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ABSTRACT

This paper introduces SPar, an internal C++ Domain-Specific Language (DSL) that

supports the development of classic stream parallel applications. The DSL uses standard
C++ attributes to introduce annotations tagging the notable components of stream par-

allel applications: stream sources and stream processing stages. A set of tools process

SPar code (C++ annotated code using the SPar attributes) to generate FastFlow C++
code that exploits the stream parallelism denoted by SPar annotations while targeting

shared memory multi-core architectures. We outline the main SPar features along with

the main implementation techniques and tools. Also, we show the results of experiments
assessing the feasibility of the entire approach as well as SPar’s performance and expres-

siveness.
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1. Introduction

Stream parallelism may be fruitfully used in a wide range of applications including

video and audio processing, graphics, and networking applications. Stream parallel

applications may target different kinds of parallel architectures (from mobile devices

to desktop, servers, clusters, and even supercomputers) and may represent signifi-

cant workloads. However, a number of these stream applications are still sequential.

Thus, when programmers parallelize them or develop a new one, they are faced with

the problems of trade-offs between coding productivity and performance. Unfortu-

nately, the programming frameworks that are currently available for programmers

to develop efficient and high performance stream applications significantly increase
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the programming effort, because they are too low-level, architecture-dependent, and

complex (see Section 2).

To target a better productivity/performance trade-off, we designed a new DSL

aimed at naturally representing parallelism in stream-based applications. The idea

is to offer a set of attributes — to be used as source code annotations — that may

be used to clearly denote all the key components of stream parallel applications

while preserving the source code of the program. In general, stream parallel appli-

cations compute a sequence of distinct activities (called stages) over a stream of

input tasks. Each one of these activities consumes an item from the source input

stream and produces a new item on some output stream as a result. The structure

of the application can be viewed as a graph of independent activities with explicit

dependencies modelled after the communications needed to transmit the data from

one stage to another, that is, the internal streams. Also, it enables one to iden-

tify situations where it is possible to replicate stateless operations to concurrently

process stream items [15, 3].

The design of an internal C++ DSL — in particular of a DSL targeting stream

parallelism — is still a challenging task. It requires expertise in multiple areas

such as programming languages, software engeneering, compiler architecture, par-

allel programming, etc. Recently, researchers from Stanford University designed a

high-performance and high-level embedded DSLs within the Scala language. They

developed the Delite compiler framework to enable DSL designers to quickly and

efficiently develop DSLs targeting parallel heterogeneous hardware [14]. Integrated

with Scala, Delite provides parallel patterns that can be instantiated by the ap-

plication’s DSL designer without worrying about the details related to parallelism

exploitation and underlying heterogeneous hardware. Overall, their research builds

on a stack of domain-specific solutions that in principle share similar goals with this

work. Yet, our idea is to contribute to the C/C++ community, which is commonly

used in a wide range of real world applications. We also propose an internal C++

domain-specific language, but we explicitly target stream parallelism. Our goal is

to avoid requiring the parallel programmer to explicitly instantiate patterns, which

is required in Delite. Instead, we aim to preserve the source code as much as possi-

ble, only requiring the programmer to insert the proper annotations to tag stream

parallel features in the original sequential C++ source code.

In the C++ community, similar goals are presented in the Re-engineering and

Enabling Performance and poweR of Applications (REPARA)a, which is a project

funded by the EU. REPARA’s vision is to help develop new solutions for parallel

heterogeneous computing [7] in order to achieve a balance between source code main-

tainability, energy efficiency, and performance [6]. REPARA differs from our work

in many ways, but shares the idea of maintaining the source code by introducing

abstract representations of parallelism through annotations [5]. A standard C++11

attribute mechanism is used to introduce skeleton-like code annotations (farm, pipe,

ahttp://repara-project.eu/



March 16, 2017 13:9 WSPC/INSTRUCTION FILE output

SPAR: A DSL FOR HIGH-LEVEL AND PRODUCTIVE STREAM PARALLELISM 3

map, for, reduce, among others). Attributes are preprocessed to produce efficient

parallel code targeting heterogeneous architectures including multi-core, GPU, and

FPGA-based accelerators. From the high-level parallelism perspective of REPARA,

attributes are interpreted by a re-factoring tool built on top of the eclipse IDE (In-

tegrated Development Environment). The re-factoring tool is responsible for the

source-to-source transformations driven by the attributes that generate parallel

C++ code with FastFlow calls. In the REPARA methodology, code transforma-

tions occur in place and produce code that is seen by the users. As in REPARA,

we aim to use standard C++ features. However, our attributes are managed at the

compiler level and the source-to-source code transformations we perform are hidden

from the users.

Our high-level parallel programming approach relies on language attributes to

annotate code with abstract representations of potential parallelism. We argue that

other annotation-based models such as OpenMPb are conceptually lower-level, be-

cause OpenMP users have to express the parallelism and also deal with low-level

details, especially when implementing stream parallelism. These kinds of interfaces

only achieve good coding productivity in specific cases, e.g., in the parallelization

of an independent loop. In addition, despite the fact that all of our work is based on

C++, our stream parallel annotations can be moved to other languages provided

they support some kind of annotations and the possibility to implement source-to-

source transformations.

The main contributions of our work may be summarized as follows:

• A DSL for stream parallel applications that improves the syntax and se-

mantics of our DSL proposed in [9], which targeted a different design tool;

• A compiler that recognizes the DSL C++11 attributes and automati-

cally performs source-to-source transformations, generating efficient parallel

FastFlow code;

• A set of transformation rules for our DSL targeting parallel patterns, suit-

able to re-factor annotated code into parallel FastFlow code;

• A new set of experiments comparing performance and expressiveness

achieved using our DSL compared with the state-of-the-art tools.

This paper is organized in five sections. Section 2 discusses related works. Section

3 describes SPar’sc syntax and semantics, presents the related annotation method-

ology, and demonstrates its expressiveness and effectiveness to parallelize a concrete

streaming application. Section 4 introduces and discusses transformation rules tar-

geting stream parallel patterns, our compiler, and the parallel code produced. Fi-

nally, Section 5 discusses the experiment results.

bThe OpenMP web page is http://openmp.org/
cThe SPar web page is https://gmap.pucrs.br/spar
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2. Related Work

In addition to Delite and REPARA, which have already been discussed, there are

other different programming frameworks that provide stream parallel abstractions

for the application programmers.

FastFlowd is a framework that was created in 2009 by researchers at the Uni-

versity of Pisa and University of Turin in Italy [3]. It provides stream parallel

abstractions adopting an algorithmic skeleton perspective. The implementation is

built on top of efficient fine grain lock-free communication mechanisms [2, 1]. The

FastFlow runtime support has been tested in different applications and has been

able to achieve a good trade-off among time-to-market, efficiency, and performance

portability on various platforms. We used FastFlow as the target of the source-to-

source transformations and to process SPar attributes when generating code for

shared memory multi-core systems, because it provides the programmer with high-

level abstractions (C++ template classes) modelling different parallel patterns for

stream parallelism.

StreamIt is a programming framework for streaming applications developed at

the Massachusetts Institute of Technology (MIT)e targeting cluster and multi-core

systems [15]. StreamIt natively supports stream parallelism by providing abstrac-

tions similar to those provided in FastFlow. They mainly diverge in the names. For

instance, StreamIt offers three filter interconnection modes: pipeline, splitjoin, and

feedback loop [16]. Similar concepts in FastFlow are called pipeline, farm, and feed-

back parallel patterns. StreamIt provides a lower level of abstraction than SPar and

may be considered as a possible target for our source-to-source compilation process.

TBB (Threading Building Blocks) is an Intel tool library for parallel program-

ming f , providing support for the implementation of high-performance applications

in standard C++ and it does not require a special compiler for shared memory

systems. It emphasizes scalable and data parallel programming while completely

abstracting the concept of threads by providing a concept of task. TBB builds on

C++ templates to offer common parallel patterns (map, scan, parallel for, among

others) implemented on top of a work stealing scheduler [13]. TBB also results in a

lower level of abstraction exposed to the final application programmer than the one

presented by SPar and may be considered a possible target runtime in our scenario.

3. SPar: a DSL for Stream Parallelism

SPar is a C++ internal DSL provided as an annotation-based language that models

the main properties of stream parallel applications. Our DSL is implemented using

the standard C++11 attributes mechanism and compiled (source-to-source) to an

intermediate code with calls to a high-performance library (FastFlow) to target

dhttp://mc-fastflow.sourceforge.net/
ehttp://groups.csail.mit.edu/cag/streamit
fhttp://threadingbuildingblocks.org
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multi-core systems. Indeed, any other framework that provides farm and pipeline

parallel patterns could have been used as target runtime for SPar.

The SPar annotation mechanism gives the application developer more power

than ‘pragma’ mechanisms, which are compiler pre-processing directives and not

part of the C++ grammar. C++ annotations may be put almost anywhere in a

program according to the C++ standard grammar [10]. The standard annotation

grammar is general enough to support the customization of new attributes and

determine where they are allowed in the source code (e.g., to annotate types, classes,

code blocks, etc.). SPar maintains the original syntax definition, but it imposes some

restrictions to ensure correct parallel code generation.

The attribute names were inspired by the stream parallelism domain, where

usually a sequence of independent activities are used as stages when processing a

stream. Each activity may consume and produce something. Moreover, the opera-

tions that can compute over different stream elements may be replicated to increase

the degree of parallelism. SPar introduces few annotations divided into identifier

(ID) and auxiliary (AUX) attributes (more details in Section 3.2):

• ToStream and Stage ID attributes are used to identify the stream comput-

ing regions as well as activities producing a stream or processing stream

items as a “filter” in the source code.

• Input, Output, and Replicate AUX attributes specify the I/O behavior

and degree of parallelism in SPar stages.

These attributes were especially designed to support a programming style for

high-level stream parallelism, enforce coding productivity, and provide the exibility

to express parallelism and performance in different ways, in addition to being C++

standard interface compliant. Before starting to describe each one of the attributes

in detail, Listing 1 gives an example of a common stream parallel application coded

with SPar attributes. In this application, the data type of stream items is “string”.

The stream processing code region is the loop block. The stream comes from an

external source, which is a file. For each iteration, a new stream element is read and

a sequence of operations is performed. A similar code may be used if the stream

comes from the network or any other external source and the programmer may not

know in advance the length of the stream. In this case, the programmer has to

explicitly manage the program (stream) termination. This stream operation can be

seen in line 4, which checks the end-of-stream condition (the end of the file, in this

case).

We added a ToStream annotation in front of the while loop to denote the fact

that it represents the stream processing code region. No Input attribute was needed

since the stream comes from an external source and each stream item is produced

inside the stream region. Also, no Output attribute was required because nothing is

produced inside the stream region that will be used outside of it. Thus, the stream

operations identified through SPar annotations are: 1) read stream element (line 3),

2) check end of the stream (line 4), 3) compute with the stream element (line 6)
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and 4) write the result to an output source (line 8). However, we just annotated two

stages in the code, because the region identified by ToStream already constitutes

an implicit stage. This code behaves as an assembly line, where read, compute and

write stages execute simultaneously.

1 [ [ spar : : ToStream ] ] while (1 ) {
2 std : : s t r i n g stream element ;
3 r e a d i n ( stream element ) ;
4 i f ( s t r eam in . eo f ( ) ) break ;
5 [ [ spar : : Stage , spar : : Input ( stream element ) , spar : : Output(

stream element ) ] ]
6 { compute ( stream element ) ; }
7 [ [ spar : : Stage , spar : : Input ( stream element ) ] ]
8 { wr i t e ou t ( stream element ) ; }
9 }

Listing 1: Simple stream computation using SPar to annotate parallelism.

Listing 1 clearly shows the expressiveness and high-level abstractions provided by

SPar. SPar does not require rewriting/restructuring sequential code and keeps the

vocabulary of the new terms introduced for the annotations close to the application

developer (the domain user idiom). The aspects regarding mechanisms and policies

such as low-level programming models, hardware-level performance optimizations,

scheduling policy implementation, load balancing, data and task level problem de-

composition, and parallelism strategies to be used (parallel patterns and algorithmic

skeletons) are completely abstracted by SPar annotations. Also, our attributes are

flexible enough to annotate the previous code in different ways. For instance, we

could add the Replicate attribute (see how it works in Section 3.2) on the Stage

as well as put all the code in a single Stage with or without Replicate. These two

different cases may lead to two alternative parallel implementations. However, not

all possible annotations will produce correct parallel code. In this code example, the

last Stage is state-full and therefore it cannot be replicated, unless the application

developer knows how to concurrently manage the stage state and properly modifies

the replicated code. In order to help the user to correctly and efficiently annotate

stream parallelism with SPar, we designed a step-by-step annotation methodology.

3.1. A Methodology to Successfully Apply the SPar Annotations

This section introduces a methodology to annotate stream parallelism using SPar

attributes based on five questions that the programmer should answer in order

to annotate the sequential source code (Figure 1). The methodology orients the

programmer in the annotation process of the application code by requiring him to

answer these questions.

The first question to answer is “Where is the stream region?” in the sequential

code. Usually, a stream region is associated with an “assembly line”. In a program,

we can often identify and visualize the stream region as the most time consuming
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Fig. 1: Annotation methodology.

portion of the code. In most cases, the stream computation will be inside a loop,

which generates a new stream item per iteration. In all other cases, the stream

will come from an external source and the developer should carefully analyze to

identify the relevant code section gathering the stream items and computing results

out of them. Once the stream region has been identified and properly annotated,

we have to look inside the region answering the question “What does the region

consume and produce?”. The idea here is to identify the parameter for the Input

and Output auxiliary attributes that are associated with the stream region.

The third question (“Which stages are inside of the stream region?”) helps to

identify the assembly line’s workstations. In the program, they are inside the stream

region already annotated based on the answers of the previous questions. To answer

the third question, we suggest looking for the sequence of operations and annotating

as many stage regions as necessary, respecting SPar’s syntax and semantics. The

next question to be answered according to our methodology is “What will my stages

produce and consume?”, to specify the Input and Output attributes.

In the assembly line, we can only assign more workers to a given workstation

when the computations of different tasks taking place in the workstation are in-

dependent. The fifth question of SPar’s methodology, Can I replicate a stage?, is

aimed at finding out the degree of parallelism associated with the different stages. In

the program we may replicate a stage if it can get a new stream item and compute
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it independently from any other stream item. The developer may use a Replicate

attribute to improve the performance of any stream region identified as a stage,

which is stateless and processes independent items.

We cannot recommend any specific methodology for SPar aimed at help the

programmer in the performance optimization process. In fact, each application has

a particular structure and the number of stages, stream size, workloads, number of

replicas, and stream format should be specified accordingly. Our recommendation

is to analyze each case separately and to perform some experiments exploiting the

fact that SPar is simple and it ensures the possibility to test different configura-

tions of a stream parallel application with minimal code modifications. Section 3.3

will demonstrate how a real streaming application may be developed using SPar’s

methodology. In Section 5, we will discuss the performance and productivity ex-

periments of a video OpenCV application (Section 3.3) and other applications that

assess our SPar based parallelization methodology.

3.2. SPar Attributes

In this section, we describe in detail the syntax, semantics, and behavior of the SPar

attributes.

ToStream The ToStream attribute is intended to be used to denote that a given

C++ program region is going to provide stream parallelism. As dictated by the

International Standard [10], the SPar grammar uses and extends the same syntax.

A ToStream attribute may only be used to annotate a compound statement or

iteration statement. SPar requires that an annotated region must contain at least

one Stage and follow a syntax such as [[spar::ToStream]] where additional AUX

attributes may possibly be included after the ToStream. It is worth pointing out

that, as in the standard C++ grammar, the auxiliary attributes possibly associated

with the ToStream ID attribute are not necessarily ordered. Restrictions are only

made for ID attributes to identify a region in the stream parallelism, appearing first

in the list. The SPar runtime transforms the ToStream region in the first stage of

the assembly line. We do not allow a Replicate attribute to be added, because

this region should perform sequentially to generate, stop, and schedule the stream

elements.

Stage The Stage attribute is used to annotate a computing phase where opera-

tions are computed over the stream items. If we imagine that we are in an assembly

line, Stage represents a workstation in the production line. Inside a ToStream re-

gion, SPar can support any number of Stages. A Stage attribute is written as

[[spar::Stage]], and it may be used to annotate a compound or iteration state-

ment. Also, it may be equipped with AUX attributes to further specify the in-

put/output data needed to compute the stage as well as the degree of parallelism

to be used to implement the stage. By default, Stage and ToStream attributes may
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have arguments (such as those in the AUX attributes), but we are not using them

in the current version of SPar.

Input The Input attribute represents an another important property of stream

parallelism. In SPar, the programmer should use this keyword to express the input

data in both ID attribute annotations. Its arguments will be parsed to build the

stream of tasks (data items) that will flow inside the ToStream or Stage region.

Using the assembly line example, input denotes the items “consumed” by a given

workstation. A typical Input attribute will therefore look like: [[spar::Stage,

spar::Input(<var-list>)]]. It denotes the input data for the Stage that has to

be taken from the list of variables. When using the Input attribute, at least one

argument should be given.

Output Programmers should use the Output attribute to express the output data

stream for both ID attribute annotations. Using the assembly line as example, out-

put is what the ID attribute will produce for the next workstation. A typical Output

attribute will look like: [[spar::ToStream, spar::Output(<var-list>)]]. It de-

notes the stream produced by the annotated statement will host data from the list

of variables. As for the Input attribute, when using the Output attribute at least

one argument should be given.

Replicate The Replicate attribute is used to denote the degree of parallelism

of a given Stage region. We can therefore express this sentence as follows:

[[spar::Stage, spar::Replicate(<integer value>)]]. No more than a single

argument is accepted to represent the number of replicas (workers) in a given Stage.

This argument can be a literal or variable integer. If no argument is provided, SPar

gets the number of workers from the SPAR NUM WORKERS environment variable. When

this attribute is specified in a Stage annotation, the SPar runtime generates a given

number of workers, each running a replica of the Stage region. Consequently, each

worker consumes different stream items from the previous computation (either the

ToStream or Stage regions), and possibly produces the computed stream item to

the next Stage identified via a proper Output attribute. By default, a Stage region

consumes stream items in order but produces them out of order. To maintain the or-

der of the produced stream items, the users only need to specify the -spar ordered

flag when compiling a program.

3.3. Simple SPar Attribute Usage: a Video OpenCV Application

Video applications represent a classic example of stream parallelism. Video streams

can come from different sources (network, local, and camera) and usually program-

mers do not know how many items will appear on the stream or when the stream

will end. Examples of real world video streaming operations include body or face

tracking and video filtering. One of the most commonly used C++ libraries in this
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area is OpenCVg and we decided to use it to implement a simple SPar benchmark.

Listing 2 presents only the stream region of the application, which was taken from

OpenCV usage examples. Instead of reading video frames from the camera, we

modified the application to read frames from a video file, applying common video

computations on each video frame, to ensure the reproducibility of the experiment.

Our benchmark application extracts a specific RGB channel, applies a Gaussian

filter, performs a Weighted screen operation (commonly used in film production),

and applies the Sobel filter on each video frame. Before entering into the stream re-

gion, the application opens the input and output video files. Inside the infinite loop,

the application reads frames from the video file (line 3 in the listing above), tests if

it is empty (line 4), performs a sequence of video operations (between line 6 and 16),

and writes the results in the output file (line 19). Following SPar’s methodology,

we can clearly identify the stream parallel region, that is the relevant information

needed to insert the ToStream annotation. Inside this region, we added two Stage

regions with the corresponding dependencies that are captured by the Input and

Ouput attributes. As the first Stage region may be computed independently over

different stream items, we added the Replicate attribute to increase the degree of

parallelism in this application.

1 [ [ spar : : ToStream , spar : : Input ( res , channel , s rc , S ) ] ] for ( ; ; ) {
2 t o t a l f r a m e s ++;
3 inputVideo >> s r c ;
4 i f ( s r c . empty ( ) ) break ;
5 [ [ spar : : Stage , spar : : Input ( res , channel , s rc , S ) , spar : : Output( r e s

) , spar : : Replicate ( ) ] ] {
6 vector<Mat> s p l ;
7 s p l i t ( src , s p l ) ;
8 for ( int i =0; i < 3 ; ++i ) {
9 i f ( i != channel ) {

10 s p l [ i ] = Mat : : z e r o s (S , s p l [ 0 ] . type ( ) ) ;
11 }
12 }
13 merge ( spl , r e s ) ;
14 cv : : GaussianBlur ( res , res , cv : : S i z e (0 , 0) , 3) ;
15 cv : : addWeighted ( res , 1 . 5 , res , −0.5 , 0 , r e s ) ;
16 Sobel ( res , res ,−1 ,1 ,0 ,3) ;
17 }
18 [ [ spar : : Stage , spar : : Input ( r e s ) ] ]
19 { outputVideo << r e s ; }
20 }

Listing 2: Video OpenCV using SPar.

ghttp://opencv.org/
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4. Implementation

In this section we introduce the most important aspects concerning the implemen-

tation of the SPar language. We describe the transformation rules, main features

included in our source-to-source compiler, and we discuss the compiler as well as

the way the SPar annotations are managed to generate the final parallel code.

4.1. Transformation Rules

Our transformation rules process SPar sentences transforming them into stream

parallel patterns [12, 11, 4]. These rules are coded in the compiler and target the

available low-level (w.r.t. SPar) parallel frameworks. The generated code will be

subsequently compiled to produce the actual parallel object code. In our case, we

transform the C++ SPar annotated code into C++ with specific calls to the Fast-

Flow framework, targeting the multi-core systems. We first introduce some notations

that are useful to express SPar semantics (a complete description of the formalism

may be found in [8]):

• Tid: is a ToStream annotated region associated with an integer variable

identifier (id).

• Sid: is a Stage annotated region associated with an integer variable identi-

fier (id).

• �id: is a block containing one or more statements associated with an integer

identifier (id).

• Ii: denotes an Input auxiliary attribute; Ii contains an argument list ai
that represents one or more typed variables.

• Oi: denotes an Output auxiliary attribute; Oi contains an argument list ai
that represents one or more typed variables.

• Rn: denotes a Replicate auxiliary attribute, where n represents the num-

ber of replicas that correspond to an integer variable.

• [[...]]: denotes an annotation that may have a list of attributes.

• {}: denotes the scope of the sentence.

The transformation rules make use of farm and pipeline parallel patterns to

introduce parallelism. We can informally define these patterns as follows:

farm(E,W,C) The farm accepts one to three arguments (farm(W), farm( E,

W), farm(E, W, C)). The arguments represent the farm task scheduler (also called

“emitter”, E), scheduling input tasks to the workers, the farm worker (W ), com-

puting the tasks, and the farm collector (C) gathering results from the workers.

The emitter and the collector may be omitted. In this case, default scheduling and

gathering policies are implemented in the farm. Each one of the three elements only

accepts a single �id as an argument.

pipe(S1, S2, . . .) The pipe accepts two or more arguments. Each argument may

be a �id or a farm() and it represents a single stage of the pipeline.
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D0 A generic stage ψ is a � annotated with S that contains in its attribute list
Rn and Oi and therefore requiring a further � gathering its results.

D1 A � may appear as a pipe stage or as an E or C stage in a farm if its
annotation list S does not contain the attribute Rn.

D2 A � with an annotation list S containing an Rn attribute may only appear as
a W stage in a farm.

D3 A T is a farm when the first S annotation contains Rn in the attribute list of
a maximum two S.

D4 A T is a pipe when the first S does not have Rn in the attribute list or when
there are more than two Ss.

D5 A farm is a stage of pipe when D3 cannot be applied and � is annotated with
S that contains Rn in the attribute list.

Table 1: Auxiliary definitions for the transformation rules.

The transformation rules from SPar to parallel patterns are based on the auxil-

iary definitions and rules in Table 1.

First, we introduce three transformation rules where a T region will be trans-

formed directly into a farm (In Table 2, the rules 1, 2, 3). Rule 1 is used to

transform [[T0]]{�0, [[S0, Rn]]{�1}} sentence. We can transform it into a farm

that has an emitter (which receives �0) with worker replicas of �1, according

to D1, D2 and D3 of Table 1. Rule 2 manages an annotation sentence with

[[T0]]{�0, [[S0, Oi, Rn]]{�1}}. The relative transformation first produces C that re-

ceives ψ (based on D0). Then, E receives �0 (based on D1) and lastly, �1 is assigned

to W (based on D2).

Another possible SPar sentence to transform is the

[[T0]]{�0, [[S0, Rn]]{�1}, [[S1]]{�2}}. Rule 3 states that we can transform it into

a farm (based on D3) where the E receives �0 (based on D1), W is �1 (based

on D2) and C is the �2 (based on D1). The last transformation rule represented

in Table 2 operates on the sentence [[T0]]{�0, [[S0]]{�1}}, which will be directly

transformed into a pipe based on Def4 if the first S from the T region does not

include any Rn (Rule 4).

The most common set of transformations in SPar are those in Table 3.

They are more complex rules that combine farm and pipeline parallel pat-

[[T0]]{�0, [[S0, Rn]]{�1}} ⇒ farm(E(�0),W (�1)); (1)

[[T0]]{�0, [[S0, Oi, Rn]]{�1}} ⇒ farm(E(�0),W (�1), C(ψ)); (2)

[[T0]]{�0, [[S0, Rn]]{�1}, [[S1]]{�2}} ⇒ farm(E(�0),W (�1), C(�2)); (3)

[[T0]]{�0, [[S0]]{�1}} ⇒ pipe(�0,�1); (4)

Table 2: Basic transformation rules (only farm and pipeline).



March 16, 2017 13:9 WSPC/INSTRUCTION FILE output

SPAR: A DSL FOR HIGH-LEVEL AND PRODUCTIVE STREAM PARALLELISM 13

[[T0]]{�0, [[S0]]{�1}, [[S1, Rn]]{�2}} ⇒ pipe(�0, farm(E(�1),W (�2))); (5)

[[T0]]{�0, [[S0]]{�1}, [[S1, Oi, Rn]]{�2}} ⇒ pipe(�0, farm(E(�1),W (�2), C(ψ))); (6)

[[T0]]{�0, [[S0]]{�1}, [[S1, Rn]]{�2}, [[S2]]{�3}} ⇒ pipe(�0, farm(E(�1),W (�2), C(�3))); (7)

Table 3: Complex transformation rules (combinations of farm and pipeline).

terns. For example, in Rule 5 we know that it will be a pipeline because S0

and farm will become a stage by D5, because S1 is followed by Rn. For the

[[T0]]{�0, [[S0]]{�1}, [[S1, Oi, Rn]]{�2}} sentence we will use the same definition

as Rule 5 due to the S0 and S1. Yet, we have to generate ψ to make it an argument

of C because there is Oi along with Rn in the last S (based on D0). The resulting

transformation is therefore Rule 6. Rule 7 presents another common sentence in

SPar for stream parallelism. The transformation is based on D4 to become a pipe.

Then, D5 makes a farm as an argument of the pipe. Thus, farm is based on D1

and D2.

As the SPar semantics impose few restrictions, its sentences may be combined in

many ways. Even though not all of the possibilities are illustrated, our definitions

allow one to implement new and different transformation rules. In this section,

we have shown how transformation rules are built, enabeling them to turn SPar

sentences into parallel patterns. Therefore, any algorithm considering new trans-

formation rules must meet our definitions and be able to decide among equivalent

transformations which is the correct/best one to be applied in the system. In our

case, the SPar compiler implements an algorithm to meet all possible transfor-

mation rules. Readers may refer to [8] for more details about transformation rule

management and usage.

To prototype these rules we made the following assumptions:

(1) Details of parallel patterns like communication and synchronization are already

dealt with in the target runtime.

(2) Stream elements are determined according to the Oi and Ii arguments.

(3) Optimizations such as load balancing and scheduling are delegated at the run-

time level.

4.2. The SPar Compiler

The compiler we designed to handle the SPar DSL uses the CINCLE (Compiler

Infrastructure for New C/C++ Language Extensions) tool described in [8]. CIN-

CLE basically provides a parser of the standard C++14 grammar along with an

interface to support transformations of the Abstract Syntax Tree (AST) resulting

from parsing as well as the generation of source code from the transformed AST.

Figure 2 illustrates the overall structure of our compiler: blue boxes represent the

SPar specific modules while orange boxes represent the original CINCLE modules
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Fig. 2: SPar Compiler.

reused in our SPar compiler. The picture clearly outlines that CINCLE provides

a convenient support to implement SPar. The only missing parts are the semantic

analysis of the custom attributes and the AST transformations needed to introduce

parallelism.

When compiling a program using the SPar compilerh, the system calls the GNU

C++ compiler, right before invoking the scanner, to perform the semantic and

syntax analysis of the C++ code. Next, the scanner gets the tokens produced while

scanning the original code and delivers them to the parser to create the AST that

will be used as input for both the middle-end and back-end. The semantic analysis

of SPar annotations can rely on annotation correctness so that AST transformations

that enable stream parallelism can be implemented. The final step of the compiler

is relative to the generation of the parallel code, directly represented in the AST.

Subsequently, the GCC compiler is called to produce the binary code.

4.3. Source-to-Source Transformations

To illustrate how the SPar source-to-source transformations work, we consider a

simple application computing prime numbers. Figure 3 uses this application to

illustrate the transformations in six steps and maps the original code into the code

generated by the SPar compiler. At the top of the figure we put the annotated

code using SPar attributes with blocks properly labeled to demonstrate the SPar

transformation steps.

First of all, the compiler algorithm starts analyzing the SPar AST, looking for

the input and output dependencies so that the data structure inside of the 1 step

block can be built. The input and output specifications are processed to identify

each stream element. Then, pieces of the source code and annotation blocks are

transformed according to the transformation rule 3. We first produce the first stage

and subsequently the second stage. It is worth pointing out that inside blocks 2

and 3 we must properly manage data, taking care of the associated input and

output dependencies. Then, we build block 4 that will be used as the emitter for

the stream region, taking care of managing when to send the stream elements as

well as the end-of-stream delivery.

Lastly, right after the function definition, the whole farm structure is initial-

ized (block 5 ). Also, as a result of the transformation in place of the original

hThe compiler may be download in https://sourceforge.net/projects/spar-dsl-compiler/
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Fig. 3: Mapping the transformations to FastFlow generated code.

ToStream annotation block, we produce block 6 and update input and output

values. We also call the FastFlow runtime executing the farm skeleton. Although

different transformation rules may be used when processing different applications,

the transformation described above outlines all the steps performed in typical situ-

ations. FastFlow supports us with an interface providing all the stream parallelism

patterns needed to compile SPar, but it does not prevent us from needing to prop-

erly deal with data management and other C++ low-level aspects such as pointers.

On the other hand, it relieves us from creating algorithms to support task scheduling

and stream ordering, which are primitively provided by FastFlow.
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5. Experiments

To assess the usability and performance of SPar, we ran different experiments us-

ing different kinds of applications, including the already discussed video processing

application as well as small kernels such as Mandelbrot set computation, K-means,

and a prime number generationi. The goal is to show that we are able to generate

efficient parallel code in different scenarios without significant performance degra-

dations compared to manual coding. Also, we intend to demonstrate that SPar is

a valid high-level and productive DSL alternative, which preserves the sequential

source code while other state-of-the-art tools require code rewriting.

We compare the SPar performance results with those obtained by handwritten

code in FastFlow, TBB, and OpenMP (when possible) and evaluate the amount

of code needed to implement stream parallelism as a rough measure of the effort

required by parallel application programmers. Lastly, we discuss the SPar opti-

mization flags (spar ondemand and spar blocking, see Section 5.3) and their role

in performance. All the experiments have been run on a 16 core, 2-way hyper-

threading, Intel Sandy Bridge multi-core running Centos Linux (kernel 2.6.32). The

compiler used is GNU gcc 5.3.0 (-O3 optimization turned on). The measures of

interest were taken 40 times and averaged in the plots along with their standard

deviations plotted using error bars.

5.1. Performance

The code for FastFlow, TBB, and OpenMP applications were either available from

framework repositories or developed for this specific purpose. Figure 4 shows our

results. SPar code scales pretty well up to the number of physical cores available. For

the video processing application, the performance is bound by the disk bandwidth

(i.e. frames read and written boundwith). In all cases, scalability is comparable to

that achieved by handwritten code. In most cases, the completion times are close or

better than the handwritten applications, mainly in those cases where the degree

of parallelism is actually not higher than the amount of available cores.

The high contrast in the OpenMP version for the Mandelbrot set application is

due to stream-like computing that requires the use of a critical section, therefore

resulting in a significant drop in the performance. In the prime number application,

SPar performed identically to other frameworks that used the optimized parallel

‘for’ loop implementation (ff-loop and tbb-loop). The dynamic scheduling (omp-dyn)

in OpenMP and the spar ondemand (spar-ond) optimization flag in SPar, greatly

influenced these good results. For K-means, we noted that SPar has overhead in

this kind of data parallel computation (unlike the results in the prime numbers

application).

iIn our case, the data parallelism has been managed by streaming data partitions to farm workers.
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Fig. 4: Performance comparison with hand-written FastFlow(ff), TBB (tbb),

OpenMP(omp).

5.2. Productivity

We measured the number of lines (SLOC) of code added to the sequential ver-

sion of the application to implement stream parallelism as a rough measure of the

framework productivity figures. Figure 5 shows that SPar requires roughly the same

amount of SLOC as OpenMP. SPar requires far fewer additional SLOCs than those

needed to implement the same parallel applications using FastFlow or TBB.

Despite the fact that the same amount of knowledge is needed to insert correct

SPar annotations or to write equivalent efficient applications in OpenMP, TBB,

or FastFlow, the lower SLOC values typical of SPar guarantee better programmer

productivity and thus a potentially smaller chance of introducing errors in the

code. Moreover, FastFlow and TBB only demonstrate productivity in the cases

where a simple parallel for loop pattern can be implemented exploiting the new

C++ lambda feature (see Figure 5(c) and 5(d)). In contrast, OpenMP is not as

productive as SPar to annotate stream parallelism, as it needs additional code to

implement task-based parallel patterns.
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Fig. 5: Coding productivity of FastFlow(ff), TBB (tbb), OpenMP(omp) .

5.3. Optimizations

SPar supports some optimizations, such as the possibility to customize the farm

scheduling policies or exploit different communication mechanisms supported by its

FastFlow based multi-core back-end. Figure 6 shows the different results achieved on

our Sandy Bridge architecture, when running the applications using two different op-

tion flags: one choosing between blocking/non-blocking communication mechanisms

to implement FastFlow communications (“*-blk-*” stands for blocking support, oth-

erwise we are referring to non-blocking support) and the other choosing between

on-demand/round-robin scheduling policies for the farm emitter (“*-ond-*” stands

for on-demand scheduling, otherwise we used the classic round-robin scheduling

policy of tasks to workers in the farm pattern).

When the “grain” of the application is large enough (e.g., in the video processing

application) these mechanisms do not impact the overall performance figures. How-

ever, when the grain is considerably smaller, SPar achieves the expected results:

more efficient mechanisms lead to more efficient applications (e.g., non-blocking

communication primitives perform better than blocking ones) when used within

SPar. Again, more experiment results are discussed in [8].
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Fig. 6: Performance of SPar optimization flags.

6. Conclusions

In this paper we introduced a DSL providing high-level abstractions to introduce

stream parallel patterns in C++ applications. We discussed the design of the DSL,

its main features, and the main features of the toolchain used to generate efficient

and scalable applications on top of FastFlow, and therefore targeting shared memory

multi-core architectures.

Currently, we are working to refine the model as well as to fine-tune its toolchain.

We are also working to implement new real world applications using SPar, and to

complete the implementation of a back-end for the SPar toolchain, targeting a

cluster of (multi-core) workstations via MPI. Preliminary results have already been

shown in the PhD dissertation [8] that demonstrate how SPar can be used to ensure

functional and performance portability across different target architectures, namely

shared memory multi-cores and distributed memory clusters of workstations.
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