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Abstract

Given an untrimmed video and a text query,

natural language video localization (NLVL) is

to locate a matching span from the video that

semantically corresponds to the query. Exist-

ing solutions formulate NLVL either as a rank-

ing task and apply multimodal matching ar-

chitecture, or as a regression task to directly

regress the target video span. In this work,

we address NLVL task with a span-based QA

approach by treating the input video as text

passage. We propose a video span localiz-

ing network (VSLNet), on top of the standard

span-based QA framework, to address NLVL.

The proposed VSLNet tackles the differences

between NLVL and span-based QA through

a simple and yet effective query-guided high-

lighting (QGH) strategy. The QGH guides

VSLNet to search for matching video span

within a highlighted region. Through exten-

sive experiments on three benchmark datasets,

we show that the proposed VSLNet outper-

forms the state-of-the-art methods; and adopt-

ing span-based QA framework is a promising

direction to solve NLVL.1

1 Introduction

Given an untrimmed video, natural language video

localization (NLVL) is to retrieve or localize a tem-

poral moment that semantically corresponds to a

given language query. An example is shown in

Figure 1. As an important vision-language under-

standing task, NLVL involves both computer vision

and natural language processing techniques (Kr-

ishna et al., 2017; Hendricks et al., 2017; Gao et al.,

2018; Le et al., 2019; Yu et al., 2019). Clearly,

cross-modal reasoning is essential for NLVL to

correctly locate the target moment from a video.

Prior works primarily treat NLVL as a rank-

ing task, which is solved by applying multimodal

∗Corresponding author.
1https://github.com/IsaacChanghau/VSLNet

Language Query: Men are celebrating and an old man gives a trophy to a young boy.

Timeline (second)

127.52 139.200.00 194.69

The Ground Truth Moment

Figure 1: An illustration of localizing a temporal moment in
an untrimmed video by a given language query.

matching architecture to find the best matching

video segment for a given language query (Gao

et al., 2017; Hendricks et al., 2018; Liu et al.,

2018a; Ge et al., 2019; Xu et al., 2019; Chen and

Jiang, 2019; Zhang et al., 2019). Recently, some

works explore to model cross-interactions between

video and query, and to regress the temporal loca-

tions of target moment directly (Yuan et al., 2019b;

Lu et al., 2019a). There are also studies to formu-

late NLVL as a sequence decision making problem

and to solve it by reinforcement learning (Wang

et al., 2019; He et al., 2019).

We address the NLVL task from a different per-

spective. The essence of NLVL is to search for a

video moment as the answer to a given language

query from an untrimmed video. By treating the

video as a text passage, and the target moment

as the answer span, NLVL shares significant simi-

larities with span-based question answering (QA)

task. The span-based QA framework (Seo et al.,

2017; Wang et al., 2017; Huang et al., 2018) can be

adopted for NLVL. Hence, we attempt to solve this

task with a multimodal span-based QA approach.

There are two main differences between tradi-

tional text span-based QA and NLVL tasks. First,

video is continuous and causal relations between

video events are usually adjacent. Natural language,

on the other hand, is inconsecutive and words in

a sentence demonstrate syntactic structure. For

instance, changes between adjacent video frames

are usually very small, while adjacent word to-
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kens may carry distinctive meanings. As the result,

many events in a video are directly correlated and

can even cause one another (Krishna et al., 2017).

Causalities between word spans or sentences are

usually indirect and can be far apart. Second, com-

pared to word spans in text, human is insensitive

to small shifting between video frames. In other

words, small offsets between video frames do not

affect the understanding of video content, but the

differences of a few words or even one word could

change the meaning of a sentence.

As a baseline, we first solve the NLVL task

with a standard span-based QA framework named

VSLBase. Specifically, visual features are analo-

gous to that of text passage; the target moment is

regarded as the answer span. VSLBase is trained

to predict the start and end boundaries of the an-

swer span. Note that VSLBase does not address

the two aforementioned major differences between

video and natural language. To this end, we pro-

pose an improved version named VSLNet (Video

Span Localizing Network). VSLNet introduces

a Query-Guided Highlighting (QGH) strategy in

addition to VSLBase. Here, we regard the target

moment and its adjacent contexts as foreground,

while the rest as background, i.e., foreground cov-

ers a slightly longer span than the answer span.

With QGH, VSLNet is guided to search for the tar-

get moment within a highlighted region. Through

region highlighting, VSLNet well addresses the

two differences. First, the longer region provides

additional contexts for locating answer span due to

the continuous nature of video content. Second, the

highlighted region helps the network to focus on

subtle differences between video frames, because

the search space is reduced compared to the full

video.

Experimental results on three benchmark

datasets show that adopting span-based QA frame-

work is suitable for NLVL. With a simple network

architecture, VSLBase delivers comparable perfor-

mance to strong baselines. In addition, VSLNet

further boosts the performance and achieves the

best among all evaluated methods.

2 Related Work

Natural Language Video Localization. The

task of retrieving video segments using language

queries was introduced in (Hendricks et al., 2017;

Gao et al., 2017). Solutions to NLVL need to model

the cross-interactions between natural language and

video. The early works treat NLVL as a ranking

task, and rely on multimodal matching architec-

ture to find the best matching video moment for a

language query (Gao et al., 2017; Hendricks et al.,

2017, 2018; Wu and Han, 2018; Liu et al., 2018a,b;

Xu et al., 2019; Zhang et al., 2019). Although

intuitive, these models are sensitive to negative

samples. Specifically, they need to dense sample

candidate moments to achieve good performance,

which leads to low efficiency and lack of flexibility.

Various approaches have been proposed to over-

come those drawbacks. Yuan et al. (2019b) builds

a proposal-free method using BiLSTM and directly

regresses temporal locations of target moment. Lu

et al. (2019a) proposes a dense bottom-up frame-

work, which regresses the distances to start and

end boundaries for each frame in target moment,

and select the ones with highest confidence as final

result. Yuan et al. (2019a) proposes a semantic con-

ditioned dynamic modulation for better correlating

sentence related video contents over time, and es-

tablishing a precise matching relationship between

sentence and video. There are also works (Wang

et al., 2019; He et al., 2019) that formulate NLVL

as a sequence decision making problem, and adopt

reinforcement learning based approaches, to pro-

gressively observe candidate moments conditioned

on language query.

Most similar to our work are (Chen et al., 2019)

and (Ghosh et al., 2019), as both studies are con-

sidered using the concept of question answering to

address NLVL. However, both studies do not ex-

plain the similarity and differences between NLVL

and traditional span-based QA, and they do not

adopt the standard span-based QA framework. In

our study, VSLBase adopts standard span-based

QA framework; and VSLNet explicitly addresses

the differences between NLVL and traditional span-

based QA tasks.

Span-based Question Answering. Span-based

QA has been widely studied in past years. Wang

and Jiang (2017) combines match-LSTM (Wang

and Jiang, 2016) and Pointer-Net (Vinyals et al.,

2015) to estimate boundaries of the answer span.

BiDAF (Seo et al., 2017) introduces bi-directional

attention to obtain query-aware context represen-

tation. Xiong et al. (2017) proposes a coattention

network to capture the interactions between con-

text and query. R-Net (Wang et al., 2017) integrates

mutual and self attentions into RNN encoder for

feature refinement. QANet (Yu et al., 2018) lever-
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Figure 2: An overview of the proposed architecture for NLVL. The feature extractor is fixed during training. Figure (a) depicts
the adoption of standard span-based QA framework, i.e., VSLBase. Figure (b) shows the structure of VSLNet.

ages a similar attention mechanism in a stacked

convolutional encoder to improve performance. Fu-

sionNet (Huang et al., 2018) presents a full-aware

multi-level attention to capture complete query in-

formation. By treating input video as text pas-

sage, the above frameworks are all applicable to

NLVL in principle. However, these frameworks are

not designed to consider the differences between

video and text passage. Their modeling complexity

arises from the interactions between query and text

passage, both are text. In our solution, VSLBase

adopts a simple and standard span-based QA frame-

work, making it easier to model the differences

between video and text through adding additional

modules. Our VSLNet addresses the differences

by introducing the QGH module.

Very recently, pre-trained transformer based lan-

guage models (Devlin et al., 2019; Dai et al., 2019;

Liu et al., 2019; Yang et al., 2019) have elevated

the performance of span-based QA tasks by a

large margin. Meanwhile, similar pre-trained mod-

els (Sun et al., 2019a,b; Yu and Jiang, 2019; Rah-

man et al., 2019; Nguyen and Okatani, 2019; Lu

et al., 2019b; Tan and Bansal, 2019) are being pro-

posed to learn joint distributions over multimodal-

ity sequence of visual and linguistic inputs. Explor-

ing the pre-trained models for NLVL is part of our

future work and is out of the scope of this study.

3 Methodology

We now describe how to address NLVL task by

adopting a span-based QA framework. We then

present VSLBase (Sections 3.2 to 3.4) and VSLNet

in detail. Their architectures are shown in Figure 2.

3.1 Span-based QA for NLVL

We denote the untrimmed video as V = {ft}
T
t=1

and the language query as Q = {qj}
m
j=1, where

T and m are the number of frames and words, re-

spectively. τ s and τ e represent the start and end

time of the temporal moment i.e., answer span. To

address NLVL with span-based QA framework,

its data is transformed into a set of SQuAD style

triples (Context,Question,Answer) (Rajpurkar

et al., 2016). For each video V , we extract its vi-

sual features V = {vi}
n
i=1 by a pre-trained 3D

ConvNet (Carreira and Zisserman, 2017), where n
is the number of extracted features. Here, V can

be regarded as the sequence of word embeddings

for a text passage with n tokens. Similar to word

embeddings, each feature vi here is a video feature

vector.

Since span-based QA aims to predict start and

end boundaries of an answer span, the start/end

time of a video sequence needs to be mapped to

the corresponding boundaries in the visual fea-

ture sequence V. Suppose the video duration

is T , the start (end) span index is calculated by

as(e) = 〈τ s(e)/T ×n〉, where 〈·〉 denotes the round-

ing operator. During the inference, the predicted

span boundary can be easily converted to the corre-

sponding time via τ s(e) = as(e)/n× T .

After transforming moment annotations in

NLVL dataset, we obtain a set of (V, Q,A) triples.

Visual features V = [v1,v2, . . . ,vn] act as the

passage with n tokens; Q = [q1, q2, . . . , qm] is

the query with m tokens, and the answer A =
[vas ,vas+1, . . . ,vae ] corresponds to a piece in the

passage. Then, the NLVL task becomes to find the

correct start and end boundaries of the answer span,

as and ae.

3.2 Feature Encoder

We already have visual features V = {vi}
n
i=1 ∈

R
n×dv . Word embeddings of a text query Q,

Q = {qj}
m
j=1 ∈ R

m×dq , are easily obtainable

e.g., GloVe. We project them into the same dimen-

sion d, V′ ∈ R
n×d and Q′ ∈ R

m×d, by two linear
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layers (see Figure 2(a)). Then we build the feature

encoder with a simplified version of the embedding

encoder layer in QANet (Yu et al., 2018).

Instead of applying a stack of multiple encoder

blocks, we use only one encoder block. This en-

coder block consists of four convolution layers,

followed by a multi-head attention layer (Vaswani

et al., 2017). A feed-forward layer is used to pro-

duce the output. Layer normalization (Ba et al.,

2016) and residual connection (He et al., 2016) are

applied to each layer. The encoded visual features

and word embeddings are as follows:

Ṽ = FeatureEncoder(V′)

Q̃ = FeatureEncoder(Q′)
(1)

The parameters of feature encoder are shared by

visual features and word embeddings.

3.3 Context-Query Attention

After feature encoding, we use context-query atten-

tion (CQA) (Seo et al., 2017; Xiong et al., 2017; Yu

et al., 2018) to capture the cross-modal interactions

between visual and textural features. CQA first

calculates the similarity scores, S ∈ R
n×m, be-

tween each visual feature and query feature. Then

context-to-query (A) and query-to-context (B) at-

tention weights are computed as:

A = Sr · Q̃ ∈ R
n×d,B = Sr · S

T
c · Ṽ ∈ R

n×d

where Sr and Sc are the row- and column-wise nor-

malization of S by SoftMax, respectively. Finally,

the output of context-query attention is written as:

Vq = FFN
(
[Ṽ;A; Ṽ ⊙A; Ṽ ⊙ B]

)
(2)

where Vq ∈ R
n×d; FFN is a single feed-forward

layer; ⊙ denotes element-wise multiplication.

3.4 Conditioned Span Predictor

We construct a conditioned span predictor by using

two unidirectional LSTMs and two feed-forward

layers, inspired by Ghosh et al. (2019). The main

difference between ours and Ghosh et al. (2019) is

that we use unidirectional LSTM instead of bidi-

rectional LSTM. We observe that unidirectional

LSTM shows similar performance with fewer pa-

rameters and higher efficiency. The two LSTMs

are stacked so that the LSTM of end boundary can

be conditioned on that of start boundary. Then the

hidden states of the two LSTMs are fed into the

Query: He uses the tool to take off all of the nuts one by one.

…… ……

Foreground

𝑎
"

𝑎
#

𝐿 = 𝑎
#
− 𝑎

"
𝛼𝐿 𝛼𝐿 Background

0

1

Figure 3: An illustration of foreground and background of
visual features. α is the ratio of foreground extension.

corresponding feed-forward layers to compute the

start and end scores:

hs
t = UniLSTMstart(v

q
t ,h

s
t−1)

he
t = UniLSTMend(h

s
t ,h

e
t−1)

Ss
t = Ws × ([hs

t ;v
q
t ]) + bs

Se
t = We × ([he

t ;v
q
t ]) + be

(3)

Here, Ss
t and Se

t denote the scores of start and

end boundaries at position t; vq
t represents the t-th

feature in Vq. Then, the probability distributions

of start and end boundaries are computed by Ps =
SoftMax(Ss) ∈ R

n and Pe = SoftMax(Se) ∈ R
n,

and the training objective is defined as:

Lspan =
1

2

[
fCE(Ps, Ys) + fCE(Pe, Ye)

]
(4)

where fCE represents cross-entropy loss function;

Ys and Ye are the labels for the start (as) and end

(ae) boundaries, respectively. During inference,

the predicted answer span (âs, âe) of a query is

generated by maximizing the joint probability of

start and end boundaries by:

span(âs, âe) = argmax
âs,âe

Ps(â
s)Pe(â

e)

s.t. 0 ≤ âs ≤ âe ≤ n
(5)

We have completed the VSLBase architecture

(see Figure 2(a)). VSLNet is built on top of

VSLBase with QGH, to be detailed next.

3.5 Query-Guided Highlighting

A Query-Guided Highlighting (QGH) strategy is

introduced in VSLNet, to address the major differ-

ences between text span-based QA and NLVL tasks,

as shown in Figure 2(b). With QGH strategy, we

consider the target moment as the foreground, and

the rest as background, illustrated in Figure 3. The

target moment, which is aligned with the language

query, starts from as and ends at ae with length

L = ae − as. QGH extends the boundaries of the

foreground to cover its antecedent and consequent
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Figure 4: The structure of Query-Guided Highlighting.

video contents, where the extension ratio is con-

trolled by a hyperparameter α. As aforementioned

in Introduction, the extended boundary could po-

tentially cover additional contexts and also help

the network to focus on subtle differences between

video frames.

By assigning 1 to foreground and 0 to back-

ground, we obtain a sequence of 0-1, denoted by

Yh. QGH is a binary classification module to pre-

dict the confidence a visual feature belongs to fore-

ground or background. The structure of QGH is

shown in Figure 4. We first encode word features Q̃

into sentence representation (denoted by hQ), with

self-attention mechanism (Bahdanau et al., 2015).

Then hQ is concatenated with each feature in Vq

as V̄q = [v̄q
1, . . . , v̄

q
n], where v̄

q
i = [vq

i ;hQ]. The

highlighting score is computed as:

Sh = σ
(
Conv1D(V̄q)

)

where σ denotes Sigmoid activation; Sh ∈ R
n. The

highlighted features are calculated by:

Ṽq = Sh · V̄
q (6)

Accordingly, feature Vq in Equation 3 is re-

placed by Ṽq in VSLNet to compute Lspan. The

loss function of query-guided highlighting is for-

mulated as:

LQGH = fCE(Sh, Yh) (7)

VSLNet is trained in an end-to-end manner by min-

imizing the following loss:

L = Lspan + LQGH. (8)

4 Experiments

4.1 Datasets

We conduct experiments on three benchmark

datasets: Charades-STA (Gao et al., 2017), Ac-

tivityNet Caption (Krishna et al., 2017), and

TACoS (Regneri et al., 2013), summarized in Ta-

ble 1.

Charades-STA is prepared by Gao et al. (2017)

based on Charades dataset (Sigurdsson et al., 2016).

The videos are about daily indoor activities. There

are 12, 408 and 3, 720 moment annotations for

training and test, respectively.

ActivityNet Caption contains about 20k videos

taken from ActivityNet (Heilbron et al., 2015). We

follow the setup in Yuan et al. (2019b), leading

to 37, 421 moment annotations for training, and

17, 505 annotations for test.

TACoS is selected from MPII Cooking Com-

posite Activities dataset (Rohrbach et al., 2012).

We follow the setting in Gao et al. (2017), where

10, 146, 4, 589 and 4, 083 annotations are used for

training, validation and test, respectively.

4.2 Experimental Settings

Metrics. We adopt “R@n, IoU = µ” and “mIoU”

as the evaluation metrics, following (Gao et al.,

2017; Liu et al., 2018a; Yuan et al., 2019b). The

“R@n, IoU = µ” denotes the percentage of lan-

guage queries having at least one result whose Inter-

section over Union (IoU) with ground truth is larger

than µ in top-n retrieved moments. “mIoU” is the

average IoU over all testing samples. In our experi-

ments, we use n = 1 and µ ∈ {0.3, 0.5, 0.7}.

Implementation. For language query Q, we use

300d GloVe (Pennington et al., 2014) vectors to ini-

tialize each lowercase word; the word embeddings

are fixed during training. For untrimmed video V ,

we downsample frames and extract RGB visual fea-

tures using the 3D ConvNet which was pre-trained

on Kinetics dataset (Carreira and Zisserman, 2017).

We set the dimension of all the hidden layers in

the model as 128; the kernel size of convolution

layer is 7; the head size of multi-head attention is

8. For all datasets, the model is trained for 100
epochs with batch size of 16 and early stopping

strategy. Parameter optimization is performed by

Adam (Kingma and Ba, 2015) with learning rate of

0.0001, linear decay of learning rate and gradient

clipping of 1.0. Dropout (Srivastava et al., 2014)

of 0.2 is applied to prevent overfitting.

4.3 Comparison with State-of-the-Arts

We compare VSLBase and VSLNet with the fol-

lowing state-of-the-arts: CTRL (Gao et al., 2017),

ACRN (Liu et al., 2018a), TGN (Chen et al.,

2018), ACL-K (Ge et al., 2019), QSPN (Xu et al.,

2019), SAP (Chen and Jiang, 2019), MAN (Zhang

et al., 2019), SM-RL (Wang et al., 2019), RWM-

RL (He et al., 2019), L-Net (Chen et al., 2019),

ExCL (Ghosh et al., 2019), ABLR (Yuan et al.,
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Dataset Domain # Videos (train/val/test) # Annotations Nvocab L̄video L̄query L̄moment ∆moment

Charades-STA Indoors 5, 338/− /1, 334 12, 408/− /3, 720 1, 303 30.59s 7.22 8.22s 3.59s

ActivityNet Cap Open 10, 009/− /4, 917 37, 421/− /17, 505 12, 460 117.61s 14.78 36.18s 40.18s

TACoS Cooking 75/27/25 10, 146/4, 589/4, 083 2, 033 287.14s 10.05 5.45s 7.56s

Table 1: Statistics of NLVL datasets, where Nvocab is vocabulary size of lowercase words, L̄video denotes average length of
videos in seconds, L̄query denotes average number of words in sentence query, L̄moment is average length of temporal moments
in seconds, and ∆moment is the standard deviation of temporal moment length in seconds.

Model IoU = 0.3 IoU = 0.5 IoU = 0.7 mIoU

C3D model without fine-tuning as visual feature extractor

CTRL - 23.63 8.89 -
ACL-K - 30.48 12.20 -
QSPN 54.70 35.60 15.80 -
SAP - 27.42 13.36 -
SM-RL - 24.36 11.17 -
RWM-RL - 36.70 - -
MAN - 46.53 22.72 -
DEBUG 54.95 37.39 17.69 36.34
VSLBase 61.72 40.97 24.14 42.11
VSLNet 64.30 47.31 30.19 45.15

C3D model with fine-tuning on Charades dataset

ExCL 65.10 44.10 23.30 -

VSLBase 68.06 50.23 30.16 47.15
VSLNet 70.46 54.19 35.22 50.02

Table 2: Results (%) of “R@n, IoU = µ” and “mIoU” com-
pared with the state-of-the-art on Charades-STA.

Model IoU = 0.3 IoU = 0.5 IoU = 0.7 mIoU

TGN 45.51 28.47 - -
ABLR 55.67 36.79 - 36.99
RWM-RL - 36.90 - -
QSPN 45.30 27.70 13.60 -
ExCL∗

63.00 43.60 24.10 -
DEBUG 55.91 39.72 - 39.51
VSLBase 58.18 39.52 23.21 40.56
VSLNet 63.16 43.22 26.16 43.19

Table 3: Results (%) of “R@n, IoU = µ” and “mIoU” com-
pared with the state-of-the-art on ActivityNet Caption.

2019b) and DEBUG (Lu et al., 2019a). In all re-

sult tables, the scores of compared methods are

reported in the corresponding works. Best results

are in bold and second best underlined.

The results on Charades-STA are summarized

in Table 2. For fair comparison with ExCL, we

follow the same setting in ExCL to use the C3D

model fine-tuned on Charades dataset as visual fea-

ture extractor. Observed that VSLNet significantly

outperforms all baselines by a large margin over

all metrics. It is worth noting that the performance

improvements of VSLNet are more significant un-

der more strict metrics. For instance, VSLNet

achieves 7.47% improvement in IoU = 0.7 versus

Model IoU = 0.3 IoU = 0.5 IoU = 0.7 mIoU

CTRL 18.32 13.30 - -
TGN 21.77 18.90 - -
ACRN 19.52 14.62 - -
ABLR 19.50 9.40 - 13.40
ACL-K 24.17 20.01 - -
L-Net - - - 13.41
SAP - 18.24 - -
SM-RL 20.25 15.95 - -
DEBUG 23.45 11.72 - 16.03
VSLBase 23.59 20.40 16.65 20.10
VSLNet 29.61 24.27 20.03 24.11

Table 4: Results (%) of “R@n, IoU = µ” and “mIoU” com-
pared with the state-of-the-art on TACoS.

Module IoU = 0.3 IoU = 0.5 IoU = 0.7 mIoU

BiLSTM + CAT 61.18 43.04 26.42 42.83
CMF + CAT 63.49 44.87 27.07 44.01
BiLSTM + CQA 65.08 46.94 28.55 45.18
CMF + CQA 68.06 50.23 30.16 47.15

Table 5: Comparison between models with alternative mod-
ules in VSLBase on Charades-STA.

0.78% in IoU = 0.5, compared to MAN. With-

out query-guided highlighting, VSLBase outper-

forms all compared baselines over IoU = 0.7,

which shows adopting span-based QA framework

is promising for NLVL. Moreover, VSLNet bene-

fits from visual feature fine-tuning, and achieves

state-of-the-art results on this dataset.

Table 3 summarizes the results on ActivityNet

Caption dataset. Note that this dataset requires

YouTube clips to be downloaded online. We have

1, 309 missing videos, while ExCL reports 3, 370
missing videos. Strictly speaking, the results re-

ported in this table are not directly comparable. De-

spite that, VSLNet is superior to ExCL with 2.06%
and 0.16% absolute improvements over IoU = 0.7
and IoU = 0.3, respectively. Meanwhile, VSLNet

surpasses other baselines.

Similar observations hold on TACoS dataset. Re-

ported in Table 4, VSLNet achieves new state-of-

the-art performance over all evaluation metrics.

Without QGH, VSLBase shows comparable per-
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Module CAT CQA ∆

BiLSTM 26.42 28.55 +2.13
CMF 27.07 30.16 +3.09
∆ +0.65 +1.61 -

Table 6: Performance gains (%) of different modules over
“R@1, IoU = 0.7” on Charades-STA.
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Figure 5: Similarity scores, S, between visual and language
features in the context-query attention. as/ae denote the
start/end boundaries of ground truth video moment, âs/âe

denote the start/end boundaries of predicted target moment.

formance with baselines.

4.4 Ablation Studies

We conduct ablative experiments to analyze the

importance of feature encoder and context-query

attention in our approach. We also investigate

the impact of extension ratio α (see Figure 3) in

query-guided highlighting (QGH). Finally we vi-

sually show the effectiveness of QGH in VSLNet,

and also discuss the weaknesses of VSLBase and

VSLNet.

4.4.1 Module Analysis

We study the effectiveness of our feature encoder

and context-query attention (CQA) by replacing

them with other modules. Specifically, we use

bidirectional LSTM (BiLSTM) as an alternative

feature encoder. For context-query attention, we

replace it by a simple method (named CAT) which

concatenates each visual feature with max-pooled

query feature.

Recall that our feature encoder consists of Con-

volution + Multi-head attention + Feed-forward

layers (see Section 3.2), we name it CMF. With the

alternatives, we now have 4 combinations, listed in

Table 5. Observe from the results, CMF shows sta-

ble superiority over CAT on all metrics regardless

of other modules; CQA surpasses CAT whichever

feature encoder is used. This study indicates that

CMF and CQA are more effective.

Table 6 reports performance gains of different
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Figure 6: Analysis of the impact of extension ratio α in
Query-Guided Highlighting on Charades-STA.
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Figure 7: Histograms of the number of predicted results on
test set under different IoUs, on two datasets.

modules over “R@1, IoU = 0.7” metric. The re-

sults shows that replacing CAT with CQA leads to

larger improvements, compared to replacing BiL-

STM by CMF. This observation suggests CQA

plays a more important role in our model. Specifi-

cally, keeping CQA, the absolute gain is 1.61% by

replacing encoder module. Keeping CMF, the gain

of replacing attention module is 3.09%.

Figure 5 visualizes the matrix of similarity score

between visual and language features in the context-

query attention (CQA) module (S ∈ R
n×m in Sec-

tion 3.3). This figure shows visual features are

more relevant to the verbs and their objects in the

query sentence. For example, the similarity scores

between visual features and “eating” (or “sand-

wich”) are higher than that of other words. We

believe that verbs and their objects are more likely

to be used to describe video activities. Our obser-

vation is consistent with Ge et al. (2019), where

verb-object pairs are extracted as semantic activity

concepts. In contrast, these concepts are automati-

cally captured by the CQA module in our method.
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Language Query: The person starts fixing her hair.

Language Query: The person takes a sandwich from the refrigerator.

21.30s11.40sGround Truth

8.44sVSLBase

VSLNet 11.42s 20.86s

26.97s

22.50s17.20sGround Truth

18.33sVSLBase

VSLNet 17.44s 23.06s

25.23s

(a) Two example cases on the Charades-STA dataset

97.73s54.75sGround Truth

Language Query: He shows a water bottle he has along with a brush, and uses the brush to remove snow from the dash window of a car and the 

water to remove any excess snow left on the windshield.

60.62sVSLBase

VSLNet 61.13s 20.86s

Language Query: A lady talks with the men as they wait on the crane.

117.75s

51.24s36.40sGround Truth

24.45sVSLBase

VSLNet 36.60s 51.38s

51.38s

(b) Two example cases on the ActivityNet Caption dataset

Figure 8: Visualization of predictions by VSLBase and VSLNet. Figures on the left depict the localized results by the two
models. Figures on the right show probability distributions of start/end boundaries and highlighting scores.
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Figure 9: Plots of moment length errors in seconds between
ground truths and results predicted by VSLBase and VSLNet,
respectively.

4.4.2 The Impact of Extension Ratio in QGH

We now study the impact of extension ratio α in

query-guided highlighting module on Charades-

STA dataset. We evaluated 12 different values of

α from 0.0 to ∞ in experiments. 0.0 represents

no answer span extension, and ∞ means that the

entire video is regarded as foreground.

The results for various α’s are plotted in Fig-

ure 6. It shows that query-guided highlighting con-

sistently contributes to performance improvements,

regardless of α values, i.e., from 0 to ∞.

Along with α raises, the performance of VSLNet

first increases and then gradually decreases. The

optimal performance appears between α = 0.05
and 0.2 over all metrics.

Note that, when α = ∞, which is equivalent

to no region is highlighted as a coarse region to

locate target moment, VSLNet remains better than

VSLBase. Shown in Figure 4, when α = ∞, QGH

effectively becomes a straightforward concatena-

tion of sentence representation with each of visual

features. The resultant feature remains helpful for

capturing semantic correlations between vision and

language. In this sense, this function can be re-

garded as an approximation or simulation of the tra-

ditional multimodal matching strategy (Hendricks

et al., 2017; Gao et al., 2017; Liu et al., 2018a).

4.4.3 Qualitative Analysis

Figure 7 shows the histograms of predicted results

on test sets of Charades-STA and ActivityNet Cap-

tion datasets. Results show that VSLNet beats

VSLBase by having more samples in the high IoU

ranges, e.g., IoU ≥ 0.7 on Charades-STA dataset.

More predicted results of VSLNet are distributed

in the high IoU ranges for ActivityNet Caption

dataset. This result demonstrates the effectiveness
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!𝑎! 𝑎"(!𝑎")𝑎!

Language Query: The person turns off the light.

30.12s 46.40s 48.38s

(a) A failure case on the Charades-STA dataset with IoU = 0.11.

!𝑎
!

𝑎
!

Language Query: After, the man grabs the girl’s arm, then the girl pushes the man over the wall.

56.81s 61.83s60.86s

𝑎
"

!𝑎
"

38.29s

(b) A failure case on the ActivityNet Caption dataset with IoU = 0.17.

Figure 10: Two failure examples predicted by VSLNet, as/ae denote the start/end boundaries of ground truth video moment,
âs/âe denote the start/end boundaries of predicted target moment.

of the query-guided highlighting (QGH) strategy.

We show two examples in Figures 8(a) and 8(b)

from Charades-STA and ActivityNet Caption

datasets, respectively. From the two figures, the

localized moments by VSLNet are closer to ground

truth than that by VSLBase. Meanwhile, the

start and end boundaries predicted by VSLNet are

roughly constrained in the highlighted regions Sh,

computed by QGH.

We further study the error patterns of predicted

moment lengths, as shown in Figure 9. The dif-

ferences between moment lengths of ground truths

and predicted results are measured. A positive

length difference means the predicted moment is

longer than the corresponding ground truth, while

a negative means shorter. Figure 9 shows that

VSLBase tends to predict longer moments, e.g.,

more samples with length error larger than 4 sec-

onds in Charades-STA or 30 seconds in Activ-

ityNet. On the contrary, constrained by QGH,

VSLNet tends to predict shorter moments, e.g.,

more samples with length error smaller that −4
seconds in Charades-STA or −20 seconds in Ac-

tivityNet Caption. This observation is helpful for

future research on adopting span-based QA frame-

work for NLVL.

In addition, we also exam failure cases (with

IoU predicted by VSLNet lower than 0.2) shown

in Figure 10. In the first case, as illustrated by Fig-

ure 10(a), we observe an action that a person turns

towards to the lamp and places an item there. The

QGH falsely predicts the action as the beginning

of the moment ”turns off the light”. The second

failure case involves multiple actions in a query,

as shown in Figure 10(b). QGH successfully high-

lights the correct region by capturing the temporal

information of two different action descriptions

in the given query. However, it assigns “pushes”

with higher confidence score than “grabs”. Thus,

VSLNet only captures the region corresponding to

the “pushes” action, due to its confidence score.

5 Conclusion

By considering a video as a text passage, we solve

the NLVL task with a multimodal span-based QA

framework. Through experiments, we show that

adopting a standard span-based QA framework,

VSLBase, effectively addresses NLVL problem.

However, there are two major differences between

video and text. We further propose VSLNet, which

introduces a simple and effective strategy named

query-guided highlighting, on top of VSLBase.

With QGH, VSLNet is guided to search for answers

within a predicted coarse region. The effectiveness

of VSLNet (and even VSLBase) suggest that it is

promising to explore span-based QA framework to

address NLVL problems.
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