fekete and Ben
Shneiderman from HCIL. Partial support for this research
was provided by Chevron-Texaco and DARPA.

References
[1] Andrews, K., Heidegger, H. (1998) Information Slices:

Visualising and exploring large hierarchies using
cascading, semicircular disks. Proc of IEEE Infovis’98 late

breaking Hot Topics IEEE, 9-11.
ftp://ftp.iicm.edu/pub/papers/ivis98.pdf

[2] Beaudoin, L. , Parent, M-A, Vroomen, L. (1996) Cheops: a
compact explorer for complex hierarchies, Symposium on

Volume Visualization - Proc. of the conference on

Visualization '96, 87-92 + color p. 471, ACM, New York

[3] Beard, D. V., Walker II, J. Q. (1990). Navigational
Techniques to Improve the Display of Large Two-
Dimensional Spaces. Behavior & Information Technology.
9 (6), 451-466.

[4] Bederson, B., Shneiderman, B., Wattenberg, M. (2002).
Ordered and Quantum Treemaps: Making Effective Use of
2D Space to Display Hierarchies, To appear in ACM

Transactions on Computer Graphics.

[5] Bederson, B. B., Meyer, J., & Good, L. (2000). Jazz: An
Extensible Zoomable User Interface Graphics Toolkit in
Java. UIST 2000, ACM Symposium on User Interface

Software and Technology, CHI Letters, 2(2), 171-180.

[6] Bertin, J. (1983) Semiology of Graphics, Diagrams,

Networks, Maps, University of Wisconsin Press, Madison,
WI.

[7] Card, S. K., MacKinlay, J. D., Shneiderman, B., (1999)
Readings in Information Visualization: Using Vision to

Think, Morgan Kaufmann Publishers.

[8] Chignell, M, Poblete F., Zuberec, S. (1993) Exploration in
the Design Space of Three-Dimensional Hierarchies
Proceedings of the Human Factors and Ergonomics

Society 37th Annual Meeting, v.1, 333-337

[9] G. W. Furnas (1981) The FISHEYE view: a new look at
structured files, 1981 Bell Lab. Tech. Report, reproduced in
Readings in Information Visualization: Using Vision to

Think, S. K. Card, J. D. Mackinlay, and B. Shneiderman,
Eds. San Francisco: Morgan Kaufmann Publishers, Inc.,
1998, 312-330.

[10] Hopkins, D. (1989), The Shape of PSIBER Space:
PostScript Interactive Bug Eradication Routines.. Proc.

1989 Usenix Graphics Conference, Monterey California.
www.catalog.com/hopkins/psiber/psiber.html

[11] Hightower, R. R., Ring, L., Helfman, J., Bederson, B. B., &
Hollan, J. D. (1998). Graphical Multiscale Web Histories:
A Study of PadPrints. In Proceedings of ACM Conference

on Hypertext (Hypertext 98) ACM Press, 58-65.

[12] Johnson, B. and Shneiderman, B. (1991) Tree-maps: A
space-filling approach to the visualization of hierarchical
information structures, Proc. IEEE Visualization’ 91
(1991), 284 – 291, IEEE, Piscataway, NJ.

[13] Jul, S., & Furnas, G. W. (1998). Critical Zones in Desert
Fog: Aids to Multiscale Navigation. In Proceedings of User
Interface and Software Technology (UIST 98) ACM Press,
97-106.

[14] Kumar, H.P., Plaisant, C., Shneiderman, B. (1995)
Browsing hierarchical data with multi-level dynamic
queries and pruning International Journal of Human-

Computer Studies, Volume 46, No. 1, 103-124 (January
1997).

[15] Lamping, J., Rao, R., Pirolli; P. (1995) A focus+context
technique based on hyperbolic geometry for visualizing
large hierarchies Conference proceedings on Human

factors in computing systems, 1995, 401-408

[16] Mullet, K., Fry, C., Schiano, D. (1997) On your marks, get
set, browse! (the great CHI’97 Browse Off), Panel
description in ACM CHI’97 extended abstracts, ACM,
New York, 113-114

[17] Nation, D.A., Plaisant, C., Marchionini, G., Komlodi, A.
(1997) Visualizing websites using a hierarchical table of
contents browser: WebTOC, Proc. of 3rd Conference on

Human Factors and the Web, 1997, Denver, CO, June 12.

[18] Ellson, J., Gansner, E., Koutsofios, E., Mocenigo, J., North,
S. , Woodhull, G., Graphviz, open source graph drawing
software, http://www.research.att.com/sw/tools/graphviz/

[19] Noik; E. (1993) Exploring large hyperdocuments: fisheye
views of nested networks, Proceedings of the fifth ACM

conference on Hypertext, 192-205.

[20] Robertson, G. G. Mackinlay, J. D. Card, S. K. Cone Trees:
animated 3D visualizations of hierarchical information,
Proc. Human factors in computing systems conference,
March 1991, 189-194.

[21] Shneiderman, B. (1994). Dynamic queries for visual
information seeking. IEEE Software, 11, (6), 70-77.

[21] Walker II., J. Q. (1990) A node-positioning algorithm for
general trees. Softw. Pract. Exp., 20(7): 685-705, 21

http://www.cs.umd.edu/hcil/spacetree
http://www.catalog.com/hopkins/psiber/psiber.html

	SpaceTree: Supporting Exploration in Large Node Link Tree, �Design Evolution and Empirical Evaluation
	Catherine Plaisant, Jesse Grosjean, Benjamin B. Bederson
	Human-Computer Interaction Laboratory�University of Maryland�College Park MD 20782�{plaisant, grosjean, bederson}@cs.umd.edu�(301) 405-2768�www.cs.umd.edu/hcil/spacetree
	A
	Search and filter
	Maximize the number of levels opened at any time

	Take advantage of overviews and dynamic filtering
	Use “data-aware” zooming controls
	Results
	F) User preferences

