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Abstract

A connected graph having large minimum vertex degree must have a spanning tree with many leaves. Inparticular, let l(n, k)
be the maximum integer m such that every connectedn-vertex graph with minimum degree at leastk has a spanning tree with
at leastm leaves. Thenl(n, 3) ≥ n/4 + 2, l(n, 4) ≥ (2n + 8) /5, andl(n, k) ≤ n − 3n/(k +1) + 2 for all k. The lower bounds are
proved by an algorithm that constructs a spanning tree with at least the desired number of leaves. Finally,
l(n, k) ≥ (1 − blnk/k)n for largek, again proved algorithmically, whereb is any constant exceeding 2.5.
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1. Introduction

Given a connected simple graphG, suppose we wish to find a spanning tree inG with many leaves. If G is a cycle, we
can only guarantee 2 leaves, but we may have better luck if we require that every vertex hav edegree at leastk. To make this
precise, letGn,k denote the collection of connectedn-vertex graphs with minimum degree at leastk. We wish to determine
l(n, k), the the maximumm such that every graph inGn,k has a tree with at leastm leaves. Notethat l(n, 2) = 2.

The question of determiningl(n, k) has occured independently to several researchers.For this investigation, the question
was raised by Lovasz and Saks [6].Independently, Payan, Tchuente, and Xuong [7] showed that every 3-regular graph has a
tree with at leastn/4 leaves, and Storer [8] gav ethe lower bound ofn/4 + 2 for that case. This was subsequently rediscovered
by Linial and Sturtevant [5] and extended to minimum degree 3. Another proof appears in [2]. Storer was motivated by com-
plexity considerations.The problem of finding a spanning tree with maximum number of leaves is NP-complete, even if G is
regular of degree 4 [1].We provide here a simple algorithm to construct a tree with at leastn/4 + 2 leaves in any G ∈Gn,3.
Extending this approach, we also present an algorithm to construct a tree with at least(2n + 8) /5 leaves in any G ∈Gn,4. Finally,
we present a simple family of algorithms that provide lower bounds implyingl(n, k) > (1 − lnk/k)n. In particular, this means
that the fraction of the vertices that can be guaranteed to be leaves in the spanning tree with the most leaves approaches 1 ask
grows.

For arbitrary k, a simple construction yields aG ∈Gn,k with no tree having more thann − 3n/(k +1) + 2 leaves. When
k ≤ 4 and k +1 dividesn, this achieves the bound. Griggs and Wu [3] have proved optimality for k = 5 (and give an alternate
proof for k = 4. Linial [5] conjectured that this construction is essentially optimal in general, i.e. that
l(n, k) ≥ n − 3n/(k +1) + ck for eachk and an appropriate constantck . More generally, Linial suspects that a connected graph
with degree sequenced1 ≥ d2 ≥ . . . ≥ dn ≥ 2 has a spanning tree with at leastΣ(di − 2) /(di +1) leaves.

Hutchinson [4] has investigated spanning forests.If one seeks a forest ofc components with many leaves, then the upper
and lower bounds presented here still hold, with2 replaced by2c. They were further interested in limiting the diameter of the
components, but our methods do not seem relevant to that question.

2. The Upper Bound Construction

THEOREM 1. l(n, k) ≤ n − 3n/(k +1) + 2.

Proof. We construct Gn,k ∈Gn,k having no tree with more thann − 3n/(k +1) + 2 leaves. Let m = n/(k +1) and
r = n − m(k +1). Partition the vertex set V (G) into setsR0, . . .  ,Rm−1, where |Ri| = k +1 for i ≠ 0 and |R0| = k +1 + r. Choose
xi, yi ∈Ri. Place edges between all pairs of vertices inRi except xi yi. Add the edgesZ = {xi y(i+1) modm: 0 ≤ i < m}, and let
W = {xi}∪{yi}.

It suffices to show that any spanning treeT of Gn,k has at mostn − 3m + 2 leaves. Every pair of edges inZ forms an
edge cut, soT lacks at most one edge ofZ . Suppose first thatx j y j+1∉T ; T then contains anxi, yi-path inRi, for eachi. This
forces a non-leaf inRi − W for eachi, and each vertex of W must be a non-leaf except{x j, y j+1}. On the other hand, ifT omits
no edge ofZ , thenT lacks anxi, yi-path inRi for one value ofi, say j. This forces at least3(m −1) non-leaves in V − R j , and
k ≥ 2 forces an additional non-leaf atx j or y j . ■

Note thatGn,k contains many copies of the ‘‘almost-clique’’ Kk+1 − e. If this induced subgraph is forbidden, a higher
proportion of the vertices must be leaves. In particular, Griggs et al [2] have shown that every G ∈Gn,3 that does not contain
K4 − e has a tree with at least(n + 4) /3 leaves; this was earlier conjectured in [7].The proof is more difficult than that of the
unrestricted result in the next section.

We also note that whenk is even there is another class of graphs where the tree with the most leaves has
n − 3n/(k +1) + 2 leaves, as shown by a similar argument. Thegraph can be described as a cyclic sequence of cliques, in
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which each vertex is also joined to every vertex of the clique before and after it. The cliques have sizesk/2, k/2,1, k/2, k/2,1,. . ..
Note thatGn,k can also be described in this way, with the clique sizes being1,k −1, 1, 1,k −1, 1,. . ..

3. The Case k = 3.

The lower bound fork = 3 appeared in [7] and in [8] for 3-regular graphs.We include a short proof of the general result,
different from both of these, to illustrate the method we will use fork = 4. Anotherproof, similar in spirit to this but phrased
also in terms of 3-regular graphs, appears in [2].

This and the later proofs grow the desired spanning tree ofG via an iterative algorithm. In each case, we letT denote
the current tree, withn vertices andl leaves. If x is a leaf ofT , then theout-degree of x, denotedd′(x), is the number of neigh-
bors it has inG − T . The operation ofexpansion at x consists of adding toT the d′(x) edges fromx to all its neighbors not in
T . We grow T by vertex expansion sequences (also called ‘‘operations’’); this guarantees that all edges fromT to G − T are
incident to leaves of T .

THEOREM 2. EveryG ∈GN ,3 has a spanning tree with at leastN /4 + 2 leaves.

Proof. A leaf x of T with d′(x) = 0 is dead; no expansion is possible at a dead leaf, and it must be a leaf in the final tree.Let
m be the number of dead leaves in T . An expansion that makesy a dead leafkills y. We call an expansion sequenceadmissi-
ble if its effect onT satisfies the ‘‘augmentation inequality’’ 3∆l + ∆m ≥ ∆n.

We initialize T to a small subtree and provide a collection of admissible operations to grow T into a spanning tree ofG.
If G is not 3-regular, we initialize T to be all edges incident to a vertex of maximum degree∆ ≥ 4. If G is 3-regular and every
edge belongs to a triangle, thenG = K4, and the claim holds.Otherwise,G is 3-regular and has an edge in no triangle, and we
initialize T to consist of such an edge and the four other edges incident to it.

If T is grown to a spanning tree withL leaves by admissible operations, then all leaves eventually die, and summing the
augmentation inequality yields3(L − ∆) + L ≥ N − ∆ −1 if G is not 3-regular, or 3(L − 4) + L ≥ N − 6 if G is 3-regular. These
simplify to 4L ≥ N + 2∆ −1 ≥ N + 7 and 4L ≥ N + 6, respectively. We can improve this to4L ≥ N + 8 by considering the final
admissible operation.For this operation, the augmentation inequality is satisfied with an excess of at least two, because the
operation kills at least two final leaves whose death is not usually guaranteed for the operation.

It remains to present a collection of admissible operations of which at least one is always available until T absorbs all
vertices, and to verify the statement claimed about the last operation. The three operations we use are illustrated in Fig. 1.
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Fig. 1. Operations used whenk = 3.

O1: If d′(x) ≥ 2 for some current leafx, then expanding atx yields∆l = ∆n −1 ≥ 1 and∆m ≥ 0.

O2: If d′(x) ≤ 1 for every current leafx and some vertex outsideT has at least two neighbors inT , then expanding at one
of them yields∆l = 0, ∆m ≥ 1 = ∆n.

O3: If y is the only neighbor ofx outsideT and y has at least two neighbors not inT , then expanding atx and theny
yields∆l = ∆n − 2 ≥ 1 and∆m ≥ 0.

Becausek = 3, any neighbor of a vertex in T has at least two neighbors inT or at least two neighbors outsideT . This
implies that one of O1-3 is available until T becomes a spanning tree.Also, the inequalities they satisfy imply that each is
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admissible.

Now consider the final operation.Each of the three operations adds a(t least one) leafz to T that previously did not
belong toT . That leaf has a neighborw not appearing in the illustration; since this is the last operation,w must have been a
non-dead leaf ofT . Since z andw both die now, we obtain the needed excess of two dead leaves. ■

Before leaving this section, we note that the operations used above also yield the following result.

THEOREM 3. If every edge ofG belongs to a triangle andG ≠ K3, thenG has a tree with at least(|V (G)| + 5) /3 leaves, and
this is best possible.

Proof. We use the same terminology, except that now an operation isadmissible if it satisfies the augmentation inequality
2∆l + ∆m ≥ ∆n. Operations O1 and O2 above satisfy this admissibility inequality; we claim they suffice to grow T to a span-
ning tree. If T does not yet span, then there is an edgexy with x ∈T , y∉T ; xy forms a triangle with some additional vertex z.
If z∉T , then O1 applies; ifz∈T , then O2 applies.

If G ≠ K3 and∆(G) < 4, thenG = K4 or G = K4 − e and the bound holds.Otherwise,G has a vertex of degree at least 4
to use as the center of the initialT . If also δ (G) ≥ 3, then again the last operation provides two additional dead leaves, and
summing the augmentation inequalities yields2(L − 4) + L − 2 ≥ N − 5, or L ≥ (N + 5) /3.

If δ (G) = 2, then the last operation may provide only one additional dead leaf if it is O2 to a 2-valent vertex. However, if
G has a 2-valent vertexx, then the edge-in-triangle property leads to a vertexw of degree at least 4 within distance 2 ofx. If w
is adjacent tox, then beginning atw makesx initially a dead leaf, and we have the same inequality as above. Otherwise,x and
w have two common (adjacent) 3-valent neighorsu, v. If the initial tree is the star atw plus the edgeux, then we begin with
x, v as dead leaves and again get an extra at the end. Now the inequality is2(L − 4) + L − 3 ≥ N − 6, or againL ≥ (N + 5) /3. ■

To show this is best possible, consider the graphGn+n/3,3 of Section 2, delete one cut-edge, and contract the remaining
cut-edges.■

4. The Case k = 4.

For the casek = 4, we will use arbitrarily long expansion sequences as operations.We use the same terminology and
notation as above, except that now an expansion sequence (or ‘‘operation’’) is admissible if it satisfies the augmentation
inequality 4∆l + ∆m ≥ 2∆n.

THEOREM 4. EveryG ∈GN ,4 has a spanning tree with at least(2N + 8) /5 leaves.

Proof. Again we initializeT to be a small subtree, and we provide a collection of admissible operations to grow T into a span-
ning tree ofG. If we provide an exhaustive set of admissible operations, summing the augmentation inequalities will yield
4(L − c1) + (L − c2) ≥ 2(N − c3), or L ≥ 2N /5 + c, wherec1, c3 are the number of leaves and vertices in the initial tree andc2 is
the number of leaves not counted as dead by summing the general augmentation inequalities.We postpone the discussion of
the additive constant.

The first three operations are similar to those used fork = 3 and are illustrated in Fig. 2.
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Fig. 2. Elementary operations used whenk = 4.

O1: If d′(x) ≥ 2 for some current leafx, then expanding atx yields∆l = ∆n −1 ≥ 1 and∆m ≥ 0.

O2: If d′(x) ≤ 1 for every current leafx and some vertex outsideT has at least three neighbors inT , then expanding at
one of them yields∆l = 0, ∆m ≥ 2 = 2∆n.

O3: If y is the only neighbor ofx outsideT and y has at least three neighbors not inT , then expanding atx and theny
yields∆l = ∆n − 2 ≥ 2 and∆m ≥ 0.

Each of these operations is admissible. If none of O1-3 are available, then every non-dead leaf ofT has out-degree one,
and its neighbor outsideT has two neighbors inT and two neighbors outsideT .

The subsequent operations, which involve arbitrarily long expansion sequences, will apply in this case.We consider
only principal expansion sequences; these expand a single leafx = y0 of T and then other leaves that do not belong toT before
the initial expansion. Thelength r of a principal expansion sequence is the number of expansions outsideT . A principal
expansion sequence islive if each expansion aftery0 introduces two new vertices to the tree.

When O1-3 are not available, a live sequence almost satisfies the augmentation inequality for admissibility. The expan-
sion aty0 adds one vertex and kills the other neighbor ofy1 in T . Each subsequent expansion inY increasesl and adds two
new vertices. Altogether, 4∆l + ∆m = 4r +1 and 2∆n = 4r + 2, leaving a deficiency of one in the augmentation inequality.

O4-7 rely on various additional conditions that imply admissibility and are illustrated by example in Fig. 3.For specifi-
cation of O4-7, letY be a live sequence of lengthr, and assume O1-3 are not available. LetW denote the set of leaves intro-
duced by executingY , and letU = V (G) − (T∪Y∪W ); U is the set of vertices that would still be outside the tree after executing
Y .
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Fig. 3. Complex operations used whenk = 4.

O4: If somew∈W has a neighboru∈T , thenY is admissible.ExecutingY kills u, which increases∆m by one to elimi-
nate the deficiency.
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O5: If somew∈W has all its neighbors inY∪W , thenY is admissible.ExecutingY kills w, which increases∆m by one
to eliminate the deficiency.

O6: If somew∈W has at least three neighbors inU , thenY followed by(w) is admissible. Thefinal expansion satisfies
4∆l − 2∆n ≥ 2, which eliminates the deficiency.

O7: If v is the unique neighbor inU for at least four vertices ofW , thenY followed by expansion at one of these vertices
is admissible. The final expansion kills (at least) three leaves, yielding∆m − 2∆n ≥ 1, which eliminates the deficiency.

Next we show that some operation of types O1-7 is always available untilT becomes a spanning tree.To prove this, we
consider a special class of expansion sequences.A linear expansion sequence is a live sequenceY = (y0, . . .  ,yr) such that, for
eachi ≥ 1, yi+1 is one of the two leaves introduced by expanding yi. The illustrations in Fig. 3 suggest linear sequences,
although expansion sequences of types O4-7 need not be linear. For a linear sequence, we letzi denote the other leaf intro-
duced by expandingyi, and let zr, w denote the two leaves introduced by expandingyr . We may refer tow as yr+1. Let
Z = {z1, . . .  ,zr} andW = Y∪Z∪{w}. For 1≤ i ≤ r, let Yi = (y0, . . .  ,yi) and Zi = {z1, . . .  ,zi}. We use R ⋅ S for the concatenation
of two vertex sequences,N (a) for the set of neighbors of vertexa, and N (S) for ∪x ∈S N (x).

If O1-3 are unavailable andT does not spanG, then any neighbor ofT is the end of a linear sequence of length 1; i.e.,
linear sequences exist. BecauseG is finite, linear sequences cannot be arbitrarily long. If O1-7 are unavailable, then for a
maximal linear sequence it must be true that each leaf introduced by the last expansion has exactly one neighbor inU .

Suppose O1-7 are unavailable, and letY = (y0, . . .  ,yr) be a maximal linear sequence.In addition toyr and one vertex
v∈U , w has at least two additional neighbors.BecauseY is live, these must appear inZ . Supposezt, zs ∈N (w), with
t = min {i: zi ∈N (w)}, so t < s ≤ r.

We claim thatzt must have exactly one neighboru not inW . Otherwise,Y is of type O5 (killingzt) or Yt ⋅ (zt) is of Type
O6. Furthermore,if u ≠ v, thenYt ⋅ (zt, w) is of type O6. Hence we may assumeu = v. If s < r, thenYs−1 ⋅ (zt, yr+1, . . .  ,ys+2) is
a type O5 sequence killingys. Hence we may also assumes = r.

Applying the same arguments tozr = zs = w′, we obtain a neighborzt′ of w′ adjacent tov′∉W (see Fig. 4).If t = t′, then
{w, w′, v, v′}⊂ N (zt), andYt ⋅ (zt) is of type O6. If t ≠ t′ andv ≠ v′, thenYr−1 ⋅ (zt, zt′) is a type O5 sequence killingyr . If t ≠ t′
andv = v′, thenv is the only neighbor inU for each of{zt, zt′, w, w′}, andY ⋅ (w) is of Type O7.
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Fig. 4. Resolution of maximal live sequences whenk = 4.

We hav e provided an exhaustive set of admissible operations.Now consider the additive constant. Recallthat
L = 2N /5 + c, wherec = (c2 + 4c1 − 2c3)/5 and c1, c2, c3 are the number of initial leaves, leaves not counted as dead, and initial
vertices. Asfor k = 3, each operation illustrated has a leaf incident to another edge not drawn, which again means that the last
operation must kill at least two additional leaves (except for O2 and O7, the extra count is always at least four).SinceG has
minimum degree at least 4, we have c ≥ (2 +16−10)/5 = 8/5. ■

It should be noted that there are only two known examples of graphs inGn,4 that have no tree with at least2N /5 + 2
leaves. Theseare the 4-regular graph on 6 vertices and the 4-regular graph on 8 vertices around a circle in which each vertex is
joined to the four vertices closest to it. The desired bound asks for 5 and 6 leaves, respectively. On 6 vertices, having 5 leaves
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would require a 5-valent vertex, and on 8 vertices, having 6 leaves would require two vertices whose neighborhoods include all
the vertices. We conjecture that2N /5 + 2 is a lower bound except for these two examples. IfG has a vertex of degree at least
5, then starting with the edges incident to it yieldsc ≥ 2. If G is 4-regular and has an edge not in a triangle, then starting with
its endpoints and their neighbors yieldsc1, c2, c3 = 6, 2,8 and c = 2. Henceany graph that violates this bound is 4-regular and
has every edge in a triangle.

5. Larger Values of k.

In general, the conjectured lower bound onl(n, k) is (k − 2)n/(k +1) + 2, except possibly for small exceptions. Whenever
k is even, there is a small example that slightly violates this bound.Whenever k > 2, we can choosen so that
3k/2 + 2 ≤ n < 5(k +1) /3, and letG be the graph onn vertices around a circle in which each vertex is adjacent to thek closest
vertices,k/2 in each direction.Then (k − 2)n/(k +1) + 2 > n − 3, so the bound asks for a tree withn − 2 leaves. However, there
are no two adjacent vertices whose neighborhoods cover V (G).

The most interesting question, of course, is the coefficient ofn in l(n, k). For k = 5, Griggs and Wu [3] have proved the
conjecture (they also have an alternate proof of the bound fork = 4, using a different augmentation inequality for admissibil-
ity). For large k, we giv e a short proof that the coefficient approaches 1.The ease of this argument is attributable to the fact
that we are not seeking an optimal algorithm for any individual value ofk. By considering more operations, i.e. by making the
algorithm more complicated, we could improve the rate of convergence.

THEOREM 5. If k is sufficiently large, then there is an algorithm that constructs a spanning tree with at least[1 − blnk/k]n
leaves in any graph with minimum degreek, whereb is any constant exceeding 2.5.

Proof. We design an algorithm like those above, in which the current treeT is expanded at leaves. We will develp an admissi-
bility inequality that has the formr∆l + ∆M ≥ (r −1)∆n, wherer is a function ofk. Here M is a measure of ‘‘deadness’’ f or
the leaves of the current tree. This is not a physical concept.Rather, the final value ofM is a multiple counting of the leaves
of the final tree, and the individual changes inM are an amortized distribution of this count over the operations.

The statistic we use to measure ‘‘deadness’’ i s M = Σr−1
i=0α i mi, wheremi is the number of leaves of T havingi neighbors

outsideT ; the coefficientsα i will be chosen shortly. It is natural to think that a leaf is more dead when it has fewer outside
neighbors, so we will require0 = α r−1 ≤ α r−2 ≤ . . . ≤ α0. This requirement guarantees that expansion at any leaf with out-
degree at leastr will satisfy r∆l + ∆M ≥ (r −1)∆n; the net change inM will be non-negative. Note that it makes sense to
assumer < k.

If every operation used by the algorithm satisfiesr∆l + ∆M ≥ (r −1)∆n, then beginning with a star at a vertex of degreek
and summing the augmentation inequalities yieldsr(L − k) + α0L ≥ (r −1)(N − k −1), or L ≥ [(r −1)N + (k +1 − r)] /(r + α0) >
(1 − (α0 +1) /r)N . We will choose the values ofr and {α i} so that the operations are admissible and(α0 +1) /r < blnk/k, as
desired.

For each i < r, define ani-operation be an operation that is performed only when the maximum out-degree of current
leaves is i. Each i-operation begins by expansion at a vertex x with d′(x) = i. This or additional expansions may add to the
tree a vertex y that was an outside neighbor of somez in the current tree withd′(z) = j ≤ i. The net changes toM for this
operation include−α i for the loss ofx as a leaf andα j−1 − α j for the effect of the edgeyz on d′(z). It will suffice to consider
changes of these types.

Let ci = α i−1 − α i for all i. If in addition toα r−1 ≤ . . . ≤ α0 we also have cr−1 ≤ . . . ≤ c1, then for any i-operation each edge
from a new vertex to an old leaf contributes at leastci to ∆M . Since we lose the contribution from the leaf expanded to begin
the operation and ignore the possible gains for the new vertices, it suffices to show r∆l + ciq − α i ≥ (r −1)∆n for eachi-opera-
tion, whereq is the number of non-tree edges from new vertices to old vertices of the tree.
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It order to guarantee the desired properties of the operations, we will chooser = k/5 and ci = (r − i)/[i(k − 3r) − r].
Note that this formula forci increases asi decreases and thatc1 < 1  whenk ≥ 5r.

Let us now specify thei-operations. Leti < r be the maximum out-degree of current leaves, and letx be a current leaf
with maximum out-degree. Eitherwe expand atx and stop, which we call Oi, or we expand atx and also at the new neighbor
y of x for which the second expansion gives the maximum number of additional leaves; we call the latter Pi. We choose Pi if
the number of vertices introduced by the second expansion is more than 3r − i.

By construction, there is always an operation available to grow T until T spans. For the admissibility of Pi, we hav e
∆l = ∆n − 2. Ignoringgains due to possible edges from new vertices to old vertices, it suffices to show that ∆n ≥ 2r + α i.
Since∆n > 3r, this holds whenci ≤ 1, sinceα i = Σr−1

j=i+1c j < rci.

For the admissibility of Oi, suppose thaty is an outside neighbor ofx and a second expansion aty would introduce at
most 3r − i new vertices. Becausey also has at mosti neighbors amongx and the vertices introduced by expanding atx, it has
at leastk − 3r neighbors inT besidesx. This is true for each outside neighbor ofx, so q ≥ i(k − 3r) for the conditions under
which we apply Oi. We hav e∆l = i −1 and∆n = i, so

r∆l + ciq − α i ≥ r(i −1) + ci(q − r) ≥ r(i −1) + (r − i) = (r −1)∆n.

Finally, we study Σci = α0. Since k ≥ 5r, we hav e Σci ≤ Σr−1
i=1(r − i)/r(2i −1). Using calculus, we can bound this by

1

r
[r − 1 + ∫

r−1

1
(r − x)dx/( 2x −1)]. With the substitution u = 2x −1, we can evaluate the definite integral as

1

4
[( 2r −1)ln(2r − 3) − (2r − 4)]. Puttingthis all together yieldsα0 < 1

4r
[4(r −1) − 2(r − 2) + (2r −1)ln(2r − 3)] < .5+. 5ln2r. When

we replacer by k/5, we find 1− (α +1) /r > 1 − blnk/k for sufficiently largek as long asb > 2.5. ■

This constantb can be reduced by choosingci and r to make use of some slack in the argument. Inparticular, the
admissibility of Pi requires only∆n ≥ 2r + α i, so we can use Pi whenever the second expansion introduces more than
2r + α i − i additional vertices. Whenthis fails for all neighbors ofx, we hav e q ≥ i(k − 2r − α i). The admissibility of Oi
requires only ciq − α i ≥ r − i, so it suffices to defineci iteratively, with α r−1 = 0, ci = (r − i + α i)/[i(k − 2r − α i), and
α i−1 = α i + ci. We still wish to keep eachci small to make α0 of at most logarithmic size, and for this it suffices to have
k − 2r > β r (i.e., r = k/( 2+ β ) for some constantβ > 0. The aim is then to boundα0 by some functionf (β )lnr, which
would lead to the constantβ f (β ) in place of b. It does not seem worthwhile to pursue the details of this, since better
improvements could be generated by considering a larger variety of operations.
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