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SPANNING TREES WITH MANY LEAVES IN
CUBIC GRAPHS!

JERROLD R. GRIGGS,? DANIEL J. KLEITMAN,® axD ADITYA SHASTRI4

Abstract. For a connected graph G let L(G) denote the maximum number of Jeaves in any spanning
tree of G. We give a simple construction and a complete proof of a result of Storer that if G is & connected,
cubic graph on n vertices, then L(G) > [% + 2], and this is best-possible for al} {even) n. The main ides is
to count the number of "dead leaves” as the tree is being constructed. This method of amortized analysis
is used to prove the new result that if G is also 3~connected, then L(G) > 5+ %] , which is best-possible
for many n. This bound holds more generally for eny connected, cubic graph that contains no subgraph
K4 — e. The proof is rather elaborate since several reducible configurations need to he eliminated hefore
proceeding with the many tricky cases in the construction.

1. Introduction and Statement of Results. We consider the problem of finding
spanning trees in given graphs that contain many leaves (degree one vertices). All graphs
are assumed to be simple (undirected, no loops or multiple edges). If G is a connected
graph, let L(G) denote the maximum number of leaves in any spanning tree of G. We are
interested here in L(G) for cubic (3-regular) graphs G.

Suppose T is a spanning tree for a connected, cubic graph G on n vertices. Necessarily,
nis even. Let d; denote the number of vertices of degreeiin 7,1 = 1,2, 3. Then the number
of vertices n = d; + dy + d;, while the sum of the degrees 2n — 2 = d; + 2d, + 3d,. Tt
follows that L(T) = di = d3 + 2. Consequently, L(G) is mazimized over such graphs G
when it contains T with d, as small as possible, that is, dy = 0. Hence, LG) <2 +1.
This bound is attained for all (even) n by taking the caterpillar in which (n/2) - 1 vertices
form a path, and a leg (leaf vertex) is joined to each interior vertex of the path, while two
legs are joined to each end of the path. This is the desired tree T, which can be embedded
in a suitable graph G by adding a cycle through the leaves of T (see Fig.1).

The more interesting question then is to minimize L(G), i.e., to obtain a lower bound
on L(G) over all such graphs G in terms of n. This problem was proposed and solved in
1981 by Storer.
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THEOREM 1 [4]. If G is a connected, cubic graph on n vertices, then L(G) > [2 +2].

This bound is best—possible for all (even) n. For example, if n = 0 (mod 4), then take G
to be a circular “necklace” of n/4 “beads”, where each bead is K; — e (meaning K4 with
one edge deleted), as shown in Fig.2. If n = 2 (mod 4), we may take G to be a necklace
in which there are (n — 6)/4 beads that are K; — e and one bead that is K3 3 —e. Then
L(G)=2+2 =[2+2], as claimed.

If one permits vertices of lower degree than 3 in G, then L(G) can drop dramatically,
e.g., L{P,) = 2, where P, is a path on n vertices. Storer works with graphs of maximum
degree 3, rather than our more restricted setting of cubic graphs. We consider the effect
of introducing the stronger connectivity condition on G that it be J-connected, i.e., the
removal of any two vertices does not disconnect it. Such graphs cannot contain Ky — e,
and our main result applies to this more general situation.

THEOREM 2. IfG isa connected, cubic graph on n vertices that contains no subgraph
isomorphic to K4 — €, then L(G) > [*4].

COROLLARY. If G is a 3—connected, cubic graph on n vertices, then L(G) > [24].

So the lower bound on L(G) rises to over n/3 when K4 — e is excluded. Recall that a
necklace of beads, each K, - e, was used to attain the lower bound around n/4 in Theorem
1.

The bound in Theorem 2 is sharp. For n = 0 (mod 6), say n = 6k, one can obtain
a family of graphs G with L(G) =2k +2 =3 +2 = fﬂ#] in the following way: Take
2k triangles (K3) and add edges on these 6k vertices until a connected, cubic graph G
is formed. To obtain a tree T in G with L(T) = 2k + 2, take any spanning tree TF
in the reduced graph G® on 2k vertices which is obtained by contracting each of the 2k
triangles to a point and eliminating duplicated edges. Then build T® up to a tree T in G
in the natural way, so that each vertex of degree 1 (respectively, 2,3) in T gives rise to 2
(respectively, 1,0) leaves in T.

For n = 2 (mod 6), say n = 6k + 2, the graph Q3 of the usual 3-dimensional cube is
extremal for & = 1. In fact, by carrying out the initial part of the proof of Theorem 2 more
carefully, it can be shown that Qj is the unigue extremal graph with n = 2 (mod 6). It
follows that for G covered by the theorem, L(G) > %2 unless G = Q.

For n = 4 (mod 6), say n = 6k + 4, we have that L(G) > 2k + 3. An extremal
graph is obtained for k = 1 by taking two 5-cycles and pairing up their vertices, as shown
in Fig.3(a). It is tempting to think that this is the only connected, cubic graph G not
containing Ky — 3, besides @3, that has L(G} < § + 2. (We saw above thal many graphs
exist with L(G) = § 4 2.) However, Fig.3(b) shows another example with n = 10 and
L=25.

Our method of proof is to begin by finding a small tree in G with many leaves and
to then grow the tree by adding several vertices in such a way that the number of leaves




always grows enough to keep satisfying the theorem. A central idea is to keep track of the
number of “dead leaves” as well as the number of leaves. A dead leaf is a leaf in the tree
under construction, all of whose neighbors are already in the tree. Once a leaf is dead, it
remains a leaf during the rest of the construction. To illustrate the power of this approach,
we offer a new proof of Theorem 1 in the next section.

In Sec.3 we begin the proof of Theorem 2. Another fundamental idea in the proof
is that certain configurations are reducible, which means they can be replaced by smaller
configurations (which may include a special type of vertex we call a goober). Once the
construction is completed on the reduced graph, the forest obtained can be blown up and
reconnected to form the desired tree on G. Sec.4 contains the several cases that make up
the proof for the reduced graph. In some instances the construction is by necessity quite

elaborate.

The paper concludes in Sec.5 with some suggestions for further study including, most
notably, a conjecture of N. Linial that generalizes Theorem 1.

2. Dead Leaves and Theorem 1. A natural approach to proving a result such as
Theorem 1 is as follows. Starting with a small tree in G that is nice, one tries to add on
some number of vertices N in such a way that the tree gains at least N/4 leaves. If this
can always be done, then the tree eventually constructed must have at least roughly n/4
leaves. There is one case that is especially difficult with this approach. Consider a vertex
v outside the tree that has all three of its neighbors being leaves in the tree. Then adding
v causes no gain in the number of leaves. What can we do if there are many such vertices
v? We do gain something by adding v, which is that v itself would have all of its edges
inside the tree and that several edges involving neighbors of v are likewise accounted for.
So v itself and perhaps some of its neighbors become dead leaves. At any given stage in
the construction, it is obvious that the number of dead leaves, D is at most the number
of leaves, L. So if we aim to show that at the end, L > 2 + ¢, for some ¢, or equivalently,
4L > n + 4c, then it suffices to show that al, + bD > n | 4c for some choice of a,b > 0
such that a + b = 4. We start off by constructing a tree on N vertices with I leaves and D
dead leaves such that A(N, L, D) > 4c, where A(N,L,D) = aL + 5D — N. Tt then suffices
to show that for any constructed tree that does not yet span G, there exists some set of
vertices, say N of them, that can be added in such a way as to increase the number of
leaves by L and the number of dead leaves by D, where A(N,L,D) > 0.

This dead leaf method is simply a type of amortized analysis in which some of the
benefit of adding new leaves is postponed to the later time that the leaves die. the net
gain from adding a leaf is the same. We sacrifice some advantage by using al,a < 4, but
not enough to case failure, while we benefit later from the term 5D,b > 0, when we create
a dead leaf. This allows us to handle a case such as a vertex v as above that is adjacent
only to leaves that were already created. Suitable choices for @ and b are determined by
carrying out the cases in the proof and solving for @ and b which make the inequalities
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work out, with some trial and error being necessary.

We are ready to prove Theorem 1. Besides illustrating the value of the “dead leaves”
approach, it may be useful to have a complete proof written down. Storer’s approach is to
start with a breadth-first spanning tree and then modify it to gain leaves. His approach
is natural, but the proof is merely sketched, and we were unable to work out all of the
details.

Proof of Theorem 1. Let G be a connected, cubic graph on n vertices. Since n is even
and L(G) is integral, L(G) > [} 4 2] if and only if L(G) > § + 3. For our “dead leaves”
approach, we seek a and b,a+b = 4, so that e L +8D — N > 6. It turns out that « = 3.5 and
b = .5 are suitable choices, so we assume these values hereafter. Concerning the notation,
vertices shall be denoted by lower case letters, and v ~ w means v and w are adjacent,
while v # w means they are not adjacent. If a vertex v is outside a tree 7' but adjacent to
some vertex in T', we write ~ T'. We denote the edge between two vertices v and w by vw.

To start off, select any vertex v € G, and let w,z,y ~ v. Begin the tree T by taking
the three edges involving v. So we have A > A(4,3,0) = 6.5 > 6.

For subsequent stages we show that a tree T' that only partially spans G can be
extended by some amount such that A > 0. First suppose there exists v € T such that
v~w,z ¢ T. Then add vw and vz to 7', and A > A(2,1,0) = 1.5. If no such v exists,
suppose these exists v € T that is not a leaf and w ¢ T, w ~ v. Then add vw to T, giving
A > A(1,1,0) = 2.5. Assume this is not possible either. So vertices v ¢ T with v ~ T are
adjacent to no internal vertices of T', while leaves in T that are not dead lie on only one

edge outside 7.

Suppose there exists v ¢ T such that v ~ w,z,y € T. Adding vw to T creates no
new leaves, but v, z,y are all dead leaves, so that A = A(1,0,3) = .5. Next suppose there
exists v ¢ T, v ~ T, such that v splits,i.e., v ~w,z € T. Let ¢t € T such that v ~ ¢. Then
add tv,vw,vz to T, and we have A > A(3,1,0) = .5. Then suppose none of the above
operations is possible, so that every v ¢ T,v ~ T, is adjacent to exactly two vertices in 7.
Since G is connected, there exists such a vertex v, say v ~ s, € T and v ~ w ¢ T. Then
if also w ~ T, say w ~ p,q € T, add edges tv,vw to T creating dead leaves at s,w,p, g, so
that A = A(2,0,4) = 0. Otherwise, we have w = T, so w splits and w ~ z,y ¢ 7. Then
add tv, vw,wz,wy to T, so that A > A(4,1,1) = 0, since s becomes a dead leaf. Thus in
every case we can add to T so that A > 0. By induction, we can eventually extend T to

a spanning tree of G with at least [} 4 2] leaves. []

The proof above is essentially a polynomial-time algorithm for constructing a tree with
the desired number of leaves. This was a concern in {4], where a very different pblynomialu
time algorithm is provided for the more general class of connected graphs of maximum
degree 3. The algorithm there begins with a breadth—first spanning tree for ¢ and then
modifies it to obtain many leaves.

3. Reducible Configurations and Theorem 2. We shall describe several reduc-
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tions on & in which suitable configurations are replaced by simpler ones. Often, some
vertices are replaced a new type of vertex, called a goober. Goobers do not count towards
N, the number of vertices, but they do count towards the degrees of their neighbors. If
a goober is a leaf, it does count towards L. A goober also counts as a dead leaf in D if
it belongs to no edges with vertices outside the tree under construction. Goobers have
degree 0,1, or 2. All other vertices are ordinary and have degree 3.

The reductions considerably simplify G. They may even disconnect G. We must
carefully check that a forest with sufficiently many leaves in the reduced graph can be
lifted to a spanning tree for G with sufficiently many leaves to prove Theorem 2. Then it
will remain to show that for each component in the reduced graph, a spanning tree with
many leaves can be constructed. This result, which we prove with many cases in Section
4, will then imply our main result, Theorem 2.

THEOREM 3. Suppose H is a graph with a > 0 ordinary vertices and b > 0 goobers.

Suppose H is connected and contains no K4 — e (all 4 vertices being ordinary). Suppose
H is irreducible. Then L(H) > ¢ +2,if b > 0, and L(H) > $+35,ifb=0.

If the original graph G is irreducible, then it has no goobers, so Theorem 2 holds from
the case & > 0,b == 0 in Theorem 3. However, if G is reducible, one keeps reducing it
until what remains has every component being irreducible and containing a goober. Those
components that are not ¢rivial (consist of an isolated goober) will contain at least one
ordinary point, as we shall see, so that the case @ > 0,5 > 0 in Theorem 3 can be applied
to each component. It may cost some leaves to reconnect separate components, but this
will be offset by the gain of 2 leaves over a/3 in every nontrivial comnponent, for a net gain
of at least 2 over n/3 for reducible G.

The reductions are shown in Fig.4. In figures, goobers are always shown as open
circles. Goobers usually arise by contracting triangles but other possibilities occur with
Reductions (4}, (5), and (6).

Some conventions must be explained in conjunction with Fig.4. Dashed lines mean
that an edge may or may not be incident, and, if it is, it is retained after the reduction. In
Reductions (1)-(5), two outgoing edges from vertices in the configuration may not meet to
form a single edge or meet at another ordinary vertex when both originate at the left end or
both at the right end of the figure. This would never happen anyway, given our hypotheses
on G, with the single exception that if the edges on the right side of Reduction (5) meet
at an ordinary vertex, we cannot use (5). But in this case, (6) is applicable. On the other
hand, edges from opposite ends may meet, e.g., two triangles with two edges joining them
{or even three) are reducible using (1). Reduction (7) is unique. We assume that no two
of its three outgoing edges join or meet at another ordinary vertex. This prevents us from
forming a multiple edge between ordinary vertices or a Ky — e on ordinary points, both
of which are forbidden, by carrying out Reduction (7). We emphasize that outgoing edges
from opposite sides in (1)-(6) may meet, while those from the same side in (1)~(7) may
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meet only at a goober.

Here is what some reductions do, in words. Reduction (1), for example, destroys
any edges between two adjacent triangles and contracts each such triangle to a goober.
Reduction (2) destroys edges between goobers. Reduction (6) gets rid of the “bead” on
six vertices shown in the figure. In effect, this bead is no worse than a simple edge since
we can always gain two leaves from these six vertices.

Let G® be the graph obtained after some succession of reductions when no further
reductions are possible. One can check that G¥ contains no multiple edges, nor any of the
forbidden graphs K4 — e (using only ordinary vertices). First suppose that G® contains no
goobers, i.e., only Reduction (7) was performed, if any were. Then GZ is connected, and
Theorem 3 can be applied with b = 0 to produce a spanning tree for G® with at least s+ %
leaves, where a is the number of vertices in G®. It remains to successively restore vertices
deleted by Reduction (7), 12 vertices for each reduction, while enlarging the spanning tree
each time. We shall see in Fig. 7 that the tree can be enlarged to gain 4 leaves for each
reduction, which guarantees that a tree with at least 2 + £ leaves is constructed for all of

G.

It remains to consider G that contains some goober. It can be checked easily that
every component in G® contains a goober since any reduction besides (7) gives a goober
to each component if it disconnects any vertices.

Now we can apply Theorem 3 to each nontrivial component H in GF, if any such H
exist. If @ denotes the number of ordinary vertices in H, then our proof will construct a
spanning iree for H with at least § + 2 leaves. Take such a tree for every H to obtain a
spanning forest for G¥.

For each isolated goober g in G®, we seek to reattach g to some other component
H in such a way that if H is nontrivial, we put back some number of original ordinary
vertices 3c, where the integer ¢ > 0, while the tree on H is expanded to gain at least
c leaves. Alternately, if H is trivial, i.e., H is another goober h, we join ¢ and k and
replace either g or k, or both, by 3¢ original ordinary vertices, while producing a tree on
this component with at least ¢ + 2 leaves. How this is done depends on what reduction
separated g and h in the first place. By doing this, we have partially restored G® back to
G, call this intermediate gra.ph G?, in such a way that for every component H of G5, H
is not trivial, and if the number of ordinary vertices in H is a, then the number of leaves
in the constructed tree spanning H is at least 3 +2.

In Fig.5 we show exactly how this merging of trivial components with nontrivial ones
or with each other is carried out. From Fig.4 we see that a goober was isolated when its
last incident edge was destroyed and only Reduction (2) or {3) could have done this. In
each row, we give the type of reduction, (2) or (3), that originally destroyed the connection
we are to reinstate, followed by a picture showing edges in the forest constructed so far
that involve these vertices, followed by the edges used in the forest after we reattach the
isolated component. Finally, we list (¢, d), where 3¢ vertices have been added and d is the
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number of leaves gained. One can check in each case that either ¢ or ¢+ 2 leaves are gained,
as necessary, corresponding to the description above. It can be seen that the vertices in
the configuration are spanned by the forest and that no cycle is formed. Goobers will still
have degree at most two. Cases that are identical by symmetry to ones shown are not
listed.

The graph G° typically will still contain some goobers. Qur next task is to replace
all goobers by the original ordinary vertices, while extending the spanning forest by an
appropriate number of leaves.

First suppose a goober g was created by contracting a triangle, i.e., by Reduction (1)
or {3). Depending on whether the degree of gis 1 or 2 in G5, we have 2 or 1 leaves in the
forest after restoring the triangle. Either way, we gain one leaf while adding 3 ordinary
vertices. Specifically, if the triangle corresponding to g is vwz, and if there is just one
edge in G5 to g from a vertex a that resulted by reducing the edge av, then use the edges
av,vw, v in the forest. If, instead, g is adjacent to two vertices, a and b, that resulted
by reduction from edges av and bw, then use the edges av,vw, bw,vz in the forest after
restoration.

Next consider goobers that were created by Reductions (4), (5), or (6). Such goobers
occur in pairs. We shall replace each such pair of goobers by the original 6 ordinary
vertices. In Fig.6, we see how to expand the forest to span the 6 new vertice, without
forming cycles or connecting different components, while gaining 2 leaves in every case. In
the event that the two goobhers in the pair are from different components in G5, it is not
the case for (4) or (5) that the 6 ordinary vertices and 2 leaves gained are divided equally
between the two components. But it is true that such additions are made if one views the
forest globally over all its components rather than locally over each separate component.
The design of Fig.6 is similar to Fig.5.

To restore all vertices of G, it remains to successively restore vertices deleted by ap-
plications of Reduction (7). We describe in Fig.7 the procedure to expand the spanning
forest to reach all of 12 vertices restored by reversing Reduction (7) so that the number of
leaves is increased by 4.

After all of the ordinary vertices have been restored, we have a spanning forest. F' for G
in which every component has at least 2 more leaves than one—third the number of vertices
(unless G is itself irreducible, so that Theorem 3 implied directly that LG) > § + %)
If the forest F' is not connected, say it has & components. Then we can successively add
k —1 edges, e1,...,ex_1 such that for all ¢, edge e; joins vertices in separate components
of F'U{eys,...,e;_1}. The edge ¢; can at worst destroy 2 leaves,-but we have at least 2
leaves to spare for every component of F. So after adding all & — 1 edges, there remains a
spanning tree for G with at least 7 + 2 leaves.

This completes the proof of Theorem 2 from Theorem 3. We now proceed to prove
Theorem 3.



4. Proof of Theorem 3. We use the dead leaf approach as in the proof of Theorem
1. This time, if the triple § = (N, L, D) represents the numbers N of ordinary vertices
added, L of leaves gained, and D of dead leaves gained, then we set A(S)= A(N,L,D) =
2.5L + .5D — N. Over the entire graph H we seek A > 4ifb=0and A > 6if b > 0.
At the end, 2.5L 4 .5D = 3L is integral, so A is integral. Thus when we prove A > 5.5 if
b > 0, it will be sufficient to prove the theorem. We first show how to start by finding a
tree in H for which & = 4 if 5 = 0 while A > 5.5 if § > 0. Then we show that by starting
with any tree in H we can always find a way to extend the tree such that A > 0 for the
extension. The theorem then follows.

4.1. The Initial Stage. First suppose that b = 0, i.e., # has no goobers. Thus, H is
connected, cubic, and contains no K ~ e nor any reducible configuration. Let v a vertex
in H. There exists some w ~ v such that v,w belong to no triangle. Let T be the tree of
all 5 edges that involved either v or w. Then we have A = A(6,4,0) = 4, as required.

Suppose instead that & > 0 in H. By hypothesis, the number of ordinary points a > 0.
Since H is connected, there exist an ordinary vertex v and a goober gin H withv ~ g.
If there exists another goober h ~ v, let T' consist of all three edges incident at v, which
gives A > A(2,3,0) = 5.5 as required. Otherwise, v ~ w,z which are both ordinary. By
Reduction (3}, it must be that w » 2. The goober g has degree at most 2, so at least one
of w and =, say w, is not adjacent to g. Therefore w splits, i.e., w ~ ¥,z which are two
new vertices. Include all 5 edges that contain v or w in 7. If either of y and z is a goober,
we are finished, since then A > A(4,4,0) = 6.

Suppose instead that y and z are ordinary points. If any of z,y,z 1s adjacent to g,
then g is a dead leaf in T', so A = A(5,4,1) = 5.5, which is good enough. Similarly, if any
one of z,y, z is adjacent to the other two, it is a dead leaf and A = 5.5. There remains the
case that none of z,y, z is adjacent to g or to both of the other two. Hence one of them,
e.g., y, splits into two new vertices p and ¢. By adding the edges yp and yq to T we obtain
that & > A(7,5,0) = 5.5, which is good enough. This proves that we can always carry
out the initial stage of the proof.

4.2. Simple Stages. Given any partial tree T' in H, we shall describe how to carry
out an additional stage that enlarges T while A > 0 for the addition. We shall not need
to distinguish the cases b > 0 and & = 0. In this subsection, the simplest extensions are
described.

First, suppose that there exists v € T such that v ~ w,z, where w,z ¢ T. Then it
suffices to add vw and vz to T, gaining one leaf at the cost of adding at most two ordinary
vertices. Thus, A > A(2,1,0) = .5. Whenever possible, we carry out such an extension,
so assume henceforth it is impossible.

Next suppose that some internal vertex (not a leaf) v in T is adjacent to some w ¢ T.
Then if we add vw to T, it gives A > A(1,1,0) = 1.5. We may assume henceforth that
internal vertices in T are adjacent only to vertices in T, while leaves in T have at most one
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neighbor outside T. Further, no goobers outside T' are adjacent to T, or else they could
be added to extend T, so that A > A(0,0,0) = 0.

Now consider any ordinary vertex v ¢ T that has all three of its neighbors, w,z,y € T.
Then adding vw to T creates dead leaves at »,z, and y, so that A = A(1,0,3) = 5.
Therefore, we may assume ordinary vertices outside 7" have at most two neighbors in 7.

4.3. Some Vertex v is Once Adjacent to T. In this case we suppose there exists
an ordinary vertex v ¢ T that is adjacent to precisely one vertex in T, say v ~ t,w,z
where t € T', and w,z ¢ T. We shall add edges tv,vw, and vz to T. If either w or = is a
goober, then we have A > A(2,1,0) = .5, while if either w or z is adjacent to T, a dead
leaf is created in T, so this gives A > A(3,1,1) = 0. If either w or z splits into two new
vertices, say w ~ y, z, then also add wy and wz to T, giving A > A(5,2,0) = 0.

It remains to treat the case that neither w nor z is a goober, w,z % T {i.e., neither
is adjacent to T'), and w ~ z. There exists y ~ w, y ¢ T. Since vwz is a triangle,
y # @ (H contains no K, — €) and y is not a goober (Reduction (3) would apply, but H is
irreducible). If y is twice adjacent to T, adding wy to T would produce 3 dead leaves, so
that A = A(4,1,3) = 0. Next consider y that is adjacent only once to T, say y ~s € T
and y ~ z ¢ T. Then we do not add vt,vz to T, but instead we add all 5 edges involving
w or y, as shown in Fig.8, giving A > A(5,2,1) = .5. In the figure, the thin line indicates
an edge in H that is not used in extending 7.

Next we consider the case that y » T, say y ~ z,a ¢ T. { either of z or a is a goober,
then adding the 6 edges that contain either v or y gives A > A(5,2,0) = 0. Therefore we
may assume z and a are ordinary. By Rednction (1), it must be that z < a. If each of
and e fails to expand, i.e., if each is adjacent either to 7' or to z, then adding the same 6
edges containing v or y creates at least three dead leaves. In this case, A > A(6,2,2) = 0.
So we may next assume that at least one of  and z splits, say 2 ~ b,¢ ¢ T. Then expand
T as shown in Fig.9. If b or ¢ is a goober, we have A > A(7,3,0) = .5, so assume both
are ordinary. Consider the three points a, b, and c. If any one of them is adjacent to T or
z, the extra dead leaf created gives A > A(8,3,1) = 0. Similarly, if any one of a,b,c is
adjacent to the other two, this gives a dead leaf. There remains the case that there is at
most one edge between vertices a,b, ¢, and the other edges for a, b, ¢ go to new vertices. In
particular, one of a, b, ¢ splits into two new vertices, and the addition of the corresponding
two edges gives altogether A > A(10,4,0) = 0. This completes the construction for v
adjacent just once to T,

4.4. v is Twice Adjacent to T But Not Adjacent to a Triangle. From the
subsections above, it remains to consider the case that every vertex outside of and adjacent
to T is an ordinary vertex and is adjacent to T precisely twice. Unless T spans all of H,
which would complete the construction, there exists such a vertex v ~ T, say v ~t,s € T.
There exists w ~ v, w ¢ T. We shall add tv,vw to T,

Assume for now that w is an ordinary point. First suppose w ~ 7. Then w must
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be adjacent to T twice, say w ~ r,q. Then we have gained dead leaves at w,s,r,¢ and
A = A(2,0,4) = 0. Hence, we may assume instead w » T, so that w splits and w ~
z,y ¢ T. We add wz,wy to T as well. If either of z or y is adjacent to T, we again get 4
dead leaves, so that A > A(4,1,4) = .5. Alternately, if either = or y is a goober, we have
A > A(3,1,1) = 0. We can therefore assume z and y are ordinary points not adjacent to
T. Hz ~ y, then way forms a triangle of ordinary points, and there requires a difficult
argument which we postpone to Sec.4.5-4.7.

We then may assume that z » 3. So = splits, and z ~ z,a ¢ 7. We add zz and za to
T as well, as shown in Fig.10. We now argue similarly to the last part of Sec.4.3, Fig.9,
where now the three points are y, z,a. This takes care of the case that w is ordinary and
not part of a triangle outside T'.

It remains to consider the case that w is a goober. If w has degree one in H, then
adding tv,vw to T creates dead leaves at s, w, so that A = A(1,0,2) = 0. Suppose instead
that w is a goober of degree two in H. Then there exists ¢ ¢ T,z ~ w. By Reduction (2),
2 must be ordinary. By Reduction (3), z cannot belong to a triangle of ordinary points.
Now add wz to T as well. In passing through the goober w, no contribution is made to A
at all. Indeed, the entire argument above, where w was ordinary but not part of a triangle
of ordinary points, carries over here except the role of w above is played by z here. So the
tree T can always be extended in this case.

4.5. v is Adjacent to a Triangle. The proof has heen reduced to the case that,
along with the assumptions at the start of Sec.4.4, wzy is a triangle of ordinary points.
No point is adjacent just once to 7, and H contains no K, - e, so there exist z,a ¢ T with
z ~ ,a ~y. By Reduction (3), both z and a are ordinary. If both z and a are adjacent to
T, then extending T by tv,vw,wz,zz,wy,ya gives A = A(S, 1,7) = 0. So assume for the
remainder that not both z,a ~ T, say 2z % 7. Since z = T, z splits so that z ~ be g T,
as shown in Fig.11. If b or ¢ is ordinary and adjacent to T, say b ~ T, then the expansion
shown in Fig.11 has A > A(7,2,4) = 0. So we may assume that that b,¢ = T. Next
consider that b or ¢, say b, is a goober. Then b = y due to Reduction (3). If b has degree
lin H, or if b ~ ¢, then b is a dead leaf in Fig.11, giving A > A(6,2,2) = 0. If ¢ is also a
goober, then A > A(5,2,1) = .5. Consider instead what happens when ¢ is ordinary and
¢ b,T. If ¢ ~ y, then vertices v,w, z,y, ¢ create the configuration of Reduction (4), which
is impossible since H is reducible. Therefore it must be that ¢ splits, say ¢ ~ d, e. Adding
the edges cd and ce to Fig.11, we would gain a new leaf, and then A > A(8,3,1) = 0.
Therefore, we can handle the case that b or ¢ is a goober.

We may assume then for the rest of the proof that b and ¢ are ordinary points not
adjacent to 7. By Reduction (1) b » ¢ while by Reduction (4), b,e » y. So each of b and ¢
splits, but not necessarily disjointly. Let d, ¢ be the other neighbors of b, and add bd, be to
Fig.11. If either d or e is a goober, this gives A > A(8,3,1) = 0, so it remains to suppose
that d and e are ordinary. If d or ¢ is adjacent to T, then A > A(9,3,4) = .5, s0 it remains
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to suppose that d,e » T,

At this time it is useful to reconsider the vertex a ~ y. Recall that a is ordinary.
Nothing prevents a from being d or e at this stage. But suppose instead for now that
a ~ T. Then a # d, e, so the addition of ya to T gives us § = (10, 3,4), with A(S) = —.5,
not quite enough. Refer to Fig.12. In this case, we operate on the three points ¢, d, e as
before in Sec.4.3, that is, either one of the three is adjacent to the other two, so is a dead
leaf, or else one of the three splits and creates a new leaf. Either way, we gain the necessary
.5 to achieve A > 0.

It remains to consider the case that a ~ T, which we assume hereafter. But then all
of the arguments we have been using in this section to extend out from z can be applied
similarly to extend out from a. This observation will prove useful to us later on in the
proof.

We now return to the expansion out from vertex z. We saw that it could be assumed
that both b and ¢ split. Arguing as with b, it may be assumed that ¢ also splits into two
ordinary vertices that are not adjacent to 7. We divide the remaining possibilities into
three cases. The first is that ¢ also splits into d and e, i.e., b,c ~ d,e. This is shown in
Fig.13(a). The second case'is that ¢ is adjacent to one of d,e, say ¢ ~ ¢ and ¢ ~ f, as
shown in Fig.13(b). The third case is that ¢ « d, e, so that ¢ ~ f, g as shown in Fig.13(c).
Of course, any of d,e, f,or g could be adjacent to v, i.e., coincide with vertex a defined
earlier.

We can immediately dispense with the first of these cases, Fig.13(a). Suppose d and
e have no third neighbor in common besides b and ¢. Then we could apply Reduction (5)
to the vertices z,z,b,¢c,d, e, which is not possible since H is irreducible. Therefore, there
exists g ~ d,e with g # b,c. By Reduction (6) on z,b,¢c,d, e, g, the new vertex g cannot be
ordinary, so it must be a goober. Then extend T by the solid lines in Fig.13(a) together
with the edge dg. One then computes that A = A(9,3,4) = .5.

The two remaining cases are rather more involved. Sec.4.6 treats Fig.13(b) while
Sec.4.7 is devoted to Fig.13(c). We shall see that these two cases are not independent, but
instead 4.6 is required for 4.7.

4.6. The Case in Fig.13(b). It would appear in Fig.13(b) that we are almost
through with it, since § = (11,4,1) and A(S) = —.5, just a hair away from working. This
is deceptive. Indeed it is so tricky to fully resolve this case that it is surprising it can even
be done.

Many possibilities are easy since they increase A by at least .5, which is all that is
required. We already assume that d,e, f,g are ordinary points not adjacent to 7. We are
finished if any of them is adjacent to y (giving a dead leaf at y), if any one of them splits
to two new vertices (giving a new leaf), or if any one of them is adjacent to some two of
the other three (giving a new dead leaf). It remains to consider the situation that each
of d,e, f,g is adjacent to one of the others. By relabelling, it ran be assumed that the
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matching on d,e, f, g, is one of the two shown in Fig.14. We treat these two major cases
separately, beginning with the configuration in Fig.14(a).

4.6.1. The Case in Fig.14(a). By arguments presented in Sec.4.5, it follows that «
is adjacent to two ordinary points outside T’ besides ¥. Suppose a is adjacent to two points
among d, e, f,g. Because K4 — ¢ is not allowed in H, we cannot have either ¢ ~ d, e (both
or @ ~ f,g (both). So we may assume, say, a ~ ¢ and @ ~ g. Then extending 7' in the
obvious way with leaves at d, e, f,g,a gives A = A(12,4,4) = 0.

Next consider the case that a is adjacent to just one of d,e, f,g, say a ~ g, so that we
also have @ ~ h, where h is a new ordinary vertex. Suppose that h is adjacent to d,e, or
f- I h ~ f, then z,¢,f,9,a,h could have been reduced by Reduction (4), so this is not
possible. Since K4 - e is forbidden, it cannot be that h ~ d,e (both). Thus, A is adjacent
to exactly one of d, ¢, say h ~ e, and also h ~ i, a new vertex which must be ordinary (by
what we assume when extending outward from v). In Fig.15 it is shown how to deal with
this situation to achieve A = A(14,5,4) = .5. .

Still assuming that @ ~ g,a ~ h, we must next discuss the case that k& d,e, f,g, say
h splits with h ~ 7,7, two new vertices not shown in Fig.14 (a). Extending T out from y
instead of z we are finished by arguments in the last section unless and j are ordinary and
not adjacent to T, i.e., Fig.13(b) applies working out from y. Then by the discussion at
the start of this section, we are finished unless there is a matching on the vertices e, f,1, 7.
If so, since ¢ ~ f, it must be that i ~ j and ,; = ¢, f. This configuration is shown in
Fig.16. One can compute that the best we can do now is § = (15,5,2) and A(S) = —1.5,
even worse than Fig.13(b).

In Fig.16 we have that f is not adjacent to any other vertices besides ¢ and g, so there
is a new vertex k ~ f. By Reduction (3), k cannot be a goober. Suppose the other two
neighbors of k are outside T but are among vertices shown in Fig.16,i.e., among d,e,1, 5.
Since K4 — e is forbidden, we may assume k ~ e,t. In Fig.17 the current situation is
displayed. The graph to the right of w, including w itself, is isomorphic to configuration
(7) in Fig.4. So the edge leaving d and the edge leaving § either join or meet at an ordinary
vertex since otherwise we could have used Reduction (7). Suppose first these edges join,
Le., d ~ j. An extension is shown in Fig.18(a) for this case which has A = A(16,5,7) = 0.
On the other hand, if there exists an ordinary vertex [ ~ d,j,let m be the third neighbor of
. An extension of T all the way out to [ is shown in Fig.18(b}in which A > A(18,6,7) = .5.

Next we may consider the case that vertex k is adjacent to just one of d,e,i,j. By
relabelling we may assume k ~ 7 and that there exists a new vertex [ ~ k. In this case an

appropriate extension of T' exists, shown in Fig.19. It has A > A(17,6,4) = 0.

Next suppose that vertex k is not adjacent to any of d, e,7, j. Tt could be that k ~ 7. In
this case, there seems to be no appropriate extension of T that uses all labelled vertices, but
there is one that uses fewer vertices. It is shown in Fig.20, and it has A = A(12,4,4) = 0.

The remaining possibility for k is that it be ordinary and not adjacent to T or to any
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labelled vertex besides f. Then it splits, so there exist new vertices {,m ~ k. The obvious
tree for Fig.16 extended by the edges involving k has § = (18, 6,2), which is not very good
yet. If I and m are each adjacent twice to d,e,i,7, we pick up 6 more dead leaves, so
A = A(18,6,8) = 1, which is suitable. If this is not the case, then at least one of [ and m
fails to be adjacent to a vertex in at least one of the pairs d,e and ,j. We may assume
m » d,e. Consider the tree shown in Fig.21, in which several labelled vertices have been
omitted. If either I or m is a goober, the tree has A > A(13,5,1) = 0, while if either [
or m ~ T, it gives A > A(14,5,4) = .5. We already know that m » y,g,d,e. Further,
m + | by Reduction (1). So it remains here to consider the case that m splits in Fig.21
into two vertices, call them n and o. If we add mn and mo to the tree shown, it gives
A > A(16,6,1) = —~.5. Then we may argue as usual on the three leaves I, 1,0 to produce
an extension of T with A > (.

Finally consider the case that a = d, e, f, g, so that a splits into new ordinary vertices h
and 1. If h and 7 are each adjacent to d,e, f, or g, then the tree in Fig.14(a) together with
edges ah and a7 gives A > A(14,5,3) = 0. If h or i is a goober, we have A > A(13,5,1) = 0.
On the other hand, suppose h and i are ordinary and at least one of them, say h, is not
adjacent to any of d, e, f,g. Then h splits into new vertices 7 and k. Adding ah,ai, hj, hk
to the tree in Fig.14(a) gives A > A(16,6,1) = —.5. Then we can argue on the three
leaves 2, j,k as usual to extend T with A > 0.

4.6.2. The Case in Fig.14(b). As with the beginning of Sec.4.6.1, we may assume
in Fig.14(b) that a is adjacent to two ordinary points outside 7. If a is adjacent to any
two of d, e, f, g, then the obvious extension of T for Fig.14(b) with leaves at d, e, f,g,a has
A= A(12,4,4) = 0.

We next consider the case that a is adjacent to just ome of d, e, f, g. By symmetry,
we may assume a ~ g. Then there exists a new vertex adjacent to a, call it h, which
be ordinary. We treat several cases depending on how & relates to d, e, f. First suppose
h ~ e, f. Extending outward from y rather than z produces Fig. 22. The tree in Fig.22 has
A = A(11,4,2) = 0. Suppose next that we have h ~ d, f. Then Fig.23 shows a suitable
extension with A = A(13,4,6) == 0. The case that h ~ d, e is similar to the last one. So
now suppose h is adjacent to just one of d,e, f, so that also A ~ i, which is an ordinary
point by the argument in Sec.4.5 concerning points near a. Treating each case separately,
first suppose h ~ d. Fig.24(a) presents an extension with A > A(14,5,4) = .5. The case
h ~ e is treated by Fig.24(b), in which A > A(14,5,5) = 1. The case A ~ f is similar to
h ~ e. Finally, if h is adjacent to none of d, ¢, f, then it splits, say h ~ 1,7, and there is an
extension with A > A(13,5,2) = .5 shown in Fig.24(c). This completes the cases in which
a is adjacent to any of d,e, f, g.

Next suppose a « d,e, f,g, so that a splits into new ordinary vertices h and ¢ in
Fig.13(b). If any two of d, e, f,g are adjacent either to & or 1, they become dead leaves in
the obvious tree extension, which yields A > A(14,5,3) = 0. Otherwise, at least one of
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h,i, say h, is not adjacent to any of d,e, f, g, which means it splits into vertices 7 and k.
If any of i, 4,k is a gooher, or adjacent to T, or adjacent to any of d,e, f, g, then we have
A > 0. Otherwise, can pick up at least .5 by treating the triple ¢, j, k as in Sec.4.3, Fig.9.
This completes the treatment of Fig.13(h).

4.7. The Case in Fig.13(c). Referring to Fig.13(c), Sec.4.5, we claim that e = d, f.
For suppose, say, that ¢ ~ d. There is a third neighbor of d, call it g, which may or may
not be new. It cannot be that g is goober, due to Reduction (3). But g cannot be ordinary
either, or else Reduction (4) could be applied to g,d,b,¢, z,c. So our claim holds.

If e ~ y, then we can extend T as shown in Fig.25 to achieve A = A(9,3,3) = 0. Tt
should be pointed out that vertex f is not involved. We may assume for the remainder
that e = .

If f ~ y, it is also possible to extend T'. First, consider the case that we also have f~d.
Then d splits to a third vertex, call it g, which cannot be any of the others in Fig.13(b).
So T can be carefully extended as shown in Fig.26 to attain A > A(11,4,4) = 1. Second,
consider the case that f ~ y and f % d. Then f must split to a third vertex, again call
it g, which does not appear in Fig.13(b). Since f ~ y, f is the vertex called a, which we
learned about in Sec.4.5. It follows from this information about f = a that g 18 ordinary
and g » T. Further, all neighbors of ¢ are ordinary points. Suppose that g »e. Then g
splits into vertices, all them h and 7, which do not appear elsewhere in Fig.13(c) except
possibly at d, which we disregard for now. So growing outward from y instead of z gives
us Fig.27. There may be other edges on these vertices in Fig.27, which has been redrawn
so that its isomorphism to Fig.13(b) is evident, Therefore, we can continue outward from
y (instead of = in Fig.13(b)) and extend 7' as described in Sec.4.6. (For this reason, we
needed to treat Fig.13(b) before Fig.13(c).)

We are still assuming f ~y and f » d. Above we dealt with the case that g « e. Now
assume instead that g ~ e. Ifit also happens that g ~ d, then only d among the the labelled
vertices outside T does not have all of its neighbors described. So there exists another
vertex h ~ d. In Fig.28, we present an extension for this case with A > A(12,4,5) = .5
We last assumed g ~ d. Instead consider the case g » d, so there exists a new vertex
h % g. The extension shown in Fig.29 has A > A(12,4,4) = 0.

We have treated now all cases with e ~ y or f ~ y, and the cases d ~ y are the same
as f ~y up to relabelling (refer to Fig.13(c)). Assume for the remainder that d, e, f, % y.
Suppose next that d ~ f. There must be a third neighbor of d, call it g. Then the extension
shown in Fig.30 gives A > A(11,4,2) = 0.

It remains to proceed from Fig.13(c), where no two of y,d, e, f are adjacent. It must be
that d splits, say d ~ g, h. Ignoring f for the moment, the tree with leaves at Y,¢,e,9,h has
§ =(11,4,1) and A(S) = —.5, just short of working. Indeed, if either g or h is a goober,
is adjacent to T', is adjacent to y or e, or splits, then we pick up the extra .5 we need in
A(S}. The remaining case is that g and h are ordinary and g ~ h. Similarly, working out
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from f and disregarding d, the remaining case has that f splits into two adjacent ordinary
points. Since H contains no K4 —e it cannot be that f ~ g, h. Therefore, f splits into new
points, say f ~ 14,5 where i ~ j. As with g, h, we may assume that i,j »~ y. Therefore, a
new vertex, call it a, splits out from y, as shown in Fig.31.

Unless H expands from a in a way that is isomorphic to the way it expands from z,
we are finished by one of the earlier cases in this proof. Therefore, we may suppose the
expansions from z and a are isomorphic, although not necessarily disjoint. In particular,
the two neighbors of a hesides y belong to a 4-cycle along with a.

We claim that a » g,h,i,j. For if this were not so, we could assume by symmetry
that a ~ j. A 4-cycle through a,j could only be a,j, f,i (which creates K, — € in H) or
a,j,t,k for some new point k ~ a (which creates Reduction (4) on ¢, f,i,7,k,a). Either
way, it is not allowed.

We can also exclude a ~ e because no 4-cycle could pass through a,e. Therefore, a
splits into new vertices k,l. Then a new vertex m must be adjacent to k.l to create the
4-cycle through @, so that m ~ k,l. Next recall that for k,! (working out from a} to be
like b, ¢ (working out from z), it must be that k and [ are each adjacent to some triangle.
Consider the triangle next to k. If it contained any points from the z-side, they would
have to be among d, g,k or f,7,j. By symmetry we could suppose k ~ 7. Then consider
the amazing tree extension shown in Fig.32 in which A > A(18,7,3) == 1. There remains
the case the k£ % ¢,h,i,j. Then k splits to a new triangle, say nop where & ~ n. Then
use Fig.32 except replace triangle fi; by nop, using edges kn,no,np in the tree. In Fig.32,
the dead leaves at ¢, f become live leaves at ¢, 0, but we still achieve A > A(18,7,1) = 0,
which is just good enough to complete the entire proof of Theorem 3. !

5. Directions for Further Study. It cearly would be most enlightening if one
could find a proof of Theorem 2 which is not so lengthy, elaborate, and delicate as the one
presented here. We are not particularly optimistic that this is possible, However, there
may be a simpler proof, more like the one we provided for Theorem 1, of the weaker result
that there exists some constant ¢ such that for all G described by Theorem 2, L(G) > 2 +e.
Perhaps restricting it to 3-connected, cubic G will make it easier.

As we noted earlier, we can show that the cubic graph, Q;, is the only @ in Theorem
2 such that L(G) = § + %. In view of Theorem 3, any graph G in Theorem 2 that has a
reduction using any of the reductions (1)(6) in Fig.4 satisfies L(G) > 3 +2. It remains to
consider G that are irreducible or can be fully reduced using Reduction (7). One can check
the initial cases as in Sec.4.1, only being more careful, and show that unless G = ()3, then
A > 4.5 at the start, which forces in the end L(G) > & + 2. No“graph can be reduced

3
using Reduction (7) to 3, as it contains no triangles, so that only @; has LG)=1% + %,

The next question then is what other graphs besides @; have LG) < § 42,1,
L(G) = § + 37 It suffices to consider irreducible graphs or graphs that are irreducible

after using only Reduction (7). Previously in Fig.3 we saw two examples of such graphs.
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The examples of large graphs G with L(G) about n/3 that we constructed in Sec.1
contained many triangles. It could be that triangle—free graphs contain significantly more
leaves, that is, there may exist ¢ > % such that for some constant d, L(G) > en + d for
all triangle—free, connected, cubic graphs G. This is a subclass of the graphs in Theorem
2. One could further restrict attention to connected, cubic graphs that contain no triangle
nor Cy. In this case we conjecture that L(G) is at least % n + d for some constant d.

The most interesting and largest open problem is a conjecture of N. Linial (3] that
generalizes Theorem 1: Suppose G is a connected graph that is regular of degree r > 2.
Then there exists some constant d, depending only on 7, such that

r—2

L(G) > -

> n+d.
r+1

If true, an extremal graph would be the necklace where each bead is Kgi1 — e. This
conjecture has been verified for r < 4 by Kleitman and West (2], who prove the bound
holds for the larger class of all connected graphs of minimum degree r.

For graphs that are not regular, Linial suspects an even stronger bound holds. If a
graph G has degree sequence (dy > d, > -+ > d, > 2) and is connected, then Linial

conjectures that
2

d;
Ley>>" i1

Such a lower bound on L(G) in terms of the degree sequence would be analogous to a

known bound on the independence number of G due to Wei {5,ef.1].
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Fig. 1. A Cubic Graph G with L(G)=(n/2)+1
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Fig. 8. The Case y~seT, y~zeT Fig. 9. z~b,eceT
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Fig. 138. The Remaining Cases
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Fig. 14. There is a Matching on d,e,f,g

(b)




Fig. 17. f~k, k~ e,

(b)




Fig. 19. k is Once Adjacent to d,e,i,]

Fig. 20. k~T

Fig. 21. m+d,e




Fig. 22. a~g, h~ e/




Fig. 24. a~ g, h~ at most one of d,e,f
(@) h~d

{c}) h+ def




Fig. 26. f~y,d
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Fig. 29. f~y, f+¢d, g~e,g+4d
X Zz b d

Fig. 31. No Two of y,d,e,f are Adjacent






