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SPANNING FORESTS AND THE VECTOR BUNDLE LAPLACIAN1
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The classical matrix-tree theorem relates the determinant of the combi-
natorial Laplacian on a graph to the number of spanning trees. We generalize
this result to Laplacians on one- and two-dimensional vector bundles, giving a
combinatorial interpretation of their determinants in terms of so-called cycle
rooted spanning forests (CRSFs). We construct natural measures on CRSFs
for which the edges form a determinantal process.

This theory gives a natural generalization of the spanning tree process
adapted to graphs embedded on surfaces. We give a number of other appli-
cations, for example, we compute the probability that a loop-erased random
walk on a planar graph between two vertices on the outer boundary passes left
of two given faces. This probability cannot be computed using the standard
Laplacian alone.

1. Introduction. The classical matrix-tree theorem, which is usually at-
tributed to either Kirchhoff [15] or Brooks et al. [2], states that the product of
the nonzero eigenvalues of the combinatorial Laplacian on a connected graph is
equal to the number of rooted spanning trees of that graph. This theorem has ex-
tensions to graphs with weighted edges (resistor networks) and more generally
to Markov chains. Forman [5] extended the theorem in a more interesting direc-
tion, to the setting of a line bundle on a graph. In this paper, we reprove his result
and extend the theorem further to two-dimensional vector bundles on graphs (with
SL2C connection). Our main theorem gives a combinatorial interpretation of the
determinant of the Laplacian as a sum over cycle-rooted spanning forests (CRSFs).
These are simply collections of edges each of whose connected components has
as many vertices as edges (and therefore, each component is a tree plus an edge:
a unicycle). Here the weight of a configuration is the product of 2 minus the trace
of the holonomy around each of the cycles.

By varying the connection on the vector bundle, one constructs in this way
many natural measures on CRSFs. If the monodromy of the underlying connection
is unitary, then these measures are determinantal processes for the edges (or q-
determinantal in the case of an SL2C-connection).
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We give here a number of applications of these results. Further applications can
be found in the papers [6, 9] and [13].

1.1. Spanning trees. One of the main applications is to the study of spanning
trees, in particular spanning trees on planar graphs or graphs on surfaces. By a
judicious choice of vector bundle connection, the natural probability measure on
CRSFs can be made to model the uniform spanning tree measure conditioned on
having certain “boundary connections.” As simple examples we compute the prob-
ability that, on a finite planar graph, the branch of the uniform spanning tree con-
necting two boundary points z1 and z2 passes left of a given face or a given two
faces. These probabilities are given in terms of the Green’s function for the stan-
dard Laplacian on the graph.

1.2. θ -functions. Suppose G is a graph embedded on an annulus. On such a
graph, a θ -function is a multi-valued harmonic function whose “analytic continu-
ation” around the annulus is a constant times the original function. In other termi-
nology (defined below), it is a harmonic section of a flat line bundle. The constant
is called the multiplier of the θ function. We prove that if k is the largest inte-
ger such that one can simultaneously embed k pairwise disjoint cycles in G , each
winding once around the annulus, then G has at most 2k − 1 θ -functions. These
θ -functions have distinct positive real multipliers; these multipliers are closed un-
der inverses (if λ is a multiplier then so is λ−1). For generic conductances, G will
have exactly 2k − 1 θ -functions; we conjecture that this is always the case. The
multipliers have a probabilistic meaning for CRSFs: see below.

1.3. Graphs on surfaces. For a graph embedded on a surface (in such a way
that complementary components are contractible or peripheral annuli), a natural
probability model is the uniform random CRSF whose cycles are topologically
nontrivial (not null-homotopic). Such CRSFs are called incompressible. The cy-
cles in a CRSF give a finite lamination of the surface, that is, a finite collection of
disjoint simple closed curves. The Laplacian determinant on a flat line bundle on
the surface counts CRSFs weighted by a function of the monodromy of the con-
nection. By considering the Laplacian determinant as a function on the representa-
tion variety (consisting of flat connections modulo conjugacy), one can extract the
terms for each possible topological type of finite lamination. In particular, one can
study the uniform measure on incompressible CRSFs. For example, the number
of components for a uniform incompressible CRSF on a graph on an annulus is
distributed as a sum of a finite number of independent Bernoulli random variables,
with biases given by λ

λ+1 , where λ runs over the θ -function multipliers defined
above. See Corollary 1 below.

Given a Riemann surface one can take a sequence of finer and finer graphs
adapted to the metric so that the potential theory on the graph and on the Rie-
mann surface agree in the limit. In this case, one can show [9] that the uniform
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incompressible CRSF has a scaling limit, whose distribution only depends on the
conformal structure of the underlying surface. This is similar to the theorem of
Lawler, Schramm and Werner on conformal invariance of the uniform spanning
tree [16]. We compute here for the annulus and the square torus the exact distribu-
tion of the number and homology class of the cycles of an incompressible CRSF
in the scaling limit.

1.4. Monotone lattice paths. The papers [7] and [14] studied CRSFs on a
north/east-directed m × n grid on a torus. The distribution of the number of cy-
cles was shown to have a highly nontrivial structure as a function of m,n. Here the
line bundle Laplacian gives quantitative information about the model which was
not available in [7]. In particular, we obtain an exact expression for the generating
function for the number and homology type of the cycles. For the n × n torus, for
example, we show that the number of cycles tends to a Gaussian as n → ∞ with
expectation

√
n

4π
and variance

√
n

4π
(1 − 1√

2
).

2. Background. The uniform probability measure on spanning trees on a
graph, called the UST measure, has for the past 20 years been a remarkably suc-
cessful and rich area of study in probability theory. Pemantle [19] showed that the
unique path between two points in a uniform spanning tree has the same distri-
bution as the loop-erased random walk between those two points.2 Wilson [20]
extended this to give a simple method of sampling a uniform spanning tree in any
graph. Burton and Pemantle [3] proved that the edges of the uniform spanning tree
form a determinantal process (see definition below). This allows computation of
multi-edge probabilities in terms of the Green’s function.

The UST on Z2 received particular attention due to the conformal invariance
properties of its scaling limit. Pemantle showed that almost surely the UST in Z

2

has one component. In [10], we proved that the expected length of the LERW
in Z

2, and therefore a branch of the UST of diameter n was of order n5/4, a result
predicted earlier by conformal field theory [17]. In [12], we showed that the scaling
limit of the “winding field” (describing how the branches of the UST wind around
faces) was a Gaussian free field. Further conformally invariant properties were
proved in [11]. In [16], Lawler, Schramm and Werner proved that the Z2-LERW
converges to SLE2, and the peano curve winding around the Z

2-UST converges to
SLE8.

As a result of these works, we have a decent understanding of the scaling limit
of the UST on Z

2. However, some important questions remain. For example, how
are different points in the UST connected: given a set of points in the plane, what

2The loop-erased random walk (LERW) between a and b is defined as follows: draw the trace a
simple random walk from a stopped when it reaches b, and then erase from the trace all loops in
chronological order. What remains is a simple path from a to b.
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is the topology of their tree convex hull, that is, the union of the branches of the
UST connecting them in pairs? Can one compute various connection probabili-
ties, for example, the probability that the LERW from (0,0) passes through the
points v1, v2, . . . , vn in order? What is the distribution of the “bush size,” the finite
component of the tree obtained by removing a single random edge? While many
of these can be answered in principle using SLE techniques, in practice one must
solve a hard PDE.

Many of these questions can be answered with the bundle Laplacian. Some of
these are illustrated below. We will discuss how these results can be used to com-
pute various connection probabilities for the UST in [13], and discuss the connec-
tion with integrable systems in [6].

3. Vector bundles on graphs.

3.1. Definitions. Let G be a finite graph. Given a fixed vector space V , a V -
bundle, or simply a vector bundle on G is the choice of a vector space Vv isomor-
phic to V for every vertex v of G . A vector bundle can be identified with the vector
space VG := ⊕

v Vv
∼= V |G|. A section of a vector bundle is an element of VG .

A connection � on a V -bundle is the choice for each edge e = vv′ of G of an
isomorphism φvv′ between the corresponding vector spaces φvv′ :Vv → Vv′ , with
the property that φvv′ = φ−1

v′v . This isomorphism is called the parallel transport
of vectors in Vv to vectors in Vv′ . Two connections �,�′ are said to be gauge
equivalent if there is for each vertex an isomorphism ψv :Vv → Vv such that the
diagram

commutes. In other words �′ is just a base change of �. Given an oriented cycle
γ in G starting at v, the monodromy of the connection is the element of End(Vv)

which is the product of the parallel transports around γ . Monodromies starting
at different vertices on γ are conjugate, as are monodromies of gauge-equivalent
connections.

A line bundle is a V -bundle where V ∼= C, the one-dimensional complex vector
space. In this case, if we choose a basis for each C then the parallel transport is
just multiplication by an element of C

∗ = C \ {0}. The monodromy of a cycle is in
C

∗ and does not depend on the starting vertex of the cycle (or gauge).

3.2. The Laplacian. The Laplacian 	 on a V -bundle with connection � is the
linear operator 	 :VG → VG defined by

	f (v) = ∑
v′∼v

f (v) − φv′vf (v′),

where the sum is over neighbors v′ of v.
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If we assign to each edge a positive real weight (a conductance) cvv′ = cv′v , the
weighted Laplacian is defined by

	f (v) = ∑
v′

cvv′
(
f (v) − φv′vf (v′)

)
.

Note that if the vector bundle is trivial, in the sense that φvv′ is the identity for
all edges, this is the classical notion of graph Laplacian (or more precisely, the
direct sum of dimV copies of the Laplacian).

Here is an example. Let G = K3 with vertices {v1, v2, v3}. Let � be the line
bundle connection with φvivj

= zij ∈ C
∗. Then in the natural basis, 	 has matrix

	 =
⎛⎝ 2 −z12 −z13

−z−1
12 2 −z23

−z−1
13 −z−1

23 2

⎞⎠ .(1)

3.3. Edge bundle. One can extend the definition of a vector bundle to the
edges of G . In this case, there is a vector space Ve

∼= V for each edge e as well as
each vertex. One defines connection isomorphisms φve = φ−1

ev for a vertex v and
edge e containing that vertex, in such a way that if e = vv′ then φvv′ = φev′ ◦ φve,
where φvv′ is the connection on the vertex bundle.

The vertex/edge bundle can be identified with V |G|+|E| = VG ⊕ VE , where VE

is the direct sum of the edge vector spaces.
A 1-form (or cochain) is a function on oriented edges which is antisymmetric

under changing orientation. If we fix an orientation for each edge, a 1-form is a
section of the edge bundle, that is, an element of V |E|. We denote by 
1(G,�) the
space of 1-forms and 
0(G,�) the space of 0-forms, that is, sections of the vertex
bundle.

We define a map d :
0(G,�) → 
1(G,�) by df (e) = φyef (y) − φxef (x)

where e = xy is an oriented edge from vertex x to vertex y. We also define an
operator d∗ :
1 → 
0 as follows:

d∗ω(v) = ∑
e=v′v

φevω(e),

where the sum is over edges containing v and oriented toward v. Despite the nota-
tion, this operator d∗ is not a standard adjoint of d unless φev and φve are adjoints
themselves, that is, if parallel transports are unitary operators (see below).

The Laplacian 	 on 
0 can then be defined as the operator 	 = d∗d:

d∗ df (v) = ∑
e=v′v

φev df (e)

= ∑
e=v′v

φev

(
φvef (v) − φv′ef (v′)

)
= ∑

v′
f (v) − φv′vf (v′)

= 	f (v).
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We can see from the example (1) above on K3 that 	 is not necessarily self-
adjoint. However, if φvv′ is unitary: φ−1

vv′ = φ∗
v′v then d∗ will be the adjoint of d

for the standard Hermitian inner products on V |G| and V |E|, and so in this case
	 is a Hermitian, positive semidefinite operator. In particular on a line bundle if
|φvv′ | = 1 for all edges e = vv′, then 	 is Hermitian and positive semidefinite.

4. Spanning forests associated to a line bundle.

4.1. Cycle-rooted spanning forests (CRSFs). For a line bundle (G,�) on a
finite graph G , we have a combinatorial interpretation of the determinant of the
Laplacian in terms of cycle-rooted spanning forests. A cycle-rooted spanning for-
est (CRSF) is a subset S of the edges of G , spanning all vertices (in the sense that
every vertex is the endpoint of some edge) and with the property that each con-
nected component of S has as many vertices as edges (and so has a unique cycle).
See Figure 1.

An oriented CRSF is a CRSF in which we orient each edge in such a way that
cycles are oriented coherently and we orient the edges not in a cycle toward the
cycle. An oriented CRSF is the same as a nonzero vector field on G , which is the
choice of a single outgoing edge from each vertex.

A cycle-rooted tree (CRT), also called unicycle, is a component of a CRSF
(oriented or not).

4.2. The matrix-CRSF theorem. The following theorem is due to Forman [5].

THEOREM 1 [5]. For a line bundle on a connected finite graph,

det	 = ∑
CRSFs

∏
cycles

(2 − w − 1/w),

FIG. 1. A CRSF on a square grid.
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where the sum is over all unoriented CRSFs C, the product is over the cycles of C,
and w,1/w are the monodromies of the two orientations of the cycle.

Recall that for a line bundle the monodromy of an oriented cycle does not
depend on the starting vertex. Note that we could as well have written det	 =∑

OCRSFs
∏

cycles(1 − w) where now the sum is over oriented CRSFs (OCRSFs).
Forman uses an explicit expansion of the determinant as a sum over the sym-

metric group, and a careful rearrangement of the terms. We give a different proof
using Cauchy–Binet formula which allows us to bypass this step.

PROOF OF THEOREM 1. We use the Cauchy–Binet formula, det	 =
detd∗d = ∑

B det(B∗B), where B is a maximal minor of d (i.e., if d is n × m

then B runs over all n × n submatrices of d obtained by choosing n columns).
Columns of B index vertices and rows of B index edges of G . Since B is square,

it corresponds to a selection of n edges (where n is the number of vertices of G ).
If the set of edges in B contains a component C with no cycles, say of size

|C| = k, this component necessarily has k − 1 edges. So B maps a k-dimensional
subspace of the vertex space to a k−1-dimensional subspace of the edge space and
so detB = 0. Therefore to have a nonzero contribution to the sum every component
of B has at least one cycle, and, since the total number of vertices equals the total
number of edges, every component must have exactly one cycle. We have proved
that the sum is over CRSFs.

If B has only one component which is a CRT, orient its edges so that all edges
are oriented toward the unique cycle, and along the cycle choose one of the two
coherent orientations. Write

detB = ∑
σ∈Sn

sgn(σ )B1σ(1) · · ·Bnσ(n).

The only nonzero terms in this expansion are those in which vertex i is adjacent
to edge σ(i), that is, the two terms which are consistent with one of these two
orientations. Thus

detB = sgn(σ1)

( ∏
j∈bushes

−φvj ej

∏
i∈cycle

−φviei

)
+ sgn(σ2)

(2)

×
( ∏

j∈bushes

−φvj ej

∏
i∈cycle

−φvi+1ei

)

= sgn(σ1)(−1)n
∏

j∈bushes

φvj ej

( ∏
i∈cycle

φviei
− ∏

i∈cycle

φvi+1ei

)
,

where the products over j are over edges not in the cycle (called bush edges), and
those over i are for the two cyclic orientations (indices are taken cyclically). If the
cycle has odd length, sgn(σ1) = sgn(σ2) and the sign change in front of the second



1990 R. KENYON

product in (2) is due to switching the sign on the odd number of edges of the
cycle. If the cycle has even length, the sign change is due to sgn(σ1) = − sgn(σ2)

(a cyclic permutation of even length has signature −1).
We similarly have

detB∗ = sgn(σ1)(−1)n
∏

j∈bushes

φej vj

( ∏
i∈cycle

φeivi
− ∏

i∈cycle

φeivi+1

)
,

and multiplying these two and using φevφve = 1, we get

detB∗B = (A1 − A2)

(
1

A1
− 1

A2

)
= 2 − A1

A2
− A2

A1
,

where A1
A2

= ∏
i∈cycle φvivi+1 which is the monodromy of the cycle.

If each component of B is a CRT, then detB∗B is the product over components
of the above contributions. �

5. Measures on CRSFs. In the case of a line bundle � with unitary con-
nection, Theorem 1 provides a definition of a natural probability measure μ� on
CRSFs. A CRSF has probability equal to 1

Z

∏
(2 − w − 1

w
) where the product is

over its cycles. The constant of proportionality Z, or partition function, is then
just det	. Note that as long as the (unitary) bundle is not trivializable (gauge
equivalent to the trivial bundle) then some cycle has nontrivial monodromy and so
det	 > 0.

The goal of this section is to show that the measure is determinantal for the
edges.

5.1. Harmonic sections. The Laplacian is the composition:


0 d→ 
1 d∗→ 
0.

If 	 has full rank, then 
1(G,�) splits as


1 = Im(d) ⊕ Ker(d∗).
A section f ∈ 
0 is harmonic if 	f = 0. If 	 does not have full rank, there

are nontrivial harmonic sections and the above is no longer a direct sum. A 1-form
ω ∈ 
1 is harmonic if it is in the intersection Im(d)∩Ker(d∗). Such a form is both
exact (ω = df for some f ) and co-closed (d∗ω = 0).

PROPOSITION 1. When 	 has full rank, the projection along Ker(d∗) from

1 to the space of exact 1-forms Im(d) is given by the operator P = dgd∗ where
g = 	−1 is the Green’s function for 	 on 
0.

PROOF. Note that P = dgd∗ is zero on co-closed forms and the identity on
exact forms: P(df ) = dgd∗df = dg	f = df . �

This projection operator P plays a role below.
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5.2. Determinantal processes. Let μ be a probability measure on  = {0,1}n.
For a set of indices S ⊂ {1,2, . . . , n}, define the set

ES = {(x1, . . . , xn) ∈  | xs = 1 ∀s ∈ S}.
We say μ is a determinantal probability measure (see, e.g., [8]) if there is an n×n

matrix K with the property that for any set of indices S ⊂ {1,2, . . . , n}, we have

μ(ES) = det[(Ki,j )i,j∈S].
That is, principal minors of K determine the probability of events of type ES .

The matrix K is called the kernel of the measure. A simple example of a deter-
minantal process is the product measure, in which case K is a diagonal matrix with
diagonal entries in [0,1]. Another well-known example of a determinantal process
is the uniform spanning tree measure on a finite graph [3]. Here {1,2, . . . , n} in-
dex the edges of a connected graph. The kernel K is the so-called transfer-current
matrix, defined by K = dGd∗, where G is the Green’s function, see [3].

A simple inclusion-exclusion argument shows that individual point probabilities
are also given by determinants:

PROPOSITION 2. Let X = (x1, x2, . . . , xn) ∈ . Then

μ(X) = (−1)n−|X| det
(
diag(X) − K

)
,

where diag(X) is the diagonal matrix whose diagonal entries are 1−xi , and |X| =∑n
i=1 xi .

5.3. A determinantal process on CRSFs. We will need the following well-
known lemma.

LEMMA 1. If
(A
C

B
D

)
is a block matrix with A,D square and D invertible then

det
(

A B

C D

)
= detD det(A − BD−1C).

PROOF. This follows from(
A B

C D

)
=

(
A − BD−1C BD−1

0 I

)(
I 0
C D

)
. �

Recall the definition of the projection P from 1-forms to exact 1-forms (Propo-
sition 1).

THEOREM 2. For a line bundle � with unitary connection, with respect to
the measure μ� the edges of the CRSF form a determinantal process with kernel
P = dgd∗.
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PROOF. Let G be a graph with n vertices and m edges. Let {e1, . . . , en} ⊂ E

be the edges of a CRSF γ . Write the matrix for d and d∗ so that the first n edges
are e1, . . . , en. Then d = (d1

d2

)
where d1 is n × n and d2 is (m − n) × n.

From Proposition 2, the probability of γ is Pr(γ ) = (−1)m−n det(X − dgd∗)
which by Lemma 1 with A = X,B = d,D = 	 and C = d∗ can be written

Pr(γ ) = (−1)m−n
det

(
0
0
d∗

1

0
Im−n

d∗
2

d1
d2
	

)
det	

= detd∗
1 d1

det	
.

By Theorem 1 this is exactly the probability of γ . �

Among other things, this theorem along with Proposition 2 allows us to do exact
sampling from the measure μ�, as follows (see [8]). Pick an edge e1; it is present
with probability P(e1, e1). Take another edge e2; if e1 is present, e2 will be present
with probability

Pr(e2|e1) = 1

P(e1, e1)
det

(
P(e1, e1) P (e1, e2)

P (e2, e1) P (e2, e2)

)
.

If e1 is not present, e2 will be present with probability

Pr(e2|¬e1) = −1

1 − P(e1, e1)
det

((
1 0
0 0

)
−

(
P(e1, e1) P (e1, e2)

P (e2, e1) P (e2, e2)

))
and so on.

5.4. Small monodromies. An important limit, or actually set of limits of these
determinantal processes, is when the monodromies tend to 1. Even though det	
tends to zero, the probability measures μ� may converge. We get determinantal
processes supported on CRSFs on the graph with trivial line bundle.

THEOREM 3. Choose an orientation for each edge and suppose the parallel
transport is φej

= eitcj for the j th edge in the direction of its orientation. Fix the
cj and let t → 0. In the limit t → 0 the determinantal process μ�t tends to a de-
terminantal process μ0 = μ0({cj }) supported on CRSFs with a single component,
that is, CRTs. The probability of a CRT is proportional to (

∑
cj )

2, where the sum
is over oriented edges in the unique cycle.

PROOF. The monodromy of a loop is w = eit
∑

cj . We have 2 − w − 1
w

=
2 − 2 cos(t

∑
cj ) = t2(

∑
cj )

2 +O(t3). In the limit t → 0, the partition function is
Z = O(t2) so only CRSFs with one component contribute. �
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6. An application to G × Zn. Let G be a finite graph with m vertices and Zn

the n-cycle. Let Hn be the product graph whose vertices are G × Zn and edges
connect (x, j) to (x, j + 1 mod n) and (x, j) to (x′, j) when x, x′ are neighbors
in G .

We compare the uniform spanning tree on Hn and the uniform cycle-rooted tree
whose cycle winds around Zn. The minimum cut set of a spanning tree is the set
of edges not in the tree such that when added to the tree make a cycle winding
nontrivially around Zn.

Fix z ∈ C with |z| = 1. On the product graph Hn let φvv′ = 1 except when
v = (x, n − 1) and v′ = (x,0) in which case φvv′ = z. Then cycles have trivial
monodromy unless they wind nontrivially around the Zn direction. So a CRSF has
nonzero probability only if all of its cycles wind nontrivially around Zn (possibly
many times).

Because of the product structure the eigenvectors of the Laplacian on Hn are
products of eigenvectors of the standard Laplacian on G and the line bundle Lapla-
cian on Zn. Thus, the eigenvalues of the Laplacian on Hn are sums of eigenvalues
of 	G (the standard Laplacian) and 	Zn

(the line bundle Laplacian). The eigen-
values of 	Zn

are 2 − ζ − ζ−1 where ζ ranges over the roots of ζ n = z (the cor-
responding eigenvectors are exponential functions). The Laplacian determinant of
Hn is then

det	 = ∏
ζ n=z

det(	G + 2 − ζ − ζ−1) = ∏
ζ n=z

∏
λ

(λ + 2 − ζ − ζ−1)

(3)
= (2 − z − z−1)

∏
ζ n=z

∏
λ�=0

(λ + 2 − ζ − ζ−1),

where λ runs over the eigenvalues of the Laplacian on G .
Compare this to det′ 	0, the product of nonzero eigenvalues of the standard

Laplacian 	0 on Hn:

det ′	0 = ∏
(ζ,λ) �=(1,0)

λ + 2 − ζ − ζ−1

= ∏
ζ n=1,ζ �=1

2 − ζ − ζ−1
∏

ζ n=1

∏
λ�=0

λ + 2 − ζ − ζ−1(4)

= n2
∏

ζ n=1

∏
λ�=0

λ + 2 − ζ − ζ−1.

THEOREM 4. As n → ∞ a μ�-random CRSF has one component with prob-
ability tending to 1, that is, is a CRT. Its unique cycle winds around Zn once with
probability tending to 1. The ratio Rn of the number of such CRTs and number of
spanning trees satisfies limn→∞ Rn

n
= 1

m
. The expected length E(Ln) of the cycle
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in such a random CRT of Hn satisfies

lim
n→∞

E(Ln)

nE(Sn)
= 1

m
,

where E(Sn) is the expected size of the minimum cut set of a random spanning tree
of Hn.

PROOF. The first two statements can be seen as follows. Take n large and
consider the part of the configuration in a piece G ×[i, i+N ] for large N . We claim
that the number of spanning tree configurations restricted to this subgraph, as a
function of N , has a strictly larger exponential growth rate than that of the number
of spanning forest configurations in this subgraph with two or more components
(“strands”) each of which intersects both ends G ×{i} and G ×{i +N}. The growth
rate of spanning trees can be computed as the leading eigenvalue of nonnegative
finite matrix T , the transfer matrix.3 It is easily seen that the transfer matrix T

is primitive, that is, has the property that some power is strictly positive. On the
other hand, the transfer matrix for spanning forest configurations with two or more
strands is a matrix which can be obtained from T by setting some of its positive
entries to 0 (those entries whose components are all connected to the left). This
strictly decreases its leading eigenvalue. This proves the claim and the first two
statements of the theorem.

If we divide (3) by 2 − z − z−1 and let z tend to 1 the expression counts CRSFs
with one component, that is, CRTs, with a weight k2 if they wind k times around
Z/nZ, because

lim
z→1

2 − zk − z−k

2 − z − z−1 = k2.

As n gets large CRTs which wind more than once around have probability tending
to zero. Line (4) is the number of rooted trees; dividing by nm, the number of lo-
cations for the root, gives the number of trees, which by (3) and the above remarks
is n

m
times the number of CRTs winding once around, plus errors tending to zero

as n → ∞. This proves the third statement.
The following two sets A and B are in bijection: A is the set of CRTs whose

cycle winds once around Zn, along with the choice of an edge on this cycle. B is the
set of spanning trees with a choice of a complementary edge in the minimum cut
set. The bijection consists in adding the edge to the tree. Therefore, the expected
length of the unique cycle in a random CRT is

|A|
|CRTs| = |B|

|CRTs| = |B|
|trees|

|trees|
|CRTs| .

3The states of the transfer matrix are all possible forests (edge subsets) of G × {i} occurring in a
spanning tree of G ×Z along with a partition of the components in this forest, which describes which
components of this forest are connected to each other to the left, that is, in the part of the tree in
G × (−∞, i − 1].
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By the above, |trees|
|CRTs| → n

m
. �

7. Weighted and/or directed graphs.

7.1. Edge weights. Putting weights on the edges is a minor generalization; let
c:E → R>0 be a conductance associated to each edge, with cvv′ = cv′v . We then
define

	f (v) = ∑
v′

cvv′
(
f (v) − φv′vf (w)

)
.

In other words, letting C be the diagonal matrix, indexed by the edges, whose
diagonal entries are the conductances, we have

	 = d∗Cd.

THEOREM 5. det	 = ∑
CRSFs

∏
e C(e)

∏
(2 − w − 1

w
) where the first product

is over all edges of the configuration and the second is over cycles, and w is the
monodromy of the cycle as before.

This follows directly from the proof of Theorem 1 above.

7.2. Directed graphs. We can also have weights which depend on direction,
so that each edge has two weights, one associated to each direction. This makes G
into a Markov chain, in which the transition probabilities are proportional to the
edge weights.

In this case the Laplacian has the same form

	f (v) = ∑
v′

cvv′
(
f (v) − φv′vf (v′)

)
,

except that cvv′ �= cv′v in general. The operator d :
0 → 
1 can be defined by

df (e) = φvef (v) − φv′ef (v′)

as in the unweighted case, where e = v′v, and d∗ by

d∗(ω)(v) = ∑
e=v′v

cvv′φevω(e),

where the sum is over edges e = v′v containing v.
In this case, each oriented CRSF has a different weight. Forman’s theorem in

this case is the following.

THEOREM 6 [5].

det	 = ∑
OCRSFs

∏
e∈bushes

c(e)
∏

cycles γ

C(γ )
(
1 − w(γ )

)
,
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where the sum is over oriented CRSFs, the first product is over the edges in the
bushes (i.e., not in the cycles), oriented toward the cycle, and the second product
is over oriented cycles, C(γ ) is the product of semiconductances along γ and w

is the monodromy of γ .

An application is in Section 13 below.

8. Laplacian with Dirichlet boundary. Let G be a graph with line bundle
and connection � and S a subset of its vertices, which play the role of boundary
vertices. We can define a Laplacian 	G,S with Dirichlet boundary conditions at S

as follows: for f ∈ V G\S and v ∈ G \ S,

	G,Sf (v) = (degv)f (v) − ∑
v′∈G\S,v′∼v

φv′vf (v′).

This is of course just the Laplacian 	G restricted to the subspace V G\S of functions
which are zero on S and projected back to this subspace. As a matrix, it is just a
submatrix of 	G .

An essential CRSF of (G, S) is a set of edges in which each component is either
a tree containing a unique vertex in S or a cycle-rooted tree containing no vertices
in S.

THEOREM 7. det	G,S is the weighted sum of essential CRSFs, where each
configuration has weight

∏
CRTs(2 − w − w−1), where w is the monodromy of the

cycle.

This generalizes the matrix-tree theorem4 (when � is the identity and |S| = 1)
and the matrix-CRSF theorem (when |S| = 0).

PROOF OF THEOREM 7. The proof follows the same lines as the proof of
Theorem 1. Now d is an m × n matrix with n = |G| − |S|. A maximal minor B

of d corresponds to a choice of n edges. Each component of B is either a CRT, in
which case its weight is computed as before, or a tree connecting some vertices of
G \ S with a single vertex of S. In this case, the determinant of B (we mean, that
part of B coming from this component) has a single nonzero term in its expansion,
and the corresponding term in B∗ is its inverse. So each tree component counts 1.

�

Again when |w| = 1 there is a determinantal measure associated with 	.

4One version of the classical matrix-tree theorem is that the determinant of the matrix obtained by
removing a single row and column v from 	 is equal to the number of spanning trees rooted at v.
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9. Bundles with SL2C connections. We can extend many of the above results
to the case of a C

2-bundle with SL2C-connection.

9.1. Q-determinants. Given A ∈ GL2(C) define Ã = (detA)A−1, the adju-
gate of A. That is, if A = (a

c
b
d

)
then Ã = (d

c
b
a

)
. Note that

A + Ã = Tr(A)I(5)

is a scalar.
Let M be a matrix with entries in GL2(C). M is said to be self-dual if Mij =

M̃ji . In particular, diagonal entries must be scalar matrices.
For a matrix M with noncommuting entries, there are many possible ways one

might define its determinant: however these all involve the expansion

detM = ∑
σ∈Sn

sgn(σ )
[
M1σ(1) · · ·Mnσ(n)

]
σ ,(6)

where [M1σ(1) · · ·Mnσ(n)]σ denotes the product of the terms Miσ(i) after they have
been rearranged in some specified order depending on σ . Each of these “order
functions” determines a different possible determinant.

In the current case, there is one very natural condition to put on these orders.
If σ is written as a product of disjoint cycles, then in the corresponding order the
terms in each cycle of σ should appear consecutively. Moreover, if σ,σ ′ are two
permutations with the same cycles, except that some of the cycles are reversed,
then the corresponding order should have the cycles appear in the same relative
order.

The advantage of this for self-dual matrices is that the product of entries along
a cycle is the adjugate of the product along the reversed cycle; so that the sum of
these is a scalar by (5). Thus by grouping permutations into sets with the same
cycles up to reversals, one arrives at a product of scalar matrices. The sum (6) with
appropriately rearranged products then yields a 2 × 2 scalar matrix q · I , and the
number q is defined to be the determinant.

The Q-determinant of self-dual matrix M [18] is defined in precisely this way.
We define

Qdet(M) = ∑
σ∈Sn

sgn(σ )
∏

cycles

1

2
tr(w),

where the sum is over the symmetric group, each permutation σ is written as a
product of disjoint cycles, and tr(w) is the trace of the product of the matrix entries
in that cycle. If we group together terms above with the same cycles—up to the
order of traversal of each cycle—then the contribution from each of these terms is
identical: reversing the orientation of a cycle does not change its trace. So we can
write

Qdet(M) = ∑
(−1)c+n

c∏
i=1

t̂r(wi),
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where the sum is over cycle decompositions of the indices, c is the number of
cycles, and wi is the monodromy (in one direction or the other) of each cycle.
Here t̂r is equal to the trace for cycles of length at least 3; cycles of length 1 or 2
are their own reversals so we define t̂r(w) = 1

2 tr(w) for these cycles.

As an example, let A = aI,C = cI and B = (b1
b3

b2
b4

)
. Then

Qdet
(

A B

B̃ C

)
= t̂r(A)t̂r(C) − t̂r(BB̃) = ac − (b1b4 − b2b3).

Note that if M is a self-dual n × n matrix then ZM , considered as a 2n ×
2n matrix is antisymmetric, where Z is the matrix with diagonal blocks

( 0
−1

1
0

)
and zeros elsewhere. The following theorem allows us to compute Q-determinants
explicitly.

THEOREM 8 [18]. Let M be an n× n self-dual matrix with entries in GL2(C)

and M ′ the associated 2n × 2n matrix, obtained by replacing each entry with the
2 × 2 block of its entries. Then Qdet(M) = Pf(ZM ′), the Pfaffian of the antisym-
metric matrix ZM ′.

9.2. Laplacian determinant. For a C
2-bundle on a graph G with SL2C con-

nection 	 is a self-dual operator (in the above sense).

THEOREM 9. For a C
2-bundle on a connected graph G with SL2C connec-

tion,

Qdet	 = ∑
CRSFs

∏
cycles

2 − tr(w),

where tr(w) is the trace of the monodromy of the cycle.

PROOF. The proof generalizes the proof of Theorem 1. We use as before the
Cauchy–Binet formula which holds for general Q-determinants (Theorem 10 be-
low).

Suppose G has n vertices. Write Qdet	 = Qdet(d∗d) = ∑
B QdetB∗B . Here B

runs over choices of n edges of G . If B corresponds to a set of edges which has
a component with no cycle, that is, a component with k − 1 edges and k vertices,
the corresponding matrix B is singular (in fact has a block form with nonsquare
blocks) and so QdetB = √

detB = 0.
Thus, as before, each component of B must have exactly one cycle. We now

work directly with B∗B . Note that this is the Laplacian on the subgraph de-
fined by B . Suppose that B has only one component; the general case is similar.
A nonzero term in the expansion of the determinant corresponds to a decomposi-
tion of σ into cycles; the only such terms which are nonzero are when adjacent
vertices are paired, each vertex is fixed, or the vertices on the unique cycle are
advanced or retreated in the direction of that cycle and the other vertices are fixed.
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Consider the case when some vertices are paired; if i, j are paired in B∗B then
B maps i and j to the same edge eij , so this term does not contribute. If no terms
are paired, the expansion of the Q-determinant for B∗B therefore has exactly four
terms. It has two terms in which σ fixes the bush vertices and advances the cycle
vertices around the cycle in one of the two orientations. It also has two terms in
which all vertices are fixed: the vertices in the cycle advance to the edges in one of
the two directions and then retreat back to their original positions. The signs work
out as before. �

THEOREM 10 (Noncommutative Cauchy–Binet formula).

Qdet(M1M2) = ∑
B1

Qdet(B1B2),

where B1 runs over maximal minors of M1, and B2 is the corresponding minor
of M2.

PROOF (Sketch). Suppose M1 is n × m with m > n. The standard proof only
relies on the multilinearity of the determinant. Write columns of M1M2 as linear
combinations of columns of M1 with coefficients in M2 (acting on the right). Use
multilinearity to write this as a sum of mn Q-determinants; the Q-determinant of
one of these is zero if two of the same columns are used. Group the remaining m

choose n nonzero terms into products QdetB1 QdetB2. �

10. Graphs on surfaces.

10.1. Definitions. Let � be an oriented surface, possibly with boundary, and
G a graph embedded on � in such a way that complementary components are con-
tractible or peripheral annuli (i.e., an annular neighborhood of a boundary compo-
nent). We call the pair (G,�) a surface graph.

For each boundary component there is a “peripheral” cycle on G , consisting
of those vertices and edges bounding the same complementary component as the
boundary component.

An finite lamination or simple closed curve system on � is (the isotopy class
of) a finite set of pairwise disjoint simple closed curves on � each of which has
nontrivial homotopy type (i.e., no curve bounds a disk). We allow two or more
curves in the lamination to be isotopic.

10.2. Bundles on surface graphs. Given a surface graph (G,�) a vector bun-
dle on G with connection � is flat if it has trivial monodromy around any face (con-
tractible complementary component of �; peripheral cycles do not bound faces).
In this case, given a closed loop starting at a base point v, the monodromy around
a loop only depends on the homotopy class of the (pointed) loop in π1(�), and
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so the monodromy determines a representation of π1(�) into End(V ). This rep-
resentation depends on the base point for π1; choosing a different base point will
conjugate the representation.

Conversely, let ρ ∈ Hom(π1(�),End(V )) be a representation of π1(�) into
End(V ); for a fixed base point there is a unique flat line bundle, up to gauge
equivalence, with monodomy ρ. It is easy to construct: start with trivial paral-
lel transport on the edges of a spanning tree of G . Now on each additional edge,
adding it to the tree makes a unique cycle; define the parallel transport along this
edge to be the image of the homotopy class of this cycle under ρ. Thus, we have
a correspondence between flat bundles modulo gauge equivalence and a space
X = Hom(π1(�),End(V ))/End(V ), the space of homomorphisms of π1(�) into
End(V ) modulo conjugation. This space X has the structure of an algebraic vari-
ety: it can be represented using variables for the matrix entries of a set of generators
of π1(�), modulo an ideal corresponding to the relations in π1(�) and the con-
jugation relations. The variety X is called the representation variety of π1(�) in
End(V ).

When dealing with flat bundles it is natural to restrict our attention to CRSFs
each of whose cycles is topologically nontrivial, since other CRSFs have zero
weight in det	. We call these incompressible CRSFs. The cycles in an incom-
pressible CRSF form a finite lamination.

We now restrict to V = C
2 and SU2C-connections. For a flat bundle, det	 is

a regular function on the representation variety X = Hom(π1(�),SU2C)/SU2C

(i.e., it is a polynomial function of the matrix entries). Remarkably, by varying the
representation it is possible to extract from det	 those terms for incompressible
CRSFs whose cycles have any given set of homotopy types. The following theorem
is due to Fock and Goncharov [4]:

THEOREM 11 ([4], Theorem 12.3). If � has nonempty boundary, the products∏
cycles γ

Tr(γ )

over all finite laminations form a basis for the vector space of regular functions on
the representation variety Hom(π1(�),SU2C)/SU2C.

In our case, det	 is a regular function on X; hence it can be written

det	 = ∑
L

cL

∏
cycles

Tr(w),

where cL ∈ Z, the sum is over finite laminations L, the product is over curves γ

in L and w is the monodromy of γ . By an integral change of basis (in fact an
upper triangular integer matrix, if we order isotopy types of finite laminations by
inclusion) we can write this as

det	 = ∑
L

c′
L

∏
cycles

(
2 − Tr(w)

)
,
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and therefore by Theorem 9, c′
L is the desired weighted sum of CRSFs with lami-

nation type L.
The actual extraction of a coefficient can be done as follows. There is a natural

measure μ on X, essentially just the product of k copies of Haar measure on SU2C,
where k is the rank of the free group π1(�). The regular functions discussed above
form a basis for the Hilbert space L2(X,μ) (not an orthonormal basis but obtained
from an orthonormal basis by an upper-triangular linear transformation). Thus, one
can obtain cL above by an integration of det	 against a particular function over X.

10.3. Examples.

10.3.1. Annulus. The simplest example of a surface graph, after a graph on a
disk, is a graph on an annulus.

Suppose (G,�) is a surface graph on an annulus. Since π1(�) = Z is Abelian,
it will suffice to work with a line bundle (a Z subgroup of SL2C will have the same
traces as a Z subgroup of diagonal matrices in SL2C, which is equivalent to taking
a line bundle connection). Let z ∈ C

∗ be the monodromy of a flat line bundle.
Then P(z) = det	 is a Laurent polynomial in z. It is reciprocal: P(z) = P(1/z)

by Theorem 1.

THEOREM 12. P(z) is a reciprocal polynomial with real and positive roots
and a double root at z = 1.

We emphasize here that the roots of P are unrelated to the eigenvalues of 	.
Rather they are special values of the monodromy z for which 	 is singular. We
conjecture that the roots are distinct.

PROOF OF THEOREM 12. When z = 1, the line bundle is trivializable and 	

is the usual graph Laplacian. Thus, P(1) = 0. However, there exists a CRSF on G
with a single component winding once around �: just take any cycle of this type
and complete it to a CRT. So in Theorem 1, the coefficient of (2 − z − 1/z)1 is
nonzero, and z = 1 is a double root (i.e., not of higher order).

We prove reality by a deformation argument. At each real root r > 1 of P ,
	 has a kernel Wr . We claim that dimWr = 1. If it were of larger dimension, let
f1, f2 ∈ Wr be independent. These are real and harmonic for 	, and so lift to actual
harmonic functions on the embedded graph (G̃, �̃) on the universal cover �̃ of �.
These functions have the property that f (x + 1) = rf (x) where “+1” represents
the deck transformation, that is, on a path winding once around the annulus the
values of f1, f2 are multiplied by r .

Let v be a vertex on the boundary of � (i.e., on a peripheral cycle) and f3 be
a linear combination of f1, f2 which is zero at v. Then f3 is a harmonic function
on G̃ which is zero on a biinfinite sequence of boundary points. We claim that this
is impossible unless f3 is identically zero. By the mean-value principle, from each
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zero of a (not identically zero) harmonic function on an infinite graph there are
two paths to ∞, one on which the function is increasing (and eventually positive)
and another on which the function is decreasing (and eventually negative). Let α

be a choice of increasing and eventually positive infinite path from a fixed lift ṽ

of v, and β be a choice of decreasing and eventually negative infinite path from the
same point ṽ. The union of the lifts of α starting at all lifts of v is a nonnegative
connected set of vertices containing all lifts of v, and containing a strictly positive
path from −∞ to ∞; this contradicts the existence of β .

This completes the proof of the claim that f3 must be identically zero, and thus
the claim that dimWr = 1.

The roots of P vary continuously with the conductances. We can find a set of
conductances for which all roots are real, see the next paragraph. As we vary the
conductances, if two real roots r1, r2 collide and become a complex conjugate pair,
the sum Wr1 ⊕ Wr2 at the point of collision must be a two-dimensional subspace
of the kernel of 	, which we showed above cannot happen. Thus, the roots must
remain real. From Theorem 1, P(z1) cannot have negative real roots so all roots
are real and positive.

We now find specific conductances for which all roots are real. Take a set of
maximal cardinality of disjoint cycles, each winding around �, and complete it
to a CRSF. Let C1, . . . ,Ck be the cycles in order from innermost to outermost.
Add k − 1 more edges to join these CRTs up into a connected set U (a “chain of
loops,” with bushes), so that Ci is connected to Ci+1 with a path γi . Put a large
conductance R on every edge of U except for one edge of every Ci , and one edge
of every path γi ; these edges of U have weight 1. Put a small conductance ε on the
remaining edges of G not in U .

When ε is small and R is large, det	 is to leading order a power of R times
the determinant of the graph of Figure 2. This is because with high probability all
edges with conductance R, none of the edges of conductance ε, and some of the
edges of conductance 1 will be present in a random CRSF. Contracting all edges
of conductance R and removing those of conductance ε, we are left with the graph
of Figure 2 with all edges of conductance 1. For this graph, it is easy to verify
that the roots ri of det	 are real and distinct (see the example after Corollary 1).
The actual Laplacian is a small perturbation of this so its determinant also has real
distinct roots. �

COROLLARY 1. The number of cycles in a uniform random incompressible
CRSF on an annulus is distributed as 1 plus a sum of k independent Bernoulli

FIG. 2. A chain of loops. The roots of det	 are real and distinct.
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random variables, where k + 1 is the maximal number of nonintersecting incom-
pressible cycles one can simultaneously draw on G .

PROOF. Let w = 2−z−1/z. Then Q(w) = P(z) has only real negative roots:

Q(w) = w

k∏
i=1

(w + λi).

By Theorem 1, Q(w)/Q(1) is the probability generating function for the number
of loops. It is also the probability generating function for a sum of independent
Bernoullis, with the ith Bernoulli being biased as ( 1

1+λi
, λi

1+λi
). �

As an example, let us compute, for a rectangular cylinder, det	 and the cor-
responding distribution of cycles in a uniform random incompressible CRSF.
Let Gm be a line graph of length m and Hm,n = Gm × Zn. The eigenvalues of
	Gm are 2 + 2 cos kπ

m
for k = 1,2, . . . ,m [the corresponding eigenvectors are

fk(x) = cos πk(x+1/2)
m

for x = 0,1,2, . . . ,m − 1]. By (3), we have

det	 = (2 − z − z−1)
∏(

Chn(λ + 2) − z − 1

z

)
= w

∏
λ

w + Chn(λ + 2) − 2,

where w = 2 − z − 1
z

and Chn is defined by Chn(α + 1
α
) = αn + α−n (a variant

of the Chebyshev polynomial). For nonnegative λ and large n, Chn(λ + 2) is large
unless λ is near 0, so the relevant roots are λj = 2 + 2 cos π(m−j)

m
for small j ,

j = 1,2, . . . . We have 2 + λj = 2 + π2j2

m2 + O(
j
m

)4 = αj + 1/αj where αj =
1 + πj

m
+ O(

j
m

)2. Thus, in the limit m,n → ∞ with m/n → τ the roots satisfy

Chn(λj + 2) = 2 cosh πj
τ

+ o(1).
The limit probability generating function for the number of cycles is then

Q(w)/Q(1) = w

∞∏
j=1

(
w + 2 cosh (πj/τ) − 2

2 cosh(πj/τ) − 1

)
.

For example, for a square annulus (m = n) the probability of a single cycle is
approximately 95%.

10.3.2. Torus example. We compute the Laplacian determinant for a flat line
bundle on a n × n grid on a torus, that is, for the graph Z

2/nZ
2. In this case, the

determinant is

det	 = ∏
ζ n=z1

∏
ξn=z2

4 − ζ − 1

ζ
− ξ − 1

ξ
.
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This product was evaluated in [1], yielding det	 = CnPn(z1, z2) where Cn is a
constant tending to ∞ and Pn tends to P , where

P(z1, z2) = ∑
j,k∈Z

e−(π/2)(j2+k2)z
j
1zk

2(−1)j+k+jk.(7)

We wish to rewrite this as

P(z1, z2) = ∑
(j,k) primitive

∑
m≥1

Cjkm(2 − z
j
1z

k
2 − z

−j
1 z−k

2 )m,

where the first sum is over primitive vectors (j, k) in Z
2, one per direction [i.e.,

only one of (j, k) and (−j,−k) appears]. Thus, Cjkm will be the relative prob-
ability that a CRSF has m cycles in homology class (j, k). To this end, pick a
primitive vector (j, k) and consider the terms in (7) with monomials z

mj
1 zmk

2 for

m ∈ Z. Letting u = z
j
1z

k
2 and q = e−(π/2)(j2+k2) the sum of these terms is∑

m∈Z

qm2
(−u)m,

which can be rewritten as a power series in 2 − u − 1/u as5

∑
�∈Z

q�2
(−1)� +

∞∑
m=1

( ∞∑
�=1

�

m

(
m + � − 1

2m − 1

)
(−1)�+mq�2

)
(2 − u − 1/u)m.

Thus, we find

Cjkm =
∞∑

�=1

�

m

(
m + � − 1

2m − 1

)
(−1)�+me−(π/2)(j2+k2)�2

.

For example, the probability of a single cycle in homology class (1,0) is

C101∑
Cjkm

≈ 41%.

10.3.3. Pants example. We consider here the case when � is a 3-holed sphere.
This is the simplest case where the noncommutativity of the connection plays a
role. We consider a flat SL2C-connection on (G,�). Let a, b and c be the mon-
odromies around the three holes, which satisfy abc = 1. Since π1(�) is the free
group on two generators, there are no other relations. Note that a simple closed
curve on � has only one of three possibly homotopy types: it must be homotopic

5We use the fact that

2 − z� − z−� = ∑
m≥1

�

m

(
m + � − 1

2m − 1

)
(−1)m+1(2 − z − z−1)m.



SPANNING FORESTS AND THE VECTOR BUNDLE LAPLACIAN 2005

to one of the three boundary curves. A finite lamination up to homotopy is there-
fore described by a triple (i, j, k) �= (0,0,0) of nonnegative integers, where there
are i curves homotopic to a, j homotopic to b, and k homotopic to c. Theorem 9
gives the following.

THEOREM 13. Let X = 2−Tr(a), Y = 2−Tr(b),Z = 2−Tr(c) = 2−Tr(ab).
Then det	 = P(X,Y,Z) = ∑

CRSFs XiY jZk where (i, j, k) is the number of cy-
cles with homotopy type a, b, c, respectively.

Note in particular that P is a polynomial with nonnegative coefficients. What
polynomials occur? Is there an analog of Theorem 12 in this setting? We do not
know. However, it is not difficult to show that the set of exponents (i, j, k) of
the nonzero monomials of P(X,Y,Z) form a convex set in Z3: let ρab be the
length in terms of the number of vertices of the shortest path from face a (the face
with monodromy a) to face b (the face with monodromy b). Similarly define ρac

and ρbc. Then we can simultaneously embed i, j, k cycles of types a, b, c if and
only if

i + j ≤ ρab,

i + k ≤ ρac,(8)

j + k ≤ ρbc.

This is easily proved by induction on ρab, ρac, ρbc. So the Newton polyhedron of
P is defined by i, j, k ≥ 0, (i, j, k) �= (0,0,0), and (8).

11. Planar loop-erased random walk. In this section, we use the vector-
bundle Laplacian to study the loop-erased walk on a planar graph. In Section 11.1,
we compute the probability that the LERW between two boundary points passes
left or right of a given face. In Section 11.2, we compute this probability for two
faces.

11.1. LERW around a hole. Let G be a finite planar graph. Let z1, z2 vertices
on the outer boundary and f a bounded face. We compute the probability that the
LERW from z1 to z2 goes left of f . This can be computed quite simply using
duality: given a UST on a planar graph G , the duals of the edges not in T form
a UST of the planar dual graph. In the dual graph, our question is equivalent to
asking whether the LERW from the face f first reaches the outer face along the
edge between z1 and z2 or outside this edge. This is just the harmonic measure of
the path from z1 to z2 as seen from f .

Here we will compute this in another way, using line bundle technology. It il-
lustrates a general method which will be useful in the next section.

Take a line bundle with monodromy b around f and trivial around all other
faces. This can be achieved by putting in a zipper of edges (dual of a simple path
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FIG. 3. Defining the connection for the LERW around a hole.

in the dual graph from f to the boundary) each with parallel transport b as in
Figure 3. Suppose without loss of generality that the zipper ends between z1 and
z2 as in the figure.

Put in an extra edge from z1 to z2 with parallel transport φz1z2 = a. Then by
Theorem 1,

det	 = p1 + p2

(
2 − a − 1

a

)
+ p3

(
2 − a

b
− b

a

)
(9)

= p1 + 2p2 + 2p3 − a

(
p2 + p3

b

)
− 1

a
(p2 + bp3).

Here p2 = p2(b) is the weighted sum of CRSFs which contain a cycle containing
edge a and going left of f (when oriented so that a is the edge before z1); p3 =
p3(b) is the weighted sum of CRSFs containing a cycle through a going “right”
of f .

We wish to compute p2(b = 1),p3(b = 1). These can be extracted from the
coefficients of a and 1

a
in det	.

Letting z1, z2 be the first two vertices, we have

	 = 	(b) +
⎛⎝ 1 −a 0

−a−1 1 0
0 0 0

⎞⎠ ,

where 	(b) is the Laplacian without the extra edge from z1 to z2 (and 0 represents
a vector or matrix of zeros). As a consequence,

det	 = det	(b)det
(
I +

(
1 −a

−1/a 1

)(
G(z1, z1) G(z1, z2)

G(z2, z1) G(z2, z2)

))
,
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where G = 	(b)−1.
This last determinant is 1+G(z1, z1)+G(z2, z2)−aG(z2, z1)− G(z1,z2)

a
. Com-

paring coefficients with (9) yields

p2 = b2G(z2, z1) − G(z1, z2)

b2 − 1
det	(b)

and

p3 = b(G(z1, z2) − G(z2, z1))

b2 − 1
det	(b).

The desired quantity is

p2

p2 + p3
= b2G(z2, z1) − G(z1, z2)

(b − 1)(bG(z2, z1) + G(z1, z2))
(10)

in the limit b → 1.
We need to compute G(v, v′) when b is near 1.

LEMMA 2. When b = 1+ε, G(v, v′) = κ
det	(b)

(1+εX(v, v′)+O(ε2)) where
κ is the number of spanning trees of G and X(v, v′) is the expected signed number
of crossings of the zipper on a simple random walk from v to v′.

PROOF. For a matrix M , let MB
A denote (−1)iA+iB times the determinant of

M upon removing rows A and columns B . Here iA is the sum of the indices of
elements of A and likewise for iB . (We can assume without loss of generality that
all relevant vertices have even index so that we can ignore the signs.) Recall that
for the standard Laplacian 	0, we have for any v, v′ that (	0)

v′
v = κ , the number of

spanning trees of G . We also have (	0)
cd
ab = G(a, c)−G(a,d)−G(b, c)+G(b,d)

where G is the Green’s function.6

Letting Z = 	(b) − 	0, a matrix supported on the zipper edges. We have

G(v, v′)det	(b)

= 	(b)vv′ = (	0 + Z)vv′ = (	0)
v
v′ +

∑
x,y

Zy
x (	0)

v,y

v′,x + · · ·

= κ + ∑
�uw

(b − 1)(	0)
v,w
v′,u +

(
1

b
− 1

)
(	0)

v,u
v′,w + O(ε2)(11)

6More generally,

(	0)
b1,...,bk
a1,...,ak

= [t]κ det
(
t + G(ai, bj )

)
1≤i,j≤k,

where [t]P(t) denotes the coefficient of t1 in P(t). This can be proved by induction on k and ex-
panding the determinant on the left-hand side along row ak .
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= κ

(
1 + ε

∑
�uw

G0(v
′, u) + G0(v,w)

− G0(v
′,w) − G0(v, u) + O(ε2)

)
.

Here the sum is over the zipper edges. For an edge �uw the quantity G0(v
′, u) +

G0(v,w)−G0(v
′,w)−G0(v, u) is the transfer current, equivalently, the expected

signed number of crossings of uw of the simple random walk started at v′ and
stopped at v. �

By the lemma, when b = 1 + ε the probability (10) becomes

p2

p2 + p3
= 1 + X(z2, z1) − X(z1, z2)

2
+ O(ε) = 1 − X(z1, z2) + O(ε)

since X(z1, z2) = −X(z2, z1).

COROLLARY 2. The probability that the LERW from z1 to z2 goes left of f is
the total amount of current flowing left of f when 1 unit of current enters at z1 and
exits at z2.

11.2. LERW around two holes. Let f1, f2 be two faces in a finite planar graph
G and z1, z2 two points on the boundary. Consider the LERW from z1 to z2. We
compute the probability that it goes left of both faces. Although this can be com-
puted in principle using Theorem 11 and the comments thereafter, in practice that
method involves an integration of det	 over the representation variety X; in the
case of a large graph one might not have access to an explicit expression for det	.
Here, we do the computation using only a bundle which is close to the trivial bun-
dle; the determinant as a function on X can be expanded as a power series around
the trivial bundle case and we only need the first two terms in the expansion, which
we can write down explicitly in terms of the standard green’s function.

We use an SL2C-bundle. Choose a bundle with mondromy A around f1 and B

around f2, and trivial monodromy around the other faces. This can be achieved by
putting trivial parallel transport on all edges except for two zippers, one from each
of f1, f2 to the boundary, as in Figure 4. Let ZA,ZB denote these two zippers.

Add a new edge connecting z1 to z2 with parallel transport C. Suppose that
A,B are close to the identity. Then a CRSF will have with high probability only
a loop containing C. The first-order correction to this consists in CRSFs having
two loops, one of them containing C and the other of monodromy A,B or AB (or
their inverses). The possible loops in a CRSF with one or two loops, one of which
contains C, have one of the seven monodromy types (or their inverses):

A,B,AB,C,CB−1A−1,C(BA)nA−1(BA)−n,C(AB)nB−1(AB)−n,

where n ∈ Z.
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FIG. 4. Defining the connection for the LERW around two holes.

Let

A =
(

1 + xu y
√

u

z
√

u 1 + wu

)
,

B =
(

1 + au b
√

u

c
√

u 1 + du

)
,

C =
(

e 1
−1 0

)
be the representations in SL2C, where u is small and x, y, z,w,a, b, c, d, e are
variables. The equations detA = detB = 1 yield x + w − yz = o(u) and a + d −
bc = o(u).

Computing the traces of the above seven classes, we have

2 − Tr(A) = −(x + w)u + o(u),

2 − Tr(B) = −(a + d)u + o(u),

2 − Tr(AB) = −(a + d + w + x + cy + bz)u + o(u),

2 − Tr(C) = 2 − e,(12)

2 − Tr(C(AB)nB−1(AB)−n) = 2 − e
(
1 + du + o(u)

)
,

2 − Tr(C(BA)nA−1(BA)−n) = 2 − e
(
1 + wu + o(u)

)
,

2 − Tr(CB−1A−1) = 2 − e
(
1 + (d + w + bz)u

)
.

The relevant quantities for us are the last four and the products of any one the
first three of these with the last four.

We let Nll be the weight sum of configurations in which the LERW from z1 to
z2 goes left of both faces, and having no other loops (i.e., CRSFs with one loop
containing the extra edge, with the property that this loop surrounds both f1, f2).
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Similarly, define Nlr,Nrl,Nrr . Let N1,N2,N3 be, respectively, the weighted sum
of those configurations having one loop containing C and one loop surrounding,
respectively, hole f1, hole f2, and both holes.

If we extract the coefficient of e in −Qdet	, from (12) the result will be of the
form

Nll + Nlr(1 + du) + Nrl(1 + wu) + Nrr

(
1 + (d + w + bz)u

)
− N1(w + x)u − N2(a + d)u − N3(a + d + w + x + cy + bz)u + O(u2).

Recall that these variables are subject to the constraints x + w − yz = o(u) and
a + d − bc = o(u). The coefficients of the N∗ are linearly independent given these
constraints. Thus given an explicit expression for Qdet	 to first order in u, it is
a simple matter to extract these various coefficients N∗. The desired probabilities
are

pll = Nll

Nll + Nlr + Nrl + Nrr

and so on.
Let us show how to compute the coefficient of e in Qdet	, to first order in u.
Indexing the vertices so that z1, z2 are the first two vertices, we have

	(A,B,C) = 	(A,B) +
⎛⎝ I −C 0

−C−1 I 0
0 0 0

⎞⎠ ,

where 	(A,B) is the Laplacian without the extra edge from z1 to z2 (and 0 repre-
sents a vector or matrix of zeros). As a consequence,

det	(A,B,C)

= det	(A,B)det

⎛⎜⎜⎝I +

⎛⎜⎜⎝
1 0 −e −1
0 1 1 0
0 1 1 0

−1 −e 0 1

⎞⎟⎟⎠

×
(

G
(
z
(1)
1 , z

(1)
1

) · · · G
(
z
(1)
1 , z

(2)
2

)
G

(
z
(2)
2 , z

(1)
1

) · · · G
(
z
(2)
2 , z

(2)
2

))⎞⎟⎟⎠ ,

where G = 	(A,B)−1. Note that G is self-dual, since it is the inverse of a self-
dual matrix. Thus, we have

Qdet	(A,B,C) = Qdet	(A,B)

× Qdet
(
I +

(
I −C

−C−1 I

)(
G(z1, z1) G(z1, z2)

G̃(z1, z2) G(z2, z2)

))
,
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where G(z1, z1) and G(z2, z2) are diagonal matrices. The right-hand side is
Qdet	(A,B) times

1 + G
(
z
(1)
1 , z

(1)
1

) − G
(
z
(1)
1 , z

(2)
2

) + G
(
z
(2)
1 , z

(1)
2

) + G
(
z
(1)
2 , z

(1)
2

) − eG
(
z
(2)
1 , z

(2)
2

)
.

Thus, the coefficient of e in −Qdet	(A,B,C) is

G
(
z
(2)
1 , z

(2)
2

)
Qdet	(A,B)

to first order in u.
It is possible to give an exact expression for G(z

(2)
1 , z

(2)
2 )Qdet	(A,B) as a sum

over ZA and ZB of products of standard Green’s functions. Since A,B are close
to the identity, we can write

	(A,B) =
(

	0 0
0 	0

)
+ Z,

where Z is a perturbation supported on the zippers. As a consequence, both

G
(
z
(2)
1 , z

(2)
2

)
det	(A,B) = det	(A,B)

z
(2)
2 z

(2)
1

and Qdet	(A,B) itself have expansions in powers of u. The ratio of these is the
desired quantity.

For the present purposes, we need the expansion of G(z
(2)
1 , z

(2)
2 )det	(A,B) to

first order (which is the term of order u2) and
√

det	(A,B) to first order (which is
the term of order u). Unfortunately these computations, although elementary, can
be quite long, and we have not been able to get an explicit answer for a main case
of interest which is the upper half plane.

12. Green’s function and random walks. We give here a probabilistic inter-
pretation of the Green’s function of the line bundle Laplacian in the case where
each edge has parallel transport either 1 or z. Let G be a graph, EZ a collection of
directed edges, and consider the line bundle with parallel transport z on EZ and 1
elsewhere. Let G be the inverse of the line bundle Laplacian.

Let v, v′ be vertices of G . Let us first ask: what is the distribution of the signed
number of crossings of EZ on the SRW from v to v′?

Let P be the transition matrix of the simple random walk on G (ignoring the
line bundle) with absorbing state v′. Thus, Pv2v1 is the probability of going to v2
from state v1 (as usual the indices are reversed so that composition respects the
natural path order). Multiply the entry Pv2v1 by z or 1/z if v1v2 is in EZ or −EZ ,
respectively. With v′ as the vertex with last index P has the form P = (N

A
0
1

)
.

Then the probability generating function of the number of crossings is

∞∑
k=0

(ANk)v′v = (
A(I − N)−1)

v′v.
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PROPOSITION 3. The probability generating function of the signed number of
crossings of EZ on a simple random walk from v to v′ is(

A(I − N)−1)
v′v = G(v, v′)

G(v′, v′)
.

PROOF. Note that ((I − P)D)v1v2 = 	v1v2 for v2 �= v′, where D is the diago-
nal matrix of vertex degrees. As a consequence(

A(I − N)−1)
v′v = ∑

v2

Av′v2(I − N)−1
v2v

= ∑
v2

Av′v2

cof(I − N)v2
v

det(I − N)

= ∑
v2

Av′v2

cof(	D−1)
v2v

′
vv′

cof(	D−1)v
′

v′

= ∑
v2

Av′v2

cof	v2v
′

vv′ (deg(v′)deg(v2)/detD)

(det	)G(v′, v′)deg(v′)/detD

= 1

(det	)G(v′, v′)
∑
v2

	v′v2 cof	v2v
′

vv′

= G(v, v′)
G(v′, v′)

. �

The quantity 1 − 1
G(v′,v′)degv′ also has a probabilistic interpretation. Choosing a

gauge such that φv′v = 1 for all v adjacent to v′, and using∑
v2

	v,v2G(v2, v
′) = δv,v′

we have (setting v = v′)

degv′G(v′, v′) − ∑
v2∼v′

G(v2, v
′) = 1

giving

1 − 1

G(v′, v′)degv′ = ∑
v2∼v′

1

degv′
G(v2, v

′)
G(v′, v′)

.

Thus, we have the following proposition.

PROPOSITION 4. 1− 1
G(v′,v′)degv′ is the probability generating function of the

signed number of crossings of EZ on a SRW started at v′ and stopped on its first
return to v′.



SPANNING FORESTS AND THE VECTOR BUNDLE LAPLACIAN 2013

Now let z = 1 + ε with small ε and

G(v, v′)
G(v′, v′)

= 1 + X1ε + X2ε
2 + · · · ,(13)

so that X1 is the expected signed number of crossings of EZ on a SRW from v

to v′. Similarly let

1 − 1

G(v′, v′)degv′ = 1 + Y2ε
2 + Y3ε

3 + · · · ,(14)

so that 2Y2 is the expectation of the square of the signed number of crossings of
EZ of the SRW from v′ until its first return to v′ (note that Y1 is zero and Y3 = −Y2

by symmetry).

PROPOSITION 5. The determinant of the line bundle Laplacian 	 above sat-
isfies

det	 = κ degv′(−Y2ε
2 + Y2ε

3 + O(ε4)
)
,(15)

where 2Y2 is the expected square of the signed number of crossings of EZ of a SRW
from v′ until its first return to v′. In particular Y2 degv′ does not depend on v′.

PROOF. From Lemma 2, we have

G(v, v′)det	 = κ
(
1 + X1ε + O(ε2)

)
.

However by (13) and (14), we have

G(v, v′)det	 = 1

degv′
1 + X1ε + X2ε

2 + O(ε3)

−Y2ε2 + Y2ε3 + O(ε4)
det	,

so we must have det	 = κ degv′(−Y2ε
2 + Y2ε

3 + O(ε4)). �

We can get a full expansion of det	 as a power series in z around z = 1 as
follows. We have

∂

∂z
log det	 = ∑

uw∈EZ

Gw
u − 1

z2 Gu
w.

This follows from differentiating the entries in 	. Here using Propositions 4 and 3,
the quantities on the right-hand side have explicit probabilistic interpretations. In-
tegrating both sides from z = 1 to z = z0, gives the desired expansion.
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13. Monotone lattice paths. Let �m,n be the m × n grid on a torus [the
nearest neighbor grid {0,1, . . . ,m} × {0,1, . . . , n} with opposite sides identified:
(m, j) ∼ (0, j) and (i, n) ∼ (i,0)]. Choose for each vertex a north- or east-going
edge, independently and with probability p = 1/2. The resulting configuration of
edges makes a directed CRSF, and we wish to determine the distribution of the
number and homology type of the cycles. This problem was studied in [7] who
showed among other things that when m/n is close to a rational with small de-
nominator the number of cycles is (in the limit m,n → ∞) tending to a Gaussian
with expectation on the order of

√
n.

Here we show how to compute explicitly for each m,n the probability generat-
ing function of the total homology class of the cycles (which determines both the
number of cycles and their direction).

We make �m,n into a directed graph, directing all edges northward or eastward.
Let � be a flat line bundle on �m,n with monodromy z and w for loops in ho-
mology class (1,0) and (0,1), respectively. � can be obtained by putting parallel
transports 1 on all edges except edges (m − 1, i)(0, i) which get parallel transport
z and edges (i, n − 1)(i,0) which get parallel transport w.

By Theorem 6, the determinant of the line bundle Laplacian is

Fm,n(z,w) = det	 = ∑
j,k≥0

Cj,k(1 − zpwq)�,(16)

where (j, k) = (p�, q�) and p,q are coprime, and Cj,k is the number of CRSFs
with total homology class (j, k), that is, with � cycles of homology (p, q).

This determinant can be explicitly computed using a standard Fourier diagonal-
ization of 	.

PROPOSITION 6.

Fm,n(z,w) = ∏
um=z

∏
vn=w

2 − u − v.(17)

PROOF. If um = z and vn = w, then the function f (x, y) = uxvy is an eigen-
vector of 	 with eigenvalue 2 − u − v. These eigenvectors are independent and
span C

mn. �

From (17), we can extract the coefficients Cm,n. Let us consider for simplicity
the case m = n. In [7], it was shown that with probability tending to 1 as n → ∞,
all cycles will have homology class (1,1). Thus, from (16),

Fn,n(z,w) = ∑
j≥0

Cj,j (1 − zw)j + ∑
j �=k≥0

Cj,k(1 − zpwq)�,(18)

where the second sum is negligible, in the sense that the sum of its coefficients is
o(

∑
Cj,j ). We can thus ignore the second sum, let z = 1 and expand Fn,n(1,w)
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around w = 1. We have

Fn,n(z,w) = ∏
un=z,vn=w

2 − u − v = ∏
un=z

(2 − u)n − w.

Letting Y = 1 − w and Fn,n(1,w) = Hn(1, Y ), we have

Hn(1, Y ) =
n−1∏
j=0

(2 − e2πij/n)n − (1 − Y)

and

Hn(1, Y )

Hn(1,1)
=

�n/2�∏
j=−�n/2�+1

(2 − e2πij/n)n − (1 − Y)

(2 − e2πij/n)n
.

The product (2 − e2πij/n)n is large in absolute value unless |j | is small, that is,
when |j | is O(n1/2), so the dependence on Y comes from terms with |j | small.
That is, the product can be written as∏

|j |<n1/2+ε

(· · ·) ∏
|j |>n1/2+ε

(· · ·)

and the second product is 1 + o(e−nε
). When |θ | is small,

(2 − eiθ )n = (1 − iθ + θ2/2 + · · ·)n = e−inθ+nθ2+···.
Plugging in θ = 2πj/n yields

Hn(1, Y )

Hn(1,1)

(
1 + o(e−nε

)
) =

∞∏
j=−∞

e(2πj)2/n − 1 + Y

e(2πj)2/n
,

where we have extended the range of j without loss of precision. Thus up to ex-
ponentially small errors,

Hn(1, Y )

Hn(1,1)
= Y

∏
j �=0

(
1 − e−(2πj)2/n + Ye−(2πj)2/n)

is the probability generating function for the number N(1,1) of (1,1)-cycles. We
see that the number of (1,1) cycles is a sum of independent Bernoulli random
variables with the j th having bias pj = e−(2πj)2/n. The expectation of N(1,1) is
then (using t = 2πj/

√
n)∑

pj = ∑
j

e−(2πj)2/n ≈
√

n

2π

∫ ∞
−∞

e−t2
dt =

√
n

4π
.

The variance is∑
pj (1 − pj ) ≈

√
n

2π

∫ ∞
−∞

e−t2
(1 − e−t2

) dt =
√

n

4π

(
1 − 1√

2

)
.
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Since the variance tends to ∞, the central limit theorem implies that distribution
tends to a Gaussian as n → ∞.

A similar computation holds when m = pk,n = qk and k → ∞.

14. Open questions.

1. Consider a graph embedded on a Riemann surface, such that edges are geodesic
segments. Now use a naturally associated connection, for example, the Levi–
Civita connection on the tangent bundle. What are the probabilistic conse-
quences of choosing such a connection?

2. Is there any combinatorial meaning to the vector bundle Laplacian for higher-
rank bundles?

3. What information does the line bundle Laplacian give about the three-dimen-
sional monotone lattice path problem, generalizing the results of Section 13?
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