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SPANNING TREES--SHORT OR SMALL*

R. RAVIt, R. SUNDARAM:, M. V. MARATHE, D. J. ROSENKRANTZ, AND S. S. RAVIII
Abstract. We study the problem of finding small trees. Classical network design problems are

considered with the additional constraint that only a specified number k of nodes are required to be
connected in the solution. A prototypical example is the kMST problem in which we require a tree
of minimum weight spanning at least k nodes in an edge-weighted graph. We show that the kMST
problem is NP-hard even for points in the Euclidean plane. We provide approximation algorithms
with performance ratio 2v/ for the general edge-weighted case and O(k1/4) for the case of points
in the plane. Polynomial-time exact solutions are also presented for the class of treewidth-bounded
graphs, which includes trees, series-parallel graphs, and bounded bandwidth graphs, and for points
on the boundary of a convex region in the Euclidean plane.

We also investigate the problem of finding short trees and, more generally, that of finding networks
with minimum diameter. A simple technique is used to provide a polynomiM-time solution for finding
k-trees of minimum diameter. We identify easy and hard problems arising in finding short networks
using a framework due to T. C. Hu.
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1. Introduction.

1.1. Motivation: Small trees. The oil reconnaissance boats are back from
their final trip off the coast of Norway and present you with a detailed map of the
seas surrounding the coastline. Marked in this map are locations that are believed to
have a good chance of containing oil under the sea bed. Your company has a limited
number of oil rigs that it is willing to invest in the effort. Your problem is to position
these oil rigs at marked places so that the cost of laying down pipelines between these
rigs is minimized. The problem at hand can be modeled as follows: given a graph with
nonnegative edge weights and a specified number k, find a tree of minimum weight
spanning at least k nodes. Note that a solution to the problem will be a tree spanning
exactly k nodes. We call this problem the k-minimum spanning tree (or the kMST)
problem. Moreover, the kMST problem is at the heart of several other optimization
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problems, such as the latency problem [9] and the prize-collecting traveling salesperson
problem [1], and hence is of independent interest. In this paper, we study such classical
network-design problems as the MST problem with the additional constraint that only
a specified number of nodes need to be incorporated into the network. Unlike the MST
problem, which admits a polynomial-time solution [25], [28], the kMST problem is
considerably harder to solve. In Theorem 2.1 we prove that the kMST problem is
NP-complete. This result was independently obtained by Lozovanu and Zelikovsky
[26]. The kMST problem remains NP-complete even when all the edge weights are
drawn from the set {1,2,3} (i.e., the graph is complete and every edge takes one of
three different weights). It is not hard to show a polynomial-time solution for the case
of two distinct weights. The problem remains NP-hard even for the class of planar
graphs as well as for points in the plane.

1.2. Approximation algorithms. A p-approximation algorithm for a mini-
mization problem is one that delivers a solution of value at most p times the minimum.
Consider a generalization of the kMST problem, the k-Steiner tree problem: given
an edge-weighted graph, an integer k, and a subset of at least k vertices specified
as terminals, find a minimum-weight tree spanning at least k terminals. We can
apply approximation results for the kMST problem to this problem by considering
the auxiliary complete graph on the terminals with edges weighted by shortest-path
distances. A p-approximation for the kMST problem on the auxiliary graph yields a
2p-approximation for the k-Steiner tree problem. Therefore we focus on approxima-
tions for the kMST problem. We provide the first approximation algorithm for this
problem. In Theorem 3.1 we present a polynomial-time algorithm 2V-approximation
algorithm for the kMST problem. The algorithm is based on a combination of a greedy
technique that constructs trees using edges of small cost and a shortest-path heuristic
that merges trees when the number of trees to be merged is small. The analysis of
the performance ratio is based on a solution-decomposition technique [4], [14], [24],
[29], [30] that uses the structure of an optimal solution to derive a bound on the cost
of the solution constructed by the approximation algorithm.

Theorem 3.1 provides a 4x/-approximation algorithm for the k-Steiner tree prob-
lem as well. Moreover, we construct an example that demonstrates the performance
guarantee of the approximation algorithm is tight to within a constant factor.

We derive a better approximation algorithm for the case of points in the Euclidean
plane. In Theorem 4.1 we show that there is a polynomial-time algorithm that, given n
points in the Euclidean plane and a positive integer k _< n, constructs a tree spanning
at least k of these points such that the total length of the tree is at most O(k1/4)
times that of a minimum-length tree spanning any k of the points.

As before, we construct an example showing that the performance ratio of the
algorithm in Theorem 4.1 is tight. Our proof of Theorem 4.1 also yields as a corollary
an approximation algorithm for the rectilinear kMST problem.

1.3. Polynomially solvable special cases. Since the kMST problem is NP-
complete even for the class of planar graphs, we focus on special classes of graphs
and provide exact solutions that run in polynomial time. Robertson and Seymour in
their seminal series of papers [32] introduced and developed the notion of treewidth.
Many hard problems have exact solutions when attention is restricted to the class
of treewidth-bounded graphs and much work has been done in this area, especially
by Bodlaender [11]. Independently, Bern, Lawler, and Wong [8] introduced the no-
tion of decomposable graphs. Later, it was shown [5] that the class of decomposable
graphs and the class of treewidth-bounded graphs are one and the same. A class
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of decomposable graphs is defined using a finite number of primitive graphs and
a finite collection of binary composition rules. Examples of decomposable graphs
include trees, series-parallel graphs, and bounded-bandwidth graphs. We use a dy-
namic programming technique to show that for any class of decomposable graphs (or
treewidth-bounded graphs), there is an O(nk2)-time algorithm for solving the kMST
problem. A polynomial-time algorithm for trees was also independently obtained by
Lozovanu and Zelikovsky [26].

Though the kMST problem is hard for arbitrary configurations of points in the
plane, we show in 5.2 that there is a polynomial-time algorithm for solving the kMST
problem for the case of points in the Euclidean plane that lie on the boundary of a
convex region. We also provide a faster algorithm to find the optimal kMST when all
the points lie on a circle. The proof of the above facts uses a monotonicity property
of an optimal tree along with a degree constraint on an optimal solution. This allows
us to apply dynamic programming to find the exact solution, Several researchers in
computational geometry have presented exact algorithms for choosing k points that
minimize other objectives such as diameter, perimeter, area, and volume [3], [16]-[18].

1.4. Short trees. Keeping the longest path in a network small is often an impor-
tant consideration in network design. We investigate the problem of finding networks
with small diameter. Recall that the diameter of a tree is the maximum distance (path
length) between any pair of nodes in the tree. The problem of finding a minimum-
diameter spanning tree of an edge-weighted graph was shown to be polynomially
solvable by Camerini, Galbiati, and Maffioli [13] when the edge weights are nonneg-
ative. They also show that the problem becomes NP-hard when negative weights
are allowed. Camerini and Galbiati [12] proposed polynomial-time algorithms for a
bounded-path tree problem on graphs with nonnegative edge weights. Their result
can be used to show that the minimum-dimeter spanning tree problem as well as
its natural generalization to Steiner trees can be solved in polynomial time. We use
a similar technique to show that the following minimum-diameter k-tree problem is
polynomially solvable: given a graph with nonnegative edge weights, find a tree of
minimum diameter spanning at least k nodes.

We investigate easy and hard results in finding short networks. For this, we
use a framework due to T. C. Hu [22]. In this framework, we are given a graph
with nonnegative distance values dj and nonnegative requirement values rj between
every pair of nodes and j in the graph. The communication cost of a spanning tree
is defined to be the sum over all pairs of nodes i, j of the product of the distance
between and j in the tree under d and the requirement rj. The objective is to find
a spanning tree with minimum communication cost. Hu considered the case when all
the d values are one and showed that a Gomory-Hu cut tree [21] using the r values
as capacities is an optimal solution. Hu also considered the case when all the r values
are one and derived sufficient conditions under which the optimal tree is a star. The
general version of the latter problem is NP-hard [2], [13], [23].

We define the diameter cost of a spanning tree to be the maximum cost over
all pairs of nodes i, j of the distance between and j in the tree multiplied by rj.
In Table 1, we present current results in this framework. All rj and dj values are
assumed to be nonnegative. The first two rows of the table examine the cases when
either of the two parameters is uniform-valued. The last two rows illustrate that the
two problems become NP-complete when both parameters are two-valued.

1.5. Short small trees. We consider the k-tree versions of the minimum-com-
munication-cost and minimum-diameter-cost spanning tree problems and show in
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TABLE
Results on minimum-communication-cost spanning trees and minimum-diameter-cost spanning

trees.

Communication cost Diameter cost

Arbitrary {a} Cut-tree [22] Open
{a} Arbitrary NP-complete [23] Poly-time [131
{a, b} {0, c} Cut-tree variant (this paper, [22]) Poly-time (this paper)
(a, 4a} (c, 5c} iP-complete [23] NP-complete (this paper)

Theorem 6.6 that the minimum-communication k-tree problem and the minimum-
diameter k-tree problem are both hard to approximate within any factor even when
all the dij values are one and the rij values are nonnegative.

In the next section, we present the NP-completeness results. Section 3 contains
the 2v/- approximation for the kMST problem. In 4 we present the stronger result
for the case of points in the plane. In 5 we address polynomially solvable cases of
the problem. In 6 we prove our results on short trees. We close with a discussion of
directions for future research.

2. NP-completeness results.
THEOREM 2.1. The (decision version of the) kMST problem is NP-complete.
Proof. It is easy to see that the kMST problem is in NP. In this section we show

that the kMST problem is NP-hard by reducing the Steiner tree problem to it. The
Steiner tree problem is known to be NP-hard [19]. As an instance of the Steiner tree
problem we are given an undirected graph G, a set of terminals R (which is a subset
of the vertex set of G), and a positive integer M, and the question is whether there
exists a tree spanning R and containing at most M edges. We transform this input to
an instance G’, k,M of the kMST problem as follows" We let X IV(G)I- IRI and
connect each terminal of G to a distinct path of X new vertices, the path consisting
of zero-weighted edges. We assign weight one to the already existing edges of G and
set the weight between all other pairs of vertices to c (a very large number). This
is the graph G’ (see Fig. 1). We set k to be IRI. (X + 1). And now we ask if G’ has
a tree spanning k vertices of weight at most M. If there exists a Steiner tree in G
spanning the set R and containing at most M edges, then it is easy to construct a
kMST of weight at most M in GI. Conversely, by our choice of k and X, any kMST
in G must contain at least one node from the path corresponding to each terminal in
R. Hence any kMST can be used to derive a Steiner tree for R in G. This completes
the reduction. Extensions of hardness to the case of planar graphs and points in the
plane follow in a similar way from the hardness of the Steiner tree problem in these
restricted cases. Given a planar embedding of G we can create an embedded version
of G since only paths are added.

The NP-hardness holds even when all the edge costs are from the set {1, 2, 3}.
The reduction for this case is similar to the above. Without loss of generality we
assume that in the given instance of the Steiner tree problem, G is connected and
M _< IVI- 1. We let X -]V(G)I- IR] as before and connect each terminal of G to a
distinct set ofX vertices by edges of weight one. We set the original edges ofG to have
weight two and all other edges to have weight three. We choose k IRI. X +M + 1
and the bound on the cost of the kMST to be IRI" X + 2M. If there exists a Steiner
tree in G spanning the set R and containing at most M edges, then it is easy to
construct a kMST of weight at most IRI. X + 2M in Gt. This is done by connecting
all the ,newly added vertices to the Steiner tree using the weight-one edges and then
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picking up more vertices (note that the graph is connected and M _< IVI- 1) using
the weight-two edges until there are IRI-X +M + 1 vertices. If there exists a kMST
of weight at most IRI. X + 2M in GI, then observe that the kMST cannot contain
an edge of weight three because it has exactly k 1 IRI. X + M edges; and if it
contained an edge of weight three, then it would have to contain at least IRI. X + 1
edges of weight one but there are only IRI. X edges of weight one in Gp. Further, the
kMST must span R, and since it has at most M edges of weight two, there must exist
a Steiner tree in G spanning R and containing at most M edges.

When there are only two distinct edge costs, i.e., the graph is complete and every
edge has one of two possible weights, the kMST problem can be solved in polynomial
time. The basic idea is the following: Let wl and w2 denote the two edge weights,
where wl < w2. Construct an edge subgraph G1 of G containing all the edges of
weight Wl. Choose a minimum number, say r, of the connected components of (1 to
obtain a total of k nodes (dropping some nodes if necessary). Construct a spanning
tree for each chosen component, and connect the trees into a single tree by adding
exactly r- 1 edges of weight w2. It is straightforward to verify that the resulting
solution is optimal.

O-wt edges

k IRI (X + 1)

G G’

FIG. 1. The basic NP-hardness reduction from Steiner tree to kMST.

3. The approximation algorithm for the general case.

THEOREM 3.1. There is a polynomial-time algorithm that, given an undirected
graph G on n nodes with nonnegative weights on its edges and a positive integer
k <_ n, constructs a tree spanning at least k nodes of weight at most 2v/ times that

of a minimum-weight tree spanning any k nodes.
In this section, we present the proof of the above theorem. As input, we are given

an undirected graph G with nonnegative edge weights and an integer k.

3.1. The algorithm and its running time. It is useful to think of the algo-
rithm as running in two distinct phases: a merge phase and a collect phase.
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During the merge phase, the algorithm maintains a set of clusters and a spanning
tree on the vertex set of each cluster. Initially each vertex forms a singleton cluster.
At each step of the merge phase, we choose an edge of minimum cost among all edges
that are between two clusters and merge them by using the edge to connect their
spanning trees.

Define the size of a cluster to be the number of vertices that it contains. During
the course of the merge phase, the clusters grow in size. The collect phase is entered
only when

(i) there exists a set of at most v clusters containing at least k vertices among
themselves, and

(ii) no cluster has size or more.
In the collect phase, we consider each cluster in turn as the root and perform a

shortest-path computation between clusters using the weights on intercluster edges.
We determine for each cluster C, the shortest distance dc such that, within distance

dc from C, there exist at most v clusters whose sizes sum to at least k. Note that
by the first precondition for starting the collect phase, the distance dc is well defined.
We choose the cluster C with the minimum value of dc and connect it using shortest
paths of length at most dc to each of these v/ clusters. We prune edges from some
of these shortest paths to output a tree of clusters whose sizes sum to k. We may do
this since any cluster has less than k nodes at the start of this phase by the second
precondition.

The merge phase of the algorithm continues to run until both the preconditions
of the collect phase are satisfied. Beginning with the step of the merge phase after
which both preconditions of the collect phase are satisfied, at each subsequent step,
the algorithm forks off an execution of the collect phase for the current configuration
of clusters. The merge phase continues to rgn until a cluster of size k or more is
formed. Next, the merge phase prunes the edges of the spanning tree of the cluster
whose size is between k and 2k so as to obtain a spanning tree of size exactly k. At
this point, the merge phase terminates and outputs the spanning tree of the cluster
of size k. Each forked execution of the collect phase outputs a spanning tree of size
between k and 2k as well. The algorithm finally outputs the tree of least weight
among all these trees. The algorithm is given as follows.

ALGORITHM MERGE-COLLECT
1. Initialize each vertex to be in singleton-connected components and the set of

edges chosen by the algorithm to be . Initialize the iteration count 1.
2. Repeat until there exists a cluster whose size is between k and 2k.

(a) Let YSi {C1... Ct} denote the set of connected components at the
start of this iteration. Assume that the components are numbered in
nonincreasing order of their size.

(b) Form an auxiliary graph G(VSi, E’) where the edge (C, Cj) between
two components is the minimum-cost edge in E whose endpoints belong
to C and Cj, respectively.

(c) Choose a minimum-cost edge (C, Cj) in G(VS, E’) and merge the cor-

responding clusters Ci and Cj.
(d) VSi+ VS {Ci) {Cj } U {Ci U Ci }

Remark: This corr.esponds to one iteration of merge phase.
(e) Let j* min{j ’ k}.F=I Icl _>
(f) If j* _< x/, then SOLi Conect(a(YS,’)).
(g) i=i+1.
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3. Prune the edges of the cluster whose size is between k and 2k to obtain a tree
with exactly k vertices. Denote the tree obtained by MSOL.

4. The output of the heuristic is the minimum valued tree among MSOL and
all the SOLs.

PROCEDURE COLLECT(G(V, E))

1. For each cluster vertex C do
(a) With the cluster C as the root, form a shortest path tree.
(b) Let dc be the minimum distance such that there is a set of at most xfl

clusters within a distance of dc from C containing at least k vertices.
(c) Choose these clusters and join them to the root cluster by using the

edges in the shortest path tree computed in Step l(a).
(d) Prune the edges of the tree to obtain a tree having exactly k nodes.

2. Output the tree corresponding to the choice of the root cluster C that mini-
mizes dc.

It is easy to see that there are at most O(n) steps in the merge phase and hence
at most this many instances of the collect phase to be run. Using Dijkstra’s algorithm
[15] in each collect phase, the whole algorithm runs in time O(n2(m + n logn)) where
m and n denote the number of edges and nodes in the input graph, respectively. The
running time of the collect phase dominates the running time of the merge phase.

3.2. The performance guarantee. Consider an optimal kMST of weight OPT.
During the merge phase, nodes of this tree may merge with other nodes in clusters.
We focus our attention on the number of edges of the optimal kMST that are exposed,
i.e., remain as intercluster edges. We show that at any step in which a large number
of edges of the kMST are exposed, every edge in the spanning tree of each cluster has
small weight.

LEMMA 3.2. /f at the beginning of a step of the merge phase, an optimal kMST
has at least x exposed edges (intercluster edges), then each edge in the spanning tree
of any cluster at the end of the step has weight at most OPT.

x

Proof. Since the edges are chosen in nondecreasing order of cost, it is clear that
each edge in the spanning tree of any cluster at the end of the step has weight at most
that of any intercluster edge. Since an optimal kMST has at least x exposed edges,
one of these edges has weight at most oP___T_T. Hence each edge in the spanning tree of
any cluster at the end of the step has weight at most OPT. [-]

We now prove the performance guarantee in Theorem 3.1. The above lemma is
useful as long as the number of exposed edges is high. Applying the lemma with
x shows that every edge in the spanning tree of each cluster has weight at most
OPT Consider the scenario when the merge phase runs to completion to produce av"
tree with at least k nodes even before the number of exposed edges falls below /. In
this case, since the resulting tree has at most k nodes, the cost of the tree is at most
OPT. k < 2-- OPT

Otherwise, the number of exposed edges falls below before the merge phase
runs to completion. However, in this case, note that both preconditions for the start
of the collect phase will have been satisfied. Hence the algorithm must have forked
off a run of the collect phase. We show that the tree output by this run has low
weight. Consider a shortest-path computation of the collect phase rooted at a cluster
containing a node of the optimal kMST. Then clearly, within a distance at most OPT,
we find at most- clusters whose sizes sum to at least k. Since the number of exposed
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edges is less than v/, the clusters containing nodes of the optimal tree form such a
collection. Since there are at most clusters to connect to, the weight of these
connections is at most x/-" OPT. To complete the analysis we need to upper-bound
the weight of the spanning trees within each of the clusters retained in the output
solution. This is not hard since all edges in these clusters have weight at mostkT by
Lemma 3.2. Since the size of the output tree is at most k (as a result of the pruning),
the total weight of all the edges retained within these clusters is at most v/- OPT.
By summing the weight of these intracluster edges and the intercluster connections we
show that the output tree has cost at most 2v/ OPT. This proves the performance
ratio of 2x/- claimed in Theorem 3.1.

The example in Fig. 2 shows that the performance ratio of the algorithm is t(v/).
OPTThe optimal kMST is the horizontal path, each edge of which has weight zero or v

The horizontal path has edges of weightkT each. All zero-weight edges will be
chosen first in the merge phase. The merge phase running to completion will extend
each of the zero-weight upward-directed paths to include Ft(k) edges each of weight
OPT resulting in a tree of weight Vt(OPT. x/--) The collect phases may output trees4v/-
consisting of all the (v+ 1)-sized clusters at the bottom of the figure, each of weight
f’t(OPT. V).

4. An approximation algorithm for points on the plane.
THEOREM 4.1. There is a polynomial-time algorithm that, given n points in the

Euclidean plane and a positive integer k

_
n, constructs a tree spanning at least k of

these points such that the total length of the tree is at most O(k1/4) times that of a
minimum-length tree spanning any k of the points.

In this section, we present a heuristic for Che kMST problem for points on the
plane and a proof of its performance guarantee. Let S {s l, s2,..., sn} denote the
given set of points. For any pair of points si and sj, let d(i,j) denote the Euclidean
distance between si and sj.

4.1. The heuristic.
I. For each distinct pair of points si, 8j in S do

(1) Construct the circle C with diameter 5 x/-d(i, j) centered at the
midpoint of the line segment (si, 8j I"
(2) Let Sc be the subset of S contained in C. If Sc contains fewer than
k points, skip to the next iteration of the loop (i.e., try the next pair of
points). Otherwise, do the following.
(3) Let Q be the square of side 5 circumscribing C.
(4) Divide Q into k square cells each with side
(5) Sort the cells by the number of points from Sc they contain and
choose the minimum number of cells so that the chosen cells together
contain at least k points. If necessary, arbitrarily discard points from
the last chosen cell so that the total number of points in all the cells is
equal to k.
(6) Construct a minimum spanning tree for the k chosen points. (For
the rectilinear case, construct a rectilinear minimum spanning tree for
the k chosen points.)
(7) The solution value for the pair (s, sj} is the length of this MST.

II. Output the smallest solution value found.
It is easy to see that the above heuristic runs in polynomial time. In the next

section, we show that the heuristic provides a performance guarantee of o(kl/4). We



186 RAVI, SUNDARAM, MARATHE, ROSENKRANTZ, AND RAVI

OPT

OPT

k
OPT

OPT

o
o
o

o
o
o

OPT II

OPT OPT

oo o

(’k +1 nodes
in a zero wt.
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FIG. 2. Example of a graph in which the algorithm in Theorem 3.1 outputs a tree of weight
a(OPT

begin with some lemmas.

4.2. The performance guarantee.
LEMMA 4.2. Let S denote a set of points on the plane, with diameter A. Let a

and b be two points in S such that d(a, b) A. Then the circle with diameter
centered at the midpoint of the line segment (a, b contains S.

Proof. Suppose there exists a point p E S not contained within the circle of
diameter x/rA centered at the midpoint of the line segment (a, b}. If p lies on the
perpendicular bisector of the line segment (a, b}, then it is clear that d(a, p) d(b, p)
A, else p is closer to one of a and b than the other. Say p is closer to a; then it is
easy to see that d(b, p) > A. Thus, if there exists a point outside the circle, then it
contradicts the fact that the diameter of the set S is A. Hence S must be contained
within the circle.

Lower bounds on an optimal kMST. The following lemma is used to establish
a lower bound on OPT.

LEMMA 4.3. Consider a square grid on the plane with the side of each cell being
a. Then the length of an MST for any set of t points, where each point is from a
distinct cell, is (tr).
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Proof. Pick a point from the set and discard all points in the eight cells neighboring
the cell containing the chosen point. Doing this repeatedly we choose a subcollection of
t/9 (t) points such that the distance between any pair of points in the subcollection
is at least a. The lemma then follows from the observation that the minimum length
of a tree spanning (t) points that are pairwise a-distant is t(ta). []

Let P* denote the set of points in an optimal solution to the problem instance.
Let A denote the diameter of P* (i.e., the maximum distance between a pair of points
in P*) and OPT denote the length of an MST for P*. Consider an iteration in which
the circle constructed by the heuristic is defined by two points a and b in P* such that
d(a, b) A. Let g be the number of square cells used by the heuristic in selecting k
points in this iteration. To establish the performance guarantee of the heuristic, we
show that the length of the MST constructed by the heuristic during this iteration is
within a factor O(k1/4) of OPT.

It is easy to see that OPT _> A because A is the diameter of P*.
Since the heuristic uses a minimum number (g) of square cells in selecting k

points, the points in P* must occur in g or more square cells. Note that the side of
each square cell is This gives us the following corollary to Lemma 4.3./"

COROLLARY 4.4.

Upper bound on the cost of the heuristic. We now prove an upper bound
on the cost of the spanning tree returned by the heuristic. For this, we need the
following lemma.

LEMMA 4.5. The length of a minimum spanning tree for any set of q points in a
square with side a is length O(f).

Proof. Paste a square grid over the square where each subcell in the grid has side

q. Connect each point to a closest vertex in the grid. Consider the tree consisting of
one vertical line, all the horizontal lines in the grid connected to the vertical line, and
the vertical lines connecting each point to its nearest horizontal line (see Fig. 3). It is
clear that the grid lines in the tree have total length O(ax/) and the lines connecting
the points to the grid have total length q.O(q) O(axfl). This is a Steiner tree.

But, it is a simple matter to observe that a spanning tree of at most twice the length
can be obtained by shortcutting the Steiner tree. []

LEMMA 4.6. The length of the spanning tree constructed by the heuristic is

Proof. Let Qi denote the set of points in the ith cell chosen by the heuristic,
1 <_ i <_ g. Thus gi=l IQil k. Consider the following two-stage procedure for
constructing a spanning tree for the points in uig=l Qi.

Stage I. Construct a minimum spanning tree for the points in Qi, 1

_
i

_
g. Note

that the points in Qi are within a square of side x/-A/v. Using Lemma 4.5, the
length of an MST for Qi is O(k Q-I). Thus, the total length of all the minimum

Ei=I1) O(x/ A) by thespanning trees constructed in this stage is O(k
g

Cauchy-Schwartz inequality.
Stage II. Connect the g spanning trees constructed in Stage I into a single spanning

tree as follows. Choose a point arbitrarily from each Qi (1 <_ <_ g), and construct
an MST for the 9 chosen points. Note that these 9 points are within a square of
side x/ A. Thus, by Lemma 4.5, the length of the MST constructed in this stage is

0( A) as well.
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Square with points

Spanning tree

Grid

FIG. 3. A spanning tree of length O(ax/r) on any q points in a square of side a.

Thus, the total length of the spanning tree constructed by the two-stage procedure
is O(v/ A). [:]

The final analysis. We are now ready to complete the proof of the performance
bound. As argued above, OPT Ft(A) and from Corollary 4.4, OPT t(-Thus OPT t(max {A, )}. Also from Lemma 4.6, the length of the spanning
tree produced by the heuristic is O(v/ A). Therefore, the performance ratio is

O(min{v/,}) O(k1/4) as claimed.
The example in Fig. 4 shows that the performance ratio of the heuristic is t(kl/4).

The big square has side a. Each cell of the square grid has side . There are x/
points clustered closely together in each cell along the diagonal of the big square. In
each of the cells distributed uniformly throughout the big square there are
uniformly distributed points. The heuristic may pick up the points in the uniformly
distributed cells, forming a tree of length t(a. k/4), while the tree spanning the
points along the diagonal has length O(a).

Observe that both our lower bounds on an optimal solution and the upper bound
on the spanning tree obtained also apply to the case of constructing a rectilinear
kMST. Hence it follows that the above approximation algorithm delivers a perfor-
mance guarantee of O(k1/4) for the rectilinear kMST problem too. This proves the
following corollary.

COROLLARY 4.7. There is a polynomial-time algorithm that, given n points in
the plane and a positive integer k <_ n, constructs a rectilinear tree spanning at least
k of these points such that the total length of the tree is at most O(k1/4) times that of
a minimum-length rectilinear tree spanning any k of the points.

5. Polynomially solvable special cases.

5.1. kMST for treewidth-bounded (or decomposable) graphs. In this
section, we give the details of our polynomial-time algorithm for the class of treewidth-
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Square with points

IN- Dlagonal cells wlth polnts clustered together

Unlformly dlstrlbuted cells wlth polnts scattered

unlformly In each

FIG. 4. Example of a configuration of points on the plane in which the heuristic outputs a tree
oth (0PT. v).

bounded graphs. As mentioned earlier Arnborg et al. [5] showed that the class of
treewidth-bounded graphs is the same as the class of decomposable graphs defined by
Bern, Lawler, and Wong [8]. We use the characterization of Bern, Lawler, and Wong
to explain our algorithm.

THEOREM 5.1. For any class of decomposable graphs, there is an O(nk2)-tirne
algorithm for solving the kMST problem.

In this section, we prove the above theorem. A class of decomposable graphs F is
inductively defined as follows [8].

1. The number of primitive graphs in F is finite.
2. Each graph in F has an ordered set of special nodes called terminals. The

number of terminals in each graph is bounded by a constant.
3. There is a finite collection of binary composition rules that operate only at

terminals, either by identifying two terminals or adding an edge between
terminals. A composition rule also determines the terminals of the resulting
graph, which must be a subset of the terminals of the two graphs being
composed.

Examples of decomposable graphs include trees, series-parallel graphs, and bounded-
bandwidth graphs [8].

Let F be any class of decomposable graphs. The kMST problem for F can be
solved optimally in polynomial time using dynamic programming. Following [8], it
is assumed that a given graph G is accompanied by a parse tree specifying how G is
constructed using the rules and that the size of the parse tree is linear in the number
of nodes of G.

Consider a fixed class of decomposable graphs F. Suppose that G is a graph in
F. Let r be a partition of a nonempty subset of the terminals of G. We define the
following set of costs for G.
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Cost(c) Minimum total cost of any forest containing a tree for each block
of , such that the terminal nodes occurring in each tree are
exactly the members of the corresponding block of , no pair
of trees is connected, and the total number of edges in the
forest is (1 _< i < k).

Costk_ G) Minimum cost of a tree within G containing k- 1 edges and
no terminal nodes of G.

For any of the above costs, if there is no forest satisfying the required conditions, the
value of Cost is defined to be

Note that because F is fixed, the number of cost values associated with any graph
in the parse tree for G is O(k). We now show how the cost values can be computed
in a bottom-up manner, given the parse tree for G.

To begin with, since F is fixed, the number of primitive graphs is finite. For a
primitive graph, each cost value can be computed in constant time, since the number
of forests to be examined is fixed. Now consider computing the cost values for a graph
G constructed from subgraphs G1 and G2, where the cost values for G1 and G2 have
already been computed.

Let Ha, Ha, and Ha be the set of partitions of a subset of the terminals of
G1, (2, and G, respectively. Let A be the set of edges added to G1 and (2 by
the composition rule R used in constructing G from G1 and (2. Corresponding to
rule R, there is a partial function fR HG x HG. x 2A IIa, such that a forest
corresponding to partition 71"1 in IIG1, a forest corresponding to partition 7r2 in IIa.,
and a subset B C_ A combine to form a forest corresponding to partition f(Tr, r2, B)
of G. Furthermore, if the forest corresponding to 71"1 contains i edges and the forest
corresponding to r2 contains j edges, then the combined forest in G contains
edges.

Similarly, there is a partial function gR IIG1 X 2A -- IIG, such that a forest
corresponding to partition 7rl in Ha and a subset B C_ A combine to form a forest
corresponding to partition 9R(rl, B) of G. If the forest corresponding to rl contains
edges, then the combined forest in G contains + IBI edges. There is also a similar

partial function hR" IIa. x 2A - Ha. Finally, there is a partial function jR" 2A

IIG.
Using functions fR, gR, hR, and jR, cost values for G can be computed from the

set of cost values for G1 and G2. For instance, suppose that fR(r, re, B) r. Then
a contributor to computing Costa(a) is Cost’[l(G1)+ Cost[__,,(a)+ w(B), for
each t such that 1 _< t _< i-IBI- 1. Here w(B) is the total cost of all edges in B.
The value of Cosff[(G) is the minimum value among its contributors.

When all the cost values for the entire graph G have been computed, the cost of
an optimal kMST is equal to minrea{Cost_l(G)}, where the forest corresponding
to r consists of a single tree.

We now analyze the running time of the algorithm. For each graph occurring in
the parse tree, there are O(k) cost values to be computed. Each of the cost values can
be computed in O(k) time. As in [8], we assume that the size of the given parse tree
for C is O(n). Then the dynamic-programming algorithm takes time O(nk2). This
completes the proof of Theorem 5.1.

It is also easy to see that a straightforward extension of the above algorithm works
for the weighted case, when the edges of noninfinite weight form a decomposable
graph.
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5.2. kMST for points on the boundary of a convex region.
THEOREM 5.2. There is a polynomial-time algorithm for solving the kMST prob-

lem for the case of points in the Euclidean plane that lie on the boundary of a convex
region.

We now restrict our attention to the case where we are given n points that lie
on the boundary of a convex region and show that the kMST on these points can be
computed in polynomial time using dynamic programming. We also provide a faster
algorithm if the points are constrained to lie on the boundary of a circle.

LEMMA 5.3. Any optimal kMST for a set of points in the plane is non-self-
intersecting.

Proof. Suppose an optimal kMST is self-intersecting; then let (a, b and (c, d be
the intersecting line segments. On removing the edges (a, b) and (c, d) from the kMST
we get three connected components; hence some two vertices, one from (a, b) and one
from (c, d}, must be in the same connected component. Say a and d are in the same
connected component; then since in any convex quadrilateral the sum of two opposite
sides is less than the sum of the two diagonals, replacing (a, b) and (c, d) by (a, c
and (b, d) we still get a tree spanning k nodes but with less weight. This contradicts
the fact that the kMST with which we started out was optimal. Hence any optimal
kMST on a set of points in the plane must be non-self-intersecting.

LEMMA 5.4. Given n points on the boundary of a convex polygon, no vertex in
an optimal kMST of these points has degree greater than 4.

Proof. Suppose there is a vertex v in an optimal kMST with degree greater than
4. Let vl, v2,..., Vd, d >_ 5, be its neighbors in the optimal kMST as shown in Fig. 5.
Using the well-known fact that any convex polygon lies entirely on one side of a
supporting line, we have that /vlvvd <_ 180. By the pigeon-hole principle, there is
an i such that /vivvi+l <_ 180/(d- 1) < 60 1 _< _< d- 1, since d is at least 5.
Thus in/vivvi+, /vivvi+l is not the largest angle and vivi+l is not the largest side.
Therefore replacing the larger of vvi and vvi+l in the optimal kMST with vivi+l we
obtain a tree with lesser weight, contradicting the assumption that the kMST was
optimal. This completes the proof.

We now characterize the structure of an optimal solution in the following decom-
position lemma and use it to define the subproblems that we need to solve recursively
using dynamic programming. The next lemma intuitively points out that an optimal
solution for the kMST problem for the whole polygon can be constructed from optimal
solutions for smaller polygons obtained by triangulating the original polygon.

LEMMA 5.5 (decomposition lemma). Let vo, vl, vn-1 be the vertices of a
convex polygon in, say, clockwise order. Let v be a vertex of degree di in an optimal
kMST. Note that 1 <_ d <_ 4.

If di >_ 2 let the removal of vi from the optimal kMST produce connected compo-
nents C, C2,..., Cd (see Fig. 6). Let ICI denote the number of vertices in component
Ci. Then there exists a partition of Vi+l, vi+2,... ,vi_ (indices taken mod n), into

di contiguous subsegments S1,S2,...,Sdi such that j, 1 <_ j <_ di, the optimal kMST
induced on Sj J{vi} is an optimal (ICjI + 1)MST on Sy [.J{vi} among all such trees
in which the degree of vi is one.

If di 1, let vj be vi’s neighbor in the optimal kMST. Let vj be adjacent to djl
vertices in Vi+l,Vi+2, ,vj-1 and dj2 vertices in Vj+l, vj+2,..., vi-1. Let the optimal
kMST contain ICll vertices from the set Vi+l,Vi+2,...,vy-1 and IC21 vertices from
the set vj+, Vj+2, Vi--1. Then the optimal kMST induced on vi+l,vi+2,... ,vj is
an optimal (IC[+ 1)MST on Vi+l, vi+2,..., vj with degree ofvj djl and the optimal
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FIG. 5. Points on a convex polygon.

kMST induced on vj, vj+l,..., vi-1 i8 an optimal (IC21 + 1)MST on vj, vj+l,...,v_
among all such trees with degree of vj dj2.

Proof. If di >_ 2, then it is easy to see that a partition of vi+,vi+2,...,vi-
into contiguous subsegments S1,S2,...,Sd exists such that Vj, 1 <_ j <_ di, Cj c
Sj, because the optimal kMST is non-self-intersecting by Lemma 5.3. Further, the
optimal kMST induced on Sj [.J{v} must be an optimal (ICI + 1)MST on Sj [.J{v}
with degree of vi 1, for otherwise we could replace it getting a lighter kMST. The
proof of the case when d 1 is equally straightforward and is omitted. []

Thus the subproblems we consider are specified by the following four parameters:
a size s, a vertex vi, the degree di of vi, and a contiguous subsegment Vkl, vkl+l,..., v2
such that i [kl... k2]. A solution to such a subproblem denoted by SOLN(s; v;
di; Vkl, Vkl+l,..., Vk2) is the weight of an optimal sMST on {vi, vk, Vkl+l,..., Vk2} in
which vi has degree di. Using the decomposition lemma above, we can write a simple
recurrence relation for SOLN(s; vi; di; vk, Vkl+l,..., Vk2) as

SOLN(s; vi; di; vk, vk+l,...,v)

oc ifdi=0ors<di+lor ((k2-kl+l) mod n)+l<s,
min min l<j<dSOLN(sj;vi; 1;vk 1"’" vk)ko=kl<k...<kd--k2 s...+sd--s--d--l,sj_l

if d >_ 2,
min k{W(Vvy) + min0<d+d2<3 min81+82=8

jo=kl <_jl <_j2--

(SOLN(sl; vj ;dl; Vjo,..., Vjl_l / SOLN(s2; vj ;d2; Vjl+l,..., vj.))}) if d 1.

Here w(vvj) is the cost of the edge (v, vj). The optimal kMST is expressed as

min min SOLN(k; vi; d; vi+, vi+2,..., Vi--1).
l<i<n l<d<4

Note that we have O(kn3) subproblems and each subproblem requires looking
up the solution to at most O(k3n3) smaller subproblems. This yields a running
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FIG. 6. Decomposition.

time of O(k4n6). When k t(x/-), this running time can be further improved by
organizing the computation of the recurrences for the smaller subproblems better.
Each subproblem specified by s, v, d, and the interval vkl,...,vk2 can be solved
by first computing a partition of the interval into at most four subintervals (exactly
four when d 4). For the first subinterval, we compute the best tree with j- 1
nodes from this subinterval and containing v so that it has degree one in this tree,
for 1 _< j _< s. This computation takes O(nk) time since there are at most s _< k
trees to be computed, and for each j there are at most n nodes with which v shares
the single edge in the best tree. Next, we include the next subinterval and compute
for 1 <_ j <_ s the best tree on j’- 1 nodes containing v and nodes from these two
subintervals, where v have degree two with one edge to a node in the first and one
edge to a node in the second subinterval. This set of trees can also be computed in
O(nk) time given the set of trees for the first subinterval as follows: First, compute
the best tree on j nodes for 1 <_ i <_ s containing v and nodes only in the second
subinterval, where v has exactly one edge to a node in this subinterval, in O(nk) time
as before. Using these values and the analogous set of values for the first subinterval,
the best j’ trees for the first two subintervals can be obtained in O(k2) O(nk) time
since each of the s <_ k trees requires looking up at most s different pairs of trees,
one from each subinterval. This method can be extended to compute the solution
for the whole set of four subintervals in O(nk) time. Since there are O(n3) ways to
partition a given interval into four subintervals, the recurrence for this subproblem
can be solved in O(kn4) time. So the total time to solve one subproblem is O(]n4)
time. Since there are a total of O(kn3) subproblems, the total running time of the
algorithm is O(k2n7).

We now provide a faster algorithm to find the optimal kMST in the case when
all n points lie on a circle. We assume that no two points are diametrically opposite.

LEMMA 5.6. Given n points vl,v2,...,vn on a circle, no vertex in an optimal
kMST has degree more than 2.
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Proof. Suppose point Vp in an optimal kMST has degree greater than 2. Then
consider the diameter passing through Vp. At least two neighbors of Vp lie on one side
of this diameter. Let these neighbors be vq and vr, where Vq is closer to Vp than yr.
Then since /VpVqVr is obtuse, we replace VpVr by VqVr to get a smaller tree.

Lemma 5.6 implies that if the points lie on a circle, then every optimal kMST is
a path. Moreover, if the path "zig-zags," then we replace the crossing edge with a
smaller edge. Thus we have the following lemma.

LEMMA 5.7. Given n points Vl,V2,...,Vn on a circle, let a minimum length k-
path on these points be vi,..., vi. Then the line segment joining vi and vi along
with the k-path forms a convex k-gon.

Proof. By Lemma 5.6 the minimum-length k-path is also the minimum-length
kMST. Suppose the line segment joining vi and vi, along with the minimum k-path
does not form a convex k-gon. Then there exists a zig-zag in the path as shown in
Fig. 7. Say the center of the circle lies to the right of the edge (a, b/; then we replace
(a, b by the edge (b, c} to get a smaller kMST, which contradicts the fact that the
k-path with which we started was optimal.

FIG. 7. Illustration of Lemma 5.7.

Lemmas 5.6 and 5.7 lead to a straightforward dynamic-programming algorithm to
compute an optimal kMST for points on a circle: for each point on the circle compute
the minimum-length /-path (1 _< _< k), which lies completely on one side of the
diameter passing through the point; then combine these solutions to find the optimal
kMST. It is easy to see this algorithm takes O(k2n) time.

6. Short trees and short small trees.

6.1. Short trees. In this subsection, we prove our results on short trees. First,
we address the minimum-diameter k-tree problem: given a graph with nonnegative
edge weights, find a tree of minimum diameter spanning at least k nodes.

THEOREM 6.1. There is a polynomial-time algorithm for the minimum-diameter
k-tree problem on graphs with nonnegative edge weights.
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Recall that the diameter of a tree is the maximum distance (path length) between
any pair of nodes in the tree. We introduce the notion of subdividing an edge in
weighted graph. A subdivision of an edge e (u, v) of weight we is the replacement
of e by two edges el (u, r) and e2 (r, v) where r is a new node. The weights
of el and e2 sum to We. Consider a minimum-diameter k-tree. Let x and y be the
endpoints of a longest path in the tree. The weight of this path, D, is the diameter of
the tree. Consider the midpoint of this path between x and y. If it falls in an edge, we
subdivide the edge by adding a new vertex as specified above. The key observation
is that there exist at least k vertices at a distance at most D/2 from this midpoint.
This immediately motivates an algorithm for the case when the weights of all edges
are integral and bounded by a polynomial in the number of nodes. In this case, all
such potential midpoints lie in half-integral points along edges of which there are only
a polynomial number. Corresponding to each candidate point, there is a smallest
distance from this point within which there are at least k nodes. We choose the point
with the least such distance and output the breadth-first search (bfs) tree rooted at
this point appropriately truncated to contain only k nodes.

When the edge weights are arbitrary, the number of candidate midpoints are
too many to check in this fashion. However, we use a graphical representation of
the distance of any node from any point along a given edge to bound the search for
candidate points. We think of an edge e (u, v) of weight w as a straight line between
its endpoints of length w. For any node x in the graph, consider the shortest path
from x to a point along the edge e at distance t (_< w) from u. The length of this path
is the minimum of g+ d(x, u) and w + d(v, x). We plot this distance of the node x
as a function of t. The resulting plot is a piecewise linear bitonic curve that we call
the roof curve of x in e (see Fig. 8). For each edge e, we plot the roof curves of all
the vertices of the graph in e. For any candidte point in e, the minimum diameter
of a k-tree centered at this point can be determined by projecting a ray upward from
this point in the plot and determining the least distance at which it intersects the
roof curves of at least k distinct nodes. The best candidate point for a given edge is
one with the minimum such distance. Such a point can be determined by a simple
line-sweep algorithm on the plot. Determining the best midpoint over all edges gives
the midpoint of the minimum-diameter k-tree. This proves Theorem 6.1.

The following lemma gives yet another way to implement the polynomial-time
algorithm for finding a tree of minimum diameter spanning k nodes.

LEMMA 6.2. Given two vertices in a graph, v and vj, such that every other
vertex is within distance d ofv or dj of vj, it is possible to find two trees, one rooted
at v and of depth at most d and one rooted at vj of depth at most dj, that partition
the set of all vertices.

Proof. Consider the shortest-path trees T and Tj rooted at v and vj of depth
d and dj, respectively. Every vertex occurs in one tree or both trees. Consider
vertex Vp that occurs in both trees. If it is the case that d-depthT (Vp) is greater
than dy-depthTj (Vp), then the same is true of all descendants of Vp in Ty. Hence we
can remove Vp and all its descendants from Ty since we are guaranteed that all these
vertices occur in T. Repeating this procedure bottom-up we get two trees satisfying
the required conditions and partitioning the vertex set.

The above lemma motivates the following alternate algorithm for finding a mini-
mum-diameter tree spanning at least k nodes. For each vertex v in the graph compute
the shortest distance d such that there are k vertices within distance d of v. For each
edge (v, v) compute the least dj + dJ such that there are k vertices within distance
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dj of v or d% of vj. Then compute the least of all the d’s and dj / d% / w(v, vj)’s,
and this is the diameter of the k-tree with least diameter. It can be easily seen that
the running time of the algorithm is O(min{k2, E}E).

d(u,x)

d(v,x)

FIG. 8. A roof curve of a node x in edge e (u, v).

We now address the results in the third row of Table 1.
LEMMA 6.3. If the rj values are drawn from the set {a, b} and the elij values

from {0, c}, then the minimum-communication-cost spanning tree can be computed in
polynomial time.

Proof. When the dj values are all uniform, Hu [22] observed that the Gomory-
Hu cut tree with the rj values as capacities is a minimum-communication-cost tree.
We can use this result to handle the case when zero-cost dy edges are allowed as
well. We contract the connected components of the graph using zero-cost dij edges
into supernodes. The requirement value rig between two supernodes vi and vj is
the sum of the requirement values rj such that i E vi and j vj. Now we find a
Gomory-Hu cut tree between the supernodes using the rij values as capacities. By
choosing an arbitrary spanning tree of zero-dj-valued edges within each supernode
and connecting them to the Gomory-Hu tree, we get a spanning tree of the whole
graph. It is easy to verify that this is a minimum-communication-cost spanning tree
in this case.

LEMMA 6.4. When all the dj values are uniform and there are at most two
distinct rj values (say a and b), then the minimum-diameter-cost spanning tree can
be computed in polynomial time.

Proof. Let the higher of the two rj values be a. If the edges with requirement a
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form a cyclic subgraph, then any spanning tree has diameter cost 2a. In this case, any
spanning star (a star is a rooted tree of depth 1) is an optimal solution. Otherwise,
consider the forest of edges with requirement a. Determine a center for each tree in
this forest. Consider the tree formed by connecting these centers in a star. The root
of the star is a center of the tree of largest diameter in the forest. If the diameter
cost of the resulting tree is less than 2a, it is easy to see that this tree has optimum
diameter cost. Otherwise any star tree on all the nodes has diameter cost 2a and is
optimal. Note that we can extend this solution to allow zero-cost dij edges by using
contractions as before. [-1

Now we address the results in the fourth row of Table 1.
LEMMA 6.5. The minimum-diameter-cost spanning tree problem is NP-complete

even when the rj’s and d{j’s take on at most two distinct values.
Proof. It is easy to see that the minimum-diameter-cost spanning tree problem

is in NP. We now prove that it is NP-hard by using a reduction from an instance of
3SAT. Without loss of generality, we assume that all clauses in the given instance of
3SAT contain three distinct literals. We form a graph that contains a special node t
(the "true" node), a node for each literal and each clause. We use two dij values, c
and 5c where we assume c 0. Each literal is connected to its negation with an edge
of distance c. The true node is connected to every literal with an edge of distance c.
Each clause is connected to the three literals that it contains with edges of distance
c. All other edges in the graph have distance 5c. Now we specify the requirements
on the edges. We use requirement values from {a, 4a}, where a 0. The requirement
value of an edge between a literal and its negation is 4a. The requirement value of
all other edges is a (see Fig. 9). It is easy to check that there exists a spanning
tree of this graph with diameter cost at most 4ac if and only if the 3SAT formula is
satisfiable. [:]

FIG. 9.
problem.

C = (X + Y + Z)

Reduction from an instance of 3SAT to the minimum-diameter-cost spanning tree
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6.2. Short small trees.
THEOREM 6.6. The minimum-communication k-tree problem and the minimum-

diameter k-tree problem are both NP-hard to approximate within any factor even when
all the dij values are one and the rij values are nonnegative.

Proof. We prove the above theorem for the communication tree case. The proof
of the other part is similar. Suppose there is a polynomial-time M-approximation al-
gorithm for the minimum-communication-cost k-tree problem where all the dij values
are one and all rij values are nonnegative. Then, we show that the k-independent
set problem can be solved in polynomial time. The latter problem is well known to
be NP-complete [19]. Given a graph G of the k-independent set problem, produce
the following instance of the communication k-tree problem: dij 1 for every pair of
nodes i, j; assign rj ---one if (i, j) is not an edge in G and Mk(k- 1) + 1 otherwise.
If G has an independent set of size k, then we form a star on these k nodes (choosing
an arbitrary node as the root). In the star, the distance between any pair of nodes
is at most 2 and the r value for each pair is 1. Thus, the communication cost of
an optimum solution is at most k(k- 1). The approximation algorithm will return
a solution of cost at most Mk(k- 1). The nodes in this solution are independent
in G by the choice of rij for nonedges (i, j) G. On the other hand, if there is no
independent set of size k in G, the communication cost of any k-tree is greater than
Mk(k- 1). D

7. Closing remarks.

7.1. Future research. A natural question is whether there are approximation
algorithms for the kMST problem that provide better performance guarantees than
those presented in this paper. In this direction, Garg and Hochbaum [20] gave an

O(log k)-approximation algorithm for the kMST problem for points on the plane using
an extension of our lower-bounding technique in 4. Blum, Chalasani, and Vempala
[10] recently improved upon this to obtain a constant-factor approximation for points
on the plane. Also, Awerbuch, Azar, Blum, and Vempala [I] obtained an O(log k)-
approximation algorithm for the kMST problem. An interesting observation in this
regard is the following: any edge in an optimal kMST is a shortest path between its
endpoints. This observation allows us to assume without loss of generality that the
edge weights on the input graph obey the triangle inequality. Although we have been
unable to exploit the triangle inequality property in our algorithms, it is possible that
this remark holds the key to improving our results.

Table 1 is incomplete. It would be interesting to know the complexity of the
minimum-diameter-cost spanning tree problem when the distance values are uniform.
Note that any star tree on the nodes provides a 2-approximation to the minimum-
diameter-cost spanning tree in this case. The above problem can be shown to be
polynomial-time equivalent to the following tree reconstruction problem: given inte-
gral nonnegative distances dij for every pair of vertices i, j, does there exist a spanning
tree on these nodes such that the distance between and j in the tree is at most dij ?

7.2. Maximum acyclic subgraph. In the course of our research we considered
the k-forest problem: given an undirected graph is there a set of k nodes that induces
an acyclic subgraph? The optimization version of this problem is the maximum acyclic
subgraph problem. Since this problem is complementary to the minimum feedback
vertex set problem [19], NP-completeness follows. While the feedback vertex set
problem is 4-approximable [7], we show that the maximum acyclic subgraph problem
is hard to approximate within a reasonable factor using an approximation-preserving
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transformation from the maximum independent set problem [6]. This same result was
also derived in a more general form in [27].

THEOREM 7.1. There is a constant c > 0 such that the maximum acyclic subgraph
problem cannot be approximated within a factor (n) unless P NP.

Proof. Note that any acyclic subgraph of size S contains a maximum independent
set of size at least S/2 since acyclic Subgraphs are bipartite and each partition is an
independent set. Further, every independent set is also an acyclic subgraph. These
two facts show that the existence of a p-approximation algorithm for the maximum
acyclic subgraph problem implies the existence of a 2p-approximation algorithm for
the maximum independent set problem. But by the result in [6] we know that there
is a constant c > 0 such that the maximum independent set problem cannot be
approximated within a factor (n) unless P NP. Hence, the same is true of the
maximum acyclic subgraph problem.
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