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Abstract

A connected graph having large minimuertex degee must hee a panning tree with manleaves. Inparticular letl(n, k)
be the maximum intgger m such that eery connectecdh-vertex graph with minimum degree at ledshas a spanning tree w
at leastm leaves. Thenl(n,3) = n/4+2,1(n,4) = (2n+8)/5, andl(n, k) < n—30h/(k +1)[}* 2 for all k. The lower bounds a
proved by an d#gorithm that constructs a spanning tree with at least the desired number ve$. leBinally
I(n, k) = (1 — bink/k)n for largek, agan proved dgorithmically, whereb is ary constant gceeding 25.

Most of this research was done while the authors visited the Institute for Mathematics and Its Applications aértigy Uni

f Minnesota, Minneapolis, MN 55455.
Research supported in part by NSF Grant DMS 86-06225 and Airforce Grant OSR-86-0076.
Research supported in part by ONR Grant N00014-85K0570.



1. Introduction

Given a mnnected simple grapB, suppose we wish to find a spanning tre&imith mary leaves. If G is a cycle, w
can only guarantee 2 ks, but we may hee ketter luck if we require thatvery vertex havedegree at leask. To make this
precise, leG, denote the collection of connectadrertex graphs with minimum degree at ledst We wish to determir
I(n, k), the the maximunm such that eery graph inG, has a tree with at leastleaves. Notethatl(n,?2) = 2.

The question of determinidgn, k) has occured independently toreel researchersk-or this investigation, the questic
was raised by Lwasz and Saks [6]IndependentlyPayan, Tchuente, and Xuong [7] showed thage 3-regular graph hac
tree with at least/4 leaves, and Storer [8] avethe lower bound of/4 + 2 for that case. This was subsequently redie®n
by Linial and Sturteant [5] and extended to minimum degree 3. Another proof appears in [2]. Storer weateddby corr
plexity considerations.The problem of finding a spanning tree with maximum number wédda NP-complete, een if G is
regular of degree 4 [1]We povide here a simple algorithm to construct a tree with at ledst 2 leaves in any GG, 5.
Extending this approach, we also present an algorithm to construct a tree with(@hle&356 leaves in any GUG,, 4. Finally,
we present a simplaiily of algorithms that provide lower bounds implyirfg, k) > (1 — Ink/k)n. In particulat this mean
that the fraction of the vertices that can be guaranteed to\ss leahe spanning tree with the mostues gpproaches 1 ak
grows.

For arbitrary k, a Smple construction yields & UG, with no tree haing more tham —3[h/(k + 1)} 2 leaves. Whel
k <4 and k +1 dividesn, this achiges the bound. Griggs and ¥\3] have poved optimality for k =5 (and gve an dternate
proof for k=4. Linial [5] conjectured that this construction is essentially optimal in general, i.e
I(n,k) = n—3n/(k +1) + ¢, for eachk and an appropriate constampt More generallyLinial suspects that a connected g
with degree sequenck = d, =---= d, = 2 has a spanning tree with at leaétl, — 2)(d; +1) leases.

Hutchinson [4] has westigated spanning forests$t one seeks a forest afcomponents with mareaves, then the upp
and lower bounds presented here still hold, ®iteplaced by2c. They were further interested in limiting the diameter of
components, but our methods do not seenvartdo that question.

2. The Upper Bound Construction

THEOREM 1. I(n, k) < n—30(K + 1)+ 2.

Proof. We oonstruct G, UG, having no tree with more tham-30h/(k+1)H2 leaves. Let m= [h/(k +1)0 anc
r =n—-m(k +1). Partition the \ertex setV(G) into setsRy,...,Rn4, Wwhere R|=k+1 fori #0 and |Ry| =k +1+r. Choos
Xi, i OR;. Place edges between all pairs @rtces inR; exceptx;y;. Add the edge€ = {X;Y(+)modm 0<i <m}, and le
W = {x;}0{y;}.

It suffices to sher that aty spanning tre€el’ of G, has at mosh—3m+2 leases. E\ery pair of edges iZ forms au
edge cut, sd lacks at most one edge &f Suppose first thax;y;,,; [IT; T then contains aR;, y;-path inR;, for eachi. This
forces a non-leaf iR, — W for eachi, and each ertex of W must be a non-leakeept{x;, yj;}. On the other hand, i omits
no edge ofZ, thenT lacks anx;, y;-path inR; for one value of, say j. This forces at lea§i(m-1) non-leaves inV - R;, anc
k = 2 forces an additional non-leaf@tor y;. =

Note thatG,, contains may copies of the‘almost-cliqgue” Ky,; —e. If this induced subgraph is forbidden, a hi
proportion of the grtices must be leas. Inparticular Griggs et al [2] have shown that @ery GG, 3 that does not conte
K4 — e has a tree with at lea@t +4)/3 leases; this was earlier conjectured in [7The proof is more difficult than that of
unrestricted result in the next section.

We dso note that wherk is even there is another class of graphs where the tree with the mass lea:
n-30h/(k +1)[H 2 leaves, as shown by a similarcarment. Thegraph can be described asy&lic sequence of cliques,



which each ertex is dso joined to gery vertex of the clique before and after it. The cliquesdazesk/2 k/2,1, k/2,k/2,1,---.
Note thatG,  can also be described in this wath the clique sizes beirigk -1,1,1k -1,1,--.

3. TheCasek =3.

The lower bound fok = 3 gopeared in [7] and in [8] for 3-regular grap&e include a short proof of the general re
different from both of these, to illustrate the method we will usé fort. Anotherproof, similar in spirit to this it phrase
also in terms of 3-regular graphs, appears in [2].

This and the later proofs guathe desired spanning tree @Gfvia an iteratre dgorithm. Ineach case, we |8t denot
the current tree, with vertices and leaves. If x is a leaf ofT, then theout-degree of x, denotedd’(x), is the number of neig
bors it has irG — T. The operation oéxpansion at x consists of adding td the d'(x) edges fromx to all its neighbors not
T. We gow T by vertex expansion sequences (also callegbérations)); this guarantees that all edges frdnto G — T are
incidentto leges d' T.

THEOREM 2. EveryGLGy 3 has a spanning tree with at leb8# + 2 leaves.

Proof. A leaf x of T with d'(x) = 0 is dead; no expansion is possible at a dead leaf, and it must be a leaf in the finalét
m be the number of dead g8 in T. An expansion that madsy a dead leakillsy. We all an expansion sequenagmissi-
bleif its effect onT satisfies the “augmentation inequalityAl + Am = An.

We initialize T to a small subtree and provide a collection of admissible operationsntd grdo a spanning tree @.
If G is not 3-rgular, we initialize T to be all edges incident to anex of maximum dgreelA > 4. If G is 3-regular andwery
edge belongs to a triangle, then= K,, and the claim holdsOtherwise G is 3-regular and has an edge in no triangle, ar
initialize T to consist of such an edge and the four other edges incident to it.

If T is grown to a spanning tree withleaves by almissible operations, then all les eventually die, and summing t
augmentation inequality yiel&L —A)+L >N -A-1if Gis not 3-rgular, or 3(L-4)+L > N -6 if G is 3-rggular Thes
simplify to4L > N+2A-1>N+7 and 4L = N +6, respectiely. We can imprwe this to4L = N +8 by considering the fin
admissible operationFor this operation, the augmentation inequality is satisfied with an excess of at least two, be
operation kills at least twfinal leaves whose death is not usually guaranteed for the operation.

It remains to present a collection of admissible operations of which at least oweyis akilable until T absorbs a
vertices, and to verify the statement claimed about the last operation. The three operations we use are illustrated in

Fig. 1. Operations used whérr 3.
O1: If d'(x) = 2 for some current leaf, then expanding at yieldsAl =An-1>1 andAm = 0.

0O2: If d'(x) <1 for every current leafx and some ertex outsideT has at least tavneighbors inT, then expanding at o
of them yieldsAl =0,Am>1 = An.

O3: If y is the only neighbor ok outsideT andy has at least tavneighbors not ifl, then expanding at and theny
yieldsAl =An-22=1andAm = 0.

Becausek = 3, ary neighbor of a ertex in T has at least tavneighbors inT or at least tw neighbors outsidd. This
implies that one of O1-3 isvalable until T becomes a spanning treglso, the inequalities tlyesatisfy imply that each



admissible.

Now consider the final operationEach of the three operations adds a(t least onekleafl that previously did n
belong toT. That leaf has a neighber not appearing in the illustration; since this is the last operatianust hae keen
non-dead leaf of . Sincez andw both die nav, we dotain the needed excess obtdead leges. =

Before leaving this section, we note that the operations used dbo yield the following result.

THEOREM 3. If every edge ofG belongs to a triangle ard # K5, thenG has a tree with at lea@¥ (G)| +5)/3 leares, an:
this is best possible.

Proof. We use the same terminologgxcept that nav an @eration isadmissible if it satisfies the augmentation inequeé
2A1 + Am = An. Operations O1 and O2 am satisfy this admissibility inequality; we claim theuffice to grev T to a spar
ning tree.If T does not yet span, then there is an edgeith x(IT, yOT; xy forms a triangle with some additionadriex z.
If zOT, then O1 applies; i£[1T, then O2 applies.

If G # Kz andA(G) <4, thenG = K, or G = K, — e and the bound hold€Otherwise G has a ertex of degee at least
to use as the center of the initial If also §(G) = 3, then agin the last operation providesdwdditional dead lezes, an:
summing the augmentation inequalities yifls—4)+ L -2> N -5, orL = (N +5)/3.

If 5(G) =2, then the last operation may provide only one additional dead leaf if it is O2 t@lenyertex. However, if
G has a 2-valentertexx, then the edge-in-triangle property leads t@dexw of degree at least 4 within distance 2xoflf w
Is adjacent te, then beginning atv makesx initially a dead leaf, and we a the same inequality as al® Otherwise,x anc
w have wwvo common (adjacent) 3-valent neigharsv. If the initial tree is the star a plus the edgex, then we begin wi
X,V as dead leges and again get an extra at the end.wWNbe inequality i2(L —4)+L-3>= N -6, oragairL =2(N+5)3. =

To show this is best possible, consider the gr&gf;, 53 Of Section 2, delete one cut-edge, and contract the rem
cut-edges.m

4. TheCasek = 4.

For the case&k =4, we will use arbitrarily long expansion sequences as operatiasse the same terminology ¢
notation as abee, except that nw an epansion sequence (Opperation’) is admissible if it satisfies the augmentati
inequality Al + Am = 2An.

THEOREM 4. EveryGLGy 4 has a spanning tree with at le@\ + 8)/5 leaves.

Proof. Agan we initializeT to be a small subtree, and we provide a collection of admissible operation b gy a spar
ning tree ofG. If we provide an &haustve st of admissible operations, summing the augmentation inequalities wil
4L —¢) +(L —cy) = 2(N —c3), or L = 2N/5+ ¢, wherec,, ¢z are the number of leas and \ertices in the initial tree ang} is
the number of leges not counted as dead by summing the general augmentation inequaiegxstpone the discussion
the additve mnstant.

The first three operations are similar to those usel 0B and are illustrated in Fig. 2.
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Fig. 2. Elementary operations used wien4.

O1: If d'(x) = 2 for some current leaf, then expanding at yieldsAl =An-1>1 andAm > 0.

02: If d'(x) <1 for every current leafx and some ertex outsideT has at least three neighborsTinthen expanding
one of them yield&l =0, Am > 2 = 2An.

O3: If y is the only neighbor ok outsideT andy has at least three neighbors noTinthen expanding at and theny
yieldsAl =An-2>2 andAm = 0.

Each of these operations is admissible. If none of Ol-3vailalale, then gery non-dead leaf of has out-degree or
and its neighbor outside has two neighbors inT and two neighbors outsidé .

The subsequent operations, whickoime abitrarily long epansion sequences, will apply in this ca¥ée conside
only principal expansion sequences; these expand a singleleaf, of T and then other leas that do not belong t® before
the initial expansion. Thdength r of a principal expansion sequence is the number of expansions olisllerincipa
expansion sequenceliseif each expansion aftgy introduces tw new \ertices to the tree.

When O1-3 are notvailable, a lve squence almost satisfies the augmentation inequality for admissibiityexpan
sion aty, adds one @rtex and kills the other neighbor of, in T. Each subsequent expansionYirincreased and adds ta
new vertices. AltogethedAl + Am =4r +1 and 2An = 4r + 2, leaving a deficierycof one in the augmentation inequality.

0O4-7 rely on various additional conditions that imply admissibility and are illustratexibypée in Fig. 3.For specifi-
cation of O4-7, leY be a lve £quence of length, and assume O1-3 are notadable. LetW denote the set of lges intro-
duced by recutingy, and letU =V(G) - (TOYOW); U is the set of vertices that would still be outside the tree aféeugnc
Y.

Fig. 3. Compl& operations used whdn=4.

O4: If somew[W has a neighbaul1T, thenY is admissible.ExecutingY kills u, which increasedAm by one to elim
nate the deficieryc



O5: If somew[ W has all its neighbors MW, thenY is admissible.ExecutingY kills w, which increaseAm by one
to eliminate the deficieyc

O6: If somewW has at least three neighborddnthenY followed by(w) is admissible. Thdinal expansion satisfi
AAl - 2An = 2, which eliminates the deficienc

O7: If vis the unique neighbor d for at least four grtices olW, thenY followed by expansion at one of thesstice:
is admissible. The final expansion kills (at least) threeskeg/ieldingAm —2An =1, which eliminates the deficienc

Next we shev that some operation of types O1-7 iwals available until T becomes a spanning tre€o prove tis, we
consider a special class of expansion sequerfdBiear expansion sequence is adiequence = (Yyy,...,Y;) such that, fo
eachi =1, y;,; is one of the tw leaves introduced by xpandingy;. The illustrations in Fig. 3 suggest linear sequel
although expansion sequences of types O4-7 need not be lifoeaa linear sequence, we lgtdenote the other leaf int
duced by epandingy;, and let z,, w denote the tw leaves introduced by xpandingy,. We may refer tow asy,,;. Let
Z={z,...,z.} andW =YOZO{w}. Forl<i<r,letY; =(Yo...,Y;) and Z, ={z,...,z}. We use R[5 for the concatenati
of two vertex sequencesiN(a) for the set of neighbors of vertaxand N(S) for O, sN(X).

If O1-3 are unaailable andT does not spafs, then aly neighbor ofT is the end of a linear sequence of length 1
linear sequencexist. Becauses is finite, linear sequences cannot be arbitrarily long. If O1-7 arealedale, then for
maximal linear sequence it must be true that each leaf introduced by the last expansion has exactly one kkighbor in

Suppose O1-7 are wmailable, and letY =(y,,...,Y,;) be a naximal linear sequencdn addition toy, and one erte
v[U, w has at least tav additional neighbors.BecauseY is live, these must appear iB. Supposez, z;[ON(w), with
t =min{i: z ON(w)}, ot <s<r.

We daim thatz, must hae exactly one neighbon not inW. Otherwise)Y is of type O5 (killingz) or Y; [{z) is of Type
O6. Furthermoref u # v, thenY; [{z, w) is of type O6. Hence we may assume v. If s<r, thenYqey [{z, Yr41,---,Ys2) IS
a type O5 sequence Killings. Hence we may also assume r.

Applying the same arguments4p= z, = W, we dbtain a neighbogr, of w adjacent to/ W (see Fig. 4).If t =t', ther
{w,w,v,V}ON(z), andY; ({z) is of type O6.If t #t" andv # V, thenY,_; ({z, zv) is a ype O5 sequence Killing,. Ift #t'
andv = V', thenv is the only neighbor ity for each of z, z,, w, W'}, andY [{w) is of Type O7.

oV V' Z
2 W z W mw
y oW Yr —¢ Yr
r
z w WW
) \/ Zt

Fig. 4. Resolution of maximaMe quences whek = 4.

We have provided an ghaustve st of admissible operationsNow consider the addite cnstant. Recalthar
L =2N/5+ c, wherec =(c, +4c¢; — 2¢3)/5 and ¢y, C,, C3 are the number of initial leas, leaves not counted as dead, and ini
vertices. Asfor k =3, each operation illustrated has a leaf incident to another edge not drawn, velicimegns that the |;
operation must kill at least wedditional leaes (except for O2 and O7, the extra count iwajls at least four).SinceG ha:
minimum degree at least 4, weve@ > (2+16-10)/5=8/5. =

It should be noted that there are onlytinovn examples of graphs i, 4 that hae ro tree with at leasEN/5 + 2
leaves. Thesare the 4-regular graph on 6 vertices and the 4-regular graph on 8 vertices around a circle in wherteets
joined to the four vertices closest to it. The desired bound asks for 5 ane$§ leapectiely. On 6 \ertices, having 5 |le@s



would require a 5-valentertex, and on 8 vertices, having 6 Vea would require tw vertices whose neighborhoods includs
the \ertices. V& monjecture thaBN/5+ 2 is a bwer bound except for thesedvexamples. IfG has a ertex of degee at lea
5, then starting with the edges incident to it yields2. If G is 4-regular and has an edge not in a triangle, then startin
its endpoints and their neighbors vyielgsc,, c; =6, 2,8 and ¢ = 2. Henceary graph that violates this bound is 4udar an
has @ery edge in a triangle.

5. Larger Valuesof k.

In general, the conjectured lower bound m k) is (k —2)n/(k +1) + 2, except possibly for smalkeeptions. Whenesr
k is even, there is a small example that slightly violates this bouWwhenerer k >2, we @an choosen so tha
3k/l2+2 < n<5k+1)3, and letG be the graph on vertices around a circle in which eacériex is adjacent to theék closes
vertices,k/2 in each direction.Then k —2)n/(k +1) +2 > n -3, so the bound asks for a tree with 2 leaves. Havever, there
are no two adjacent vertices whose neighborhoodgec®/ (G).

The most interesting question, of course, is the coefficientof(n, k). For k =5, Griggs and W [3] have proved the
conjecture (thg also have an dternate proof of the bound fdr= 4, using a different augmentation inequality for admis:
ity). For lamge k, we gve a dhort proof that the coefficient approachesThe ease of this argument is attributable to Hu
that we are not seeking an optimal algorithm for iawlividual value ofk. By considering more operations, i.e. by making
algorithm more complicated, we could impeahe rate of covergence.

THEOREM 5. If k is sufficiently lage, then there is an algorithm that constructs a spanning tree with §i tebistk/k]n
leaves in any graph with minimum degrele, whereb is ary constant gceeding 25.

Proof. We design an algorithm li& those abwe, in which the current tre€ is expanded at leas. We will develp an admiss
bility inequality that has the formAl + AM = (r —1)An, wherer is a function ofk. HereM is a measure ofdeadness’for
the leaes of the current tree. This is not a physical concdpaither the final value oM is a multiple counting of the lees
of the final tree, and the individual change®4rare an amortized distribution of this coumeiothe operations.

The statistic we use to measudeadnessis M = 3[22a;m;, wheremy is the number of lags of T havingi neighbor
outsideT; the coeficientsa; will be chosen shortlylt is natural to think that a leaf is more dead when it hasfeoutsid
neighbors, so we will requir@=a,4 <a,, <---<ag. This requirement guarantees that expansion wtleaf with out
degree at least will satisfy rAl + AM = (r —1)An; the net change iM will be non-ngative. Note that it makes sense
assume < k.

If every operation used by the algorithm satisfiAs+ AM = (r —1)An, then beginning with a star at anex of degreek
and summing the augmentation inequalities yields— k) +agL = (r —1)(N—-k-=21), or L 2[(r —1)N +(k+1-nr)]/(r + ag) >
L - (ap+1)r)N. We will choose the values af and{a;} so that the operations are admissible @Gng+1)/r < bink/k, as
desired.

For eachi <r, define ani-operation be an operation that is performed only when the maximum out-degree of
leaves isi. Eachi-operation begins by expansion ateatex x with d'(x) =i. This or additional expansions may add tc
tree a ertexy that was an outside neighbor of somm the current tree witll'(z) = j <i. The net changes thl for this
operation include-a; for the loss ofx as a leaf and;, — a; for the effect of the edggz on d'(z). It will suffice to conside
changes of these types.

Letc, = a;1 —a; for alli. Ifin addition toa,4 <---< agwe also haeec,4 <--- < ¢, then for ay i-operation each ed
from a nev vertex to an dd leaf contributes at least to AM. Since we lose the contuition from the leaf expanded todia
the operation and ignore the possible gains for theveetices, it suffices to shorAl + ¢;q—a; = (r —1)An for eachi-opera
tion, whereq is the number of non-tree edges fromvnvertices to old vertices of the tree.



It order to guarantee the desired properties of the operations, we will aheds#sUand ¢; = (r —i)[i(k—3r) —r].
Note that this formula foc; increases aisdecreases and thgt< 1 whenk > 5r.

Let us nev specify thei-operations. Let <r be the maximum out-degree of currenve=a and letx be a current le
with maximum out-dgree. Eithemwe expand ak and stop, which we calliQor we expand atx and also at the meneighbo
y of x for which the secondxpansion gies the maximum number of additional \es; we call the latteriP We dhoose Pif
the number of vertices introduced by the second expansion is more than 3

By construction, there is\alys an operationwailable to grav T until T spans. Br the admissibility of B we have
Al =An-2. Ignoringgans due to possible edges fromwneertices to old vertices, it didfes to shw that An > 2r +q;.
SinceAn > 3r, this holds wher; <1, sincea; = er;ilﬂcj <rg.

For the admissibility of @ suppose thay is an outside neighbor of and a second expansionyatvould introduce ¢
most 3 —i new vertices. Becausgalso has at mostneighbors among and the vertices introduced by expanding,at has
at leastk — 3r neighbors inl besidesx. This is true for each outside neighbongfso q = i(k —3r) for the conditions und
which we apply @ We haveAl =i -1 andAn =i, s0

rAl +ciq—a;=2r(i-1)+c(g-r)=r(i—-1)+(r—i)=(r —1)An.

Finally, we sudy 3¢, = ap. Since k= 5r, we have X¢; < ZIZ(r —i)/r(2i —1). Using calculus, we can bound this
%[r —1+I1r_1(r - X)dx/(2x —1)]. With the substitution u=2x-1, we can wduate the definite integral
%[(Zr —1)In(2r —3) —(2r —4)]. Puttingthis all together yielde < %[4(r -1)-2(r —2)+(2r —1)In(2r —3)] <.5+.5In2r. Wher
we replace by [k/50) we find 1- (a +1)Ir >1- bink/k for sufficiently largek as long a® >2.5. =

This constanb can be reduced by choosicgandr to male use of some slack in thegament. Inparticular the
admissibility of B requires onlyAn>2r +a;, so we @an use P wheneer the second expansion introduces more
2r + a; —i additional \ertices. Wherthis fails for all neighbors ok, we haveq=i(k—-2r —a;). The admissibility of Q
requires onlyciq—a; =r —i, so it affices to definec; iteratvely, with a,4 =0, ¢, =(r —i +a;)[i(k=2r —a;), anc
a4 =a; +¢;. We dill wish to keep eaclt; small to mak ay of at most logrithmic size, and for this it suffices tove
k—-2r > pr (i.e.,r = [k/(2+ g)Ufor some constanB > 0. The aim is then to boundy by some functionf (B)Inr, which
would lead to the constang f(B) in place ofb. It does not seem worthwhile to pursue the details of this, since
improvements could be generated by considering a larger variety of operations.
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