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Abstract E-mail spam has become an increasingly impor-

tant problem with a big economic impact in society. For-

tunately, there are different approaches allowing to auto-

matically detect and remove most of those messages, and

the best-known techniques are based on Bayesian decision

theory. However, such probabilistic approaches often suffer

from a well-known difficulty: the high dimensionality of the

feature space. Many term-selection methods have been pro-

posed for avoiding the curse of dimensionality. Neverthe-

less, it is still unclear how the performance of Naive Bayes

spam filters depends on the scheme applied for reducing

the dimensionality of the feature space. In this paper, we

study the performance of many term-selection techniques

with several different models of Naive Bayes spam filters.

Our experiments were diligently designed to ensure statisti-

cally sound results. Moreover, we perform an analysis con-

cerning the measurements usually employed to evaluate the

quality of spam filters. Finally, we also investigate the ben-

efits of using the Matthews correlation coefficient as a mea-

sure of performance.
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1 Introduction

Electronic mail, commonly called e-mail, is a way of ex-

changing digital messages across the Internet or other com-

puter networks. It is one of the most popular, fastest and

cheapest means of communication which has become a part

of everyday life for millions of people, changing the way we

work and collaborate. The downside of such a success is the

constantly growing volume of e-mail spam we receive.

The term spam is generally used to denote an unsolicited

commercial e-mail. Spam messages are annoying to most

users because they clutter their mailboxes. It can be quanti-

fied in economical terms since many hours are wasted every-

day by workers. It is not just the time they waste reading the

spam but also the time they spend removing those messages.

According to annual reports, the amount of spam is

frightfully increasing. In absolute numbers, the average of

spams sent per day increased from 2.4 billion in 20021 to

300 billion in 2010.2 The same report indicates that more

than 90% of incoming e-mail traffic is spam. According

to the 2004 US Technology Readiness Survey,3 the cost of

spam in terms of lost productivity in the United States has

reached US$ 21.58 billion per year, while the worldwide

productivity cost of spam is estimated to be US$ 50 billion.

On a worldwide basis, the total cost in dealing with spam

was estimated to rise from US$ 20.5 billion in 2003, to US$

198 billion in 2009.

Many methods have been proposed to automatic classify

messages as spams or legitimates. Among all proposed tech-

niques, machine learning algorithms have achieved more

1See http://www.spamlaws.com/spam-stats.html.
2See http://www.cisco.com/en/US/prod/collateral/vpndevc/cisco_
2009_asr.pdf.
3See http://www.rockresearch.com/news_020305.php.
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success [14]. Those methods include approaches that are

considered top-performers in text categorization, like sup-

port vector machines and the well-known Naive Bayes clas-

sifiers.

A major difficulty in dealing with text categorization us-

ing approaches based on Bayesian probability is the high

dimensionality of the feature space [7]. The native feature

space consists of unique terms from e-mail messages, which

can be tens or hundreds of thousands even for a moderate-

sized e-mail collection. This is prohibitively high for most of

learning algorithms (an exception is SVM [21]). Thus, it is

highly desirable to develop automatic techniques for reduc-

ing the native space without sacrificing categorization accu-

racy [20].

In this paper, we present a comparative study of the most

popular term-selection techniques with respect to different

variants of the Naive Bayes algorithm for the context of

spam filtering. Despite the existence of other successful text

categorization methods, this paper aims to examine how the

term-selection techniques affect the categorization accuracy

of different filters based on the Bayesian decision theory.

The choice of the Naive Bayes classifiers is due to the fact

that they are the most employed filters for classifying spams

nowadays [4, 25, 38, 46]. They are used in several free web-

mail servers and open-source systems [25, 35, 45]. In spite

of that, it is still unclear how their performance depends

on the dimensionality reduction techniques. Here, we carry

out a comprehensive performance evaluation with the spe-

cific and practical purpose of filtering e-mail spams using

Naive Bayes classifiers in order to improve the filters accura-

cies. Furthermore, we investigate the performance measure-

ments applied for comparing the quality of the anti-spam

filters. In this sense, we also analyze the advantages of using

the Matthews correlation coefficient to assess the quality of

spam classifiers.

A preliminary version of this work was presented at

ICMLA 2009 [2]. Here, we significantly extend the perfor-

mance evaluation. First, we almost double the number of

Naive Bayes filters and term-selection techniques. Second,

and the most important, instead of using a fixed number of

terms, we vary the number of selected terms from 10 to

100%. Additionally, we analyze the performance measure-

ments applied for comparing the quality of the spam classi-

fiers. Finally, we perform a carefully statistical analysis of

the results.

The remainder of this paper is organized as follows. Sec-

tion 2 presents the related work. Section 3 describes the

most popular term-selection techniques in the literature. The

Naive Bayes spam filters are introduced in Sect. 4. In Sect. 5,

we discuss the benefits of using the Matthews correlation

coefficient as a measure of quality for spam classifiers. Sec-

tion 6 presents the methodology employed in our experi-

ments. Experimental results are shown in Sect. 7. Finally,

Sect. 8 offers conclusions and outlines for future work.

2 Related work

The problem of classifying e-mails as spams or legitimates

has attracted the attention of many researchers. Different

approaches have been proposed for filtering spams, such

as rule-based methods, white and black lists, collaborative

spam filtering, challenge-response systems, and many oth-

ers [14].

Among all available techniques, machine learning ap-

proaches have been standing out [14]. Such methods are

considered the top-performers in text categorization, like

rule-induction algorithm [12, 13], Rocchio [27, 41], Boost-

ing [11], compression algorithms [3], Support Vector Ma-

chines [1, 18, 21, 26, 31], memory-based learning [6], and

Bayesian classifiers [5, 22, 38, 40, 46].

In this work, we are interested in anti-spam filters based

on the Bayesian decision theory. Further details about other

techniques used for anti-spam filtering and applications that

employ Bayesian classifiers are available in Bratko et al. [9],

Seewald [45], Koprinska et al. [32], Cormack [14], Song et

al. [46], Marsono et al. [35] and Guzella and Caminhas [25].

The Bayesian classifiers are the most employed filters for

classifying spams nowadays. They currently appear to be

very popular in proprietary and open-source spam filters, in-

cluding several free web-mail servers and open-source sys-

tems [25, 35, 45]. This is probably due to their simplic-

ity, computational complexity and accuracy rate, which are

comparable to more elaborate learning algorithms [35, 38,

46].

A well-known difficulty in dealing with text categoriza-

tion using Bayesian techniques is the high dimensionality

of the feature space [7]. To overcome the curse of dimen-

sionality, many works perform a step of dimensionality re-

duction before applying the anti-spam filter to classify new

messages.

Sahami et al. [40] proposed the first academic Naive

Bayes spam filter. The authors employed the information

gain to select the 500 “best” terms for applying to the clas-

sifier.

Androutsopoulos et al. [6] compared the performance of

the Sahami’s scheme and memory-based approaches when

the number of terms varies from 50 to 700 attributes. In the

experiments, they used Ling-Spam corpus, 10-fold cross-

validation and TCR as the performance measure. The au-

thors claimed that the accuracy rate of the Sahami’s filter

is better when the number of terms is close to 100. In An-

droutsopoulos et al. [5], they showed that word-processing

techniques (e.g., lemmatization and stop-lists) are not rec-

ommended in spam filtering tasks.

Schneider [42] evaluated different Bayesian filters, such

as multivariate Bernoulli, multinomial Boolean and multino-

mial term frequency. Metsis et al. [38] extended the Schnei-

der’s analysis [42] to include flexible Bayes and multivariate

Gauss Naive Bayes spam filters.
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Androutsopoulos et al. [7] compared flexible Bayes, lin-

ear SVM and LogitBoost. Their results indicate that flexible

Bayes and SVM have a similar performance.

It is important to emphasize that all the previous works

have employed the information gain to reduce the dimen-

sionality of the term space. Although several works in spam

literature and commercial filters use term-selection tech-

niques with Bayesian classifiers, there is no comparative

study for verifying how the dimensionality reduction affects

the accuracy of different Naive Bayes spam filters. In this

work, we aim to fill this important gap.

3 Dimensionality reduction

In text categorization the high dimensionality of the term

space (S ) may be problematic. In fact, typical learning al-

gorithms used for classifiers cannot scale to high values of

|S| [44]. As a consequence, a step of dimensionality reduc-

tion is often applied before the classifier, whose effect is to

reduce the size of the vector space from |S| to |S ′| ≪ |S|;
the set S ′ is called the reduced term set.

Dimensionality reduction is beneficial since it tends to

reduce overfitting [48]. Classifiers that overfit the training

data are good at reclassifying the data they have been trained

on, but much worse at classifying previously unseen data.

Moreover, many algorithms perform very poorly when they

work with a large amount of attributes. Thus, a process to

reduce the number of elements used to represent documents

is needed.

Techniques for term-selection attempt to select, from the

original set S , the subset S ′ of terms (with |S ′| ≪ |S|) that,

when used for document indexing, yields the highest effec-

tiveness [19, 20, 48]. For selecting the best terms, we have to

use a function that selects and ranks terms according to how

“important” they are (those that offer relevant information in

order to assist the probability estimation, and consequently

improving the classifier accuracy). A computationally easy

alternative is the filtering approach [29], that is, keeping the

|S ′| ≪ |S| terms that receive the highest score according to

a function that measures the “importance” of the term for

the text categorization task.

3.1 Representation

Considering that each message m is composed of a set of

terms (or tokens) m = {t1, . . . , tn}, where each term tk cor-

responds to a word (“adult,” for example), a set of words (“to

be removed”), or a single character (“$”), we can represent

each message by a vector x = 〈x1, . . . , xn〉, where xk corre-

sponds to the value of the attribute Xk associated with the

term tk . In the simplest case, each term represents a single

word and all attributes are Boolean: Xk = 1 if the message

contains tk or Xk = 0, otherwise.

Alternatively, attributes may be integer values computed

by term frequency (TF) indicating how many times each

term occurs in the message. This kind of representation of-

fers more information than the Boolean one [38]. A third

alternative is to associate each attribute Xk to a normalized

TF, xk = tk(m)
|m| , where tk(m) is the number of occurrences of

the term represented by Xk in m, and |m| is the length of

m measured in term occurrences. Normalized TF takes into

account the term repetition versus the size of the message. It

is similar to the TF-IDF (term frequency-inverse document

frequency) scores commonly used in information retrieval;

an IDF component could also be added to denote terms that

are common across the messages of the training collection.

3.2 Term-selection techniques

In the following, we briefly review the eight most popular

Term Space Reduction (TSR) techniques. Probabilities are

estimated by counting occurrences in the training set M and

they are interpreted on an event space of documents, for ex-

ample: P(t̄k, ci) denotes the probability that, for a random

message m, term tk does not occur in m and m belongs to

category ci .

Since there are only two categories C = {spam(cs),

legitimate(cl)} in spam filtering, some functions are spec-

ified “locally” to a specific category. To assess the value

of a term tk in a “global” category-independent sense,

either the sum fsum(tk) =
∑|C|

i=1 f (tk, ci), the weighted

sum fwsum(tk) =
∑|C|

i=1 P(ci) · f (tk, ci) or the maximum

fmax(tk) = max
|C|
i=1 f (tk, ci) of their category-specific val-

ues f (tk, ci)
4 are usually computed [44].

3.2.1 Document frequency

A simple and effective global TSR function is the document

frequency (DF). It is given by the frequency of messages

with a term tk in the training database M, that is, only the

terms that occur in the highest number of documents are re-

tained. The basic assumption is that rare terms are either

non-informative for category prediction, or not influential in

global performance. In either case, removal of rare terms re-

duces the dimensionality of the feature space. Improvement

in categorization accuracy is also possible if rare terms hap-

pen to be noise terms. We calculate the DF of term tk using

DF(tk) =
tk(M)

|M|
,

where tk(M) represents the number of messages contain-

ing the term tk in the training database M and |M| is the

amount of available messages [48].

4f (tk, ci) corresponds to the score received by the term tk of class ci

for a category-specific term-selection technique f .
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3.2.2 DIA association factor

The DIA association factor of a term tk for a class ci mea-

sures the probability of finding messages of class ci given

the term tk . The probabilities are calculated by term frequen-

cies in the training database M [23] as

DIA(tk, ci) = P(ci |tk).

We can combine category-specific scores using function

fsum or fmax to measure the goodness of a term in a global

feature selection.

3.2.3 Information gain

Information gain (IG) is frequently employed as a term-

goodness criterion in the field of machine learning [39]. It

measures the number of bits of information obtained for cat-

egory prediction by knowing the presence or absence of a

term in a message [48]. The IG of a term tk is computed by

IG(tk) =
∑

c∈[ci ,c̄i ]

∑

t∈[tk,t̄k]

P(t, c) · log
P(t, c)

P (t) · P(c)
.

3.2.4 Mutual information

Mutual information (MI) (also called pointwise mutual in-

formation) is a criterion commonly used in statistical lan-

guage modeling of words’ associations and related applica-

tions [48]. The mutual information criterion between tk and

ci is defined as

MI(tk, ci) = log
P(tk, ci)

P (tk) · P(ci)
.

MI(tk, ci) has a natural value of zero if tk and ci are in-

dependent. To measure the goodness of a term in a global

feature selection, we can combine category-specific scores

of a term into the three alternate ways: fsum, fwsum or fmax,

as previously presented.

IG is sometimes called mutual information, which causes

confusion. It is probably because IG is the weighted aver-

age of the MI(tk, ci) and MI(t̄k, ci), where the weights are

the joint probabilities P(tk, ci) and P(t̄k, ci), respectively.

Therefore, information gain is also called average mutual in-

formation. However, there are two fundamental differences

between IG and MI: first, IG makes a use of information

about term absence, while MI ignores such information and

IG normalizes the MI scores using the joint probabilities

while MI uses the non-normalized score [48].

3.2.5 χ2 statistic

χ2 statistic measures the lack of independence between the

term tk and the class ci . It can be compared to the χ2 dis-

tribution with one degree of freedom to judge extremeness.

χ2 statistic has a natural value of zero if tk and ci are inde-

pendent. We can calculate the χ2 statistic for the term tk in

the class ci by

χ2(tk) =
|M| · [P(tk, ci) · P(t̄k, c̄i) − P(tk, c̄i) · P(t̄k, ci)]2

P(tk) · P(t̄k) · P(ci) · P(c̄i)
.

The computation of χ2 scores has a quadratic complex-

ity, similarly to MI and IG [48]. The major difference be-

tween χ2 and MI is that χ2 is a normalized value, and hence

χ2 values are comparable across terms for the same cate-

gory.

3.2.6 Relevance score

First introduced by Kira and Rendell [30], the relevance

score (RS) of a term tk measures the relation between the

presence of tk in a class ci and the absence of tk in the op-

posite class c̄i :

RS(tk, ci) = log
P(tk, ci) + d

P (t̄k, c̄i) + d
,

where d is a constant damping factor.

Functions fsum, fwsum or fmax can be used to combine

category-specific scores.

3.2.7 Odds ratio

Odds ratio (OR) was proposed by Van Rijsbergen [47] to se-

lect terms for relevance feedback. OR is a measure of effect

size particularly important in Bayesian statistics and logis-

tic regression. It measures the ratio between the odds of the

term appearing in a relevant document and the odds of it ap-

pearing in a non-relevant one. In other words, OR allows to

find terms commonly included in messages belonging to a

certain category [16]. The odds ratio between tk and ci is

given by

OR(tk, ci) =
P(tk, ci) · (1 − P(tk, c̄i))

(1 − P(tk, ci)) · P(tk, c̄i)
.

An OR of 1 indicates that the term tk is equally likely in

both classes ci and c̄i . If the OR is greater than 1, it indi-

cates that tk is more likely in ci . On the other hand, OR less

than 1 indicates that tk is less likely in ci . However, the OR

must be greater than or equal to zero. As the odds of the ci

approaches zero, OR also approaches zero. As the odds of

the c̄i approaches zero, OR approaches positive infinity. We

can combine category-specific scores using functions fsum,

fwsum or fmax.
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Table 1 The most popular
term-selection techniques Technique Denotation Equation

Document frequency DF(tk)
tk(M)
|M|

DIA association factor DIA(tk, ci) P (ci |tk)
Information gain IG(tk)

∑

c∈[ci ,c̄i ]
∑

t∈[tk ,t̄k ] P (t, c) · log P (t,c)
P (t)·P (c)

Mutual information MI(tk, ci) log P (tk ,ci )
P (tk)·P (ci )

χ2 statistic χ2(tk)
|M|·[P (tk ,ci )·P (t̄k ,c̄i )−P (tk ,c̄i )·P (t̄k ,ci )]2

P (tk)·P (t̄k)·P (ci )·P (c̄i )

Relevance score RS(tk, ci) log P (tk ,ci )+d

P (t̄k ,c̄i )+d

Odds ratio OR(tk, ci)
P (tk ,ci )·(1−P (tk ,c̄i ))
(1−P (tk ,ci ))·P (tk ,c̄i )

GSS coefficient GSS(tk) P (tk, ci) · P (t̄k, c̄i) − P (tk, c̄i) · P (t̄k, ci)

3.2.8 GSS coefficient

GSS coefficient is a simplified variant of χ2 statistic pro-

posed by Galavotti et al. [24], which is defined as

GSS(tk) = P(tk, ci) · P
(

t̄k, c̄i

)

− P
(

tk, c̄i

)

· P
(

t̄k, ci

)

.

The greater (smaller) the positive (negative) values, the

stronger the terms tk will be to indicate the membership

(non-membership) of class ci .

For convenience, the mathematical equations of all pre-

sented techniques are summarized in Table 1.5

4 Naive Bayes spam filters

Probabilistic classifiers are historically the first proposed fil-

ters. These approaches are the most employed in propri-

etary and open-source systems proposed for spam filtering

because of their simplicity and high performance [35, 38,

46].

Given a set of messages M = {m1,m2, . . . ,mj , . . . ,

m|M|} and category set C = {spam(cs), legitimate(cl)},
where mj is the j th mail in M and C is the possible label

set, the task of automated spam filtering consists in build-

ing a Boolean categorization function Φ(mj , ci) : M × C →
{True,False}. When Φ(mj , ci) is True, it indicates that

message mj belongs to category ci ; otherwise, mj does not

belong to ci .

In the setting of spam filtering there exist only two cate-

gory labels: spam and legitimate. Each message mj ∈
M can only be assigned to one of them, but not to both.

Therefore, we can use a simplified categorization function

Φspam(mj ) : M → {True,False}. Hence, a message is

classified as spam when Φspam(mj ) is True, and legitimate

otherwise.

5Table 1 shows all term-selection techniques presented in this section
in terms of subjective probability. The equations refer to the “local”
forms of the functions.

The application of supervised machine learning algo-

rithms for spam filtering consists of two stages:

1. Training. A set of labeled messages (M) must be pro-

vided as training data, which are first transformed into

a representation that can be understood by the learning

algorithms. The most commonly used representation for

spam filtering is the vector space model, in which each

document mj ∈ M is transformed into a real vector xj ∈
ℜ|S|, where S is the vocabulary (feature set) and the co-

ordinates of xj represent the weight of each feature in S .

Then, we can run a learning algorithm over the training

data to create a classifier Φspam(xj) → {True,False}.
2. Classification. The classifier Φspam(xj) is applied to the

vector representation of a message x to produce a predic-

tion whether x is spam or not.

From Bayes’ theorem and the theorem of the total prob-

ability, the probability that a message with vector x =
〈x1, . . . , xn〉 belongs to a category ci ∈ {cs, cl} is:

P(ci |x) =
P(ci) · P(x|ci)

P (x)
.

Since the denominator does not depend on the category,

Naive Bayes (NB) filter classifies each message in the cat-

egory that maximizes P(ci) · P(x|ci). In the spam filtering

domain it is equivalent to classify a message as spam (cs )

whenever

P(cs) · P(x|cs)

P (cs) · P(x|cs) + P(cl) · P(x|cl)
> T ,

with T = 0.5. By varying T , we can opt for more true neg-

atives (legitimate messages correctly classified) at the ex-

pense of fewer true positives (spam messages correctly clas-

sified), or vice versa. The a priori probabilities P(ci) can

be estimated as frequency of occurrences of documents be-

longing to the category ci in the training set M, whereas

P(x|ci) is practically impossible to estimate directly be-

cause we would need in M some messages identical to the

one we want to classify. However, the NB classifier makes
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a simple assumption that the terms in a message are condi-

tionally independent and the order they appear is irrelevant.

The probabilities P(x|ci) are estimated differently in each

NB model.

Despite the fact that its independence assumption is usu-

ally over-simplistic, several studies have found the NB clas-

sifier to be surprisingly effective in the spam filtering task

[7, 35].

In the following, we describe the seven most studied

models of NB spam filter available in the literature.

4.1 Basic Naive Bayes

We call Basic NB the first NB spam filter proposed by Sa-

hami et al. [40]. Let S ′ = {t1, . . . , tn} be the set of terms after

the term selection; each message m is represented as a bi-

nary vector x = 〈x1, . . . , xn〉, where each xk shows whether

or not tk will occur in m. The probabilities P(x|ci) are cal-

culated by

P(x|ci) =
n

∏

k=1

P(tk|ci),

and the criterion for classifying a message as spam is

P(cs) ·
∏n

k=1 P(tk|cs)
∑

ci∈{cs ,cl} P(ci) ·
∏n

k=1 P(tk|ci)
> T .

Here, probabilities P(tk|ci) are estimated by

P(tk|ci) =
|Mtk,ci

|
|Mci

|
,

where |Mtk,ci
| is the number of training messages of cate-

gory ci that contain the term tk , and |Mci
| is the total num-

ber of training messages that belong to the category ci .

4.2 Multinomial term frequency Naive Bayes

The multinomial term frequency NB (MN TF NB) repre-

sents each message as a set of terms m = {t1, . . . , tn}, com-

puting each one of tk as many times as it appears in m. In this

sense, m can be represented by a vector x = 〈x1, . . . , xn〉,
where each xk corresponds to the number of occurrences of

tk in m. Moreover, each message m of category ci can be

interpreted as the result of picking independently |m| terms

from S ′ with replacement and probability P(tk|ci) for each

tk [37]. Hence, P(x|ci) is the multinomial distribution:

P(x|ci) = P(|m|) · |m|! ·
n

∏

k=1

P(tk|ci)
xk

xk!
.

Thus, the criterion for classifying a message as spam be-

comes

P(cs) ·
∏n

k=1 P(tk|cs)
xk

∑

ci∈{cs ,cl} P(ci) ·
∏n

k=1 P(tk|ci)xk
> T,

and the probabilities P(tk|ci) are estimated as a Laplacian

prior

P(tk|ci) =
1 + Ntk,ci

n + Nci

,

where Ntk,ci
is the number of occurrences of term tk in the

training messages of category ci , and Nci
=

∑n
k=i Ntk,ci

.

4.3 Multinomial Boolean Naive Bayes

The multinomial Boolean NB (MN Boolean NB) is simi-

lar to the MN TF NB, including the estimates of P(tk|ci),

except that each attribute xk is Boolean. Note that these

approaches do not take into account the absence of terms

(xk = 0) from the messages.

Schneider [43] demonstrates that MN Boolean NB may

perform better than MN TF NB. This is because the multino-

mial NB with term frequency attributes is equivalent to

an NB version with the attributes modeled as following

Poisson distributions in each category, assuming that the

message length is independent of the category. Therefore,

the multinomial NB may achieve better performance with

Boolean attributes if the term frequencies attributes do not

follow Poisson distributions.

4.4 Multivariate Bernoulli Naive Bayes

Let S ′ = {t1, . . . , tn} be the result set of terms after the term

selection. The multivariate Bernoulli NB (MV Bernoulli

NB) represents each message m by computing the presence

and absence of each term. Therefore, m can be represented

as a binary vector x = 〈x1, . . . , xn〉, where each xk shows

whether or not tk will occur in m. Moreover, each message

m of category ci is seen as the result of n Bernoulli trials,

where at each trial we decide whether or not tk will ap-

pear in m. The probability of a positive outcome at trial k

is P(tk|ci). Then, the probabilities P(x|ci) are computed by

P(x|ci) =
n

∏

k=1

P(tk|ci)
xk ·

(

1 − P(tk|ci)
)(1−xk).

The criterion for classifying a message as spam becomes

P (cs) ·
∏n

k=1 P (tk|cs)
xk · (1 − P (tk|cs))

(1−xk)

∑

ci∈{cs ,cl} P (ci) ·
∏n

k=1 P (tk|ci)xk · (1 − P (tk|ci))(1−xk)
> T,

and probabilities P(tk|ci) are estimated as a Laplacian

prior

P(tk|ci) =
1 + |Mtk,ci

|
2 + |Mci

|
,

where |Mtk,ci
| is the number of training messages of cat-

egory ci that comprise the term tk , and |Mci
| is the total



J Internet Serv Appl (2011) 1: 183–200 189

Table 2 Naive Bayes spam
filters NB Classifier P (x|ci) Complexity on

Training Classification

Basic NB
∏n

k=1 P (tk |ci) O(n · |M|) O(n)

MN TF NB
∏n

k=1 P (tk |ci)
xk O(n · |M|) O(n)

MN Boolean NB
∏n

k=1 P (tk |ci)
xk O(n · |M|) O(n)

MV Bernoulli NB
∏n

k=1 P (tk |ci)
xk · (1 − P (tk |ci))

(1−xk) O(n · |M|) O(n)

Boolean NB
∏n

k=1 P (tk |ci) O(n · |M|) O(n)

MV Gauss NB
∏n

k=1 g(xk;µk,ci
, σk,ci

) O(n · |M|) O(n)

Flexible Bayes
∏n

k=1
1

Lk,ci

∑Lk,ci

l=1 g(xk;µk,ci ,l, σci
) O(n · |M|) O(n · |M|)

number of training messages of category ci . For more the-

oretical explanation, consult Metsis et al. [38] and Losada

and Azzopardi [34].

4.5 Boolean Naive Bayes

We denote as Boolean NB the classifier similar to the MV

Bernoulli NB with the difference that it does not take into ac-

count the absence of terms. Hence, the probabilities P(x|ci)

are estimated only by

P(x|ci) =
n

∏

k=1

P(tk|ci),

and the criterion for classifying a message as spam becomes

P(cs) ·
∏n

k=1 P(tk|cs)
∑

ci∈{cs ,cl} P(ci) ·
∏n

k=1 P(tk|ci)
> T ,

where probabilities P(tk|ci) are estimated in the same way

as used in the MV Bernoulli NB.

4.6 Multivariate Gauss Naive Bayes

Multivariate Gauss NB (MV Gauss NB) uses real-valued at-

tributes by assuming that each attribute follows a Gaussian

distribution g(xk;µk,ci
, σk,ci

) for each category ci , where

the µk,ci
and σk,ci

of each distribution are estimated from

the training set M.

The probabilities P(x|ci) are calculated by

P(x|ci) =
n

∏

k=1

g(xk;µk,ci
, σk,ci

),

and the criterion for classifying a message as spam becomes

P(cs) ·
∏n

k=1 g(xk;µk,cs , σk,cs )
∑

ci∈{cs ,cl} P(ci) ·
∏n

k=1 g(xk;µk,ci
, σk,ci

)
> T .

4.7 Flexible Bayes

Flexible Bayes (FB) works similarly to MV Gauss NB.

However, instead of using a single normal distribution for

each attribute Xk per category ci , FB represents the proba-

bilities P(x|ci) as the average of Lk,ci
normal distributions

with different values for µk,ci
but the same one for σk,ci

:

P(xk|ci) =
1

Lk,ci

Lk,ci
∑

l=1

g(xk;µk,ci ,l, σci
),

where Lk,ci
is the quantity of different values that the at-

tribute Xk has in the training set M of category ci . Each of

these values is used as µk,ci ,l of a normal distribution of the

category ci . However, all distributions of a category ci are

taken to have the same σci
= 1√

|Mci
|
.

The distribution of each category becomes narrower as

more training messages of that category are accumulated.

By averaging several normal distributions, FB can approx-

imate the true distributions of real-valued attributes more

closely than the MV Gauss NB when the assumption that

attributes follow normal distribution is violated. For further

details, consult John and Langley [28] and Androutsopoulos

et al. [7].

Table 2 summarizes all NB spam filters presented in this

section.6

5 Performance measurements

According to Cormack [14], the filters should be judged

along four dimensions: autonomy, immediacy, spam identi-

fication, and non-spam identification. However, it is not ob-

vious how to measure any of these dimensions separately,

nor how to combine these measurements into a single one

for the purpose of comparing filters. Reasonable standard

6The computational complexities are according to Metsis et al. [38].
At classification time, the complexity of FB is O(n · |M|) because it
needs to sum the Lk distributions.
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Table 3 All possible prediction
results Notation Composition Also known as

T P Set of spam messages correctly classified True positives

T N Set of legitimate messages correctly classified True negatives

F N Set of spam messages incorrectly classified as legitimate False negatives

F P Set of legitimate messages incorrectly classified as spam False positives

Table 4 Popular performance
measurements used in the
literature

Measurement Equation

True positive rate (Tpr), spam caught (%) or sensitivity Tpr = |T P|
|cs |

False positive rate (Fpr), blocked ham (%) Fpr = |F P|
|cl |

True negative rate (Tnr), legitimate recall or specificity Tnr = |T N |
|cl |

False negative rate (Fnr), spam misclassification rate Fnr = |F N |
|cs |

Spam precision (Spr) Spr = |T P|
|T P|+|F P|

Legitimate precision (Lpr) Lpr = |T N |
|T N |+|F N |

Accuracy rate (Acc) Acc = |T P|+|T N |
|cs |+|cl |

Error rate (Err) Err = |F P|+|F N |
|cs |+|cl |

measures are useful to facilitate comparison, given that the

goal of optimizing them does not replace that of finding the

most suitable filter for the purpose of spam filtering.

Considering the category set C = {spam(cs),

legitimate(cl)} and all possible prediction results presented

in Table 3, some well-known evaluation measures are pre-

sented in Table 4.

All the measures presented in Table 4 consider a false

negative as harmful as a false positive. Nevertheless, failures

to identify legitimate and spam messages have different con-

sequences [14, 15]. According to Cormack [14], misclassi-

fied legitimate messages increase the risk that the informa-

tion contained in the message will be lost, or at least de-

layed. It is very difficult to measure the amount of risk and

delay that can be supported, once the consequences depend

on the relevance of the message content for a given user. On

the other hand, failures to identify spam also vary in impor-

tance, but are generally less critical than failures to identify

non-spam. Viruses, worms, and phishing messages may be

an exception, as they pose significant risks to the user.

Whatever the measure adopted, an aspect to be consid-

ered is the asymmetry in the misclassification costs. A spam

message incorrectly classified as legitimate is a significantly

minor problem, as the user is simply required to remove it.

On the other hand, a legitimate message mislabeled as spam

can be unacceptable, as it implies the loss of potentially im-

portant information, particularly for those settings in which

spam messages are automatically deleted.

To overcome the lack of symmetry, Androutsopoulos et

al. [5] proposed a further refinement based on spam recall

and precision in order to allow the performance evaluation

based on a single measure. They consider a false positive

as being λ times more costly than false negatives, where λ

equals to 1 or 9. Thus, each false positive is accounted as λ

mistakes.

In this case, the total cost ratio (TCR) can be calculated by

TCR =
|cs |

λ|F P| + |F N |
.

TCR is an evaluation measurement commonly employed

to compare the performances achieved by different spam fil-

ters. It offers an indication of the improvement provided by

the filter. A bigger TCR indicates a better performance, and

for TCR < 1, not using the filter is preferable.

The problem of using TCR is that it does not return a

value inside a predefined range [10, 15]. For instance, con-

sider two classifiers A and B employed to filter 600 mes-

sages (450 spams + 150 legitimates, λ = 1). Suppose that

A attains a perfect prediction with F P A = F N A = 0, and

B incorrectly classifies 3 spam messages as legitimate, thus

F P B = 0 and F N B = 3.

In this way, TCRA = +∞ and TCRB = 150. Intuitively,

we can observe that both classifiers achieved a similar per-

formance with a small advantage for A. However, if we ana-

lyze only the TCR, we may mistakenly claim that A is much

better than B . Notice that TCR just returns the information

about the improvement provided by the filter. However, it

does not offer any information about how much the clas-

sifier can be improved. Thus, TCR is not a representative

measure that can assist us to make assumptions about the

performance of a single classifier.
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To avoid those drawbacks, we propose the use of the

Matthews correlation coefficient (MCC) [36] for assessing

the performance of spam classifiers. MCC is used in ma-

chine learning as a quality measure of binary classifications,

which provides much more information than TCR. It returns

a real value between −1 and +1. A coefficient equal to +1

indicates a perfect prediction; 0, an average random predic-

tion; and −1, an inverse prediction.

MCC provides a balanced evaluation of the prediction

(i.e., the proportion of correct predictions for each class),

especially if the two classes are of very different sizes [8]. It

can be calculated by

MCC =
(|T P | · |T N |) − (|F P | · |F N |)

√
(|T P | + |F P |) · (|T P | + |F N |) · (|T N | + |F P |) · (|T N | + |F N |)

.

Using the previous example, the classifiers A and B

achieve MCCA = 1.000 and MCCB = 0.987, respectively.

Now, it is noteworthy that we can make correct assumptions

for the prediction in-between the classifiers as well as for

each individual performance.

As with TCR, we can define an independent rate λ > 1

to indicate how much a false positive is worse than a false

negative. For that, the amount of false positives (|F P |) in

the MCC equation is simply multiplied by λ:

MCC =
(|T P | · |T N |) − (λ|F P | · |F N |)

√

(|T P | + λ|F P |) · (|T P | + |F N |) · (|T N | + λ|F P |) · (|T N | + |F N |)
.

Moreover, MCC can also be combined with other mea-

sures in order to guarantee a fairer comparison, such as

precision × recall, blocked hams (false positive) and spam

caught (true positive) rates.

6 Experimental protocol

In this section, we present the experimental protocol de-

signed for the empirical evaluation of the different term-

selection methods presented in Sect. 3. They were applied

for reducing the dimensionality of the term space before

the classification task performed by the Bayesian filters pre-

sented in Sect. 4.

We carried out this study on the six well-known, large,

real and public Enron7 data sets. The corpora are composed

of legitimate messages extracted from the mailboxes of six

former employees of the Enron Corporation. For further de-

tails about the data set statistics and composition, refer to

Metsis et al. [38].

For providing an aggressive dimensionality reduction, we

performed the training stage using the first 90% of the re-

ceived messages (training set). The remaining ones were

separated for classifying (testing set).

7The Enron data sets are available at http://www.iit.demokritos.gr/
skel/i-config/.

After the training stage, we applied the term-selection

techniques (TSTs) presented in Sect. 3 for reducing the di-

mensionality of the term space.8 In order to perform a com-

prehensive performance evaluation, we varied the number of

terms to be selected from 10 to 100% of all retained terms

in the preprocessing stage.

Next, we classified the testing messages using the Naive

Bayes spam filters presented in Sect. 4. We set the classifica-

tion threshold T = 0.5 (λ = 1) as used in Metsis et al. [38].

By varying T , we can opt for more true negatives at the cost

of fewer true positives, or vice versa.

We tested all possible combinations between NB spam

filters and term-selection methods. In spite of using all the

performance measurements presented in Table 4 for evalu-

ating the classifiers, we selected the MCC to compare their

results.

7 Experimental results

This section presents the results achieved for each corpus. In

the remainder of this paper, consider the following abbrevi-

ations: Basic NB as Bas, Boolean NB as Bool, MN Boolean

NB as MN Bool, MN term frequency NB as MN TF, MV

Bernoulli NB as Bern, MV Gauss NB as Gauss, and flexible

Bayes as FB.

7.1 Overall analysis

Due to space limitations, we present only the best combi-

nation (i.e., TST and % of |S|) for each NB classifier.9 We

define “best result” the combination that obtained the high-

est MCC.

Tables 5, 7, 9, 11, 13, and 15 show the best combination

for each filter and its corresponding MCC. Additionally, we

present the complete set of performance measures for the

best classifiers in Tables 6, 8, 10, 12, 14, and 16.

It can be seen from Table 6 that both Bern with DIAmax

@50% and Basic with RSwsum@80% obtained the same

TCR but different MCC for Enron 1. This happens because

the MCC offers a balanced evaluation of the prediction, par-

ticularly if the classes are of different sizes, as discussed in

Sect. 5.

Table 11 shows another drawback of TCR. Bern with

IG@10% achieved a perfect prediction (|F P| = |F N | = 0)

for Enron 4, attaining MCC = 1.000 and TCR = +∞. On

the other hand, Bool with DIAmax@40% incorrectly classi-

fied one spam as legitimate (|F P | = 0, |F N | = 1), accom-

plishing MCC = 0.996 and TCR = 450. If we analyze only

8For relevance score, we used a damping factor d = 0.1 [44].
9The complete set of results is available at http://www.dt.fee.unicamp.
br/~tiago/Research/Spam/spam.htm

http://www.iit.demokritos.gr/skel/i-config/
http://www.iit.demokritos.gr/skel/i-config/
http://www.dt.fee.unicamp.br/~tiago/Research/Spam/spam.htm
http://www.dt.fee.unicamp.br/~tiago/Research/Spam/spam.htm
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Table 5 Enron 1: the best result
achieved by each NB filter Classifier TST % of |S| MCC

MV Bernoulli NB DIAmax 50 0.885

Basic NB RSwsum 80 0.872

Boolean NB DIAmax 50 0.867

MN Boolean NB ORwsum 50 0.861

MN TF NB ORwsum 50 0.844

MV Gauss NB IG 70 0.839

Flexible Bayes IG 70 0.833

Table 6 Enron 1: two
classifiers that attained the best
individual performance

Measurement Bern & DIAmax Basic & RSwsum

|S ′|(% of |S|) 50 80

Blocked ham(%) 7.06 2.45

Spam caught(%) 99.33 88.00

Tpr(%) & Spr(%) 99.33 & 85.14 88.00 & 93.62

Tnr(%) & Lpr(%) 92.93 & 99.71 97.55 & 95.23

Acc(%) 94.79 94.79

TCR 5.556 5.556

MCC 0.885 0.872

Table 7 Enron 2: the best result
achieved by each filter Classifier TST % of |S| MCC

MV Bernoulli NB ORmax/ORsum 40 0.952

Boolean NB DIAsum 50 0.915

Basic NB RSmax 30 0.909

MV Gauss NB χ2 20 0.896

MN TF NB ORmax/ORsum 40 0.874

MN Boolean NB ORmax/ORsum 40 0.861

Flexible Bayes IG 10 0.855

Table 8 Enron 2: two
classifiers that attained the best
individual performance

Measurement Bern & ORmax/ORsum Bool & DIAsum

|S ′|(% of |S|) 40 50

Blocked ham(%) 2.29 0.23

Spam caught(%) 99.33 88.00

Tpr(%) & Spr(%) 99.33 & 93.71 88.00 & 99.25

Tnr(%) & Lpr(%) 97.71 & 99.77 99.77 & 96.04

Acc(%) 98.13 96.76

TCR 13.636 7.895

MCC 0.952 0.915

the TCR, we may wrongly claim that the first combination

is much better than the second one.

Figure 1 shows the TSTs that attained the best average

prediction (i.e., the highest area under the curve) for each

NB classifier. In this figure, we present the individual results

of each data set.

Note that the classifiers generally worsen their perfor-

mance when the complete set of terms |S| is used for train-

ing, except for MI. There is a trade-off between 30 and 60%

of |S| which usually achieves the best performance for the

other TSTs. Even a set of selected terms composed by only

10–30% of |S| generally offers better results than a set with
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Table 9 Enron 3: the best result
achieved by each filter Classifier TST % of |S| MCC

Boolean NB IG 60 0.991

MV Bernoulli NB IG 30 0.973

Basic NB IG 10 0.950

MN Boolean NB IG 10 0.936

MV Gauss NB χ2 10 0.917

MN TF NB IG 10 0.884

Flexible Bayes MImax 20 0.880

Table 10 Enron 3: two
classifiers that attained the best
individual performance

Measurement Bool & IG Bern & IG

|S ′|(% of |S|) 60 30

Blocked ham(%) 0.00 1.24

Spam caught(%) 98.67 99.33

Tpr(%) & Spr(%) 98.67 & 100.00 99.33 & 96.75

Tnr(%) & Lpr(%) 100.00 & 99.50 98.76 & 99.75

Acc(%) 99.64 98.91

TCR 75.000 25.000

MCC 0.991 0.973

Table 11 Enron 4: the best
result achieved by each filter Classifier TST % of |S| MCC

MV Bernoulli NB IG 10/20 1.000

Boolean NB DIAmax/OR 40 1.000

MN Boolean NB DIAmax/OR 40 0.996

MN TF NB DIAmax/OR 40 0.996

Basic NB DIAsum 40 0.978

Flexible Bayes DIAmax/OR 40 0.974

MV Gauss NB DIAmax/OR 40 0.970

Table 12 Enron 4: two
classifiers that attained the best
individual performance

Measurement Bern & IG Bool & DIAmax/OR

|S ′|(% of |S|) 10/20 40

Blocked ham(%) 0.00 0.00

Spam caught(%) 100.00 100.00

Tpr(%) & Spr(%) 100.00 & 100.00 100.00 & 100.00

Tnr(%) & Lpr(%) 100.00 & 100.00 100.00 & 100.00

Acc(%) 100.00 100.00

TCR +∞ +∞
MCC 1.000 1.000

all the terms of S . On the other hand, it is also noteworthy

that MI often achieves better results when we employ the

complete set of terms |S|.
Regarding the TSTs, the results indicate that {IG, χ2,DF,

OR,DIA} > {RS,GSS} ≫ MI, where “>” means “performs

better than.” However, if we consider the average prediction,

we can see that IG and χ2 are less sensitive to the variation

of |S ′| and they usually offer better results than OR and DIA.

We also verify that the performance of the NB filters

is highly sensitive to the quality of terms selected by the

TSTs and the number of selected terms |S ′|. For instance,

MV Bernoulli NB achieved a perfect prediction (MCC =
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Table 13 Enron 5: the best
result achieved by each filter Classifier TST % of |S| MCC

MV Bernoulli NB ORmax/ORsum 50 0.972

MN Boolean NB ORwsum 50 0.967

Boolean NB ORmax/ORsum 60 0.955

MN TF NB ORmax/ORsum 50 0.954

Flexible Bayes χ2 10 0.931

Basic NB DF 10 0.924

MV Gauss NB GSS 20 0.895

Table 14 Enron 5: two
classifiers that attained the best
individual performance

Measurement Bern & ORmax/ORsum MN Bool & ORwsum

|S ′|(% of |S|) 50 50

Blocked ham(%) 2.67 2.67

Spam caught(%) 99.46 99.18

Tpr(%) & Spr(%) 99.46 & 98.92 99.18 & 98.92

Tnr(%) & Lpr(%) 97.33 & 98.65 97.33 & 97.99

Acc(%) 98.84 98.65

TCR 61.333 52.571

MCC 0.972 0.967

Table 15 Enron 6: the best
result achieved by each filter Classifier TST % of |S| MCC

Boolean NB ORwsum 60 0.929

MV Bernoulli NB ORmax/ORsum 50 0.923

MN Boolean NB ORmax/ORsum 60 0.897

Flexible Bayes IG 10 0.873

Basic NB DF 10 0.866

MN TF NB ORmax/ORsum 50 0.829

MV Gauss NB ORmax/ORsum 50 0.819

Table 16 Enron 6: two
classifiers that attained the best
individual performance

Measurement Bool & ORwsum Bern & ORmax/ORsum

|S ′|(% of |S|) 60 50

Blocked ham(%) 6.00 2.67

Spam caught(%) 98.45 96.88

Tpr(%) & Spr(%) 98.44 & 98.01 96.89 & 99.09

Tnr(%) & Lpr(%) 94.00 & 95.27 97.33 & 91.25

Acc(%) 97.33 97.00

TCR 28.125 25.000

MCC 0.929 0.923

1.000) for Enron 4 when we use 10% of |S| selected

by IG, whereas it attained MCC = −0.082 when we em-

ploy MIsum.

With respect to the filters, the individual and average re-

sults indicate that {Boolean NB, MV Bernoulli NB, Basic

NB} > {MN Boolean NB, MN term frequency NB} >

{flexible Bayes, MV Gauss NB}. MV Bernoulli NB and

Boolean NB acquired the best individual performance for

the most of the data sets. Further, MV Bernoulli NB is the

only approach that takes into account the absence of terms

in the messages. This feature provides more information, as-

sisting the classifiers’ prediction for those cases in which
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Fig. 1 TSTs that attained the best average prediction for each NB classifier by varying the number of selected terms
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Fig. 2 Average rank achieved by TSTs for each spam filter
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Fig. 3 Average rank achieved by TSTs for MN Term Frequency NB spam filter (a) and the best combinations between filters and TSTs (b)

Table 17 Summary of the
observed results Classifier % of |S| Highlights

Best Worst

Basic NB 10–30 DF, GSS, RS, χ2 MI

MV Bernoulli NB 10–20 χ2, GSS, RS, DF MI

MV Bernoulli NB 70 OR DIAmax, MI

Boolean NB 10–70 χ2 MI

Flexible Bayes 10–70 IG DIAsum, MI

MV Gauss NB 10–40 IG, χ2, GSS MI

MN Boolean NB 10–80 IG MI

MN Term Frequency NB 10–50 χ2 MI

MN Term Frequency NB 50–100 OR DF, RS

users generally receive messages with some specific terms,

such as names or signatures.

7.2 Statistical analysis

In the following, we present a statistical analysis of the re-

sults. For that, we used a Friedman’s test [17] for compar-

ing the distribution of ranks among the analyzed algorithms

across the six Enron data sets.

Figures 2 and 3(a) show the average rank achieved by

each TST.10 In those figures, we present the individual re-

sults of each spam classifier. The x axis shows the different

10All color pictures are available at http://www.dt.fee.unicamp.br/

~tiago/Research/Spam/spam.htm.

values of |S|% and the p-values at each level. It is impor-

tant to note that the smaller the geometric area, the better

the technique. According to Nemenyi test [17], the critical

distance (CD) for pairwise comparisons between TSTs at

p = 0.01 is 8.16.

Table 17 summarizes the analysis of the results. For each

classifier, we present the % of |S| in which we observe sta-

tistical differences between the TSTs. In those cases, we

identify three groups. Clearly, the best methods outperform

the worst ones. However, the experimental data are not suf-

ficient for assuming any conclusion to which group the re-

mainder of techniques belong.

For instance, considering the Basic NB, Fig. 2(a) indi-

cates that DF achieved the best average rank for all e-mail

collections, regardless the amount of selected terms (|S|%).

On the other hand, MI accomplished the worst average rank.

http://www.dt.fee.unicamp.br/~tiago/Research/Spam/spam.htm
http://www.dt.fee.unicamp.br/~tiago/Research/Spam/spam.htm
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Fig. 4 Average rank achieved by NB filters when document frequency (a), information gain (b) and χ2 statistic (c) are used

When |S|% varies from 10 to 30%, there is a significant

statistical difference between TSTs. Notice that the perfor-

mance of MIsum and MIwsum is significantly worse than

that of DF, GSS, RS and χ2 for such an interval. However,

we cannot reach any conclusion regarding the remainder of

TSTs.

Another interesting result can be observed in Fig. 2(d).

IG undoubtedly achieved the best average rank for Flexible

Bayes. MI has attained again the worst average rank. The

performance of MIsum and MIwsum is significantly worse

than IG when 10–70% of |S| was selected.

Additionally, we have compared the average rank at-

tained by the statistically best combinations (NB spam filter

and TST), as illustrated in Fig. 3(b). Although the results in-

dicate that Boolean NB with χ2 statistic is better (in average

rank) than any other evaluated combination, the experimen-

tal data is not sufficient to reach any conclusion.

Finally, we have also evaluated how the number of se-

lected terms affects the average rank achieved by the statis-

tically best TSTs (DF, IG and χ2 statistic) for all the com-

pared NB spam filters (Fig. 4).

The analysis suggests that there is a significant statisti-

cal difference between distinct values of |S|% for the com-

binations of Boolean NB with IG, MV Gauss NB with χ2

statistic and MN term frequency NB with χ2 statistic.
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In general, the statistical results are consistent with the in-

dividual best results (Sect. 7.1), with few exceptions. For in-

stance, MV Bernoulli NB has presented good individual per-

formance for each e-mail collection and, however, the statis-

tical analysis indicates that such a filter is inferior to Basic

NB and Boolean NB in average rank. Moreover, the Fried-

man’s test also indicates that Flexible Bayes is not worse

than other filters, as the individual results have presented.

8 Conclusions and further work

In this paper, we have presented a performance evaluation

of several term-selection methods in dimensionality reduc-

tion for the spam filtering domain by classifiers based on the

Bayesian decision theory. We have performed the compar-

ison of the performance achieved by seven different Naive

Bayes spam filters applied to classify messages from six

well-known, real, public and large e-mail data sets, after a

step of dimensionality reduction employed by eight popu-

lar term-selection techniques varying the number of selected

terms.

Furthermore, we have proposed the Matthews correla-

tion coefficient (MCC) as the evaluation measure instead of

the total cost ratio (TCR). MCC provides a more balanced

evaluation of the prediction than TCR, especially if the two

classes are of different sizes. Moreover, it returns a value in-

side a predefined range, which provides more information

about the classifiers’ performance.

Regarding term-selection techniques, we have found that

DF, IG, and χ2 statistic are the most effective in aggressive

term removal without losing categorization accuracy. DIA,

RS, GSS coefficient and OR also provide an improvement

on the filters’ performance. On the other hand, MI generally

offers poor results which frequently worsen the classifiers’

performance.

Among of all presented classifiers, Boolean NB and Ba-

sic NB achieved best individual and average rank perfor-

mance. The results also verify that Boolean attributes per-

form better than the term frequency ones as presented by

Schneider [43].

We also have shown that the performance of Naive Bayes

spam classifiers is highly sensitive to the selected attributes

and the number of selected terms by the term-selection

methods in the training stage. The better the term-selection

technique, the better the filters’ prediction.

Future works should take into consideration that spam fil-

tering is a co-evolutionary problem, because while the filter

tries to evolve its prediction capacity, the spammers try to

evolve their spam messages in order to overreach the classi-

fiers. Hence, an efficient approach should have an effective

way to adjust its rules in order to detect the changes of spam

features. In this way, collaborative filters [33] could be used

to assist the classifier by accelerating the adaptation of the

rules and increasing the classifiers’ performance. Moreover,

spammers generally insert a large amount of noise in spam

messages in order to make the probability estimation more

difficult. Thus, the filters should have a flexible way to com-

pare the terms in the classifying task. Approaches based on

fuzzy logic [49] could be employed to make the comparison

and selection of terms more flexible.
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