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Span of regularization 
for solution of inverse problems 
with application to magnetic 
resonance relaxometry of the brain
Chuan Bi 1*, M. Yvonne Ou 2, Mustapha Bouhrara 3 & Richard G. Spencer 3

We present a new regularization method for the solution of the Fredholm integral equation (FIE) of 
the first kind, in which we incorporate solutions corresponding to a range of Tikhonov regularizers into 
the end result. This method identifies solutions within a much larger function space, spanned by this 
set of regularized solutions, than is available to conventional regularization methods. An additional 
key development is the use of dictionary functions derived from noise-corrupted inversion of the 
discretized FIE. In effect, we combine the stability of solutions with greater degrees of regularization 
with the resolution of those that are less regularized. The span of regularizations (SpanReg) method 
may be widely applicable throughout the field of inverse problems.

Regularization of inverse problems arising from the Fredholm equation of the first kind with 
noisy data.  A large class of inverse problems arise from a discretized Fredholm integral equation (FIE) of the 
first kind. With the introduction of upper and lower bounds based on prior knowledge, this may be written as

where y(t) is the recorded signal, A(t, τ) is called the kernel and f (τ ) is the distribution function (DF) to be 
determined. A discretization of Eq. (1) leads to

and

where y ∈ R
m , A ∈ R

m×n with Ai,j := A(ti , τj)�τ , and f ∈ R
n . Here we assume a uniform discretization 

�τ := τL−τU
n  and τi = τL + (i − 1)�τ for convenience. Depending on the application, soft or hard constraints 

on regularity of f (τ ) may include, among others, degree of smoothness, L2 norm, or total variation1,2

One application of this formulation that is of ongoing interest is to magnetic resonance relaxometry (MRR), 
which estimates the distribution of relaxation times T2 within a sample. Physically, T2 , also called the transverse 
relaxation time, represents the time constant for decay of transverse magnetization. The range of possible T2 
values depends on the sample or tissue under study, but typical values may range from ∼ 10 ms to 2000 ms in 
biomedical studies, with smaller values corresponding to more solid or rigid tissues. Shorter values require 
specialized techniques to detect, depending on available hardware and experimental protocols. The distribu-
tion function f (T2) of such values can be of great importance in characterizing the physical properties and the 
material composition of a sample. In MRR, the kernel function is of the special form A(t,T2) = exp(− t

T2
) and 

the Fredholm integral equation in (1) is a Laplace transform. Explicitly, the signal model is

(1)y(t) =
∫ τU

τL

A(t, τ)f (τ )dτ=: A f ,

(2)y(ti) =
n

∑

j=1

A(ti , τj)f (τj)�τ , i = 1, 2, · · · ,m

(3)y = Af ,
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We emphasize that this serves as a paradigm for a much larger class of physical phenomena, both within 
magnetic resonance studies and otherwise, leading to essentially identical mathematical considerations.

Equation (4) defines the integrated signal from an ensemble of decaying exponentials, with the contribution 
for given values of the decay constant T2 determined by f (T2) . Thus, as t increases, the overall signal decays into 
the noise with a mixture of time constants, the distribution of which is to be determined. Practically, the observed 
data yob ∈ R

m is obtained at measurement times {ti}mi=1 , and the goal is to determine the T2 distribution f ∈ R
n 

as defined by the discretized problem:

where A ∈ R
m×n is the kernel matrix with entries Ai,j = e

− ti
T2,j �T2 and ω is additive random noise. We define 

the SNR of the signal by

where RMS(ω) is the root mean square noise amplitude. The positivity constraint f ≥ 0 arises from the physical 
requirement that f  represents the volume fraction of materials in the sample. The matrix A inherits the smoothing 
property of the integral operator in (1), and can exhibit a condition number that is so large that any direct inver-
sion of the noisy data yob without regularization, such as through non-negative least squares (NNLS) analysis3, 
can be extremely unstable.

From the perspective of inverse problems, determination of the discretized T2 distribution f  can be seen as a 
version of the inverse Laplace transform (ILT), a classic ill-posed problem. An important method for addressing 
the numerical instability inherent in this process is through Tikhonov regularization. In the context of NNLS, 
where f  is everywhere non-negative, the native problem

is replaced by the closely related problem

The second term serves to penalize large values of the norm of the recovered DF, limiting sensitivity to noise. 
The regularization parameter � acts to titrate the relative importance of the two terms in Eq. (8). The recovered DF 
f� may be highly dependent on this parameter; selection of an optimal � remains the topic of active research. This 
formulation in effect replaces the original ill-posed problem, Eq. (7), by Eq. (8), a more well-behaved but different 
problem2. Additionally, prior application-dependent assumptions regarding f̂ , such as sparsity or smoothness, can 
be introduced into the minimization by introduction of suitable alternative or additional regularization terms3,4.

Methods of parameter selection.  The problem of selecting � in Tikhonov regularization has been stud-
ied for decades, with no universal approach having been identified. Classical methods such as the Morozov dis-
crepancy principle (DP)5, the L-curve6–9, and generalized cross-validation (GCV)10–12 define criteria by which to 
select � . For example, the DP seeks a value of � such that the size of the first term in Eq. (8), called the residual, 
is matched to the noise level in the observed data. The L-curve method identifies a value of � that defines the 
corner of the L-shaped curve defined by the log-log plot of the solution norm against the norm of the residual. 
GCV selects lambda using an expression based on leave-one-out cross-validation. All of these methods seek to 
identify one optimal � and its corresponding regularized solution, and discard all other solutions. Variations on 
this include the elastic net, which incorporates two different � ’s serving what are essentially distinct roles, but still 
identifies single optimal values for each13. A survey of methods can be found in14.

The central theme of the present work is that discarding all results except the reconstruction corresponding 
to a single selected � leads to loss of information that could contribute to the accurate recovery of the DF, f  . We 
have observed that the effects of regularization, for example, variations of widths, amplitudes, and shapes of 
recovered distributions f�j , depend on the underlying distribution f  . This motivates the notion that the solutions 
corresponding to values of � other than the one selected may contain additional information, so that improved 
results may be obtained by incorporating these solutions into the final determination of f  . Accordingly, we 
describe a new method, termed span of regularization, or SpanReg, for which the recovered distribution function 
is a linear combination of regularized solutions across a range of �’s. This expands the space of functions from 
which the desired DF is drawn.

Gaussian mixture representation and application to determining T
2
 distribution func-

tions.  We use a Gaussian mixture representation as a dictionary to describe the unknown DF, f  , as required 
for our analysis. One approach would be to write the DF as the linear combination of a finite set of Gaussian 
functions gi(τ ) := g(τ ;µi , σi) , with µi and σi representing the unknown mean and standard deviation (SD) of 
a given element of that set. The discretization of the gi ’s along the abscissa follows from the discretization of f  

(4)y(t) =
∫

e
− t

T2 f (T2)dT2.

(5)yob = Af + ω, f ≥ 0,

(6)SNR =
max

∣

∣yob
∣

∣

RMS(ω)
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along the abscissa, that is, the choice of the set of abscissa T2 values15. With a prior assumption of the number M 
of Gaussian components required for an adequate description, the determination of f  can be recast as the non-
linear least squares problem:

Alternatively, by establishing a dictionary of Gaussian functions of specified µi and σi16,17 and incorporating the 
non-negativity of f  , we instead have the problem:

where Gjk = gk(τj) , i.e. the columns of the matrix G , 
{

gi
}

 , represent an element of the dictionary and c is the 
vector of coefficients respectively assigned to these elements. The first approach above has the advantage of sig-
nificantly reducing the effective dimensionality of the problem18, but requires the solution of the highly nonlinear 
problem of determining the 2M variables µi and σi . On the other hand, the second approach requires only suf-
ficient knowledge of the system under study to permit a reasonable selection of dictionary functions; nonlinearity 
is introduced through the positivity constraint. This problem becomes increasingly ill-posed with increasing M, 
and will in general be severely ill-posed due both to the required value of M and the non-orthogonality of the 
Gaussian dictionary functions.

Motivation for SpanReg.  Because of the ill-posedness of the problem under consideration, regularization 
is required for constructing f  from yob . The goal of SpanReg is to provide an inversion scheme that is more robust 
to noise as compared with conventional methods and to address the difficulty of choosing the ”best” regulariza-
tion parameter by simultaneously incorporating different levels of regularization into the reconstruction scheme. 
We consider Tikhonov regularization with parameter � and denote by A−1

�
 the operator mapping observations 

to a regularized inverse solution to the linear problem yob(t) = A f + ω with regularization parameter � ; this 
is the well-known pseudoinverse19. Note that our problem of interest is constrained, so that the corresponding 
operator mapping data to regularized solutions is not linear. However, the linear example serves well to illustrate 
the underlying idea of SpanReg as follows.

For f (τ ) =
∑M

k=1 ckgk(τ ) , given the data and the linear inversion operator A−1
�

 , we have

Imposing the constraint 
∑M

k=1 ck = 1 results in

Therefore, if the noise ω were known, then the solution {ck}Mk=1 could be recovered by finding what are in 
effect the coordinates of the inversion of the noise-corrupted data yob with respect to the noise-corrupted basis 
{A−1

�

(

A gk + ω
)

}Mk=1 . Because the noise ω in experimental data is unknown, we instead form the ensemble 
average on both side of (9) to obtain

If the observation yob could be repeated a sufficient number of times, then the ensemble average of the recov-
ered results will be within the span of these noise-corrupted basis functions. In actual practice, data is generally 
obtained from a single or from a small number of observations; SpanReg attempts to find within this span the 
solution that is closest to the underlying distribution in the least square sense, corresponding an optimal set {ck}.

We now discuss the artificial case in which f ≥ 0 is known, from which a noise-corrupted signal yob = Af + ω 
can be created; we can determine f�j for specific values of �j within a set of regularization parameters � by solv-
ing Eq. (8). As indicated above, the conventional methods for selection of � in effect evaluate results for several 
� ’s and retain only the one corresponding to an optimal value, discarding the others. In contrast, we define our 
approximation of f  as a linear combination of regularized solutions:

where 
{

αj
}N

1
 is the solution to the least squares problem

argmin
{µi ,σi}
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∥

∥

∥
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When f  is known, the set of αj ’s defined in Eq. (11), with each αj corresponding to an element of a linear 
combination of regularized solutions, can always be selected to provide an improvement in signal reconstruction 
as compared to selection of any single value of lambda. This motivates the SpanReg approach for reconstructing 
an unknown distribution. However, an algorithm for selecting the best set 

{

αj
}N

j=1
 in the approximation:

for an unknown DF, f  , remains to be developed.
An additional relationship arises from the representation of f  as a linear combination of Gaussian dictionary 

functions 
{

gi
}M

i=1
 , which we impose with a non-negativity constraint on the expansion coefficients:

We consider the case in which the integral over f  equals 1, so that it represents a probability distribution 
function (PDF). Since 

∫

g(σi ,µi)dτ = 1 , we have the requirement that 
∑

ci = 1 . The detailed implementation 
of SpanReg is presented in the “Materials and methods” section.

Results
Applications of SpanReg to one‑dimensional magnetic resonance relaxometry.  We illustrate 
the application of SpanReg to the inverse problem of MRR for transverse relaxation in one dimension, whose 
discretized version is described in Eq. (5). The objective is to approximate the distribution of transverse relaxa-
tion times T2 within a sample from the signal yob . In the context of our formalism, this distribution function 
takes the role of f  . T2 values will be expressed in milliseconds (ms).

Comparison of SpanReg and classical parameter selection methods.  We evaluated the perfor-
mance of SpanReg for the reconstruction of a range of DFs consisting of two Gaussian functions with means 
(µ1,µ2) and standard deviations (σ1, σ2) :

We examine DF’s with σ1 taking values in the set {2+ 0.75k, k = 0, 1, 2, 3, 4} (ms) and σ2 = 3σ1 . The separa-
tion between the Gaussians is defined by their ratio of peak separation (RPS), defined as RPS = µ2

µ1
 . We evalu-

ate DF’s with RPS = 1+ 0.75k , k = 0, 1, 2, 3, 4 for each (σ1, σ2) pair. None of the Gaussian functions in these 
distributions is included in the Gaussian dictionary 

{

gi
}

 to avoid trivial solutions. We compare the recovery 
of each of the 25 resulting DF’s (Fig. 1) obtained from SpanReg and from the DP; here and elsewhere, by DP 
we indicate NNLS using the DP to set the Tikhonov regularization parameter. This is a particularly suitable 
comparison since for both methods, the noise level in the data must be known or estimated. As noted, the noise 
level can be estimated with good accuracy in the case of the superposition of exponentially decaying signals such 
as in an MRR experiment. The discretization along the T2 axis is defined as above, with n = 200 evenly spaced 
values within the range [1, 200] ms. The measurement time vector is defined as m = 150 sampling times evenly 
distributed in t ∈ [0.3, 400] ms. The additive noise level is set to result in SNR of 500. The range of � ’s used for 
Tikhonov regularization was from 10−6 to 10 with N = 16 logarithmically spaced values.

For the implementation of DP, the selected �DP is determined by the following criterion2:

where νDP ≥ 1 and �ω�2 ≈
√
mσ(ω) . We chose the safety factor νDP to be νDP = 1.05.

Figure 1 shows the comparison of SpanReg with the DP for recovery of the indicated underlying DF for a 
single noise realization. As seen, SpanReg exhibits greater ability to resolve the two components of the DF and 
accurately model their amplitudes.

Figure 2 presents the comparison of the two reconstruction methods in terms of heat maps of mean relative 
error, defined respectively for SpanReg and the DP by

where f∗ is the reconstructed distribution and fsim is defined in Eq. (14). Thus, in terms of relative errors, a nega-
tive εdiff  indicates the superiority of SpanReg reconstruction. We see that by this summary metric of relative 
error, SpanReg outperforms DP across all DF’s studied. Indeed, the errors for SpanReg are fairly constant across 
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distributions, while the errors for DP increase as RPS increases over the illustrated range. Thus, as the component 
centers deviate from each other, including when closely-spaced, SpanReg is more able to accurately resolve them. 
In addition, both methods tend to perform better as the widths of the Gaussian distributions σ of the target DF 
increase; this highlights the smoothing characteristics of the L2 norm.

Additional insights are provided by comparing the heat map for the relative error metric described in Eq. 
(16), of use in summarizing the quality of reconstructions across a wide range of target DFs, with Fig. 1. From 
the latter we see that for closely-spaced Gaussian components, represented by the second column of Fig. 1, the 
reconstructions are not only quantitatively, but also qualitatively, different. The DP reconstruction incorrectly 
provides a single-component reconstruction in a number of cases, while SpanReg is clearly able to resolve the two 
underlying components. Therefore, it is important to examine the actual recovered T2 distributions in addition 
to comparing the single summary metric defined by relative error.

This is further highlighted in Figs. 3 and 4, comparing SpanReg and DP on two target distributions with 
respectively a greater and a lesser RPS. We show the results of reconstructions over 10 noise realizations, as 
well as a comparisons of the corresponding signals generated by these reconstructions. In Fig. 3, SpanReg, as 
compared to the DP, provides a much more accurate reconstruction of the two components in the DF, although 
both methods accurately recover two resolved components. In the much more ill-posed problem illustrated in 
Fig. 4, SpanReg clearly outperforms the DP in terms of stability with respect to noise and ability to resolve two 
closely-spaced peaks. DP fails to do this for all of the 10 noise realizations, while SpanReg succeeds in 7 out of 10 
cases. Decreasing the DP safety factor improves the resolution performance of the DP, but introduces spurious 
peaks and greater noise sensitivity.

Figure 1.   Comparison of the recovered distributions from SpanReg (red) and the discrepancy principle (blue) 
with the true underlying distributions (black). Each panel represents a T2 distribution consisting of the sum 
of two Gaussian functions as in Eq. (14). The value of σ1 , the standard deviation of the left-most component, 
increases from 2 ms (top row) to 5 ms (bottom row) with σ2 = 3σ1 throughout. Across each row, the ratio 
of peak separation (RPS) increases from 1 (left-most column) to 4 (right-most column), with the left-most 
distribution centered at µ = 35 ms.
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Stability with respect to choice of regularization parameters.  Selection of the optimal regulariza-
tion parameter � is of critical importance in Tikhonov regularization, with deviations from that optimal value 
potentially resulting in substantial differences in the reconstructed DF. Figure S1 from the Supplementary Infor-
mation shows the solutions obtained from Tikhonov regularization and from SpanReg over different ranges of �
’s, including in all cases the optimal value, �opt . In this simulation with a known underlying distribution, �opt is 
determined by the L2 error metric describing the difference between the underlying DF and the reconstructed 
DF:

Once �opt is determined, stability is quantified by comparing the DF recovered using the different values of 
� from the set S =

{

�opt

24
, . . . ,

�opt

21
,
�opt

20
,
�opt

2−1 , . . . ,
�opt

2−5

}

 . To apply this analysis to the DP, we compare solutions 
obtained with the different values of � . We also show the differences �f �opt

2j

= f�opt − f �opt
2j

 between the results 

for these � ’s and the result for f�opt ; larger values in these difference plots indicate less stability. For SpanReg, we 

(17)�opt = argmin
�

{�f� − fsim�2}.

Figure 2.   Heat maps showing relative errors for SpanReg (upper-left), discrepancy principle (upper-right), and 
their differences εdiff (bottom), as defined in the text.
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perform the analysis using different triads of adjacent values of � from S . We form the reconstruction using the 
three � ’s centered around �opt , denoted fSpanReg,�opt:

where the values {α1,α2,α3} are obtained from SpanReg. Then, to evaluate stability with respect to choice of � , 
we plot results for SpanReg using three shifted values of �’s. For example, for an integer −3 ≤ j ≤ 4,

(18)fSpanReg,�opt := α1f �opt
2

+ α2f�opt + α3f �opt
2−1

,

Figure 3.   Reconstruction of the sum of two Gaussians with (µ1, σ1) = (30 ms, 3 ms) and (µ2, σ2) = (120 ms, 
5 ms), shown in black in the top and middle rows; SNR = 500. Each column corresponds to a single noise 
realization. Top: DP (blue), Middle: SpanReg (red), Bottom: signals generated from the DP solution and the 
SpanReg solution.

Figure 4.   Reconstruction of the sum of two Gaussians with (µ1, σ1) = (30 ms, 3 ms) and (µ2, σ2) = (50 ms, 
5 ms), shown in black in the top and middle rows; SNR = 500. Each column corresponds to a single noise 
realization. Top: DP (blue), Middle: SpanReg (red), Bottom: signals generated from the DP solution and the 
SpanReg solution.
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The comparison of the results for shifted triples of � ’s defines the stability of SpanReg with respect to choice 
of regularization parameter. We also plot the difference between the DF recovered by adjacent shifted triplets to 
the recovery obtained using the triplet centered on f�opt , i.e. we define �f

SpanReg,
�opt

2j

= fSpanReg,�opt − f
SpanReg,

�opt

2j

 . 

These plots quantify the changes in the recovered DF resulting from a suboptimal selection of � in SpanReg. A 
larger magnitude in these difference plots corresponds to lower stability with respect to choice of � and 
conversely.

An example of this is shown in the Supplementary Information, Fig. S1, where results for the illustrated 
two-component Gaussian DF are shown for optimally regularized DP solutions and for solutions obtained 
with sub-optimal regularization (left panels). Corresponding solutions obtained with SpanReg using different 
sub-sequences of regularized solutions are also shown (right panels). Departures from the optimal regulariza-
tion solutions obtained for Tikhonov regularization (lower left panel) are substantially larger than those using 
SpanReg (lower right panel). The corresponding L2 norms of the differences are

for Tikhonov regularization and

for SpanReg, respectively, indicating a roughly 60% improvement in stability using SpanReg as compared to 
the DP.

Myelin water fraction mapping of the human brain.  Having shown the effectiveness of SpanReg on 
a wide range of simulated data, we now demonstrate its application to brain imaging. In particular, we compare 
the results of SpanReg, NNLS regularization using the DP, and non-regularized NNLS for conventional myelin 
water fraction (MWF) mapping in the human brain. In brief, this method involves acquiring a decaying bi-
exponential signal for each image pixel, from which a DF of spin-lattice relaxation times T2 is recovered. Given 
the high SNR of these images, we restrict our attention to the Gaussian noise approximation. Note again that the 
simulations above were targeted to parameter ranges appropriate for this problem of in vivo myelin mapping.

While the ground truth for brain MWF in vivo is unknown, we can still implement numerical experiments 
using this data to compare different reconstruction approaches. First, we defined the MWF as the integral of the 
T2 DF between abscissa values of T2 = 6 ms and T2 = 40 ms15,20 for each pixel and created the corresponding 
map. To compare two different MWF maps A and B , we define the scaled absolute difference (SAD) by:

where SM =
∑

i,j

∣

∣Mi,j

∣

∣ is the sum of the absolute values of the elements of a matrix Mi,j . In this way, if SAD(A,B1) , 
as a comparison between a reference map A and an approximation B1 , is smaller than SAD(A,B2) , we say that 
the reconstructed MWF map B1 exhibits superior accuracy to B2.

Because absolute magnetic resonance signal amplitudes are arbitrarily scaled by various sample characteris-
tics, experimental settings and instrument properties, it is necessary to normalize the data so that 

∫

f (T2)dT2 = 1 
before applying SpanReg. This represents normalization of the PDF represented by the DF f (T2) . Then, from 
Eq. (4) written in terms of TE, the signal must be normalized to its initial value, that is y(TE = 0) = 1 . This is 
problematic for two reasons. First, for experimental reasons, the spin-echo experiment in particular has meas-
urement times at i × TE with i = 1 rather than i = 0 . This limitation does not apply to other similarly-modeled 
experiments, such as diffusion-sensitizing pulse sequences. In addition, however, in any experiment, all data 
points are corrupted by noise so that normalization of the acquired signal by its initial value is not equivalent 
to normalizing the underlying signal, which is what is desired; the underlying and observed signals differ by 
noise at each data point. Lacking a measured signal value at TE = 0 for normalization, we approximate it from 
what would have been the TE = 0 value, given the recovered distribution. This value is equal to ‖fLS‖1 according 
to the following:

where the NNLS estimate of fLS ≥ 0 is determined from non-normalized data according to Eq. (7).
We note that in effect, Eq. (7) is equivalent to Eq. (5), which is the original problem. In the current context, 

we are not representing the solution to Eq. (7) to be an accurate estimate of the entire DF f  , but rather as the 
best available estimate of fTE=0 . This approach introduces no additional bias though use of regularization. In 
our imaging analyses, the observed data yob is divided by ‖fLS‖1 for each pixel. This analysis was not required 
for the simulation experiments above, where we illustrated SpanReg in the more usual case of signals with an 
initial abscissa value of zero. In the “Results” section, we implement this approach to reconstruct SpanReg-based 
MWF maps.
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We present two distinct analyses for the brain dataset. First, we define a high-quality reference MWF map, 
based on pixel-wise reconstructions from SpanReg on NESMA-filtered data20. This serves as a standard of com-
parison for three reconstruction methods, SpanReg and NNLS with DP regularization and without regularization, 
for two different levels of SNR. Then, we work directly with NESMA-filtered (high SNR) and non-filtered (low 
SNR) images using all three reconstruction methods to demonstrate their performance with respect to SNR; a 
comparison is made between results obtained at high and low SNR for each method separately.

Comparison of reconstruction methods with respect to a reference image.  We obtained the reference MWF map 
shown in the uppermost panel of Fig. 5 as follows. First, we obtained a stack of successively T2-weighted images 
from the data acquisition sequence as described above; this defines a decay curve corresponding to each pixel. 
However, before processing these curves as described in detail above, we first apply the NESMA filter to the 
stack of images, resulting in pixel-wise decay curves of greatly improved SNR. The decays are then inverted using 
SpanReg to obtain a T2 distribution for each pixel. The reference MWF map is formed from these distribution as 
described above, by taking the integral of the DF’s up to T2  = 40 ms for each pixel separately.

Figure 5.   Uppermost image: reference MWF map; MWF maps generated from high SNR (top row; SNR = 800) 
and low SNR (bottom row; SNR = 200) data using SpanReg, NNLS with the DP, and non-regularized NNLS.
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The MWF maps created from high and low SNR data for comparison, shown in the same figure, were gener-
ated as follows. The high-quality T2 distribution functions used to define the reference map were used to generate 
noiseless decay curves, to which Gaussian noise was added to achieve SNR = 800 (high SNR) and SNR = 200 (low 
SNR) in the decays. The decay curve at each pixel corresponds to yob in Eq. (5). We then reconstructed the T2 
DF’s using SpanReg, and NNLS with DP regularization and without regularization. MWF maps were constructed 
from these and compared to the reference map using the SAD metric, Eq. (19).

Visual inspection shows that the SpanReg analysis yields a result more closely resembling the reference 
image than either of the other two methods. Quantitatively, the scaled absolute difference (SAD) between the 
reference map and the derived MWF maps from the high SNR dataset are: 0.32 (compared to SpanReg), 0.38 
(NNLS with DP regularization), and 0.59 (non-regularized NNLS). The corresponding values for the low SNR 
dataset are: 0.39 (SpanReg), 0.58 (DP regularization), and 0.68 (non-regularized). Thus, by this metric, SpanReg 
outperforms DP for the high SNR and low SNR datasets by 16% resp. 33% , and NNLS by 46% resp. 43%.

Comparison of performance for high versus low SNR data.  We now examine the sensitivity to noise of the recon-
struction methods. Even with spatially invariant noise, SNR varies across an image because of signal strength 
variations. Ideally the entire SpanReg algorithm would be applied separately for each pixel according to its SNR. 
This is not practical for typical images; in our case, the images consist of ∼ 25,000 pixels. Therefore, we divided 
the full range of image SNR into 18 bins over the range of 10 to 800, encompassing both unfiltered and NESMA-
filtered pixel-wise decay signals. The same Gaussian basis functions were used in all cases, but different SpanReg 
parameter values and functions 

{

βi,�j

}

 , 
{

gi,�j

}

 were obtained for each of these 18 SNR bins based on its SNR. 
The corresponding 

{

βi,�j

}

 and 
{

gi,�j

}

 were used to reconstruct the data from each pixel with SNR within that 
bin. MWF for each pixel was then derived from the resulting distributions as described above, by integrating the 
DF’s up to 40 ms. The resulting MWF maps are displayed in the Supplementary Information, Fig. S2.

We first note that the results for SpanReg are visually more similar at the two noise levels than are the 
results for the other reconstruction methods, indicating greater stability with respect to noise. In addition, the 
MWF distributions recovered by DP and LS show prominent edge effects surrounding the ventricles, as well 
as myelin voids towards the brain periphery. In contrast, the MWF maps obtained with SpanReg show a much 
more qualitatively normative pattern. Quantitatively, the SAD between the high and low SNR MWF maps, 
SAD

(

Mhigh SNR,Mlow SNR

)

 , for the three reconstruction methods are 0.35 for SpanReg, 0.43 for DP, and 0.63 for 
NNLS. This is consistent with the results shown in Fig. 5.

Discussion
In this paper, we present a new approach, SpanReg, to obtain a regularized solution of the discretized Fredholm 
equation of the first kind. The analysis followed directly from the Fredholm equation of the first kind, so that we 
expect this technique to be widely applicable to a large category of inverse problems requiring regularization. 
The idea of the method is to incorporate information content over a range of regularized solutions rather than 
to attempt to identify a single optimal regularization parameter, � . For inverse problems of a type arising exten-
sively in MR relaxometry, we provided simulations demonstrating greater accuracy of SpanReg as compared 
to conventional Tikhonov regularization using the DP for selection of � . We also showed that SpanReg is more 
stable with respect to the choice of regularization parameters, in the sense that the departure from an optimal 
solution is smaller when the solution arrived at using the optimal � is not incorporated. The method was also 
demonstrated on experimental biomedical MRR data to evaluate the MWF in the human brain; this is a very 
challenging problem of great ongoing interest21,22.

The framework put forward in this work is to provide a more general form of the recovered DF: f∗ =
∑

j αjf�j ; 
conventional Tikhonov regularization incorporates just a single term, optimal in some sense, of this sum. In 
addition to relaxing the restriction of isolating the single best regularized solution, our method also provides a 
flexible form for the construction of the desired solution. While stabilized global features of the myelin water 
fraction (MWF) distribution are evident at high regularization levels, more detailed features of the recovered 
distributions require lower levels of regularization. This example motivates the idea of aggregating a range of 
regularized solutions; we do this by calculating the effect of noise on the representing dictionary functions. 
Through this we were able to capture the underlying features of the DF while preserving the stability of the 
recovery and avoiding the risk that a conventional selection of a single regularization parameter may produce a 
non-optimal solution. To obtain the coefficients 

{

αj
}

 , we formulated the solution 
∑

j αjf�j as a linear combination 
of multiple regularized solutions via a dictionary of Gaussian functions 

{

gi,�j

}

 . The algorithm can be separated 
into offline and online computations, where the offline part is specific to a given SNR and basis set, but is inde-
pendent of a specific instance of experimental data. The offline calculation requires the determination of the 
noise-corrupted basis functions and parameters, e.g. fixing the number M of Gaussian dictionary functions gi , 
the number N of regularization parameters used by the algorithm, and performing the actual computation 
required to obtain the noise-corrupted DF, 

{

gi,�j

}

.The online calculation is dependent upon a specific data set 
and is much less computation-intensive, compared with online computations.

This formulation exhibits a condition number cond(B) = O(105) in Eq. (30) for the simulation analysis in 
Fig. 1, compared to the condition number of cond(A) in the NNLS problem, which is O(1020).

In this study, we demonstrated that the SpanReg method achieves higher accuracy than the conventional DP 
parameter selection method, which also requires knowledge of the noise level in the observation yob . For the 
prototypical bimodal DF’s studies, SpanReg exhibits a substantially greater ability to resolve the two components. 
With more disparate spaced components, SpanReg also achieved improved reconstruction of positions and 
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amplitudes of the components. Further, SpanReg is not constrained to the selection of a single optimal value of 
� ; in fact, in conventional practice, this optimal value will depend upon the specific selection criterion imple-
mented. Thus, application of different conventional methods is virtually guaranteed to recover different DF’s. In 
contrast, our more general formulation forms the reconstruction through a linear combination of differently-
weighted solutions with appropriate weights, and so is less dependent upon the exact degree of regularization 
of any one of these.

From the statistical perspective, the approach of linearly combining, or aggregating, different regularized solu-
tions has been proposed and studied in the context of regression problems23. In addition, Chen et al.24 proposed 
the notion of aggregation of regularized solution in the context of inverse problems. Our approach to combining 
regularized solutions is different from the one proposed by Chen et al.,which is based on a particular imple-
mentation of the balance principle; see Eqs. (23) and (27) in Chen et al.24 Previous studies have also presented 
important reconstruction methods based on Tikhonov regularization with multiple regularization parameters. 
In distinct contrast to our work and that of Chen et al.24, these have employed a modified regularization penalty 
from which is derived a single optimal solution. These methods have been designated multiple regularization25,26, 
multi-parameter regularization27–32, and multi-penalty regularization33,34. This literature generally studies the 
same optimization problem as we have worked with in the general form:

where Lj are regularization operators and �j are regularization parameters associated with the corresponding 
operator. One of the most well-known of these is elastic-net regularization (EN)13, where L1(f) = �f�1 , and 
L2(f) = �f�22 . The EN is able to promote sparsity while also preserving accuracy for smoother distributions. 
Other types of penalty terms involving smoothness constraints have also been proposed; these include penal-
ties of the form �∇f�125,26,29–32, �∇f�2229,31,33 Other penalties of the form ‖Wf‖25,26,28,32 have been implemented, 
where W may be, for example a projection or transformation matrix. Unlike SpanReg, all of these methods seek 
optimal regularization parameters for a specific form of regularization rather than incorporating differently-
regularized solutions.

An interesting alternative method more closely related to ours deviates from the formalism of Eq. (21) by 
constructing a linear combination of regularized solutions35, as in our treatment. The components forming 
the recovered DF are obtained from different regularization methods, with, as in conventional treatments and 
distinct from SpanReg, a single optimal regularizer being identified for each. Nevertheless, this work introduces 
the idea of combining DF’s, each of which in effect reflects a potentially desirable quality, into a final derived DF.

A variety of parameter selection techniques have been presented for the conventional types of multi-parameter 
regularization described above, generally based on the classical approaches for single-parameter regularization 
optimization. These include the multi-parameter discrepancy principle29, L-hypersurface25,36, and GCV-multi32. 
Other methods28 such as simple grid search4 and the balancing principle34 have been implemented. However, 
as emphasized above, none of these studies present the notion of including sub-optimal regularized solutions 
as we have proposed and demonstrated with SpanReg. Thus, the current work is fundamentally different from 
what has appeared in the literature in; we form a linear combination of sub-optimal solutions, in contrast to 
previous work which has used combinations of regularization terms leading to a single “optimal” solution, or35 a 
linear combination of optimal solutions. SpanReg allows us to combine the stability of more highly-regularized 
solutions with the resolution of less-regularized solutions; the potential for the efficacy of this construction was 
provided by our observations of the different responses to regularization of very similar ill-posed problems.

SpanReg should be widely applicable to a wide range of linear inverse problems based on the Fredholm equa-
tion of the first kind. As one class of examples, we demonstrated its applicability to MRR investigations of brain, 
where the DF is based on the T2 distribution of tissue. However, the same formulation also applies to diffusion 
MRI37, where application is simpler due to the availability of the b = 0 data point, where b is the conventional 
symbol for the combination of gradient strengths and timing that defines diffusion sensitization. In this case, the 
formalism of Eq. (20) is not required. Similar comments apply to the closely-related problem of T1 MRR38. Fur-
ther, MRR applications extend far beyond those in biomedicine, and include the food sciences39, engineering40, 
and the petrochemical industry41. There are also many potential applications of SpanReg outside of MR studies, 
including fluorescence analysis42.

Although we have presented a novel and effective method for combining multiple degrees of regularization 
into an ill-conditioned problem, certain limitations remain. We have not fully explored the selection of an opti-
mal basis, although the Gaussian basis set used has been shown to perform well for reconstructing a range of 
challenging DF’s. In addition, there are a number of user-selected parameters for SpanReg, and we have not yet 
explored these systematically. These include the number N of regularized solutions to incorporate into the DF 
as well as their associated regularization parameter values �j ; the size M and details of the Gaussian dictionary 
used to represent the DF for each of these solutions; and the number nrun of noise realizations used for averag-
ing to render the results robust with respect to noise realization. In this paper, our considerations have been 
based on the goal of maintaining reasonable conditioning of the the LS problem in Eq. (23); as demonstrated, 
this empirical approach has worked well. We also emphasize that the requirement for knowledge of SNR is a 
limitation of SpanReg in many contexts, although for the large category of problems based on decaying signals, 
including MRR and related experiments in MR, SNR estimates are generally available. This consideration also 
applies to certain conventional parameter selection methods such as DP. In spite of these limitation, we have 
shown that SpanReg can be applied to datasets with varying, though known, levels of SNR, such as in the brain 
MWF analysis. This does require a lengthier offline computation, with separate calculations required across a 
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range of SNR values. The degree to which a given range of SNR values must be discretized also remains an open 
question, though the success of the binning procedure described in the brain MRI analysis supports the notion 
that this discretization need not be unduly fine. This is a critical finding, indicating that the noise estimate 
required for SpanReg can be approximate.

In addition to theoretical developments and demonstration on simulated data, we have provided an analysis of 
in vivo brain MRI data. We compare the performance of SpanReg to two other methods for recovering DF’s from 
decay curves for application to brain MWF mapping. This presentation is not intended to provide an extensive 
comparison of SpanReg with other state-of-the-art methods for assessing MWF; development of these methods is 
a topic of major current interest, with rapid introduction of new approaches20,43,44. A full comparison with these is 
beyond the scope of the present manuscript, which is to introduce and provide an initial application of SpanReg.

In addition to addressing the current limitations of SpanReg as outlined above, potential extensions include 
exploration of alternative forms of Tikhonov and other types of regularization penalties. In addition, SpanReg can 
be extended in a straightforward fashion to 2D and higher dimensional MRR analysis45, for which the governing 
inverse problem is a higher-dimensional inverse Laplace transform.

In conclusion, we have proposed a new approach to determine regularized solutions to the Fredholm integral 
equation of the first kind by incorporating the information content of non-optimal solutions, and have dem-
onstrated its efficacy in simulations and through application to MRR of the human brain. SpanReg should be 
widely applicable throughout the field of inverse problems, presenting an alternative to Tikhonov and related 
forms of regularization.

Materials and methods
Analytic framework.  Theory.  To link the two expressions (12) and (13), we define a symbolic inversion 
operator A−1

�j
 as follows: given a vector of noisy observations yob , A−1

�j
yob := f�j , where f�j is the solution of (8) 

with � = �j , j = 1, . . . ,N . This operator is not the usual matrix pseudoinverse because of the non-negativity 
constraints.

We apply this to the noisy observations that would correspond to the signal generated by the gi , obtaining a 
set of associated DF’s {gi,�j } , i = 1, . . . ,M , j = 1, . . . ,N according to Eq. (8):

where ω represents a noise realization exhibiting the same noise level, defined by RMS(ω ), as the observed data 
yob . Note that while determining noise amplitude within an experimental signal can be highly problematic, in our 
examples of decaying exponentials this information is directly available from data collected from the signal tail.

We now seek to approximate both fα and fc by the {gi,�j }.
We first write

 The expansion coefficients βij would be Kronecker δ ’s in the absence of noise and regularization. As ω is random, 
the corresponding {gi,�j } and {βij} are random variables. Let �·� denote the ensemble average of a random variable 
over nrun noise realizations. In particular,

where the superscript (k) indicates the k-th noise realization.
We now apply a representation analogous to Eq. (13) to define regularized approximations:

where the {xij} can be obtained through least squares analysis.
Thus, given the dictionary of Gaussian distributions 

{

gi
}M

i=1
 , we can find the coefficients 

{

〈βij〉
}

 and 
{

xij
}

 
from the approximations to the regularized solutions 

{

f�j

}

 and 
{

〈gi,�j 〉
}

 , respectively. Now equating (12) and 
(13) and using (23) and (24), we arrive at an expression containing only {�βij�} , {xij} and {�gi,�j �}:

The coefficients α and c are obtained by solving the least squares problem:
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N
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Our expression for the final recovered f∗ is then:

Equation (27) is the main result of our analysis, defining the desired recovered DF in terms of a linear com-
bination of differently-regularized solutions based on the observed data. Alternatively, the corresponding result 
for f∗c  may also be used with essentially equivalent results.

Numerical implementation.  We define the following notation:

where for each pair of fixed i and j, the regularized approximation 〈gi,�j 〉 is a column vector of dimension Rn and 
the elements xij and 〈βi�j 〉 are scalars. Thus, the lengths of the vectors xvec and βvec are equal to the number of 
columns in Lα and Lc , respectively. Moreover, we write for the unknowns:

Then Eqs. (12) and (13) can be written:

where · denotes the usual matrix-vector multiplication and diag indicates the diagonal matrix formed from the 
vector argument. Equation (26) can then be re-formulated as:

By writing the solution in the stacked form:

(28) can be expressed as a conventional LS problem for s∗ ∈ R
N+M

with

and

(26)







(α∗, c∗) = argmin �fα − fc�2
subject to α∗ ≥ 0, c∗ ≥ 0, and

�

i

c∗i = 1.
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where ⊗ is the Kronecker tensor product, IM , IN are the identity matrices of rank M and N, respectively, and 
0N×M is the zero matrix of size N ×M.

The computational procedure can be divided into two parts, which we refer to as the offline part, meaning 
independent of the actual data set, and the data-dependent online part. In the offline computation, 

{

gi
}

 , 
{

〈gi,�j 〉
}

 
and 

{

〈βi,�j 〉
}

 are determined only once. For the online part, for each noisy measurement yob , the corresponding 
{

f�j

}

 , 
{

xij
}

 and (c∗,α∗) can be obtained with the desired solution given by (27). Note that the gi,�j , and hence 
the βi,�j in (23), are noise-dependent. For computations, we use the ensemble average over nrun of realizations of 
Eq. (23).

The pseudocode for the offline and online computations reads as follows:

Parameter settings for the implementation of SpanReg.  Several user-defined parameters must be 
selected before proceeding with the off-line computation. We first fix the values of N, M and nrun , which are the 
number of regularization parameters, the number of Gaussian functions in the dictionary and the number of 
noise realizations, respectively. The values of �j , j = 1, . . . ,N and the means and standard deviations (SD) of the 
Gaussian functions 

{

gi
}M

i=1
 in the dictionary must also be selected.

The range of regularization parameters are determined based on L-curve analysis, with particular attention 
to parameters that provide a wide range of distinct solutions to Eq. (8). In the following simulations, we chose 
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N = 16 with �1, · · · , �N logarithmically spaced over the interval [10−6, 101] . The T2 axis range is from 1 to 200 
ms, discretized at 1 ms intervals, i.e. �T2 = 1 . We chose a dictionary consisting of three families of Gaussians, 
each of which has its mean values equally spaced along the T2 axis, and has a specified SD. The three families 
respectively consist of 160 members with SD = 2 ms, 40 members with SD = 3 ms, and 20 members with SD = 4 
ms; M = 160+ 40+ 20 = 220.

Myelin water fraction mapping of the human brain.  3D gradient and spin-echo (GRASE) images 
were obtained from the brain of a healthy 49-year-old female using 32 echoes at TEi = i × TE , where TE = 11.3 
ms for i = 1, 2, . . . , 32 . The notation TE, standing for echo time, is conventional in magnetic resonance, and 
corresponds to the measurement times in Eq. (4). The acquisition sequence had additional parameters of 
TR = 1000 ms, echo planar imaging acceleration factor of 3, field of view 278 mm× 200 mm× 30 mm , acqui-
sition matrix of size 185× 133× 10 , acquisition voxel size = 1.5 mm× 1.5 mm× 3 mm , reconstructed to 
= 1 mm× 1 mm× 3 mm using zero filling in k-space. Scan time was approximately 10 minutes. A 3T Philips 
MRI system (Achieva, Best, the Netherlands), equipped with an internal quadrature body coil for transmission 
and an eight-channel phased-array head coil for reception, was used for acquisition.

We employ both unfiltered and NESMA-filtered datasets. NESMA20 is a highly effective nonlocal denoising 
image filter that has been shown to increase the quality of myelin water fraction (MWF) mapping. The SNR of 
the unfiltered dataset is ∼ 10−300 , as defined by Eq. (6), with variation across pixels due primarily to the vari-
ation in image amplitude.

Data availibility
The dataset and code used and/or analyzed during the current study are available from https://​doi.​org/​10.​5281/​
zenodo.​58606​53.
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