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1. A bit of history and results. The group of ideal classes C`(K)
of an imaginary quadratic field K = Q(

√−q) is the most fascinating finite
group in arithmetic. Here we are faced with one of the most challenging
problems in analytic number theory, that is, to estimate the order of the
group h = |C`(K)|. C. F. Gauss conjectured (in a parallel setting of binary
quadratic forms) that the class number h = h(−q) tends to infinity as −q
runs over the negative discriminants. Hence there are only a finite number of
imaginary quadratic fields with a given class number. But how many of these
fields are there exactly for h = 1, or h = 2, etc.? To answer this question one
needs an effective lower bound for h in terms of q (a fast computer could be
helpful as well).

The problem was linked early on to the L-series

(1.1) L(s, χ) =
∞∑

n=1

χ(n)n−s
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for the real character χ of conductor q (the Kronecker symbol)

(1.2) χ(n) =
(−q
n

)
.

In this connection P. G. L. Dirichlet established the formula

(1.3) h = π−1√q L(1, χ)

(we assume that −q is a fundamental discriminant, q > 4, so there are two
units ±1 in the ring of integers OK ⊂ K). Rather than estimating the class
number, Dirichlet inferred from (1.3) that L(1, χ) does not vanish, which
property he needed to establish the equidistribution of primes in arithmetic
progressions. Truly the lower bound

(1.4) L(1, χ) ≥ π/√q
follows from (1.3), because h ≥ 1.

The Grand Riemann Hypothesis for L(s, χ) implies

(1.5) (log log q)−1 � L(1, χ)� log log q,

whence the class number varies only slightly about
√
q:

(1.6)
√
q/log log q � h� √q log log q.

But sadly enough we may not see proofs of such estimates (which are best
possible in order of magnitude) in the near future.

At present we know that L(s, χ) 6= 0 for s = σ + it in the region

(1.7) σ > 1− c/log q(|t|+ 1)

where c is a positive constant, for any character χ (mod q) with at most one
exception. The exceptional character χ (mod q) is real and the exceptional
zero of L(s, χ) in the region (1.7) is real and simple, say β if it exists, with

(1.8) β > 1− c/log q.

Using complex function theory one can translate various zero-free regions
of L(s, χ) which are stretched along the line Re s = 1 to lower bounds
for |L(s, χ)| on the line Re s = 1. In the case of a real character (1.2),
H. Hecke (see [L1]) showed that if L(s, χ) has no exceptional zero, then
L(1, χ)� (log q)−1, whence

(1.9) h� √q (log q)−1

by the Dirichlet formula (1.3). Moreover if L(s, χ) does have an exceptional
zero s = β satisfying (1.8), then we have quite precise relations between β
and h (see [GSc], [G1], [GS]). In particular one can derive from the Dirichlet
estimate (1.4) that

(1.10) β ≤ 1− c/√q.
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Back to the history we should point out that E. Landau [L1] first came
up with ideas which pushed the exceptional zero further to the left of
(1.10). Generalizing slightly in this context we owe to Landau the prod-
uct (a quadratic lift L-function)

(1.11) Lan(s, f) = L(s, f)L(s, f ⊗ χ) =
∑

n

af (n)n−s

where
L(s, f) =

∑

n

λf (n)n−s

can be any decent L-function and L(s, f⊗χ) is derived from L(s, f) by twist-
ing its coefficients λf (n) with χ(n). If L(s, f) does have an Euler product
so do L(s, f ⊗χ) and Lan(s, f). The key point is that the prime coefficients
of Lan(s, f) are

af (p) = λf (p)(1 + χ(p)).

Assuming the class number h is small (or equivalently that L(s, χ) has an
exceptional zero) we find that χ(p) = −1 and af (p) = 0 quite often if
p� √q. In other words χ(m) pretends to be the Möbius function µ(m) on
squarefree numbers. Therefore, under this ficticious assumption, L(s, f ⊗χ)
approximates L(s, f)−1, and Lan(s, f) behaves like a constant (no matter
what s and f are!).

Landau worked with Lan(s, χ′) = L(s, χ′)L(s, χχ′) where χ′ (mod q′) is
any real primitive character other than χ (mod q). He [L1] proved that for
any real zeros β, β′ of L(s, χ), L(s, χ′) respectively,

(1.12) min(β, β′) ≤ 1− c/log qq′.

This shows that the exceptional zero occurs very rarely (if at all?).
Next a repulsion property of the exceptional zero was discovered, notably

in the works by M. Deuring [D] and H. Heilbronn [H]. This says: the closer
β is to the point s = 1 the further away from s = 1 are the other zeros,
not only of L(s, χ), but of any L-function for a character of comparable
conductor. The power of repulsion is masterly exploited in the celebrated
work of Yu. V. Linnik [L] on the least prime in an arithmetic progression.

A cute logical play with repulsion led E. Landau [L2] to the lower bound

(1.13) h� q1/8−ε

for any ε > 0, the implied constant depending on ε. Slightly later by the
same logic, but with more precise estimates for relevant series, C. L. Siegel
[S] proved that

(1.14) h� q1/2−ε.

Both estimates suffer from the serious defect of having the implied constant
not computable. For that reason the Landau–Siegel estimates do not help to
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determine all quadratic imaginary fields with a fixed class number. The case
h = 1 was eventually solved by arithmetical means (complex multiplication)
by K. Heegner [He] and H. M. Stark [S1] and by transcendental means (linear
forms in logarithms) by A. Baker [B] (see also the notes [S2] about earlier
attempts by A. O. Gelfond and Yu. V. Linnik [GL]).

By way of the repulsion one may still hope to produce effective results
provided an “exceptional” zero is given numerically. But, believing in GRH
one cannot expect to find a real zero of any decent L-function other than at
the central point s = 1/2. Hence the question: Does the central zero have
an effect on the class number? Yes it does, and the impact depends on the
order of the zero. This effect was first revealed in conversations by J. Fried-
lander in the early 70’s. Soon after J. V. Armitage gave an example of the
zeta function of a number field which vanishes at the central point, Fried-
lander [F] succeeded in estimating effectively the class number of relative
quadratic extensions. Then D. Goldfeld [G2] went quite further by employ-
ing L-functions of elliptic curves. These L-functions are suspected to have
central zero of order equal to the rank of the group of rational points on the
curve (the Birch and Swinnerton-Dyer conjecture). Subsequently B. Gross
and D. Zagier [GZ] provided an elliptic curve of analytic rank three which
completed Goldfeld’s work with the estimate

(1.15) h�
∏

p|q
(1− 1/

√
p)2 log q.

This is the first and so far the only unconditional estimate (apart from
the implied constant, see [O]) which shows that h → ∞ effectively. Re-
cently P. Sarnak and A. Zaharescu [SZ] used the same elliptic curve to show
that h � q1/10 with an effective constant. However their result is condi-
tional; they assume (among a few minor restrictions on q) that LanE(s) =
LE(s)LE(s, χ) has no complex zeros off the critical line, whereas the real
zeros can be anywhere.

After having exploited the power of the central zero it seems promising
to focus on the critical line and ask if some clustering of zeros has any
effect on the class number. In fact this possibility was contemplated in the
literature independently of the central zero effects. In this paper we derive
quite strong and effective lower bounds for h, though conditionally subject
to the existence of many small (subnormal) gaps between zeros of the L-
function associated with a class group character. Let

(1.16) L(s, ψ) =
∑

a

ψ(a)(Na)−s =
∑

n

λ(n)n−s

for ψ ∈ Ĉ`(K), where a runs over the non-zero integral ideals. This Hecke
L-function does not factor as the Landau product (1.11) (unless ψ is a genus
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character), yet the crucial feature—the lacunarity of the coefficients

(1.17) λ(n) =
∑

Na=n

ψ(a)

—appears if the class number is assumed to be relatively small. One can
show that the number of zeros of L(s, ψ) in the rectangle s = σ + it with
0 ≤ σ ≤ 1, 0 < t ≤ T satisfies

(1.18) N(T, ψ) =
T

π
log

T
√
q

2π
− T

π
+O(log qT ).

This indicates (assuming GRH for L(s, ψ)) that the average gap between
consecutive zeros % = 1/2 + iγ and %′ = 1/2 + iγ′ is about π/log γ.

We prove that if the gap is somewhat smaller than the average for suf-
ficiently many pairs of zeros on the critical line (no Riemann hypothesis
is required) then h � √q (log q)−A for some constant A > 0. Actually we
establish various more general results among which are the following two
theorems. Let % = 1/2 + iγ denote the zeros of L(s, ψ) on the critical line
and %′ = 1/2 + iγ′ denote the nearest zero to % on the critical line (we
assume that %′ 6= % except when % is a multiple zero, in which case %′ = %).
Note that we do not count zeros off the critical line, but we allow them to
exist. For 0 < α ≤ 1 and T ≥ 2 we put

(1.19) D(α, T ) = #
{
%; 2 ≤ γ ≤ T, |γ − γ′| ≤ π(1− α)

log γ

}
.

Theorem 1.1. Let A ≥ 0 and log T ≥ (log q)A+6. Suppose

(1.20) D(α, T ) ≥ cT log T
α(log q)A

for some 0 < α ≤ 1, where c is a large absolute constant. Then

(1.21) L(1, χ) ≥ (log T )−2(log q)−2A−6.

This result is a special case of Proposition 10.1. Taking A = 12 and log T
= (log q)18 we get L(1, χ)≥(log q)−66, provided D(α, T )≥α−1cT (log T )1/3.

An interesting case is ζK(s) = ζ(s)L(s, χ) (where ζ(s) is the Riemann
zeta function), that is, the case of the trivial class group character. Since we
do not need all the zeros we choose only those of ζ(s) and state the conditions
in absolute terms (without mentioning the conductor q, see Corollary 10.2).

Theorem 1.2. Let % = 1/2 + iγ be the zeros of ζ(s) on the critical line
and %′ = 1/2 + iγ′ be the nearest zero to % on the critical line (%′ = % if % is
multiple). Suppose

(1.22) #
{
%; 0 < γ ≤ T, |γ − γ′| ≤ π

log γ

(
1− 1√

log γ

)}
� T (log T )4/5
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for any T ≥ 2001. Then

(1.23) L(1, χ)� (log q)−90

where the implied constant is effectively computable.

Many other results can be inferred from Proposition 10.1. We selected our
points %, %′ from zeros on the critical line. However it is not hard to include
other zeros in the critical strip, or even points where L(s, ψ) or even L′(s, ψ)
is small. As an illustration, the following assertion follows immediately from
Proposition 10.1.

Corollary 1.3. Suppose there are points 2 ≤ t1 < . . . < tR ≤ T with
tr+1 − tr ≥ 1 such that

|L′(1/2 + itr, ψ)| ≤ (log q)7/2

for r = 1, . . . , R, where R� T = exp(log q)6. Then

L(1, χ)� (log q)−18.

Considerations of Random Matrix Theory (see [Hu]) suggest that the
hypothesis above is likely to be achieved.

Many sections of this paper are valid for arbitrary points in the strip (not
necessarily zeros of L(s, ψ)); it is only in the last four sections that we select
the points on the line Re s = 1/2 to simplify the arguments. Thus, if (1.22)
were established unconditionally for pairs of zeros % = β + iγ, %′ = β′ + iγ′,
which may or may not be on the critical line, then (1.23) would hold. On
the other hand one should be careful of charging the Riemann hypothe-
sis. Although Theorem 1.2 does not require the Riemann hypothesis, we
can imagine that someone shows the condition (1.22) using the Riemann
hypothesis. In this scenario one still cannot conclude an unconditional, ef-
fective bound (1.23).

Note that the average gap between consecutive zeros of ζ(s) is 2π/log γ,
so we count in (1.22) the gaps which are slightly smaller than half the aver-
age. In view of the implications for the class number, one has a good reason
to search for small gaps between zeros of ζ(s). This task was undertaken
long ago. Let us assume the Riemann hypothesis for ζ(s). First H. L. Mont-
gomery [M] showed that

(1.24) |γ − γ′| < 2πθ
log γ

infinitely often with θ = 0.68. This was subsequently lowered to θ = 0.5179
by Montgomery and Odlyzko [MO], to θ = 0.5171 by Conrey, Ghosh and
Gonek [CGG], and to θ = 0.5169 by Conrey and Iwaniec (work in progress).
We doubt that the current technology is capable to reduce (1.24) down to
θ = 1/2. Nevertheless it is an attractive and realistic proposition to get
(1.24) with any θ > 1/2.
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The well justified Pair Correlation Conjecture (PCC) of H. L. Mont-
gomery [M] does imply (1.24) with any θ > 0 for a positive density of zeros.
Precisely one expects that

#
{
m 6= n; 0 < γm, γn ≤ T,

2πα
log T

< γm − γn <
2πβ
log T

}

∼ T

2π
(logT )

β�

α

(
1−

(
sinπu
πu

)2)
du

as T →∞, for any fixed β > α.

Remarks. Montgomery says he was led to formulate the PCC when
looking for small gaps between zeros of ζ(s) in connection to the class num-
ber problem. We cannot guess how precise the connection he established at
that time. However, Montgomery did publish a joint paper with P. J. Wein-
berger [MW] in which they used zeros of fixed real L-functions close to the
central point s = 1/2 to derive explicit estimates and to perform extensive
numerical computations for the imaginary quadratic fields K = Q(

√−q)
with the class number h = 1, 2.

In a similar fashion M. Jutila [J] considered a large family of Dirichlet
L-functions L(s, χ) for all χ (mod k) with k ≤ X, and he showed that their
zeros near the central point tend to form an arithmetic progression if the
class number of K = Q(

√−q) is relatively small. Our principal idea in this
paper is reminiscent of that of Jutila. However, as we are dealing with a
single L-function (no averaging over characters) our arguments are quite
intricate, especially when we have to deal with the off-diagonal terms in the
mean value of |L(1/2+ it, ψ)|2 (see Theorem 6.1). Jutila’s arguments do not
go that far.

Our general result in Proposition 10.1 would also imply approximate
periodicity in the distribution of most of the zeros of ζ(s) (which is inherited
from oscillation of the root number (7.26)), if we have assumed that the
class number was small. This clearly violates the distribution law of zeros
according to the PCC.

At the meeting in Seattle of August 1996 R. Heath-Brown gave a lecture
“Small Class Number and the Pair Correlation of Zeros” in which he com-
municated results (still unpublished) some of which are similar to ours, yet
they are more restrictive. Heath-Brown requires L(1, χ)� q−δ for some con-
stant δ > 1/4, which condition contradicts the Siegel bound L(1, χ)� q−ε,
but his arguments are effective so the results remain valid.

Acknowledgements. This work began during the second author’s visit
to the American Institute of Mathematics in summer 1999. He has pleasure
to acknowledge support and the hospitality of the Institute. The final version
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was written during the second author’s visit to the University of Lille in June
2001, and he is thankful for this opportunity.

Note added in May 2001. We found our results in Section 3 and
Section 4 to be similar to these in Appendix A and Appendix B of the
paper “Rankin–Selberg L-functions in the level aspect” by E. Kowalski,
P. Michel and J. Vanderkam (to appear). Had we known their results ear-
lier we would gladly incorporate them to reduce our arguments. However,
we decided not to modify our original parts to preserve the self-contained
presentation.

2. Basic automorphic forms. We are mainly interested in L-functions
for characters on ideals in the imaginary quadratic field K = Q(

√−q). Every
such L-function is associated with a holomorphic automorphic form of level
q and the real primitive character χ (mod q) (the Nebentypus). However,
to get better perspective, we begin by reviewing the whole spectrum of
real-analytic forms. In particular we focus on the Eisenstein series, because
they are most important automorphic forms for our applications to Dirichlet
L-functions (they correspond to genus characters of the class group of K).
Some more details and proofs can be found in [I] and [DFI2].

The group SL2(R) acts on the upper-half plane H by the linear frac-
tional transformations γz = (az + b)/(cz + d) if γ =

(
a b

c d

)
∈ SL2(R). We

put

jγ(z) =
cz + d

|cz + d| .

Note that jβγ(z) = jβ(γz)jγ(z). Next we fix a positive integer k and put

Jγ(z, s) = j−kγ (z)(Imγz)s =
(
cz + d

|cz + d|

)−k(
y

|cz + d|2
)s

for γ ∈ SL2(R), z ∈ H and s ∈ C. Note that Jβγ(z, s) = j−kγ (z)Jβ(z, s).
Since Jγ(z, s) depends only on the lower row (c, d) of γ we shall write
J(c,d)(z, s) in place of Jγ(z, s). Actually J(c,d)(z, s) is defined by the last
expression for any pair of real numbers c, d, not both zero. Note that for
u > 0 we have J(uc,ud)(z, s) = u−2sJ(c,d)(z, s).

Throughout Γ = Γ0(q) denotes the Hecke congruence group of level q;
its index in the modular group is

(2.1) ν(q) = [Γ0(1) : Γ0(q)] = q
∏

p|q
(1 + 1/p).

To simplify the presentation (without compromising our applications) we
restrict q to odd, squarefree numbers. Let χ = χq be the real primitive
character of conductor q, i.e. χq(n) =

(
n
q

)
is the Jacobi–Legendre symbol.
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This induces a character on Γ by

(2.2) χ(γ) = χ(d) if γ =
(
a b
c d

)
∈ Γ.

We are interested in the space Ak(Γ, χ) of automorphic functions of
weight k ≥ 1 for the group Γ and character χ, i.e. the functions f : H→ C
satisfying

(2.3) f(γz) = χ(γ)jkγ (z)f(z) if γ ∈ Γ.
We assume χ(−1) = (−1)k, as otherwise Ak(Γ, χ) consists only of the zero
function. The Laplace operator

∆k = y2
(
∂2

∂x2 +
∂2

∂y2

)
− iky ∂

∂x

acts on A∞k (Γ, χ), the subspace of smooth automorphic functions. Any f ∈
A∞k (Γ, χ) which is eigenfunction of ∆k, say (∆k+λ)f = 0, is called a Maass
form of eigenvalue λ.

Our primary examples of Maass forms are the Eisenstein series associated
with cusps of Γ . Let Γa = {γ ∈ Γ ; γa = a} be the stability group of the
cusp a. There exists σa ∈ SL2(R) such that σa∞ = a and σ−1

a Γaσa = Γ∞,
the group of translations by integers. We call σa a scaling matrix of a. The
Eisenstein series associated with a is defined by

(2.4) Ea(z, s) =
∑

γ∈Γa/Γ

χ(γ)Jσ−1
a γ(z, s).

This series converges absolutely for Re s > 1, it does not depend on the
choice of σa, nor on the choice of a in its equivalence class. The Eisenstein
series Ea(z, s) is a Maass form of eigenvalue λ = s(1− s).

Any cusp a of Γ = Γ0(q) is equivalent to a rational point 1/v, where v
is a divisor of q (recall that q is squarefree). Put

(2.5) q = uw

so w is the width of the cusp a ∼ 1/v. As a scaling matrix of a ∼ 1/v we
can choose

σa =
( √

w 0
v
√
w 1/

√
w

)
.

Next, according to (2.5), we factor the character χq = χvχw. Then the
Eisenstein series (2.4) can be written explicitly as follows:

(2.6) Ea(z, s) =
1

2ws
∑∑

(c,d)=1

χv(d)χw(−c)J(cv,d)(z, s)

where c, d run over co-prime integers. Hence applying Poisson’s summation
one can derive a Fourier expansion of Ea(z, s) (in terms of the Whittaker
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function) from which one can see (among other things) that Ea(z, s) is
meromorphic in the whole complex s-plane without poles in Re s ≥ 1/2 (see
(7.12) and (7.13) of [DFI2]).

The Eisenstein series Ea(z, s) on the line Re s = 1/2 yield an eigen-
packet of the continuous spectrum of ∆k in the subspace Lk(Γ, χ) of square-
integrable functions f(z) ∈ Ak(Γ, χ) with respect to the invariant measure
y−2dxdy. The continuous spectrum covers the segment [1/4,∞) with mul-
tiplicity τ(q) (the number of inequivalent cusps equals the number of di-
visors of q). Let Ek(Γ, χ) ⊂ Lk(Γ, χ) be the subspace of the continuous
spectrum (it is a linear space spanned by a kind of incomplete Eisenstein
series). Let Ck(Γ, χ) be the orthogonal complement of Ek(Γ, χ) in Lk(Γ, χ),
so Lk(Γ, χ) = Ek(Γ, χ)⊕Ck(Γ, χ). The Laplace operator ∆k acts on Ck(Γ, χ),
and it has an infinite, purely discrete spectrum in the segment

[
k
2

(
1− k

2

)
,∞
)
.

In other words Ck(Γ, χ) is spanned by square-integrable automorphic forms.
These are characterized by vanishing at every cusp (because they are or-
thogonal to every incomplete Eisenstein series), and are called Maass cusp
forms.

From now on we take only the Maass cusp forms f(z) of the Laplace
eigenvalue λ = k

2

(
1 − k

2

)
, and if k = 1 we also take the Eisenstein series

Ea(z, s) at s = 1/2. All these forms come from the classical holomorphic
forms of weight k; precisely we have

F (z) = y−k/2f(z) ∈ Sk(Γ, χ), Ea(z) = y−1/2Ea(z, 1/2) ∈M1(Γ, χ).

For any n ≥ 1 the Hecke operator Tn is defined on Mk(Γ, χ) by

(TnF )(z) =
1√
n

∑

ad=n

χ(a)
(
a

d

)k/2 ∑

b (mod d)

F

(
az + b

d

)
.

There is a basis of Sk(Γ, χ) which consists of eigenforms of the Hecke oper-
ators Tn with (n, q) = 1. Moreover, by the multiplicity-one property (which
holds in Sk(Γ, χ) because χ is primitive of conductor equal to the level)
these forms are automatically eigenfunctions of all Tn. Consequently, we
may assume that

(2.7) TnF = λF (n)F for all n ≥ 1.

After a normalization of F by a suitable scalar the Hecke eigenvalues λF (n)
agree with the coefficients in the Fourier series

(2.8) F (z) =
∞∑

n=1

λF (n)n(k−1)/2e(nz).

Such an F is called a primitive cusp form of weight k, level q and character χ.
One can show that the modified Eisenstein series y−k/2Ea(z, s) are also

eigenfunctions of all the Hecke operators Tn (see Section 6 of [DFI2]), but we
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are only interested in Ea(z) = y−1/2Ea(z, 1/2). In this case (k = 1, s = 1/2)
we have

(2.9) TnEa = λa(n)Ea for all n ≥ 1

with

(2.10) λa(n) =
∑

n1n2=n

χv(n1)χw(n2).

Moreover the Hecke eigenvalues λa(n) are proportional to the Fourier coef-
ficients of Ea(z); specifically we have (see [I] and [DFI2])

(2.11) Ea(z) = εv
2i
h

∞∑

n=0

λa(n)e(nz)

where εv = τ(χv)/
√
v, so εv = 1 or i according as v ≡ 1 or 3 (mod 4) and h

is the class number of K = Q(
√−q),

(2.12) h = π−1√q L(1, χ).

The zero coefficient is given by

(2.13) λa(0) =
{
h/2 if a ∼ ∞, 0,
0 otherwise.

Our particular Eisenstein series Ea(z) (recall that in this case we have k = 1
and χq(−1) = −1 so q ≡ 3 (mod 4)) can be expressed by theta functions for
ideal classes of K = Q(

√−q). For every class A ∈ C`(K) we put

(2.14) θA(z) =
1
2

+
∑

a∈A
e(zNa)

where a runs over integral ideals in A and Na is the norm of a (the number
2 stands for the number of units, we assume q 6= 3). This theta function is
also given by

(2.15) θA(z) =
1
2

∑

m

∑

n

e(zϕA(m,n))

where ϕA(x, y) = ax2 + bxy + cy2 is the corresponding quadratic form.
Specifically we have a > 0, (a, b, c) = 1, b2 − 4ac = −q and

a = aZ+
b+ i
√
q

2
Z

is an integral primitive ideal representing the class A. One shows that the
theta function θA(z) for any class A belongs to M1(Γ, χ). Hence for any
character ψ ∈ Ĉ`(K),

(2.16) θ(z;ψ) =
∑

A∈C`(K)

ψ(A)θA(z)
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is an automorphic form of weight one, level q and character χ = χq. Note
that θ(z;ψ) = θ(z;ψ). This has the Fourier expansion

(2.17) θ(z;ψ) =
∞∑

n=0

λψ(n)e(nz)

with λψ(0) = δψh/2, and for n ≥ 1,

(2.18) λψ(n) =
∑

Na=n

ψ(a).

In particular the Eisenstein series Ea(z) are obtained from theta functions
for real class group characters. Any real character ψ ∈ Ĉ`(K) is given
uniquely by

(2.19) ψ(p) =
{
χv(Np) if p - v,
χw(Np) if p -w,

where χvχw = χq (note that ψ(a) is well defined by (2.19) because χq(Na) =
1 if (a, q) = 1). Interchanging v and w we obtain the same ψ. However
different factorizations vw = q up to the order yield distinct real class group
characters. Therefore we have exactly τ(q)/2 such characters; they are called
the genus characters. If a ∼ 1/v then

(2.20) Ea(z) = εv
2i
h
θ(z;ψ)

where ψ ∈ Ĉ`(K) is the genus character given by (2.19) and λa(n) = λψ(n)
for all n ≥ 0 (see (2.11)). Note that the Eisenstein series Ea(z) and Ea′(z)
for the “transposed” cusps a ∼ 1/v and a′ ∼ 1/w are linearly dependent, in
fact εvEa(z) = εwEa′(z) (this is true only for the Eisenstein series at the
central point s = 1/2 !).

If ψ ∈ Ĉ`(K) is not real, then the theta function θ(z;ψ) is a primitive
cusp form of weight one with Hecke eigenvalues λψ(n) given by (2.18).

Cusp forms of any odd weight can be constructed from the class group
characters as follows. Let k be odd, k > 1 and q ≡ 3 (mod 4), q > 3. Let ψ
be a character on ideals in K = Q(

√−q) such that

(2.21) ψ((α)) =
(
α

|α|

)k−1

for any α ∈ K∗. All such characters are obtained by multiplying a fixed
character with the class group characters so we have exactly h = h(−q)
characters of type (2.21) (we say of frequency k − 1). With every ψ of fre-
quency k − 1 we associate the function

(2.22) θ(z;ψ) =
∑

a

ψ(a)(Na)(k−1)/2e(zNa)
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where a runs over the non-zero integral ideals. One shows that θ(z;ψ) ∈
Sk(Γ, χ) and that θ(z;ψ) is a primitive cusp form with Hecke eigenvalues
λψ(n) given by (2.18) (see Section 12.3 of [I]).

Besides (2.3) and (2.7) the primitive forms satisfy some bilateral modular
equations which are obtained by certain transformations ω ∈ SL2(R) not in
the group Γ0(q). For any ω =

(
a b

c d

)
∈ SL2(R) the ω-stroke operator is

defined on functions F : H→ C by

(2.23) F|ω(z) = (cz + d)−kF (z).

Note that (F|τ )|σ = F|τσ for any τ, σ ∈ SL2(R).
Let q = rs (recall that q is squarefree so (r, s) = 1). We are interested in

the ω-stroke operator for

(2.24) ω =
(
α
√
r β/

√
r

γs
√
r δ

√
r

)

with α, β, γ, δ integers such that detω = αδr − βγs = 1.
First for the ω given by (2.24) one checks that the ω-stroke maps Sk(Γ, χ)

to itself. Next note that the ω-stroke on Sk(Γ, χ) is a pseudo-involution,
precisely

(2.25) F|ω2 = χr(−1)χs(r)F

where χrχs = χq. Moreover the ω-stroke on Sk(Γ, χ) almost commutes with
the Hecke operators Tn for (n, q) = 1, precisely

(2.26) Tn(F|ω) = χr(n)(TnF )|ω if (n, q) = 1.

Hence it follows that if F is a Hecke form (i.e. F is an eigenfunction of
every Tn with (n, q) = 1), then so is F|ω (of course, with different Hecke
eigenvalues). By the multiplicity-one property it follows that both F and F|ω
are primitive (i.e. the eigenfunctions of all Tn). Therefore for any primitive
form F ∈ Sk(Γ, χ) there exists a unique primitive form G ∈ Sk(Γ, χ) and a
complex number ηF (ω) such that

(2.27) F|ω = ηF (ω)G.

As in [AL] we call ηF (ω) the pseudo-eigenvalue of |ω at F . By (2.25) we find
that ηF ηG = χr(−1)χs(r) = ±1. One can show that the Hecke eigenvalues
of F and G satisfy

λG(n) = χr(n)λF (n) if (n, r) = 1,(2.28)

λG(n) = χs(n)λF (n) if (n, s) = 1.(2.29)

These formulas are consistent by the property λF (n) = χ(n)λF (n) if (n, q)
= 1, and they determine G in terms of F . In particular we have |λF (n)| =
|λG(n)| for all n ≥ 1. Hence one derives that 〈G,G〉 = 〈F,F 〉 and 〈F,F 〉 =
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|ηF (ω)|2〈G,G〉, so

(2.30) |ηF (ω)| = 1.

Note that G depends only on r, s (G is a hybrid twist of F by the
characters χr, χs), but not on α, β, γ, δ in ω. If ω and ω′ are given by (2.24)
with the same r, s then

% = ω′ω−1 =
(
α′δr − β′γs β′α− α′β
(γ′δ − δ′γ)q δ′αr − γ′βs

)
,

F|ω′ = F|%ω = (F|%)|ω = χ(%)F|ω = χ(%)ηF (ω)G,

χ(%) = χ(δ′αr − γ′βs) = χr(−γ′βs)χs(δ′αr) = χr(β′/β)χs(α′/α)

by the determinant equation α′δ′r − β′γ′s = 1. Hence we get the rela-
tion ηF (ω′) = χr(β′β)χs(α′α)ηF (ω). This relation shows that the pseudo-
eigenvalue ηF (ω) of ω given by (2.24) factors into

(2.31) ηF (ω) = χr(β)χs(α)ηF (r, s) = χr(−γs)χs(δr)ηF (r, s)

where ηF (r, s) depends only on r, s and F .
The case r = q and s = 1 is special. We can choose

(2.32) ω =
(

0 −1/
√
q√

q 0

)

getting F|ω = ηFF , where F is obtained from F by complex conjugating the
coefficients in the Fourier expansion (2.8). Moreover in this case one shows
that (see Theorem 6.29 of [I])

(2.33) ηF = εqλF (q).

The modified Eisenstein series y−k/2Ea(z, s) is also a pseudo-eigenfunc-
tion of the ω-stroke operator. We shall verify this fact by explicit computa-
tions rather than by going through the theory of Hecke operators. Although
we are only interested in Ea(z) = y−1/2Ea(z, 1/2) we present the compu-
tations in a general case (i.e. for any k ≥ 1) for record. Note that for any
γ, ω ∈ SL2(R),

y−k/2Jγ(z, s)|ω = y−k/2Jγω(z, s).

Hence, by (2.6), for Re s > 1 we get

y−k/2Ea(z, s)|ω = 1
2w
−sy−k/2

∑∑

(c,d)=1

χr(d)χw(−c)Jτ (z, s)

where

τ =
(
∗ ∗
cv d

)
ω =

(
∗ ∗

(αcv + γds)
√
r (βcv + δdr)/

√
r

)
.

Put r′ = (r, v), r1 = r/(r, v), r2 = v/(r, v) and s′ = (s, v), s1 = s/(s, v),
s2 = v/(s, v). Since q = vw = rs is squarefree we have r1s1 = w, r2s2 = v,
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r1s2 = r, r2s1 = s. In the lower row of τ we extract the factors r′, s′ getting

τ =
(

∗ ∗
Cs′
√
r Dr′/

√
r

)

where C = αcs2 + γds1 and D = βcr2 + δdr1. Solving this system of linear
equations of determinant αδs2r1 − βγr2s1 = αδr − βγs = 1 we find −c =
γs1D − δr1C and d = αs2D − βr2C. Hence the condition (c, d) = 1 is
equivalent to (C,D) = 1. Next we factor the characters χv = χr2χs2 and
χw = χr1χs1 to compute χv(d) = χr2(αs2D)χs2(−βr2C) and χw(−c) =
χr1(γs1D)χs1(−δr1C). Hence χv(d)χw(−c) = χr1r2(D)χs1s2(−C)η, where

(2.34) η = χr2(αs2)χs2(βr2)χr1(γs1)χs1(δr1).

Extracting from τ the factor u = r′/
√
r by the property J(uc,ud)(z, s) =

u−2sJ(c,d)(z, s), and using s′
√
r/u = r1r2, u

2wr1r2 = q, we conclude from
the above computations that

(2.35) y−k/2Ea(z, s)|ω = ηy−k/2Ea∗(z, s)

where Ea∗(z, s) is the Eisenstein series for the cusp a∗ ∼ 1/(r1r2), i.e.

(2.36) a∗ ∼ (r, v)2

rv
.

By the determinant equation αδs2r1−βγr2s1 = 1 we eliminate α, β in (2.34)
getting

(2.37) η = χr

(
γs

(s, v)

)
χs

(
δr

(r, v)

)
χv/(s,v)(−1).

In particular for k = 1 and s = 1/2 we obtain from (2.35) (by analytic
continuation)

Proposition 2.1. Let q = vw = rs > 1 be squarefree and odd. Then
the holomorphic Eisenstein series Ea(z) = y−1/2Ea(z, 1/2) for cusp a ∼ 1/v
is a pseudo-eigenfunction of the ω-stroke operator (with ω given by (2.24)),
specifically

(2.38) Ea|ω = ηEa∗

where a∗ is given by (2.36) and η by (2.37).

In the special case (2.32) the formula (2.38) becomes

(2.39) (z
√
q)−1E1/v

(−1
qz

)
= χv(−1)E1/w(z).

3. Summation formulas. Suppose we have two functions A(z), B(z)
on H given by Fourier series

A(z) =
∞∑

n=0

ane(nz),(3.1)
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B(z) =
∞∑

n=0

bne(nz),(3.2)

with an, bn � nk−1+ε. Suppose that A(z), B(z) are connected by the ω-
stroke operator, say

(3.3) A|ω(z) = ηB(z)

for some ω =
(
a b

c d

)
∈ SL2(R) with c > 0 and some complex number η 6= 0.

In particular for z = (−d+ iy)/c we have

(3.4) (iy)−kA
(
a

c
+

i

cy

)
= ηB

(−d
c

+
iy

c

)

for any y > 0. Following Hecke this formula can be expressed as a functional
equation for the L-functions

LA

(
s,
a

c

)
=
∞∑

n=1

ane

(
an

c

)
n−s,(3.5)

LB

(
s,
−d
c

)
=
∞∑

n=1

bne

(−dn
c

)
n−s.(3.6)

Put

ΛA

(
s,
a

c

)
=
(
c

2π

)s
Γ (s)LA

(
s,
a

c

)
,(3.7)

ΛB

(
s,
−d
c

)
=
(
c

2π

)s
Γ (s)LB

(
s,
a

c

)
.(3.8)

First, by integrating (3.4) we establish the following formula:

ΛA

(
s,
a

c

)
+
a0

s
+ ikη

b0
k − s =

∞�

1

[
A

(
a

c
+
iy

c

)
− a0

]
ys−1 dy

+ ikη

∞�

1

[
B

(−d
c

+
iy

c

)
− b0

]
yk−s−1 dy

for Re s > k. Since A(z) − a0 and B(z) − b0 have exponential decay as
y = Im z →∞, the above integrals converge absolutely and they are entire
functions bounded on vertical strips. Similarly we have (because B|ω−1(z) =
η−1A(z) and ω−1 = −

(−d ∗
c −a

)
)

ΛB

(
s,
−d
c

)
+
b0
s

+(ikη)−1 a0

k−s =
∞�

1

[
B

(−d
c

+
iy

c

)
−b0

]
ys−1dy

+(ikη)−1
∞�

1

[
A

(
a

c
+
iy

c

)
−a0

]
yk−s−1dy.
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Combining both formulas we obtain the following functional equation:

(3.9) ΛA

(
s,
a

c

)
= ikηΛB

(
k − s, −d

c

)
.

For notational convenience we put

(3.10) an = n(k−1)/2a(n), bn = n(k−1)/2b(n)

so the corresponding L-functions are shifted from s to s − (k − 1)/2, and
the resulting functional equation connects values at s and 1− s.

Next we derive from (3.9) a formula for sums of type

S =
∞∑

n=1

a(n)e
(
an

c

)
g(n)

where g(x) is a nice test function.

Proposition 3.1. Suppose A(z), B(z) satisfy (3.3) for some ω =
( a ∗
c d

)

∈ SL2(R) with c > 0 and some complex number η 6= 0. Then for any g(x)
smooth and compactly supported on R+ we have

(3.11)
∞∑

n=1

a(n)e
(
an

c

)
g(n) = 2πik

η

c

{
b0
Γ (k)

∞�

0

g(x)
(

2π
√
x

c

)k−1

dx

+
∞∑

n=1

b(n)e
(−dn

c

)∞�

0

g(x)Jk−1

(
4π
c

√
nx

)
dx

}

where Jk−1(x) is the Bessel function of order k − 1.

Proof. The left side of (3.11) is given by the contour integral

S =
1

2πi

�

(σ)

LA

(
s,
a

c

)
G

(
s− k − 1

2

)
ds

where G(s) denotes the Mellin transform of g(x) and σ > k. We move to
Re s = k−σ passing a simple pole at s = k with residue ikηb0(2π/c)kΓ (k)−1

×G((k+ 1)/2) (the point s = 0 is not a pole of LA(s, a/c)). Then we apply
the functional equation (3.9) getting

S = ikηb0

(
2π
c

)k
Γ (k)−1G

(
k + 1

2

)

+
ikη

2πi

�

(σ)

LB

(
s,
−d
c

)(
c

2π

)2s−k
Γ (s)

Γ (k − s)G
(
k + 1

2
− s
)
ds.

Expanding LB(s,−d/c) into the Dirichlet series and integrating termwise
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we get
1

2πi

�

(σ)

=
2π
c

∞∑

n=1

b(n)e
(−dn

c

)
H

(
2π
√
n

c

)

where

H(y) =
1

2πi

�

(σ)

Γ (s)
Γ (k − s)G

(
k + 1

2
− s
)
yk−1−2s ds.

Here we can take for σ any positive number. If σ < k/2 we can open the
Mellin transform

G

(
k + 1

2
− s
)

=
∞�

0

g(x)x(k−1)/2−s dx

and change the order of integration getting

H(y) =
∞�

0

g(x)
(

1
2πi

�

(σ)

Γ (s)
Γ (k − s) (

√
x y)k−1−2s ds

)
dx

=
∞�

0

g(x)Jk−1(2
√
x y) dx

by (6.422.9) of [GR]. This yields (3.11).
Changing variables one can write (3.11) as follows:

(3.12)
∞∑

n=1

a(n)e
(
an

c

)
g

(
2πn
c

)

= ikη

{
b0
Γ (k)

∞�

0

g(x)
(

2πx
c

)(k−1)/2

dx+
∞∑

n=1

b(n)e
(−dn

c

)
h

(
2πn
c

)}

where h(y) is a Hankel-type transform

(3.13) h(y) =
∞�

0

g(x)Jk−1(2
√
xy) dx.

Now we specialize Proposition 3.1 for automorphic forms. First we treat
the cusp forms.

Proposition 3.2. Let F ∈ Sk(Γ, χ) be a Hecke cusp form with eigen-
values λF (n). Let c ≥ 1 and (a, c) = 1. Then for any function g(x) smooth
and compactly supported on R+ we have

(3.14)
∞∑

n=1

λF (n)e
(
an

c

)
g(n)

= 2πik
η

c
√
r

∞∑

n=1

λG(n)e
(−arn

c

)∞�

0

g(x)Jk−1

(
4π
c

√
nx

r

)
dx
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where λG(n) are given by (2.28), (2.29) with r = q/(c, q), s = (c, q) and
(3.15) η = χs(a)χr(−c)ηF (r, s).
Here ηF (r, s) depends only on r, s, F and |ηF (r, s)| = 1.

Proof. The result follows by applying (3.11) for A(z) = F (z) and B(z) =
F|ω(z) with

(3.16) ω =
(
a
√
r b/

√
r

c
√
r d

√
r

)

where b, d are integers such that adr − bc = 1. Note that d ≡ ar (mod c) so
the corresponding pseudo-eigenvalue (2.31) is equal to (3.15).

Next we apply (3.11) for the Eisenstein series Ea(z) with cusp a ∼ 1/v
and the ω given by (3.16). In this case (2.38) holds with a∗ ∼ 1/v∗ =
(r, v)2/(rv), where r = q/(c, q), s = (c, q). The corresponding pseudo-
eigenvalue (2.37) becomes

(3.17) η = χr

(
c

(c, v)

)
χs

(
av

(c, v)

)
χv/(c,v)(−1)

because (s, v) = (c, v) and (r, v) = v/(c, v). We have q = vw = v∗w∗ with

(3.18) v∗ = (c, v)w/(c, w), w∗ = (c, w)v/(c, v).

We introduce the twisted divisor function

(3.19) τ(n;χv, χw) =
∑

n1n2=n

χv(n1)χw(n2)

for any n ≥ 1. Therefore τ(n;χv, χw) and τ(n;χv∗ , χw∗) are the Hecke
eigenvalues λa(n) and λa∗(n) for Ea(z) and Ea∗(z), respectively. These are
proportional to the Fourier coefficients of Ea(z) and Ea∗(z) with the factor
εv2i/h and εv∗2i/h, respectively (see (2.11)). By (3.11) with k = 1 and c

√
r

in place of c we obtain
∞∑

n=1

τ(n;χv, χw)e
(
an

c

)
g(n) = εvεv∗

2πiη
c
√
r

{
h

2

∞�

0

g(x) dx

+
∞∑

n=1

τ(n;χv∗ , χw∗)e
(−arn

c

)∞�

0

g(x)J0

(
4π
c

√
nx

r

)
dx

}

where the leading term 1
2hĝ(0) appears only if a∗ ∼ ∞, or a∗ ∼ 0. Note that

εv∗ = εvr = ε−vs = −iεvs so the factor σ = iηεvεv∗ becomes

(3.20) σ = εvεvsχs(av/(c, v))χr(c/(c, v))χ(r,v)(−1).

Before stating the final result we simplify the leading term. We have
a∗ ∼ ∞⇔ (c, q) = v, in which case r = w and s = v so that

σ = εvχv(a)χw(c/v) = χv(a)χw(c/v)τ(χv)/
√
v.
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Similarly a∗ ∼ 0 ⇔ (c, q) = w, in which case r = v and s = w. Thus,
σ = εvεqχw(av)χv(−c). By the reciprocity law χw(v)χv(w) = 1, because
vw = q ≡ −1 (mod 4). Moreover εvεqχv(−1) = iεv = ε−v = εw so that

σ = εwχw(a)χv(c/w) = χw(a)χv(c/w)τ(χw)/
√
w.

Hence, by the class number formula πh =
√
q L(1, χ), we conclude the fol-

lowing result.

Proposition 3.3. Let q be squarefree, q ≡ −1 (mod 4). Let q = vw,
and let χq = χvχw be the corresponding real characters. Let c ≥ 1 and
(a, c) = 1. Let q = v∗w∗ be given by (3.18), and let χq = χv∗χw∗ be the
corresponding real characters. Then for any smooth function g(x) compactly
supported on R+ we have

(3.21)
∞∑

n=1

τ(n;χv, χw)e
(
an

c

)
g(n)

=
{
χv(a)χw

(
c

v

)
τ(χv) + χw(a)χv

(
c

w

)
τ(χw)

}
L(1, χ)

c

∞�

0

g(x) dx

+
2πσ
c
√
r

∞∑

n=1

τ(n;χv∗ , χw∗)e
(−arn

c

)∞�

0

g(x)J0

(
4π
c

√
nx

r

)
dx

where σ is given by (3.20) with r = q/(c, q) and s = (c, q).

Remark. In the leading term of (3.21) we use the popular convention
that χ(z) is zero if z is not an integer. Therefore the leading term vanishes
unless v | c and (c, w) = 1, or w | c and (c, v) = 1.

4. Convolution sums. In this section we shall evaluate asymptotically
sums of type

(4.1) B(h) =
∑∑

m−n=h

λ(m)λ(n)g(m)g(n)

where λ(n) are eigenvalues of the Hecke operators Tn for one of the holomor-
phic automorphic forms of level q and character χq which were considered
in the last two sections. Here h 6= 0 is a fixed integer and g(x) is a cut-off
function which is smooth and compactly supported on R+. Naturally one
can treat the convolution sum (4.1) by spectral methods using an appropri-
ate Poincaré series. Indeed this method (the Rankin–Selberg method) has
been applied by various authors in many cases of cusp forms, but we did
not find satisfactory results (1). Moreover the spectral methods can also be
applied to the Eisenstein series, which case is important for us. However,

(1) See the note added at the end of Section 1.
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the spectral methods are rather complicated and one has to provide a lot of
background material. Therefore in this section we use arguments from the
circle method of Kloosterman, because they yield the results faster, more
general and of great uniformity with respect to the shift h.

For clarity we present the arguments in an axiomatic setting. Literally
speaking we do not assert that the coefficients λ(n) come from an automor-
phic form. All we need is an appropriate summation formula for

(4.2) S(α) =
∞∑

n=1

λ(n)e(αn)g(n)

at rational points. We assume that for any c ≥ 1 and (a, c) = 1 one has the
expansion

(4.3) S

(
a

c

)
=
∞∑

m=0

ψm(a)e
(
a

c
lm

)∞�

0

g(x)km(x) dx

where aa ≡ 1 (mod c), ψm(a) are periodic in a, say of a fixed period q, lm
are integers, and km(x) are smooth functions. We do allow ψm(a), lm and
km(x) to depend on c. However the frequencies lm and the kernels km(x)
cannot depend on a. If m > 0 we require the coefficients ψm(a) to satisfy

(4.4) |ψm(a)| ≤ Aτ(m)c−1

where A is a constant, A ≥ 1. Next we assume that the Fourier transform
of gm(x) = g(x)km(x) satisfies

(4.5) |ĝm(α)| ≤ BcCm−5/4 if |α| ≤ (cC)−1

for all 1 ≤ c ≤ C, where B ≥ 1 is a constant and C ≥ 2 is a fixed number
(a quite large number which will be chosen optimally in applications). For
m = 0 we need more precise conditions. We assume that

(4.6) l0 = 0, k0(x) = 1

and the absolute value of ψ0(a) does not depend on a, say

(4.7) |ψ0(a)| = p(c) ≤ Ac−1.

Finally we assume that
∞�

−∞
|ĝ(α)| dα ≤ B,(4.8)

∞�

−∞
|α| · |ĝ(α)|2 dα ≤ B2.(4.9)

Now we are ready to estimate the convolution sum (4.1). We begin by
the following formula for the zero detector in Z:
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(4.10) 2
∑∑

c≤C<d≤c+C
(c,d)=1

1/(cd)�

0

cos(2πn(a/c− α)) dα =
{

1 if n = 0,
0 if n 6= 0,

where ad ≡ 1 (mod c) and C ≥ 2 is at our disposal (see Proposition 11.1 of
[I]). Hence we get

B(h) =
∑∑

c≤C<d≤c+C
(c,d)=1

1/(cd)�

−1/(cd)

∣∣∣∣S
(
a′

c
− α

)∣∣∣∣
2

e

(
h

(
α− a′

c

))
dα

where a′ (mod c) is determined by a′d ≡ signα (mod c). We rearrange this
sum of integrals as follows:

(4.11) B(h) =
∑

c≤C

1/(cC)�

−1/(cC)

e(αh)Vc(α) dα

where

(4.12) Vc(α) =
∑∗

d∈I
e

(
−a
′h
c

)∣∣∣∣S
(
a′

c
− α

)∣∣∣∣
2

and d runs over integers prime to c in the interval

(4.13) I = (C,min{c+ C, 1/(|α|c)}].
Note that I = (C, c + C] has length exactly c if |α| ≤ c−1(c + C)−1, and
I = (C, 1/(|α|c)] is shorter than c if c−1(c+ C)−1 < |α| ≤ c−1C−1.

Suppose α > 0; the case α < 0 is similar. By the summation formula
(4.3) we have

S

(
a

c
− α

)
=
∞∑

m=0

ψm(a)e
(
d

c
lm

)
ĝm(α).

Inserting this into (4.12) and changing the order of summation we get

Vc(α) =
∑

m1

∑

m2

ĝm1(α)ĝm2
(α)
∑

d∈I

∗
ψm1(a)ψm2

(a)e
(
d

c
(lm1 − lm2)− ah

c

)
.

Recall that ψm(a) are periodic of period q. Splitting into residue classes
d ≡ δ (mod q) we obtain incomplete Kloosterman sums for which Weil’s
bound yields

(4.14)
∑∗

d∈I, d≡δ(q)
e

(
dl − ah

c

)
� (h, c)1/2c1/2τ(c) logC.

We apply this result with l = lm1−lm2 for all terms, except for m1 = m2 = 0
in the range |α| < c−1(c+ C)−1, i.e. when the interval (4.13) has length c.
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We derive, for any α,

Vc(α) = |ĝ(α)p(c)|2
{ ∑∗

C<d≤c+C
e

(
−ah
c

)
+O(|α|cC(h, c)1/2c1/2τ(c) logC)

}

+O
(
A2q(h, c)1/2c3/2τ(c)(logC)

×
(
|ĝ(α)|+

∞∑

m=1

τ(m)|ĝm(α)|
)( ∞∑

m=1

τ(m)|ĝm(α)|
))

by (4.4), (4.7) and (4.14). In the leading term we get the exact Ramanujan
sum

(4.15) rc(h) =
∑∗

d (mod c)

e

(
dh

c

)
.

The same estimates hold for α < 0. Adding these results we get, by (4.11),

B(h) =
∑

c≤C
rc(h)p(c)2

1/(cC)�

−1/(cC)

e(αh)|ĝ(α)|2 dα+R

where

R� A2
( �
|α| · |ĝ(α)|2dα

)(∑

c≤C
(h, c)1/2c−1/2τ(c)

)
C logC

+ A2q
∑

c≤C
(h, c)1/2c−3/2τ(c)

( �
|ĝ(α)| dα+B

)
BcC logC.

To estimate R we apply (4.8) and (4.9) getting

B(h) =
∑

c≤C
rc(h)p(c)2

1/(cC)�

−1/(cC)

e(αh)|ĝ(α)|2 dα+O(τ(h)qA2B2C3/2(logC)2).

In the leading term we extend the integration to all α ∈ R at the cost of
an error term which is already present. Then we derive by the Plancherel
theorem that

∞�

−∞
e(αh)|ĝ(α)|2 dα =

∞�

0

g(x+ h)g(x) dx.

Finally we extend the summation over c ≤ C to all c, getting∑

c≤C
rc(h)p(c)2 = σ(h) +O(τ(h)A2C−1)

where σ(h) is the infinite series

(4.16) σ(h) =
∞∑

c=1

rc(h)p(c)2.

We have established the following
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Theorem 4.1. Suppose the conditions (4.3)–(4.9) hold. Then for any
integer h 6= 0 the sum (4.1) satisfies

B(h) = {σ(h) +O(τ(h)A2C−1)}
�
g(x+ h)g(x) dx(4.17)

+O(τ(h)qA2B2C3/2(logC)2)

where σ(h) is given by (4.16) and the implied constant is absolute.

Remarks. In the proof of Theorem 4.1 we assumed tacitly (just to sim-
plify notation) that the cut-off functions g(x), g(x) are complex conjugate.
However the formula (4.17) holds (by obvious alterations in the arguments)
for any pair g(x), g(x), provided both functions satisfy the same relevant con-
ditions. In forthcoming applications we shall have two functions g1(x), g2(x)
supported in [X, 2X] with X ≥ 1/2 such that

(4.18) xν |g(ν)
j (x)| ≤ 1 if ν = 0, 1, 2,

for j = 1, 2. For such functions (4.8) and (4.9) hold with B = 1. Moreover
we shall be able to verify (4.5) with C = 2

√
qX and some constant B ≥ 1.

Therefore we state the following

Corollary 4.2. Suppose the conditions (4.3)–(4.7) hold for the arith-
metic function λ(n) and for the cut-off functions g1(x), g2(x) supported
in [X, 2X] with derivatives satisfying (4.18). Precisely let (4.5) hold with
C = 2

√
qX. Then for any integer h 6= 0,

B(h) =
∑

m−n=h

λ(m)λ(n)g1(m)g2(n)(4.19)

= σ(h)
�
g1(x+ h)g2(x) dx+O(τ(h)(qAB)2X3/4(log 3X)2)

where σ(h) is given by (4.16) and the implied constant is absolute.

Remarks. It would be convenient for applications to have a formula for
B(h) with the cut-off functions g(x) smooth on R+ such that

(4.20) xν |g(ν)(x)| ≤ (1 + x/X)−4 if ν = 0, 1, 2,

rather than being supported in the dyadic segment [X, 2X]. Unfortunately
for such functions the condition (4.5) may not be easily verifiable with a
reasonable value of C (the optimal C should be of the order of

√
X). Nev-

ertheless we shall be able to derive results for functions satisfying (4.20) by
applying a smooth partition of unity, but not at the current position (see
how we justify (6.27)).

In principle our analysis (the Kloosterman circle method) works also
for h = 0, but, of course, giving a somewhat different main term. In fact
the resulting error term is better, because the estimate for the incomplete
Kloosterman sum (4.14) is replaced by a stronger bound for a Ramanujan
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sum. Rather than repeating and modifying the former arguments we shall
derive an asymptotic formula for B(0) directly using the Rankin–Selberg
zeta function (see (6.43)).

Now we apply Corollary 4.2 for the λ(n)’s which are Hecke eigenval-
ues of a holomorphic automorphic form of weight k ≥ 1, level q and the
real character χq of conductor q. As in Section 3 we assume that q is odd,
so q is squarefree and q ≡ 2k + 1 (mod 4) by the consistency condition
χq(−1) = (−1)k. This form is either a primitive cusp form, or the holo-
morphic Eisenstein series Ea(z) = y−1/2Ea(z, 1/2) of weight k = 1 for a
cusp a ∼ 1/v with vw = q. In the latter case the Hecke eigenvalues are (see
(3.19))

τ(n;χv, χw) =
∑

n1n2=n

χv(n1)χw(n2).

The summation formula (4.3) holds by Proposition 3.2 for cusp forms, or
Proposition 3.3 for the Eisenstein series. In either case we have

|ψm(a)| ≤ 2πτ(m)c−1 if m ≥ 1,

and |ψ0(a)| = p(c) does not depend on a. In fact p(c) = 0, except for the
Eisenstein series Ea(z) with a ∼ 1/v, in which case we have

(4.21) p(c) =
L(1, χ)

c

{√
v if (c, q) = v,√
w if (c, q) = w,

and p(c) = 0 otherwise. In every case (cusp forms or Eisenstein series) the
summation formula holds with the kernel

km(x) = Jk−1

(
4π
c

√
mx

r

)

where r = q/(c, q). Note that for k = 1 we have k0(x) = 1 as required by
(4.6). Hence the Fourier transform of gm(x) is

(4.22) ĝm(α) =
�
g(x)e(αx)Jk−1

(
4π
c

√
mx

r

)
dx.

Note that the Bessel function can be written as

Jk−1(2πy) = W (y)e(y) +W (y)e(−y)

where W (y) is a smooth non-oscillatory function whose derivatives satisfy

yνW (ν)(y)� k2y−1/2 if ν = 0, 1, 2.

Let g(x) be a smooth function supported on [X, 2X] with X ≥ 1/2 such
that

(4.23) xν |g(ν)(x)| ≤ 1 if ν = 0, 1, 2.

We choose C = 2
√
qX so there is no stationary point in the Fourier integral

(4.22) if 1 ≤ c ≤ C and |α|cC ≤ 1. Therefore integrating by parts two times
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we derive

ĝm(α)� k2X(c2r/(mX))5/4 � k2q3/2cCm−5/4

for |α| ≤ (cC)−1, where the implied constant is absolute. Next we derive
from (4.23) by partial integration that

(4.24) ĝ(α) =
�
g(x)e(−αx) dx� X(1 + |α|X)−2.

Hence �
|ĝ(α)| dα� 1,

�
|α| · |ĝ(α)|2 dα� 1.

The above estimates verify the conditions of Corollary 4.2 with A =
2
√
q L(1, χ), B = k2q3/2 and C = 2

√
qX. Hence we obtain the following

two theorems.

Theorem 4.3. Let λF (n) be the eigenvalues of a primitive cusp form
F ∈ Sk(Γ0(q), χq) (recall that k ≥ 1 and q is squarefree, q ≡ 2k+1 (mod 4)).
Then for any integer h 6= 0 and for any smooth functions g1(x), g2(x) sup-
ported in [X, 2X], X ≥ 1/2, with derivatives satisfying (4.23) we have

(4.25)
∑∑

m−n=h

λF (m)λF (n)g1(m)g2(n)� τ(h)q6k4X3/4(log 3X)2

where the implied constant is absolute.

Theorem 4.4. Let q be squarefree, q ≡ −1 (mod 4). Let uw = q and
τ(n;χv, χw) be the twisted divisor function by the corresponding characters
χvχw = χq (see (3.19)). Then for any integer h 6= 0 and for any smooth
functions g1(x), g2(x) supported in [X, 2X], X ≥ 1/2, with derivatives sat-
isfying (4.23) we have

(4.26)
∑∑

m−n=h

τ(m;χv, χw)τ(n;χv, χw)g1(m)g2(n)

= σ(h)
�
g1(x+ h)g2(x) dx+O(τ(h)q6X3/4(log 3X)2)

where σ(h) is the infinite series (4.16) with p(c) given by (4.21), and the
implied constant is absolute.

Remark. We emphasize that the estimates in the above theorems are
uniform in every parameter.

We conclude this section by computing σ(h). We have

(4.27) σ(h) =
{ ∑

(c,q)=v

v

c2
rc(h) +

∑

(c,q)=w

w

c2
rc(h)

}
L(1, χ)2
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where rc(h) is the Ramanujan sum. Since rc(h) is multiplicative in c we get

(4.28) σ(h) =
{∑

c|v∞

rcv(h)
c2v

+
∑

c|w∞

rcw(h)
c2w

}( ∑

(c,q)=1

rc(h)
c2

)
L(1, χ)2

where

(4.29)
∑

(c,q)=1

rc(h)
c2

=
ζq(2)
ζ(2)

∑

d|h
(d,q)=1

d−1.

Moreover using the formula

(4.30) rc(h) =
∑

d|(c,h)

dµ(c/d)

one can show that

(4.31)
∑

c|v∞

rcv(h)
c2v

= µ

(
v

(h, v)

)
(h, v)
v

∏

p|(h,v)

(
1− 1

pα
− 1
pα+1

)

where pα ‖h. Gathering the above results we arrive at

(4.32) σ(h) =
{
µ

(
v

(h, v)

)
(h, v)
v

∏

p|(h,v)

(
1− 1

pα
− 1
pα+1

)
+ (v → w)

}

× ζq(2)
ζ(2)

( ∑

d|h
(d,q)=1

1
d

)
L(1, χ)2.

In applications we shall appeal to the zeta function of the σ(h),

(4.33) Z(s) =
∞∑

h=1

σ(h)h−s

(note that σ(h) = σ(−h) because the Ramanujan sums are even in h). Using
(4.27) and (4.30) one derives

Z(s) =
{

1
v

∏

p|v

(
1− 1

ps−1

)∏

p|w

(
1− 1

ps+1

)
(4.34)

+
1
w

∏

p|w

(
1− 1

ps−1

)∏

p|v

(
1− 1

ps+1

)}

× ζq(2)
ζ(2)

ζ(s)ζ(s+ 1)L(1, χ)2.

Note that Z(s) has no pole at s = 1 except for v = 1 or w = 1, i.e. if the
cusp is at ∞ or 0. In these cases the residue is

(4.35) res
s=1

Z(s) = L(1, χ)2 if v = 1 or w = 1.
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The only other pole of Z(s) is at s = 0 with residue

(4.36) res
s=0

Z(s) = (µ(v) + µ(w))
q

ν(q)
· ζ(0)
ζ(2)

L(1, χ)2

where ν(q) is the multiplicative function with ν(p) = p + 1 (see (2.1)). For
curiosity we note that this residue vanishes if ν(q) = −1, for example if q is
prime.

5. Point to integral mean values of Dirichlet’s series. Our objec-
tive is to estimate a Dirichlet series

(5.1) A(s) =
∞∑

n=1

ann
−s

on average with respect to well-spaced points s. In this section we trans-
form the problem to that for a corresponding integral in s. The procedure
is well known and there are a variety of tools in the literature, just to men-
tion the original one by P. X. Gallagher [G]. However the published results
when applied directly to our series do not always produce the desired ef-
fects. What we need are integrals which can be treated further by quite
delicate analysis in the off-diagonal range. For this reason we cannot afford
to contaminate the coefficients an by wild test functions nor by sharp cuts.
Therefore, rather than modifying the existing results, we shall develop the
desired transformations from scratch.

Lemma 5.1. Let an be any sequence of complex numbers such that

(5.2)
∑

n

|an| <∞.

Let f(x) be a C1 function on [1,∞) such that

(5.3) cf =
∞�

1

(x−1|f(x)|2 + x|f ′(x)|2) dx <∞.

Then

(5.4)
∣∣∣
∑

n

anf(n)
∣∣∣
2
≤ cf

π

∞�

−∞
|A(it)|2 dt

t2 + 1
.

Proof. First we extend f(x) to the segment [0, 1) by setting f(x) =
xf(1). Then we write

f(x) =
1

2π

∞�

−∞
h(t)x−it dt where h(t) =

∞�

0

f(x)xit−1 dx



Hecke L-functions and class number problem 287

by Mellin (or Fourier) inversion. This gives us

∑

n

anf(n) =
1

2π

∞�

−∞
h(t)A(it) dt.

Hence by the Cauchy–Schwarz inequality
∣∣∣
∑

n

anf(n)
∣∣∣
2
≤ 1

4π2

( ∞�

−∞
|h(t)|2(t2 + 1) dt

) ∞�

−∞
|A(it)|2 dt

t2 + 1
.

By Plancherel’s theorem
∞�

−∞
|h(t)|2 dt = 2π

∞�

0

x−1|f(x)|2 dx,

∞�

−∞
|h(t)|2t2 dt = 2π

∞�

0

x|f ′(x)|2 dx.

Hence we obtain (5.4) with the constant

c∗f =
1
2

∞�

0

(x−1|f(x)|2 + x|f ′(x)|2) dx

in place of cf . Here the integral over the segment [0, 1) equals |f(1)|2. More-
over we have

f(1)2 = −
∞�

1

(f(x)2)′ dx = −2
∞�

1

f(x)f ′(x) dx

≤
∞�

1

(x−1|f(x)|2 + x|f ′(x)|2) dx.

Hence c∗f ≤ cf , proving (5.4).

Corollary 5.2. Let the conditions be as in Lemma 5.1. Then for % =
β + iγ with 0 ≤ β ≤ 1/2 we have

(5.5)
∣∣∣
∑

n

ann
−%f(n)

∣∣∣
2
≤ 2cf

π

∞�

−∞
|A(it)|2 dt

(t− γ)2 + 1
.

Proof. Apply (5.4) for ann−iγ and n−βf(n) in place of an and f(n).

Let R be a set of points %r = βr + iγr for r = 1, . . . , R such that

0 ≤ βr ≤ 1/2,(5.6)

T ≤ γr ≤ 2T,(5.7)

|γr − γr′ | ≥ δ if r 6= r′.(5.8)

Here δ, T are fixed numbers with 0 < δ ≤ 1 and T ≥ 2. Note that R ≤
1 + T/δ ≤ 3T/(2δ).
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Suppose for every r = 1, . . . , R we have a C1 function fr(x) on [1,∞)
such that the corresponding integrals (5.3) are bounded. Put

c = max
r

cfr ,(5.9)

G(t) =
∑

r

((t− γr)2 + 1)−1.(5.10)

From (5.5) we get immediately

(5.11)
∑

r

∣∣∣
∑

n

ann
−%rfr(n)

∣∣∣
2
≤ 2c

π

∞�

−∞
|A(it)|2G(t) dt.

Now we are going to estimate G(t). By the spacing condition (5.8) we
derive that

G(t) ≤ 1 +
∞∑

n=1

(δ2n2 + 1)−1

≤ 1 +
∞�

0

(δ2t2 + 1)−1 dt = 1 +
π

2δ
<
π

δ
.

If t is far beyond the segment (5.7) we can do better. Indeed if t < T/2 then
(t− γr)2 ≥ (t−T )2 ≥ 1

5 (t2 +T 2) and if t > 3T then (t− γr)2 ≥ (t− 2T )2 ≥
1
10 (t2 + T 2). Hence in these ranges

G(t) ≤ 10R
t2 + T 2 ≤

15T
δ(t2 + T 2)

.

Inserting these estimates into (5.11) we get

(5.12)
∑

r

∣∣∣
∑

n

ann
−%rfr(n)

∣∣∣
2
≤ 2c

δ

3T�

T/2

|A(it)|2 dt

+
10c
δT

∞�

−∞
|A(it)|2

(
1 +

t2

T 2

)−1

dt.

The first integral is no larger than ten times the second one, so we have

(5.13)
∑

r

∣∣∣
∑

n

ann
−%rfr(n)

∣∣∣
2
≤ 30

c

δ

∞�

−∞
|A(it)|2

(
1 +

t2

T 2

)−1

dt

(later we shall do better with the first integral). The last integral is exactly
equal to

∞�

−∞
|A(it)|2

(
1 +

t2

T 2

)−1

dt = πT
∑

m

∑

n

aman min
(
m

n
,
n

m

)T
.
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Now assuming that

(5.14) G1 =
∞∑

n=1

n|an|2 <∞

we estimate as follows:
∑

m

∑

n

aman min
(
m

n
,
n

m

)T
≤
∑

n

|an|2
∑

m≥n

(
n

m

)T
,

∑

m≥n

(
n

m

)T
≤ 1 +

∞�

n

(
n

x

)T
dx = 1 +

n

T − 1
≤ 2
(

1 +
n

T

)
.

Hence

(5.15)
∞�

−∞
|A(it)|2

(
1 +

t2

T 2

)−1

dt ≤ 2π(TG+G1)

where

(5.16) G =
∑

n

|an|2.

Inserting (5.15) into (5.13) we get

Lemma 5.3. Let %r and fr(x) be as above. Suppose the complex numbers
an satisfy (5.2) and (5.14). Then

(5.17)
∑

r

∣∣∣
∑

n

ann
−%rfr(n)

∣∣∣
2
≤ 189

c

δ
(TG+G1)

where G, G1 are defined by (5.16) and (5.14).

The estimate (5.17) (nevermind the constant 189) is not sufficiently
strong when the range of coefficients an exceeds T . Having this case in
mind we retain the first integral in (5.12) and apply (5.15) only to the sec-
ond one. Actually we enlarge the first integral slightly while smoothing the
integration. Precisely we set

(5.18) A(T ) =
∞�

−∞
K(t/T )|A(it)|2 dt

where K(u) is a non-negative function on R such that K(u) ≥ 1 for 1/2 ≤
u ≤ 3. We obtain

Proposition 5.4. Let %r, fr(x) and an be as above. Then

(5.19)
∑

r

∣∣∣
∑

n

n−%rfr(n)
∣∣∣
2
≤ 2c

δ
A(T ) +

63c
δT

(TG+G1).
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6. Evaluation of A(T ). By (5.15) one gets the boundA(T )� TG+G1,
which is essentially best possible in general. In this section we evaluate A(T )
more precisely for special sequences A = (an). We assume that the cut-off
function K(u) in the integral (5.18) is continuous and symmetric on R with

(6.1) K(0) = 0.

Moreover we assume that the cosine-Fourier transform

(6.2) L(v) = 2
∞�

0

K(u)cos(uv) du

has fast decaying derivatives, specifically

(6.3) |L(j)(v)| ≤ (1 + |v|)−4, 0 ≤ j ≤ 5.

Clearly any smooth, symmetric and compactly supported function on R\{0}
does satisfy the above conditions up to a constant factor. We get

A(T ) = T
∑

m

∑

n

amanL

(
T log

m

n

)
.

Here L
(
T log m

n

)
localizes the terms close to the diagonal. Therefore, we

arrange this double sum according to the difference m − n = h with the
intention to treat every partial sum

(6.4) S(h) =
∑

m−n=h

amanL

(
T log

m

n

)

separately. Note that S(−h) = S(h) so we have

(6.5) A(T ) = L(0)TG+ 2T Re
∑

h>0

S(h).

Recall that G is given by (5.16). Here the zero term comes from the diagonal
m = n; we have S(0) = L(0)G and

(6.6) L(0) = 2
∞�

0

K(u) du.

Let h > 0. Thinking of h as being relatively small we use the approximation

log
m

n
= log

(
1 +

h

n

)
=
h

n
+O

(
h2

n2

)

to modify L
(
T log m

n

)
as follows:

L

(
T log

m

n

)
= L

(
hT

n

)
+O

(
1
T

(
1 +

hT

n

)−2)
.
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The contribution of the error term to S(h), say S ′(h), satisfies

S′(h)� 1
T

∑

m−n=h

|aman|
(

1 +
hT

n

)−2

� 1
T

∑

m−n=h

(|am|2 + |an|2)
(

1 +
hT

n

)−2

.

Hence the contribution of the error terms to A(T ), say A′(T ), satisfies

A′(T )�
∑∑

m>n

(|am|2 + |an|2)
(

1 +
m− n
n

T

)−2

.

Hence it follows that

(6.7) A′(T )� G+ T−1G1.

We are left with

(6.8) A(T ) = L(0)TG+ 2T Re
∑

h>0

S∗(h) +O(G+ T−1G1)

where S∗(h) is the modified sum

(6.9) S∗(h) =
∑

n

an+hanL

(
hT

n

)
.

We may estimate S∗(h) trivially as follows:

(6.10) S∗(h)�
∑

n

(|an+h|2 + |an|2)
(
n

hT

)2

≤ 2(hT )−2G2

subject to the condition

(6.11) G2 =
∑

n

n2|an|2 <∞.

This estimate is quite useful for large h, say h ≥ H, where H will be defined
later. Inserting (6.10) into (6.8) we get

(6.12) A(T ) = L(0)TG+2T Re
∑

0<h≤H
S∗(h)+O(G+T−1G1+T−1H−1G2).

Observe that the terms of (6.9) with n ≤ 2h contribute less than
∑

n≤2h

|an+hanL(hT/n)| � (hT )−2
∑

n≤3h

n2|an|2.

Summing over h we find that these small terms contribute to A(T ) less than

T−1
∑

n

n2|an|2
∑

3h≥n
h−2 � T−1G1,

which is absorbed by the error term already present in (6.12).
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Now we require that the coefficients an are given by

(6.13) an = λ(n)a(n)

where λ(n) is a nice arithmetic function and a(y) is a smooth cut-off func-
tion. We do not restrict a(y) to a dyadic segment, but for practical needs
we require only that a(y) is a C2 function on R+ such that

(6.14) yν |a(ν)(y)| ≤ (1 + y/Y )−4 if ν = 0, 1, 2,

where Y ≥ 2. Concerning λ(n) we assume that it is bounded by the divisor
function

(6.15) |λ(n)| ≤ τ(n).

Therefore our coefficients are almost bounded, precisely

(6.16) |an| ≤ τ(n)(1 + n/Y )−4.

Hence the series of |an|2, n|an|2, n2|an|2 converge and satisfy

(6.17) G� Y (logY )3, G1 � Y 2(log Y )3, G2 � Y 3(log Y )3.

Moreover about λ(n) we postulate that for any two smooth functions
g1(x), g2(x) supported in [X, 2X] with X ≥ 1/2 such that

(6.18) xν |g(ν)
j (x)| ≤ 1 if ν = 0, 1, 2,

and for any h ≥ 1 we have

(6.19)
∑

m−n=h

λ(m)λ(n)g1(m)g2(n)

= σ(h)
�
g1(x+ h)g2(x) dx+O(Bτ(h)X3/4(log 3X)2).

Here σ(h) is another nice arithmetic function depending on λ, B is a positive
constant depending on λ, and the implied constant in the error term is
absolute. We assume that

(6.20) |σ(h)| ≤ C
∑

d|h
d−1.

In other words the generating series

(6.21) Z(s) =
∞∑

h=1

σ(h)h−s

is majorized by Cζ(s)ζ(s+ 1). More precisely we assume that

(6.22) Z(s) = ζ(s)z(s)

where z(s) is holomorphic in Re s ≥ 0, except for a simple pole at s = 0.
Suppose

(6.23) |z(s)− Z/s| ≤ C(|s|+ 1)
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in the strip 0 ≤ Re s ≤ 3/2. We do not exclude the residue Z = 0, and we
assume

(6.24) |Z| ≤ C.
For our primary example we let the λ(n) = λF (n) be the Hecke eigen-

values of a primitive cusp form F ∈ Sk(Γ0(q), χq). In this case (6.15) is
proved by P. Deligne (the Ramanujan conjecture) and the formula (6.19)
is established in our Theorem 4.3 with σ(h) = 0 and B = k4q6. Therefore
Z = 0 and C = 0.

Our second example is the Hecke eigenvalue λ(n) = τ(n;χv, χw) of a
holomorphic Eisenstein series of weight k = 1 and level q. In this case (6.15)
is obvious by (3.19) and the formula (6.19) is established in our Theorem
4.4 with σ(h) given by (4.32) and B = q6. The generating series Z(s) is
computed in (4.34) and the residue of z(s) at s = 0 is

(6.25) Z = − 3
π2 (µ(v) + µ(w))

q

ν(q)
L(1, χq)2

(see (4.36)). In this case the estimates (6.20), (6.23), (6.24) hold with

(6.26) C � ν(q)
q
L(1, χq)2 log q.

Now we are ready to evaluate S∗(h). By (6.19) we derive

(6.27) S∗(h) = σ(h)
�
a(y + h)a(y)L(hT/y) dy

+O(Bτ(h)Y 3/4(log Y )4 + T−2h|σ(h)|+ T−2h(log 3h)3).

Well, not immediately because a(y) is not supported in a dyadic segment.
However, using a smooth partition of unity with constituents in m,n sup-
ported in segments of type [Y1,

√
2Y1], [Y2,

√
2Y2] respectively one can justify

the applicability of (6.19) as follows. Indeed there is no question when the
two segments [Y1,

√
2Y1], [Y2,

√
2Y2] are equal or adjacent. If these segments

are separated then they produce nothing from the sum nor from the integral
in (6.27) unless Y1, Y2 ≤

√
2h. In this case we estimate trivially by

∑

n≤2h

|an+han|
(
n

hT

)2

≤
∑

n≤3h

|an|2
(
n

hT

)2

� T−2h(log 3h)3,

which yields the third error term in (6.27). Moreover, the integral over x ≤
2h is estimated similarly by

2h�

0

|a(x+ h)a(x)|
(
x

hT

)2

dx ≤
3h�

0

|a(y)|2
(
y

hT

)2

dy � T−2h,

which yields the second error term in (6.27).
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Next we replace a(y+ h) in (6.27) by a(y) with the difference O(Y 2T−2

× h−1|σ(h)|). We obtain

S∗(h) = σ(h)
�
|a(y)|2L(hT/y) dy(6.28)

+O(Bτ(h)(Y 3/4 + Y 2T−2h−1 + T−2h)(loghY )4)
where the implied constant is absolute. This is true for all h ≥ 1, but we
only use this for 1 ≤ h ≤ H, where H will be chosen later. Introducing
(6.28) into (6.12) we derive

A(T ) = L(0)TG+ 2T
�
|a(y)|2

( H∑

h=1

σ(h)L(hT/y)
)
dy

+O(B(THY 3/4 + T−1Y 2 + T−1H2)(logHY )5)

+O((Y + T−1Y 2 + T−1H−1Y 3)(log Y )3).
Note that we can extend the sum over 1 ≤ h ≤ H to the infinite series

(6.29) D(v) =
∞∑

h=1

σ(h)L(hv)

with v = Ty−1, up to the error term O(T−1H−1Y 3 logH) which is already
present (the last one). Having done this we choose
(6.30) H = B−1/2T−1Y 9/8(log Y )−1

(this choice equalizes the first and the last error terms), getting

A(T ) = L(0)TG+ 2T
�
|a(y)|2D(T/y) dy(6.31)

+O(B1/2Y 15/8(log Y )4 + T−3Y 9/4(log Y )3).
Next we evaluate the series D(v). Let M(s) be the Mellin transform of

L(v),

M(s) =
∞�

0

L(v)vs−1 dv.

Integrating by parts we derive, by (6.2),
(6.32) sM(s)� (|s|+ 1)−4.

Note that

M(1) =
∞�

0

L(v) dv = 2πK(0) = 0

by our assumption (6.1). Therefore the product M(s)Z(s) is holomorphic
in the strip 0 < σ ≤ 3/2 (no pole at s = 1) and

M(s)Z(s)� C|s|−2

by (6.22)–(6.24) and (6.26). However for s near zero we need a more precise
expansion. To this end we use

ζ(s) = ζ(0) +O(|s|), z(s) = Z/s+O(C),
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and we derive an expansion for M(s) as follows:

M(s) = L(0)/s+
1�

0

(L(v)− L(0))vs−1 dv +
∞�

1

L(v)vs−1 dv

= L(0)/s+O(1).
From these expansions we get

M(s)Z(s) =
a

s2 +
b

s
+O(C)

where a = ζ(0)L(0)Z = − 1
2L(0)Z � C and b � C. Combining both

estimates we get

(6.33) M(s)Z(s) =
a

s2 +
b

s(s+ 1)
+O

(
C

|s|2 + 1

)

uniformly in 0 < σ ≤ 3/2. Now we are ready to evaluate D(v). We have

D(v) =
1

2πi

�

(σ)

M(s)Z(s)v−s ds

= a log+ 1
v

+ bmax(0, 1− v) +O(Cv−σ).

Hence we write

(6.34) D(v) = −1
2
L(0)Z log+ 1

v
+D0(v)

with D0(v) a bounded function, specifically
(6.35) D0(v)� C

by letting σ → 0 (recall the uniformity in σ). Inserting (6.34) into (6.31) we
summarize the above considerations in the following

Theorem 6.1. Let K(u) be a continuous and symmetric function on
R with K(0) = 0 such that (6.2) holds. Let λ(n) be an arithmetic function
with |λ(n)| ≤ τ(n) which satisfies the formula (6.19) with the surrounding
conditions (6.18)–(6.24). Let a(y) be a C2 function on R+ such that (6.14)
holds. Then

(6.36)
∞�

−∞
K

(
t

T

)∣∣∣
∑

n

a(n)λ(n)n−it
∣∣∣
2
dt

= K̂(0)T
{
G− Z

∞�

T

|a(y)|2
(

log
y

T

)
dy

}

+ 2T
∞�

0

|a(y)|2D0

(
T

y

)
dy +O(B1/2Y 15/8(1 + T−3Y 3/8)(logY )4)

where
(6.37) G =

∑

n

|a(n)λ(n)|2
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and B,C,Z are the constants depending on λ(n) given by the postulated
properties (6.18)–(6.24). Moreover D0(v) is defined by (6.34), so D0(v)�C,
the implied constants being absolute.

From (6.36) one can derive a mean-value theorem for A(s) on the line
Re s = 1/2, however not without some loss in the error term. We do it for
A(1/2 + it) localized between T and Y . Precisely we get

Corollary 6.2. Let the conditions be as in Theorem 6.1, except for
(6.14) which is now replaced by

(6.38) yν |a(ν)(y)| ≤
(

1 +
y

Y
+
T

y

)−4

if ν = 0, 1, 2,

where T ≤ Y ≤ T 8. Then
∞�

−∞
K

(
t

T

)∣∣∣
∑

n

a(n)λ(n)n1/2−it
∣∣∣
2
dt(6.39)

= K̂(0)T
{
G− Z

∞�

T

|a(y)|2
(

log
y

T

)
dy

y

}

+ 2T
∞�

0

|a(y)|2D0

(
T

y

)
dy

y
+O(B1/2T−1Y 15/8(log Y )4)

where Z, D0(v) and B are as before, but

(6.40) G =
∑

n

|a(n)λ(n)|2n−1.

Proof. Apply (6.36) for the function a(y)
√
T/y in place of a(y). This

modified function satisfies (6.14) apart of an absolute constant factor by
virtue of (6.38). Then divide the resulting formula throughout by T .

Estimating all but the first term on the right side of (6.39) we obtain

(6.41)
∞�

−∞
K

(
t

T

)
|A(1/2 + it)|2 dt

= K̂(0)TG+O

(
T

(
|Z| log

Y

T
+ C

)
log

Y

T
+B1/2T 15/16(log T )4

)

if 2T ≤ Y ≤ T 31/30. Moreover G� (logY )3 log(Y/T ) by (6.15). But we are
looking for a better estimate of G; besides reducing by logarithms we want
to see the implied constant.

We are most interested in Hecke eigenvalues λ(n) of automorphic forms
associated with the imaginary quadratic field K = Q(

√−q). For these the
Ramanujan bound (6.15) can be improved to

(6.42) |λ(n)| ≤ τ(n, χ).
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The extremal case λ(n) = τ(n, χ) comes from the Eisenstein series Ea(z) =
y−1/2Ea(z, 1/2) for cusps a = 0 or a = ∞. The zeta function of τ(n, χ) is
the L-function of K = Q(

√−q),

LK(s) =
∑

06=a⊂OK
(Na)−s =

∞∑

n=1

τ(n, χ)n−s = ζ(s)L(s, χ).

The Rankin–Selberg L-function is

(6.43) RK(s) =
∞∑

n=1

τ(n, χ)2n−s = ζ(s)2L(s, χ)2ζ(2s)−1
∏

p|q

(
1 +

1
ps

)−1

.

This has the Taylor expansion

RK(s) =
α

(s− 1)2 +
β

s− 1
+ γ + . . .

with the polar coefficients given by

α =
q

ν(q)
· L(1, χ)2

ζ(2)
,(6.44)

β =
q

ν(q)
· L(1, χ)2

ζ(2)

[
2
L′

L
(1, χ) + γ1 +

∑

p|q

log p
p+ 1

]
.(6.45)

Moreover

RK(s)� q1/2|s|5/6 if Re s ≥ 1/2.

Let g(y) be a C2 function on R+ such that

(6.46) yν |g(ν)(y)| ≤
(

1 +
y

Y
+
X

y

)−1

if ν = 0, 1, 2,

where Y ≥ X > 0. Let ǧ(s) be the Mellin transform of g(y),

ǧ(s) =
∞�

0

g(y)ys−1 dy =
∞�

0

g(y)(1 + s log y + . . .)
dy

y
.

By partial integration we get

ǧ(s)� |s|−2(Xσ + Y σ) if σ = Re s = ±1/2.

By contour integration the sum

(6.47) G =
∑

n

τ(n, χ)2 g(n)
n
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is equal to

G =
1

2πi

�

(1/2)

ǧ(s)RK(s+ 1) ds

= res
s=0

ǧ(s)RK(s+ 1) +
1

2π

�

(−1/2)

ǧ(s)RK(s+ 1) ds.

Hence using the above estimates we get

(6.48) G =
∞�

0

g(y)(α log y + β)
dy

y
+O((q/X)1/2).

Corollary 6.3. For Y ≥ 2X ≥ 2 we have

(6.49)
∑

X≤n≤Y
τ(n, χ)2n−1 � L(Y ) log(Y/X) + (q/X)1/2

where

(6.50) L(Y ) = L(1, χ)(L(1, χ) logY + |L′(1, χ)|).
For G given by (6.40) the formula (6.48) becomes

(6.51) G =
∞�

0

|a(y)|2(α log y + β)
dy

y
+O((q/T )1/2).

Hence, if 2T ≤ Y ≤ T 31/30 we get

G� L(T ) log(Y/T ) + (q/T )1/2.

Introducing this into (6.35) we end up with the following

Proposition 6.4. Let λ(n) be the coefficients of an automorphic form
given by Hecke characters of the imaginary quadratic field K = Q(

√−q) of
discriminant −q. Let a(y) be a function satisfying (6.38) with Y = qT and
T ≥ K32q65. Then

(6.52)
2T�

T

∣∣∣
∑

n

a(n)λ(n)n−1/2−it
∣∣∣
2
dt� TL(T ) log q

where L(T ) is defined by (6.50) and the implied constant is absolute.

Remark. The above bound comes from the diagonal terms. The other
terms contribute slightly less, namely TL(q) log q.

7. Approximate functional equation. We restrict our attention to
L-functions for class group characters of an imaginary quadratic field K =
Q(
√−q) where −q is the discriminant. We assume that q is odd and q > 4,
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so q ≡ 3 (mod 4) and q is squarefree. Fix ψ ∈ Ĉ`(K) and put

(7.1) λ(n) =
∑

Na=n

ψ(a).

These are Hecke eigenvalues of an automorphic form (a theta series) of
weight k = 1, level q and character

(7.2) χ(n) =
(
n

q

)
,

the Jacobi symbol. Let

(7.3) L(s) =
∞∑

n=1

λ(n)n−s

be the corresponding Hecke L-function. For example, if ψ is a genus character
then

(7.4) L(s) = L(s, χv)L(s, χw)

where χv, χw are the real characters of conductor v, w respectively with
vw = q, i.e.

(7.5) χv(n) =
(
n

v

)
, χw(n) =

(
n

w

)

are the corresponding Jacobi symbols. Observe that χv, χw are characters
for real and imaginary quadratic fields. If ψ ∈ Ĉ`(K) is not a genus character
(i.e. ψ is not real) then the corresponding L-function does not factor into
Dirichlet L-functions. However, in any case the complete product

(7.6) Λ(s) = QsΓ (s)L(s) with Q =
√
q

2π
has an analytic continuation to the whole complex s-plane, except for a
simple pole at s = 1 if ψ is the trivial character, in which case

(7.7) L(s) = ζK(s) = ζ(s)L(s, χ)

is the zeta function of K. Moreover for any ψ ∈ Ĉ`(K) we have the functional
equation (which is due to Hecke, see also (3.9))

(7.8) Λ(s) = Λ(1− s).
In this section we derive a Dirichlet series representation of L(s) tem-

pered by a test function which makes the series rapidly convergent. Formulas
of this type are known in the literature as “approximate functional equa-
tions”. In our context, this is a somewhat misleading name, because we need
exact expressions to be able to differentiate. We rather think of these as a
kind of Poisson’s summation formulas.
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Let G(u) be a holomorphic function in the strip |Reu| ≤ 1 such that

G(u) = G(−u),(7.9)

G(0) = 1,(7.10)

G(u)� 1.(7.11)

Consider the integral

I(s) =
1

2πi

�

(1)

Λ(s+ u)G(u)u−1 du

for 0 < Re s < 1. Moving the path of integration to the line Reu = −1 and
applying (7.8) we get

Λ(s) = I(s) + I(1− s)− G(s− 1)
s− 1

res
u=1

Λ(u).

On the other hand, introducing the Dirichlet series (7.3) and integrating
termwise we obtain

I(s) =
∑

n

λ(n)
1

2πi

�

(1)

(
Q

n

)s+u
Γ (s+ u)G(u)u−1 du.

From both expressions we obtain (after dividing by
(√q

2π

)s
Γ (s))

Proposition 7.1. For s with 0 < Re s < 1 we have

L(s) =
∑

n

λ(n)n−sVs

(
n

Q

)
+X(s)

∑

n

λ(n)ns−1V1−s

(
n

Q

)
(7.12)

− G(s− 1)
(s− 1)Γ (s)

Q1−sL(1, χ),

where

X(s) = Q1−2sΓ (1− s)/Γ (s),(7.13)

Vs(y) =
1

2πi

�

(1)

Γ (s+ u)
Γ (s)

· G(u)
u

y−u du(7.14)

and the last (residual) term in (7.12) exists only if ψ is the trivial character
of C`(K).

We shall apply (7.12) for points on the critical line Re s = 1/2. Choosing

(7.15) G(u) =
(

cos
πu

A

)−A

where A ≥ 4 is a fixed integer we derive
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Lemma 7.2. If Re s = 1/2 then

yaV (a)
s (y) = δ(a)− G(s)

Γ (s+ 1− a)
ys +O

(
y

|s|

)
,(7.16)

yaV (a)
s (y)�

(
1 +

y

|s|

)−A
(7.17)

for any a ≥ 0, the implied constant depending only on a and A (here δ(0) = 1
and δ(a) = 0 if a > 0).

Remark. We have G(s) � e−π|s| and Γ (s + 1 − a)−1 � |s|a−1e
π
2 |s|;

hence, Lemma 7.2 yields

yaV (a)
s (y) = δ(a) +O(

√
y/|s|).

Proof. Differentiating (7.14) a times we get

(7.18) yaV (a)
s (y) =

1
2πi

�

(1)

Γ (s+ u)
Γ (s)

· G(u)
u

∏

0≤b<a
(−u− b)y−u du.

For the proof of (7.16) we move the integration to the line Reu = −1 getting
the first two terms as residues at u = 0 and u = −s respectively. By Stirling’s
formula the resulting integral on Reu = −1 is estimated by

�

(−1)

|s+ u|−1e−
π
2 |s+u|+π

2 |s|−π|u||u|a−1y |du|

�
�

(−1)

|s+ u|−1e−
π
2 |u||u|a−1y |du| � y/|s|.

For the proof of (7.17) we move the integration to the line Reu = A. By
Stirling’s formula the resulting integral is estimated by

�

(A)

|s+ u|Ae−π2 |u||u|a−1y−A |du| � (|s|/y)A.

This yields (7.17) if y > |s|. In the case y ≤ |s| we get (7.17) from (7.16).
Actually we shall apply (7.12) to estimate the quotients

(7.19) `(s) =
L(s)− L(s′)

s− s′
for points s, s′ on the critical line (if s = s′, then `(s) = L′(s) is the derivative
of L(s)). Here we do not display the dependence of `(s) on the second point
s′ for notational simplicity. This abbreviated notation (also used for other
forthcoming quotients) will be justified when we fix s′ in terms of s. Put

x(s) =
X(s)−X(s′)

s− s′ ,(7.20)

vs(y) =
Vs(y)− Vs′(y)

s− s′ ,(7.21)
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ws(y) =
1− ys−s′

s− s′ .(7.22)

From (7.12) we derive (by adding and subtracting terms)

`(s) =
(∑

n

−X(s)
∑

n

)
λ(n)n−sws(n)Vs(n/Q)(7.23)

+
(∑

n

−X(s)
∑

n

)
λ(n)n−svs(n/Q)

+ x(s)
∑

n

λ(n)n−sVs(n/Q) +O(Q/|s|),

where
∑

n stands for the complex conjugate of
∑

n.
Now we need estimates for x(s) and for derivatives of vs(y), ws(y).

Lemma 7.3. For s, s′ on the critical line we have

(7.24) |ws(y)| ≤ |log y|, |w′s(y)| = y−1.

Lemma 7.4. For s, s′ on the critical line we have

(7.25) yav(a)
s (y)� (y/|s|)1/4(1 + y/|s|)−A

if a ≥ 0, and the implied constant depends only on a and A.

Proof. If |s − s′| > 1 then Lemma 7.4 follows from Lemma 7.2 by sub-
tracting the estimates. Let |s − s′| ≤ 1. Subtract (7.18) for s′ from that
for s and divide by s − s′ to obtain a corresponding expression for deriva-
tives of vs(y). Then move the integration from Reu = 1 to Reu = α with
−1/4 ≤ α ≤ A. Note that there is no pole at u = 0. Then estimate as
follows:

1
|s− s′|

∣∣∣∣
Γ (s+ u)
Γ (s)

− Γ (s′ + u)
Γ (s′)

∣∣∣∣ ≤
∣∣∣∣
∂

∂s

Γ (s+ u)
Γ (s)

∣∣∣∣
s=s0

=
∣∣∣∣
Γ (s0 + u)
Γ (s0)

∣∣∣∣|ψ(s0 + u)− ψ(s0)|

� |s0 + u|αeπ2 |u||u|

where s0 is a point on the critical line between s and s′. Moreover G(u)�
e−π|u|. Hence

yav(a)
s (y)� y−α

�

(α)

|s0 + u|α|u|ae−π2 |u| |du| � (|s|/y)α.

This implies (7.25) by taking α = −1/4 if y ≤ |s|, or α = A if y > |s|.
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Before estimating x(s) note that |X(s)| = 1 for Re s = 1/2; more pre-
cisely

(7.26) X(1/2 + it) = Q−2itΓ (1/2− it)
Γ (1/2 + it)

=
(
e

tQ

)2it

{1 + ε(t)}

if t ≥ 1, where ε(t)� t−1 and ε′(t)� t−2. Hence we derive

Lemma 7.5. For s = 1/2 + it and s = 1/2 + it′ with t, t′ ≥ 1 we have

(7.27) x(s) = −2
(
e

tQ

)it(
e

t′Q

)it′ sin (t− t′) log tQ
t− t′ +O

(
1
t

)
;

consequently ,

(7.28) |x(s)| = 2
∣∣∣∣
sin (t− t′) log tQ

t− t′
∣∣∣∣+O

(
1
t

)
.

Proof. If |t − t′| < t/2 then (7.27) follows from (7.26); otherwise (7.27)
is trivial.

Applying the inequality sin x ≥ αx if 0 ≤ x ≤ π(1− α) we get

Corollary 7.6. Let 0 ≤ α ≤ 1. If |t− t′| log tQ ≤ π(1− α), then

(7.29) |x(s)| ≥ 2α log tQ+O(1/t).

8. Evaluation of `(s) on average. Our goal is to eliminate most of the
terms in (7.23) by estimating them on average with respect to a well-spaced
set of points s on the critical line. We start with any set, say S(T ), of points

(8.1) sr = 1/2 + itr, r = 1, . . . , R,

such that for T ≥ 2,

T < t1 < . . . < tR ≤ 2T,(8.2)

tr+1 − tr ≥ 1 if 1 ≤ r < R.(8.3)

To each point sr we associate a point

(8.4) s′r = 1/2 + it′r.

Remarks. The companion s′r to sr may not be in S(T ). Actually our
main interest will be to choose s′r very close to sr. For example sr, s′r can be
consecutive zeros of L(s) on the critical line. We may have sr = s′r if this is
a double zero. For the time being we assume that T ≥ q65 to comply with
the condition of Proposition 6.4, but after shaping the basic estimates this
assumption can be dispensed with because the results hold true trivially if
T < q65.

First we estimate the sum

(8.5) A1(s) =
∑

n

λ(n)n−sws(n)Vs(n/Q)
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on average with respect to the points s ∈ S(T ). Recall that ws(y) satis-
fies (7.24) and Vs(y) satisfies (7.17). We partition this sum smoothly into
three sums, say A1(s) = A11(s) + A12(s) + A13(s), where the partial sums
are supported on the segments n1 � q4 � n2 � T � n3, respectively.
For estimation of A11(s) we apply Lemma 5.3 with c � log q and an �
|λ(n)|n−1/2 logn and obtain

∑

s

|A11(s)|2 � T
( ∑

n�q4

τ(n)2n−1(logn)2
)

log q � T (log q)7

by the trivial estimate (6.15). For estimation of A12(s) we apply Lemma
5.3 with c � log T and an � |λ(n)|n−1/2 log n; now, however, we take
advantage of the better bound given by (6.42) to see that
∑

s

|A12(s)|2 � T
( ∑

q4�n�T
τ(n, χ)2n−1(logn)2

)
log T � TL(T )(log T )4

by (6.50). For estimation of A13(s) we apply Proposition 5.4 with c� log q
and an � |λ(n)|n−1/2 logn, together with Proposition 6.4, getting

∑

s

|A13(s)|2 � TL(T )(log T )2(log q)2.

Next we estimate the sum

(8.6) A2(s) =
∑

n

λ(n)n−svs(n/Q).

The arguments are the same as those applied for A1(s) above, and the
corresponding estimates are sharper by two logarithms because vs(y) � 1
and ws(y)� log y. Precisely, we get A2(s) = A21(s) +A22(s) +A23(s) with

∑

s

|A21(s)|2 � T (log q)5,

∑

s

|A22(s)|2 � TL(T )(log T )2,

∑

s

|A23(s)|2 � TL(T )(log q)2.

Remark. If we used the more precise bound for vs(y) given in Lemma
7.4, then the above estimates could be improved further, but that leads to
no advantage here.

It remains to estimate the sum

(8.7) A3(s) =
∑

n

λ(n)n−sVs(n/Q).

Similarly we partition this sum smoothly into A3(s) = A31(s) + A32(s) +
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A33(s), and apply the same arguments as those for A1(s), getting
∑

s

|A31(s)|2 � T (log q)5,

∑

s

|A32(s)|2 � TL(T )(log T )2,

∑

s

|A33(s)|2 � TL(T )(log q)2.

However, we are not satisfied with the above bound for A31(s). First we
clear from A31(s) the factor

Vs

(
n

Q

)
= 1 +O

(√
n

QT

)

(see Lemma 7.2) and replace the smooth cut-off function (from the relevant
partition) in the range n � q4. We get

A31(s) = N(s) + Ñ(s) +O(q4T−1/2)

where

N(s) =
∑

n≤q4

λ(n)n−s,(8.8)

Ñ(s) =
∑

x<n≤y
λ(n)α(n)n−s,(8.9)

for some x, y with q4 � x < y � q4 and α(n) � 1. By Lemma 5.3 and
Corollary 6.3 we derive

∑

s

|Ñ(s)|2 � T
∑

x<n≤y
τ(n, χ)2n−1 � TL(q) log q.

Moreover the error term O(q4T−1/2) contributes at most R(q4T−1/2)2 � q8,
which is absorbed by TL(q) log q. Therefore we have

∑

s

|A31(s)−N(s)|2 � TL(q) log q.

Gathering the above estimates together with (7.23) we obtain

Proposition 8.1. Let S(T ) be a set of points satisfying (8.1)–(8.3) with
T ≥ 2. Put

D(T ) =
∑

s

|`(s)− x(s)N(s)|2

where s runs over S(T ) (recall the settings (7.19), (7.20), (8.8)). We have

(8.10) D(T )� T (log q)7 + TL(T )(log T )4

where L(T ) is defined by (6.50), the implied constant being absolute.
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Assuming that L(1, χ) is small relatively to log T (so is L(T )) we can
interpret the bound (8.10) as saying that x(s)N(s) approximates `(s) at
almost all points s in any well-spaced set S(T ).

9. Estimation of x(s) on average. Recall that the Hecke L-function
for a character ψ ∈ Ĉ`(K) has the Euler product

(9.1) L(s) =
∏

p

(1− ψ(p)(Np)−s)−1 =
∑

n

λ(n)n−s;

similarly the inverse satisfies

(9.2) L(s)−1 =
∏

p

(1− ψ(p)(Np)−s) =
∑

m

λ∗(m)m−s,

say, where

(9.3) λ∗(m) =
∑

Na=m

µ(a)ψ(a).

Note that λ∗(m), like λ(m), often vanishes if the class number is small. We
have

(9.4) |λ∗(m)| ≤ τ(m,χ).

Hence we have a reason to believe that the partial sum of L(s)−1,

(9.5) M(s) =
∑

m≤q4

λ∗(m)m−s,

approximates N(s)−1 at almost all points s on the critical line. Our goal is
to estimate the sum

(9.6) E(T ) =
∑

s

|`(s)M(s)− x(s)|.

We begin by writing M(s)N(s) = 1 +B(s), where

B(s) =
∑

q4<l≤q8

b(l)l−s with b(l) =
∑

mn=l
m,n≤q4

λ∗(m)λ(n).

Then we split E(T ) as follows:

E(T ) =
∑

s

|(`(s)− x(s)N(s))M(s) + x(s)B(s)|

� D(T )1/2
(∑

s

|M(s)|2
)1/2

+ (log T )
∑

s

|B(s)|.

Here we have∑

s

|M(s)|2 � T (log q)
∑

m≤q4

τ(m)2m−1 � T (log q)5
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and ∑

s

|B(s)| =
∑

s

∣∣∣
∑

m,n≤q4

mn>q4

λ∗(m)λ(n)(mn)−s
∣∣∣.

Note that the condition mn > q4 implies that either m or n is larger than
q2. Having this information recorded we relax the condition mn > q4 by
any method of separation of variables, for example by applying Lemma 9 of
[DFI1]. This separation costs us a factor log q. It follows that
∑

s

|B(s)| � T (log q)2
( ∑

q2<m≤q4

τ(m,χ)2m−1
)1/2( ∑

n≤q4

τ(n)2n−1
)1/2

.

By (6.49) we derive
∑

s

|B(s)| � TL(q)1/2(log q)9/2.

These estimates yield

Proposition 9.1. Let S(T ) be a set of points satisfying (8.1)–(8.3) with
T ≥ 2. Then

(9.7) E(T )� T (log q)6 + TL(T )1/2(log T )2(log q)5/2

where the implied constant is absolute.

Assuming L(1, χ) is relatively small, Proposition 9.1 asserts that `(s)M(s)
approximates x(s) at almost all points s in any well-spaced set S(T ). This
assertion is particularly interesting if `(s) = (L(s)−L(s′))(s− s′)−1 is very
small, because it implies that x(s) = (X(s)−X(s′))(s− s′)−1 is also quite
small. Put

(9.8) ∆(T ) =
∑

s

|`(s)|2 =
∑

s

∣∣∣∣
L(s)− L(s′)

s− s′
∣∣∣∣
2

.

By Cauchy’s inequality we get
∑

s

|`(s)M(s)| � (T∆(T )(log q)5)1/2.

Applying this to E(T ) in (9.6) we derive by (9.7) the following estimate:
∑

s

|x(s)| � T (log q)6 + TL(T )1/2(log T )2(log q)5/2(9.9)

+ (T∆(T )(log q)5)1/2.

We shall make the estimate (9.9) more explicit by cosmetic preparations.
First on the left-hand side we use (see (7.28))

(9.10) |x(s)| = 2
∣∣∣∣
sin (t− t′) log t

t− t′
∣∣∣∣+O(log q).
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Note that the error term O(log q) contributes in total O(R log q), which is
absorbed by the first term T (log q)6 on the right-hand side of (9.9). Next
we replace L(T ) in (9.9) by L(1, χ) log q. This can be justified, because the
modified inequality is trivial unless

(9.11) (log T )L(1, χ)1/2(log q)3 ≤ 1.

Moreover, if (9.11) holds then we find that L(T )� L(1, χ) log q. Finally, we
no longer restrict the points s = 1/2 + it to a dyadic segment T < t ≤ 2T .
The extension to the segment 1 ≤ t ≤ T can be now derived by adding the
new inequalities (9.9) for sets of points in the segments 2ν ≤ t ≤ 2ν+1 with
1 ≤ 2ν ≤ T . We state the result in a self-contained format.

Proposition 9.2. Let s run over a set of points on the critical line
s = 1/2 + it with 2 ≤ t ≤ T which are spaced by at least one. To every s in
the set we associate a point s′ = 1/2 + it′. Then

∑

s

∣∣∣∣
sin (t− t′) log t

(t− t′) log t

∣∣∣∣�
T

log T
(log q)6 + T (log T )L(1, χ)1/2(log q)3(9.12)

+
(log q)5/2

log T

(
T
∑

s

∣∣∣∣
L(s)− L(s′)

s− s′
∣∣∣∣
2)1/2

.

This is our principal estimate from which one can deduce numerous
attractive propositions. But first we wish to emphasize that (9.12) has no
permanent value; it has some quality only in the absence of the Riemann
hypothesis. Indeed, assuming only the lower bound

(9.13) L(1, χ)� (log q)−6

(recall that the Riemann hypothesis for L(s, χ) yields (1.5)) we find that
the middle term on the right side of (9.12) is bounded below by T log T .
On the other hand the left side of (9.12) is trivially bounded by R ≤ T .
Therefore our principal estimate (9.12) is insignificant if (9.13) is true. We
certainly believe in the truth of (9.13), nevertheless as long as L(1, χ) is not
proved to be relatively large (the best known unconditional estimate being
L(1, χ) � q−ε, which is not effective), there are some valuable features of
(9.12).

10. Applications. In this section we derive a few consequences of the
principal estimate (9.12). We begin by eliminating the last term (T∆(T ))1/2

× (log q)5/2(log T )−1.
If all the points s and their companions s′ are zeros of L(s) (double zeros

if s = s′) on the critical line, then

(10.1) `(s) =
L(s)− L(s′)

s− s′ = 0,
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and consequently ∆(T ) = 0. Actually we do not require s and s′ to be
zeros of L(s); the condition (10.1) means that s and its companion s′

are on the same level curve of L(s) (and L′(s) = 0 if s = s′). We can
still assume less than (10.1). For example if s and its companion s′ sat-
isfy

(10.2)
∣∣∣∣
L(s)− L(s′)

s− s′
∣∣∣∣ ≤ (log q)7/2

then ∆(T ) ≤ T (log q)7, so on the right side of (9.12) the last term is ab-
sorbed by the first one. From now on we assume that the points s and their
companions s′ satisfy (10.2). For the points so chosen the estimate (9.12)
reduces to

(10.3)
∑

s

∣∣∣∣
sin (t− t′) log t

(t− t′) log t

∣∣∣∣�
T

log T
(log q)6 + T (log T )L(1, χ)1/2(log q)3.

Choose any T with

(10.4) (log q)A+6 ≤ log T ≤ L(1, χ)−1/2(log q)−A−3

where A is a positive constant; then (10.3) implies that

(10.5)
∑

s

∣∣∣∣
sin (t− t′) log t

(t− t′) log t

∣∣∣∣� T (log q)−A.

We tacitly assumed that L(1, χ) is small to be sure that the interval (10.4)
is not void; precisely for this reason we require

(10.6) L(1, χ) ≤ (log q)−4A−18.

Let R = R(α, T ) be the number of points s in the set with the companions
s′ satisfying (10.2) and

(10.7) |t− t′| ≤ π(1− α)
log t

where 0 < α ≤ 1. For such points we have

(10.8)
sin (t− t′) log t

(t− t′) log t
≥ α.

Hence (10.5) gives the following bound for the number of points in ques-
tion:

(10.9) R� α−1T (log q)−A

where the implied constant is absolute.
In conclusion we rephrase the results obtained in a positive mode.

Proposition 10.1. Let A ≥ 0 and log T ≥ (log q)A+6. Suppose there is
a set of points

S(T ) = {sr = 1/2 + itr; 2 ≤ t1 < . . . < tR ≤ T, tr+1 − tr ≥ 1}
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and a set of companions S′(T ) = {s′r = 1/2 + it′r; r = 1, . . . , R} such that

|tr − t′r| ≤
π(1− α)

log tr
with 0 < α ≤ 1,(10.10)

∣∣∣∣
L(sr)− L(s′r)

sr − s′r

∣∣∣∣ ≤ (log q)7/2.(10.11)

Suppose the number of points in the set S(T ) satisfies

(10.12) R = |S(T )| ≥ cT

α(log q)A

where c is a large absolute constant , effectively computable. Then

(10.13) L(1, χ) ≥ (log T )−2(log q)−2A−6.

We certainly believe that any Hecke L-function satisfies the conditions
of Proposition 10.1, provided q is large. We recommend the points sr to
be zeros of L(s) and s′r to be the nearest zero to sr on the critical line
(if sr has order two or more, then s′r = sr). For this choice (10.11) holds
automatically, while (10.10) asserts that the gaps between chosen pairs of
zeros is smaller than the normal average spacing. We need a considerable
number of such small gaps between consecutive zeros, but less than the true
order of magnitude. In particular taking A = 6 and log T = (log q)12 we get
L(1, χ) ≥ (log q)−42, provided the number of well-spaced zeros of sub-normal
gaps and height up to T is at least T (log T )−1/2.

Remark. If the points of S(T ) are zeros of L(s) then the condition that
they are spaced by at least one can be dropped at the expense of an extra
factor log T in (10.12) (see how this is justified in the proof of Corollary
10.2). Hence we derive Theorem 1.1.

An interesting case is the trivial class group character ψ = 1. In this
case the Riemann zeta function appears as a factor of the Hecke L-function,
L(s) = ζK(s) = ζ(s)L(s, χ), so we can choose the zeros of L(s) from those
of ζ(s) and state the conditions without ever mentioning the exceptional
conductor q. Note we have precise control over α. Taking A = 12 and α =
(log T )−1/2 we derive from Proposition 10.1 the following

Corollary 10.2. Let % = 1/2 + iγ denote the zeros of ζ(s) on the
critical line and %′ = 1/2 + iγ′ denote the nearest zero to % on the critical
line (%′ = % if it is a multiple zero). Suppose that

(10.14) #
{
%; 0 < γ ≤ T, |γ − γ′| ≤ π

log γ

(
1− 1√

log γ

)}
� T (log T )4/5

for any T ≥ 2001. Then

(10.15) L(1, χ)� (log q)−90
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where the implied constant is effectively computable in terms of that in
(10.14).

Proof. The number of zeros % = 1/2 + iγ with t < γ ≤ t+ 1 is bounded
by O(log t). Therefore one can select from the set of zeros in (10.14) a
subset of well-spaced points of cardinality R � T (log T )−1/5. This subset
satisfies the conditions of Proposition 10.1 with A = 14, log T = (log q)20

and α = (log T )−1/2 = (log q)−10, provided q is sufficiently large, giving
L(1, χ) ≥ (log q)−90. For small q the lower bound (10.15) is obtained by
adjusting the implied constant.

Remark. The normal average gap between consecutive zeros % = 1/2+
iγ, %′ = 1/2 + iγ′ of ζ(s) is 2π(log γ)−1. Hence the condition (10.14) refers
to gaps slightly smaller than half the average.
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