
Sparcle: An Evolutionary Processor Design for Large-Scale Multiprocessors

Anant Agarwal, John Kubiatowicz, David Kranz,

Beng-Hong Lim, Donald Yeung, Godfrey D'Souza, and Mike Parkin

Laboratory for Computer Science

Massachusetts Institute of Technology

Cambridge, MA 02139

12 March 1993

Abstract

Sparcle is a processor chip developed jointly by MIT, LSI Logic, and SUN Microsystems,

by evolving an existing RISC architecture towards a processor suited for large-scale multi-

processors. Sparcle supports three multiprocessor mechanisms: fast context switching, fast,

user-level message handling, and �ne-grain synchronization. The Sparcle e�ort demonstrates

that RISC architectures coupled with a communications and memory management unit do

not require major architectural changes to support multiprocessing e�ciently.

1 Introduction

The Sparcle chip will clock at no more than 50 MHz, has no more than 200K transistors, does
not use the latest technologies, and dissipates a paltry 2 Watts. It has no on-chip cache, no

fancy pads, and only 207 pins. It does not even support multiple-instruction issue. Then why
do we think this chip is interesting?

Sparcle is a processor chip designed to support large-scale multiprocessing. We designed its

mechanisms and interfaces to provide fast message handling, latency tolerance, and �ne-grain
synchronization. Speci�cally, Sparcle implements

� Mechanisms to tolerate memory and communication latencies, as well as syn-

chronization latencies. Long latencies are inevitable in large-scale multiprocessors, but
current microprocessor designs are ill-suited to handle such latencies.

� Mechanisms to support �ne-grain synchronization. Modern day microprocessors
pay scant attention to this aspect of multiprocessing, usually providing just a test-and-set

instruction, and in some cases, not even that.

� Mechanisms to initiate communication actions to remote processors across the

communications network, and to respond rapidly to asynchronous events such

as synchronization faults and message arrivals. A clean communications inter-

face between the processor and the communications network is not supported in current
microprocessor designs. Furthermore, traps and other asynchronous event-handlers are

ine�cient on many current microprocessors, often requiring tens of cycles to reach the
appropriate trap service routine.

1

The thesis of the Sparcle chip project is that a processor providing interfaces for the above
mechanisms can be implemented with small modi�cations to an existing microprocessor. Indeed,

Sparcle is derived from the SPARC [17] architecture, and is being integrated into Alewife [3, 2],
a large-scale multiprocessor system being developed at MIT.

Sparcle tolerates long communication and synchronization latencies by rapidly switching to
other threads of computation. The current implementation of Sparcle can switch to another

thread of computation in 14 cycles. With slightly more aggressive modi�cations, this number
can be reduced to 4 cycles. Sparcle switches to another thread when a cache miss that requires

service over the communications network occurs, or when a synchronization fault is detected.
Such a processor requires a pipelined memory and communications system. In our system, a

separate communications and memory management chip (CMMU) interfaces to Sparcle to pro-
vide the desired pipelined system interface. A software prefetch instruction is also provided. The

modi�cations to a modern RISC microprocessor to achieve fast context switching are described
in Section 4.1.

Sparcle supports �ne-grain data-level synchronization through the use of full/empty bits, as

in the HEP [16]. With full/empty bits, the probe of a lock and access of the data word protected
by the lock can be accomplished in one operation. If the synchronization attempt fails, then the
synchronization trap is invoked to handle the fault. In our system, the external communications

chip is responsible for detecting synchronization faults and alerting Sparcle by raising a trap
line. The fault is then handled in software trap code.

Finally, Sparcle supports a highly streamlined network interface with the ability to launch

and receive interconnection network messages. While the communications interface with the
interconnection network is implemented in a separate chip, the CMMU, future implementations

can integrate this functionality into the processor chip. Sparcle provides support for rapid
response to asynchronous events by streamlining SPARC's trap interface and providing support

for dispatching rapidly to the appropriate trap handler. Sparcle achieves this by providing two
special trap lines for the most common types of events, namely, cache misses to remote nodes

and synchronization faults. A third trap line is used for all other types of events. Also, the
number of instructions in each trap dispatch entry is increased so that vital trap codes can be

inlined at the dispatch points.

Sparcle's design process was unusual in that it didn't involve developing a completely new
architecture. Sparcle was implemented with the help of LSI Logic and SUN Microsystems by
making slight modi�cations to the existing SPARC architecture.

At MIT, we received working Sparcle chips from LSI Logic on March 11, 1992. These

chips have already undergone complete functional testing. We are currently continuing in our
implementation e�ort of the Alewife multiprocessor which will allow a thorough evaluation of

our ideas and an at-speed test of the Sparcle chips.

The rest of this paper is organized as follows. Section 2 discusses the software mechanisms
that the Sparcle modi�cations support while Section 3 provides an overview of the Alewife

machine interfaces. Section 4 describes the Sparcle architecture and discusses the modi�cations
to the SPARC processor, and to RISC processors in general, to support the multiprocessor

features. The CMMU interface to Sparcle for multiprocessor operation is discussed in Section 5.
Section 6 presents the current status of the project and concludes the paper.

2

2 Mechanisms for Multiprocessors

In this section we motivate the features of Sparcle for supporting the widely used shared-memory
and message-passing programming models. These features ease the programmer's job and en-

hance parallel program performance. We have implemented programming constructs in parallel
versions of Lisp and C that use these features. We break the features down into three areas,
where the �rst two are in support of the shared-memory model:

Fine-grain computation E�cient support of �ne-grain expression of parallelism and synchro-
nization can enhance performance by increasing parallelism and reducing communication

overhead. This eases the programmer's job by relieving her from expending undue e�ort
in trying to partition data and control ow into coarser chunks to increase performance.

Memory latency tolerance Context-switching and data prefetching can reduce communica-
tion overhead introduced by network delays. For shared-memory programs, the switch

must be very fast and occur automatically when a remote cache miss occurs.

E�cient message interface This is needed for supporting message-passing programs but it
can also improve the performance of shared-memory programs in some common situations.

The rest of this section considers each of these areas in turn, and motivates why they are
useful for large-scale multiprocessing. Section 4 will present details on the implementation of

these features in Sparcle.

2.1 Fine-grain Computation

As multiprocessors scale in size, the grain size of parallel computations decreases to satisfy higher

parallelism requirements. Computational grain size refers to the amount of computation between
synchronization operations. Given a �xed problem size, the ability to utilize a larger number

of processors to speed up a program is limited by the overhead of parallel and synchronization
operations. Systems supporting �ne-grain parallelism and synchronization attempt to minimize

this overhead so as to allow parallel programs to achieve better speedups.

The challenge of supporting �ne-grain computation is in implementing e�cient parallelism
and synchronization constructs without incurring extensive hardware cost, and without reducing
coarse-grain performance. By taking an evolutionary approach in designing Sparcle, we have

attempted to satisfy these requirements.

Fine-grain parallelism and synchronization can be expressed at the data level (data-level
parallelism) or at the thread level (control-level parallelism).

Data-level Parallelism Data-level parallelism and synchronization allows the program to
synchronize at the level of the smallest possible unit { a memory word. At the programming

language level, we provide parallel do-loops to express data-level parallelism, and J-structure and
L-structure arrays to express �ne-grain data-level synchronization.

A J-structure is a data structure for producer-consumer style synchronization and was in-

spired by Arvind et al.'s I-structures [6]. It is like an array, but each element has additional
state: full or empty. The initial state of a J-structure element is empty. A reader of an element

waits until the element's state is full before returning the value. A writer of an element writes

3

1

1

1

1

1

1

1

0

0

0

0

P
Write

Read

Read

234982

234233

111164

111134

290267

290012

361992

−−−

−−−

−−−

−−−

Producer

C1

C2

Consumer

Consumer

State Value

(Blocked)

Figure 1: Example use of J-structures. Producer P is sequentially �lling in the elements of a J-structure.

Consumer C1 reads an element that is already �lled and immediately gets its value. Consumer C2 reads

an empty element and thus has to wait for P to write the element. Since we are synchronizing at the

level of individual elements, both C1 and C2 can access the elements of the J-structure without waiting

for P to completely �ll all the elements of the J-structure.

a value, sets the state to full, and signals waiting readers to proceed. A write to a full element
signals an error. For e�cient memory allocation and cache performance, J-structure elements

can be reset to an empty state. Figure 1 illustrates how J-structures can be used for data-level
synchronization.

L-structures are similar to J-structures but support three operations: a locking read, a non-

locking read, and a synchronizing write. A locking read waits until the element is full before
emptying it (i.e., locking it) and returning the value. A non-locking read also waits until the

element is full, but returns the value without emptying the element. A synchronizing write stores
a value to an empty element, and sets it to full, releasing any waiters. Thus, an L-structure
allows mutually exclusive access to each of its elements, and allows multiple non-locking readers.

J- and L-structures, as well as other types of �ne-grain data-level synchronization, are sup-

ported by Sparcle with per-word, full/empty bits in memory [16]. Sparcle provides new load and
store instructions that interact with the full/empty bits. An extra synchronous trap line has

also been added to deliver the full/empty trap. This extra line allows the trap to be immediately
identi�ed.

Control-level Parallelism Control-level parallelism may be expressed by wrapping future

around an expression or statementX . The future keyword declares thatX and the continuation

of the future expression may be evaluated concurrently. Fine-grain support allows the amount of
computation associated with evaluating X to be small without severely a�ecting performance.

If the compiler or run-time system chooses to create a new task to evaluate X , an object

known as a placeholder is also created and returned as the value of the future expression. The
placeholder is created in an undetermined state. Evaluation of X yields its value and determines

4

Processor activity

Network activity

Useful
computation

Time −>

Network
busy

Network or
synchronization delay

Cache miss Data arrives

Figure 2: Processor and network activity when a single thread executes on the processor when no latency
tolerance mechanisms are employed.

the placeholder. Any task that attempts to use the value of X before the evaluation of X has
completed will encounter the undetermined placeholder and suspend until the placeholder is

determined.

This functionality is implemented using (by software convention) the low bit of a data value
as a placeholder tag, i.e. a pointer to a placeholder has the low bit set and all other values have

the low bit clear. New add, subtract and compare instructions in Sparcle trap if the low bit of
any operand is set. Likewise, dereferencing a pointer with the low bit set will cause an address

alignment trap to a similar routine. If the placeholder is determined, the value can be placed in
the target register and normal execution resumed. Otherwise, the trapping task waits until the
value of the placeholder is available.

With this support, a compiler can generate code without knowing which data values may
be computed concurrently. There is thus no runtime overhead for ensuring that operations on
placeholders are detected.

2.2 Memory Latency Tolerance

Since memory in large-scale multiprocessors is distributed, cache misses to remote locations

will incur long latencies and potentially reduce processor utilization. Figure 2 illustrates this
problem by depicting processor and network activity when a single thread executes on the
processor. When the thread su�ers a long-latency cache miss, the processor waits for the miss

to be satis�ed before it can proceed. While waiting, both the processor and the network su�er
idle time, thereby reducing their e�ective utilization. The use of latency tolerance mechanisms

alleviates this problem and helps improve processor and network utilization.

The general class of solutions to latency tolerance have an important common feature: all
solutions implement mechanisms for allowing multiple outstanding memory transactions and can

be viewed as a way of pipelining the processor and the network. The key di�erence between this
pipeline into the network and the processor's execution pipeline is that the latency associated

with the communication pipeline is not easily predictable at compile time, making it di�cult
for a compiler to schedule operations for maximal resource utilization. Thus, systems must

implement dynamic pipelines into the network in which the hardware ensures that multiple,
previously issued memory operations have completed before issuing operations that depend on

their completion. Context switching is one mechanism for dynamic pipelining. Other methods
for dynamic pipelining including prefetching and weak ordering [9, 1, 13].

Sparcle implements fast context switching as its primary mechanism for dynamic latency

5

Processor activity

Network activity

Time −>

Data arrives

Cache miss

Thread 1 Thread 2 Thread 3

Figure 3: Processor and network activity when multiple threads execute on the processor and fast

context switching is used for latency tolerance.

tolerance. (Sparcle and its memory controller provide non-binding prefetch instructions as well.)
As illustrated in Figure 3, the basic idea is to overlap the latency of a memory request from a

given thread of computation with the execution of a di�erent thread. In the �gure, when thread
1 su�ers a cache miss, the processor switches to thread 2, thereby overlapping the cache miss

latency of thread 1 with useful computation from thread 2.

In Alewife, when a thread issues a remote transaction or su�ers an unsuccessful synchroniza-
tion attempt, the Alewife CMMU traps the processor. If the trap resulted from a cache miss to

a remote node, the trap handler forces a context switch to a di�erent thread. Otherwise, if the
trap resulted from a synchronization fault, the trap handling routine can switch to a di�erent
thread of computation. For synchronization faults, the trap handler might also choose to retry

the request immediately (spin).

Processors that switch rapidly between multiple threads of computation are called multi-

threaded architectures. The prototypical multithreaded machine is the HEP [16]. In the HEP,

the processor switches every cycle between eight processor-resident threads. Cycle-by-cycle in-
terleaving of threads is termed �ne multithreading. Although �ne multithreading o�ers the po-

tential for high processor utilization, it results in relatively poor single-thread performance and
low processor utilization when there is not enough parallelism to �ll all the hardware contexts.

In contrast, Sparcle employs block multithreading or coarse multithreading. That is, context

switches occur only when a thread executes a memory request that must be serviced by a
remote node in the multiprocessor, or on a failed synchronization request. Thus, a given thread

continues to execute as long as its memory requests hit in the cache or can be serviced by
a local memory module, and as long as synchronization attempts are successful. Thus, block

multithreading allows a single thread to bene�t from the maximum performance of the processor.

For multithreading to be useful in tolerating latency, however, the time required to switch to
another thread must be shorter than the time to service a remote request. This requires multiple

register sets or some other hardware-supported mechanism. Sparcle's mechanism to support this
is described in Section 4.1.

2.3 E�cient Message Interface

Even for implementing a shared-memory model, an e�cient message interface that allows the

processor to access the interconnection network directly makes some parallel operations signi�-
cantly more e�cient than if they were implemented with solely with shared-memory operations.

6

Cache

Distributed Shared Memory

FPU

Distributed Directory

Network
Router

Alewife node

Alewife machine

INTERFACE
VME

HOST
SUN−4

I/O

CMMU

Sparcle

Figure 4: Structure of the Alewife machine.

Examples include remote thread creation and barrier synchronization. In Alewife, with a fast
message, a thread can be created on a remote processor in 7�sec. Restricting ourselves to
shared-memory operations, remote thread creation takes 24�sec. See [10] for a study on the

importance of an e�cient message interface in a shared-memory setting.

In Sparcle, a fast message send is accomplished by using the cache bus and coprocessor in-
terface to store data in registers directly into the network, and to load data from the network

directly into registers. The loading and storing is done with two new load and store instruc-
tions. Sparcle also supports DMA for larger messages. The mechanics of sending and receiving

messages are described in Section 4.

3 Overview of the Alewife Machine Interfaces

The Sparcle chip is part of a complete multiprocessing system. It serves as the CPU for the
Alewife machine [2] { a distributed shared-memory multiprocessor with up to 512 nodes and
hardware-supported cache coherence. Figure 4 depicts the Alewife machine as a set of processing

nodes connected in a mesh topology. Each Alewife node consists of a processor, a 64K byte
cache, a 4M byte portion of globally-shared distributed memory, a communications and memory-

management unit (CMMU), a oating-point coprocessor, and a network switch. An additional
4M bytes of local memory holds the coherence directory and operating system. The network

switch chip is an Elko series Mesh Routing Chip (EMRC) from Caltech which has eight-bit
channels. The network operates asynchronously with a switching delay of 30 nanoseconds per

hop and 60M bytes per second through bidirectional channels.

7

Hold Access

Processor

External Condition

Trap Access

Data Bus

Launch External Inst

Asynchronous Interrupt

Access Type / Modifier
Address Bus Cache

Controller

Figure 5: Interface between the processor pipeline and memory controller.

The single-chip CMMU performs a number of tasks, including cache management, DRAM
refresh and control, message queuing, remote memory access and DMA. It also supports the

LimitLESS cache-coherence protocol [7], which maintains a few pointers per memory block
in hardware (up to �ve in Alewife) and emulates additional pointers in software when needed.

Through this protocol, all of the caches in the system maintain a coherent view of global memory.

Sparcle implements a powerful and exible interface to the communications and memory
management unit. This interface couples the processor pipeline with the CMMU and is depicted

in Figure 5. The interface can be divided into two general classes of signals: exible data access
mechanisms and exible instruction extension mechanisms.

Together, the Access Type, Address Bus, Data Bus, and Hold Access line form the nucleus

of data access mechanisms and comprise a standard external cache interface. To permit the
construction of other types of data accesses for synchronization, we have supplemented this

basic interface with three classes of signals:

� A Modi�er, which is part of the opcode for load and store instructions and which is not
interpreted by the core processor pipeline. The modi�er is used to provide several \avors"

of load and store instructions.

� Two External Conditions which return information about the last access. They can be
used to a�ect the ow of control through special branch instructions.

� Several vectored memory exception signals (denoted Trap Access in the �gure). These
synchronous trap lines are used to abort active load and store operations and to invoke

function-speci�c trap handlers.

These mechanisms permit the load/store architecture of a simple RISC pipeline to be extended

with a powerful set of operations.

An instruction extension mechanism permits the basic instruction set to be augmented with
external functional units. Instructions which are added in this way can be pipelined in the same

fashion as standard instructions. To make this work, a special range of opcodes is reserved for
external instructions. Further, the memory controller fetches new instructions from the cache

8

bus at the same time that the processor does. Consequently, when the processor decodes an
instruction in this range, it asserts the Launch External Inst signal, telling the CMMU to begin

execution of the last fetched instruction. Note that this functionality is already provided the
coprocessor interfaces of several microprocessors.

The thesis of this paper is that such a powerful interface between the processor pipeline and
the communications and memory management hardware can be designed without signi�cantly

modifying the core RISC pipeline of contemporary processors. With this interface in mind,
we will discuss several e�cient multiprocessor mechanisms that are provided by the Sparcle

processor. Later we will touch upon the support which the memory controller must provide for
these mechanisms.

4 The Architecture and Implementation of Sparcle

Sparcle is best described as a conventional RISC microprocessor with a few additional features

to support multiprocessing. These features can be classi�ed into support for latency tolerance,
support for �ne-grain synchronization, and support for fast message handling. The ensuing
sections discuss these features and describe how we implemented them in the SPARC processor,

and indicate how they can be implemented in other RISC microprocessors as well.

4.1 Mechanisms for Latency Tolerance

Fast context switching on a generic processor is illustrated by Figure 6. This diagram shows four
separate register sets with associated program counters and status registers. Each register set
represents a context. The active context is pointed to by a hardware register called the context

pointer or CP. Consequently, a hardware context-switch requires only that the context pointer
be altered to point to another context1 This �gure also shows four threads actively loaded in the

processor. These four threads are part of a much larger set of runnable and suspended threads
which are maintained by the operating system.

Implementation of Fast Context Switching in SPARC In a similar fashion, Sparcle uses
multiple register sets to implement fast context switching. The particular SPARC design that

we modi�ed has eight overlapping register windows. Rather than using the register windows as
a register stack, we used them in pairs to represent four independent, non-overlapping contexts.

We use one as a context for trap handlers, as in [8, 15] and the other three for user threads. The
SPARC Current Window Pointer (CWP) serves as the context pointer. Further, the Window

Invalid Mask (WIM) is used to indicate which contexts are disabled and which are active. This
particular use of register windows does not involve any modi�cations, just a change in software

conventions.

Unfortunately, the SPARC processor does not have four sets of program counters and status
registers. Since adding such facilities would impact the pipeline in a nontrivial fashion, we

implemented rapid context switching via a special trap with an extremely short trap handler.
Thus, when the processor attempts to access a remote memory location which is not in the local
cache, the CMMU causes a synchronous memory fault to Sparcle, while simultaneously sending

1Depending on details of the implementation, some number of cycles may be needed to ush the pipeline before

beginning execution in a new context.

9

nPC

PSR

Unloaded thread

Loaded thread

PC

Global Heap

MemoryProcessor State

Global register
frame

Register
frames

PC and PSR
frames

g0

g7

0:r0

0:r31
1:r0

1:r31
2:r0

2:r31
3:r0

3:r31

Ready
Queue

Suspended
Queue

CP

Figure 6: Block Multithreading and Virtual Threads

a request for data to the remote node. The trap handler then saves the old program counter and

status register, switches to a new context, restores a new program counter and status register,
then returns from the trap to begin execution in the new context.

With the goal of shortening this trap handler as much as possible, we made the following

modi�cations to the SPARC architecture:

� An extra synchronous trap line (with corresponding trap vector) was added so that the

processor traps immediately to the context-switch code without having to decode the trap
type.

� A new instruction called nextf was added. It is much like the SPARC save instruction
except that the window pointer is advanced to the next active context as indicated by the

WIM register. If no additional contexts are active, it leaves the window pointer unchanged.

� The number of instructions for each entry in the SPARC trap vector is increased from 4
to 16. This allows the context switch and other small trap handlers to execute in the trap

vector directly.

� The value of the CWP is made available on external pins. Among other things, this

permits the emulation of multiple hardware contexts in the SPARC oating-point unit by
modifying oating-point instructions in a context-dependent fashion as they are loaded

into the FPU and by maintaining four di�erent sets of condition bits. Consequently, the
context-switch trap handler does not have to worry about the oating-point unit.

10

rdpsr r16 ; Save PSR in reserved register

nextf r0,r0,r0 ; Move to next active context.

wrpsr r16 ; Restore PSR from other context.

jmpl r17,r0 ; Restore PC

rett r18,r0 ; Restore nPC and return from trap.

Figure 7: Context switch trap code for Sparcle

Cycle Operation

----- ---------

0 Fetch of Data instruction (load or store)

1 Decode of Data instruction (load or store)

2 Execute of instruction (compute address)

3 Data cycle (which will fail)

-> 4 Pipeline freeze, indicate exception to processor.

5 Pipeline flush (save PC)

6 Pipeline flush (save nPC, decr. CWP)

7 Fetch: rdpsr psrreg (save PSR in reserved reg.)

8 Fetch: nextf (advance CWP to next active context using WIM)

9 Fetch: wrpsr psrreg (restore PSR for new context)

10 Fetch: jmpl r17 (load PC, return from trap and)

11 Fetch: rett r18 (reexecute trapping instruction)

12 Dead cycle from jmpl

13 First fetch of new instruction

14 Dead cycle from rett (folded into switch time)

Figure 8: Anatomy of a context switch in Sparcle.

With these changes, the context-switch trap handler is shown in Figure 7. When the trap

occurs, Sparcle switches one window backward (as does a normal SPARC). This switch places
the window pointer between active contexts, where a few registers are reserved by the Alewife

operating-system for context state. As per normal SPARC trapping behavior, the PC and nPC
are written to registers r17 and r18 by the hardware. This trap code places the PSR in register

r16.

The net e�ect is that a Sparcle context switch can be done in 14 cycles as depicted in Figure 8.
This illustrates the total penalty for a context-switch on a data instruction. Note that, while 15
cycles are shown in this diagram, one of them is the fetch of the �rst instruction from the next

context.

By maintaining a separate PC and PSR for each context, a more aggressive processor design
could switch contexts much faster. However, even with 14 cycles of overhead and four processor-

resident contexts, multithreading can signi�cantly improve system performance [18, 12].

4.2 Support for Fine-Grain Synchronization

As described in Section 2.1, �ne-grain data-level synchronization is expressed with J- and L-
structures and implemented using new instructions that interact with full/empty bits in memory.

11

The new load, store and swap instructions are implemented in Sparcle using the SPARC alternate
address space instructions. These instructions have been modi�ed in two ways:

1. The load, store and swap alternate space instructions in Sparcle are unprivileged for ASI
values in the range 0x80 to 0xFF. They remain privileged for ASI values less than 0x80.

The CMMU uses the ASI value as an extended opcode, e.g., ASI 0x84 corresponds to the
load and trap if empty operation. This allows user code to interact directly with full/empty

bits.

2. Several new opcodes have been used to produce speci�c ASIs on the Sparcle output pins
while allowing the register + o�set addressing mode. The normal load and store ASI
instructions only allow register+ register addressing.

Full/empty traps are signalled through a new dedicated synchronous trap line. J- and L-

structure operations are implemented with the following special load and store instructions:

ldn Read location.
lden Read location and set to empty.

ldt Read location if full, else trap.
ldet Read location and set to empty if full, else trap.

stn Write location.
stfn Write location and set to full.
stt Write location if empty, else trap.

stft Write location and set to full if empty, else trap.

In addition to possible trapping behavior, each of these instructions sets a coprocessor con-
dition code to the state of the full/empty bit at the time the instruction starts execution. A

synchronization failure can be detected either by trapping, or by an explicit test of this condition
code. When a trap occurs, the trap handling software decides what action to take.

Implementation of J-Structures To give an example of how the special load and store
instructions can be used, we will describe how we implement J-structures and present the cycle

counts for various synchronizing operations. Allocating a J-structure is implemented by allo-
cating a block of memory with the full/empty bit for each word set to empty. Resetting a

J-structure element involves setting the full/empty bit for that element to empty. Implementing
a J-structure read is also straightforward: it is a memory read which traps if the full/empty bit

is empty. It is implemented with a single instruction:

ldt (r1),r2 ; r1 points to J-structure location

If the full/empty bit is empty, the reading thread may need to suspend execution and queue

itself on a wait queue associated with the empty element. To minimize memory utilization, we
use a single memory location to represent both the value of the J-structure element and the wait

queue. This implies that we need to associate two bits of state with each J-structure element:
whether the element is full or empty, and whether the wait queue is locked or not.

Other architectures implement these two state bits directly in hardware by having multiple
state bits per memory location [5, 14]. Instead of providing an additional hardware bit, we take

advantage of SPARC's atomic register-memory swap operation. Since the writer of a J-structure
element knows that the element is empty before it does the write, it can use the atomic swap to

12

move $0,r3 ; set up swap register

swapt r3,(r1) ; swap zero with J-structure location, trap if full

cmp $-1,r3 ; check if queue is empty.

beq,a %done ; branch if no waiters to wake up.

stft r2,(r1) ; write value and set to full (delay slot).

:

<wake up waiters and store value>

:

%done

Figure 9: Machine code implementing a J-structure write. r1 contains the address of the J-structure

location to be written to, and r2 contains the value to be written. -1 is the end of queue marker and 0

in an empty location means that the queue is locked.

−10

0

0

0

0

<queue ptr>

0

648111

Empty, no waiters

Wait queue locked

Empty, waiter(s)

Wait queue locked

Full, valid value

J−structure
read fails

J−structure
write occurs

Time

swapt r2, (r1)

swapt r2, (r1)

stn <queue ptr>, (r1)

stft $64811, (r1)

move $0, r2

move $0, r2 present

Figure 10: Reading and writing a J-structure slot. r1 contains a pointer to the J-structure slot. The

possible states of a J-structure slot are illustrated here.

synchronize access to the wait queue. With this approach, a single full/empty bit is su�cient for
each J-structure element. A writer needs to check explicitly for waiters before doing the write.

Using atomic swap and full/empty bits, the machine code in Figure 9 implements a J-

structure write. Compared with the hardware approach, this implementation costs an extra
move, swap, compare and branch to check for waiters. However, we believe that the reduction

in hardware complexity is worth the extra instructions. Figure 10 gives a scenario of accesses to a
J-structure location under this implementation and illustrates the possible states of a J-structure
slot.

Table 1 summarizes the instruction and cycle counts of J-structure and L-structure operations

for the case where no waiting is needed on reads and no waiters are present on writes. In Sparcle,
as in the LSI Logic SPARC, normal reads take two cycles and normal writes take three cycles,

assuming cache hits. A locking read is considered a write and thus takes three cycles.

Support for Futures and Placeholders To support futures and placeholders, Sparcle pro-

vides by automatic and e�cient detection and handling of placeholders via traps. This is
achieved with two Sparcle modi�cations.

13

Action Instructions Cycles

Array read 1 2

write 1 3

J-structure read 1 2

write 5 10

reset 1 3

L-structure read 2 5

write 5 10

peek 1 2

Table 1: Summary of fast-path costs of J-structure and L-structure operations, compared with normal

array operations.

First, to detect placeholders, two new instructions called ntadd and ntsub are added. These
instructions cause tag overow traps whenever the low bit of either of their operands is set2. As
detailed in Section 2, only pointers to placeholders have the low bit set. With tag overow traps,

ntadd and ntsub automatically detect placeholders in add, subtract and compare operations.
The address alignment trap in Sparcle detects placeholders in pointer dereferencing operations.

Second, to e�ciently handle traps caused by placeholders, the trap vector number that is

generated by tag overow and address alignment traps depends on the register containing the
placeholder. This feature saves the trap handler from having to waste cycles decoding the

trapping instruction to �nd out which register contains the o�ending placeholder.

4.3 Fast Message Handling

Most distributed shared-memory machines are built on top of an underlying message-passing

substrate. While traditional shared-memory machines provide a layer of hardware that imple-
ments some coherence protocol between the processor and the interconnection network, it is

natural to provide the processor with direct access to the network in addition to the shared-
memory interface because many operations bene�t greatly from direct network access. This

section describes the message mechanism supported by Sparcle.

Sparcle supports the sending and receiving messages via a memory-mapped interface to the
interconnection network:

Send Sparcle sends messages through a two phase process: �rst describe, then launch. A mes-
sage is composed by writing directly to the interconnection network queue using a special

store instruction called stio. The queues are memory-mapped as an array of network reg-
isters in the CMMU, called the output descriptor array. In terms of performance, writes
into this array incur the same cost as write hits into the cache.

The �rst word of the message must be a header indicating a message opcode and the
destination node. A range of opcodes is reserved for privileged use by the operating
system. The rest of the message can contain immediate values from registers, or address

and length pairs which invoke DMA on blocks from memory.

2
ntadd and ntsub are modi�cations of the SPARC tagged instructions taddcctv and tsubcctv which trap

whenever the low two bits of either of their operands is set.

14

stio r2, $ipiout0 ; Store header

stio r3, $ipiout1 ; Store data word

stio r4, $ipiout2 ; Store address of data

stio r5, $ipiout3 ; Store length of data

ipilaunch 2, 1 ; Launch message. Descriptor is 2 double-

; words long and contains 1 double-word

; of explicit data (from r2 and r3).

Figure 11: Machine code implementing a message send. In addition to the required header, this message

includes one explicit data word, and one block of data from memory. On entry to this code sequence,

register r2 contains the header, r3 contains the data word, r4 the address of the data block, and r5 the

length of the data block.

After the message is composed, a coprocessor instruction is used to launch the message.

Figure 11 illustrates the sending of a single message with one data word and one block of
data from memory. If Sparcle is in USER mode and the header is privileged, an exception

will occur. The CMMU maintains the atomicity of messages as described in Section 5.

Receive A message arrival causes a trap. The trap handler can either load words directly from
the incoming message into registers using a special load instruction called ldio or initiate

a DMA sequence to store the message into memory. If the latter option is chosen, the
processor can direct the CMMU to generate an interrupt after the storeback is complete.

Support for Message Handling The following features of Sparcle support messaging:

� Special user-level load and store instructions allow fast composition of outgoing messages
and fast examination of incoming messages. An ASI value is reserved for the transferring

of data to and from message register values. This ASI is produced by two new Spar-
cle instructions, stio (for store IO) and ldio (for load IO). Although these instructions

support a memory-mapped interface to the network registers, addresses for the message
queues �t completely into the address o�set �eld. Consequently, the compiler can generate
instructions which perform direct register to register moves between the processor and the

network queues.

� Register windows permit fast processing of message interrupts. One of the four hardware
contexts is reserved for message processing. Consequently, the message interrupt handler

needs only to alter the current window pointer so that this special context is active. No
registers need to be saved and restored.

� Use of coprocessor instructions for message launch and disposal permit pipelining of net-
work operations. Further, opcode bits in the launch and disposal instructions contain

information about the format of messages which are about to be sent or received into
memory. Thus, message format is completely under control of the compiler. Finally, the

coprocessor interface permits a precise identi�cation of the commit point of for launch
instructions, ensuring that message launches are atomic.

� Fast interrupts allow rapid entry into message handler code on the arrival of a message. In

our current implementation, because interrupts always force the processor into supervisor

15

Data (32 bits)

Sparcle CMMU

CCC (2 bits)

MEXC (3 bits)
MHOLD

IRL (4 bits)

CINS (2 bits)

Access Type (7 bits) / ASI (8 bits)
Addr (32 bits)

Figure 12: Actual Sparcle signal names.

mode, user level receipt of messages requires a few extra cycles for the processor to transfer
control to user code. In a more aggressive implementation, the processor would support a

user-level trap.

5 The CMMU Interface

As alluded to in earlier sections, the Sparcle processor is part of a complete system. Con-
sequently, several of the mechanisms which were included in Sparcle are incomplete without

the support of the communications and memory-management unit (CMMU). This section will
briey discuss the Alewife CMMU and how it interfaces to Sparcle. Although the Alewife
CMMU provides a number of features, the following discussion will focus on the cache controller

and message interface.

Section 3 discussed two categories of signals in the interface between processor and CMMU:
exible data access mechanisms and exible instruction extension mechanisms. Figure 12 makes

this interface more concrete by showing Sparcle equivalent names for all of the signals. Each of
the signals in this �gure corresponds directly to signals in Figure 5.

A few of the data access mechanisms require further discussion. TheModi�er is implemented

with the SPARC ASI �eld. As mentioned in earlier sections, Sparcle contains a number of new
load and store instructions which di�er only by the values which they place on the ASI pins

during data cycles. These new load and store instructions are important to the implementation
of full/empty bit synchronization and fast messages. The Trap Access signals are new versions

of the SPARC memory exception signal MEXC, which have distinct trap vectors. These are
used to invoke context-switch and synchronization traps. Third, the External Condition bits are

implemented through Sparcle coprocessor condition codes (CCC). These signals were a part of
unmodi�ed SPARC processor; consequently, SPARC branch on condition-code instructions can
be used to examine them.

Finally, the external instruction interface is implemented directly through the SPARC co-

processor interface. SPARC asserts one of the CINS signals to indicate that a coprocessor
instruction has been decoded by the processor and should be executed by the coprocessor. Two

16

CINS signals are required because pipeline interlocks can occasionally cause the instruction fetch
unit to get ahead of the rest of the pipeline.

5.1 Latency Tolerance

Rapid context-switching for latency tolerance was discussed in earlier sections from the stand-
point of the Sparcle processor. In addition to the Sparcle mechanisms discussed earlier, the

cache controller must be able to handle multiple outstanding requests. This involves the ability
to handle split-phase memory transactions (separating the request for data from the response)

and to place returning data into the cache while the processor performing some other task.
Consequently, when the processor requests a data item which is not in the local cache, the
cache controller asserts the appropriate trap line to initiate execution of the context-switch trap

handler. At the same time, it sends a request message to the particular node which contains
the requested data. Note that the mechanisms required to handle context-switching di�er little

from those required for software prefetching3.

5.2 Full/Empty bit Synchronization

Full/empty bit synchronization, as implemented in Alewife, requires support from the cache

controller. Since full/empty bit synchronization employs one synchronization bit for each data
word, extra storage must be reserved for these bits in the cache system. While these bits logically

belong with the cache data, the Alewife CMMU implements them with the cache tags. This has
a number of advantages. First, it eliminates a need for an odd number of bits in the physical

memory used for cache data. Second, access to the tags �le is much faster than access to the
cache data, both because the tags �le is smaller and because no chip-crossings are required.

This is advantageous in that it permits synchronization operations to occur in parallel with
processing of the cache tags.

Of the Sparcle mechanisms, those important to full/empty synchronization are the external

condition code, the access modi�er (ASI) and one of the extra trap lines. Each of the new
synchronizing load and store instructions mentioned in Section 4.2 are distinguished by the

value of the ASI �eld which they generate (and whether they are read or write operations). For
each data access, the Alewife CMMU takes the proferred ASI value along with the address and
type of access. The address is used to index into the tags �le, retrieving both the tag and the

appropriate full/empty bit. Simultaneously, the ASI value is decoded to produce two di�erent
actions, one which will be taken if the full/empty bit is full and one which will be taken if

the full/empty bit is empty. When the tag lookup completes, both tags match and full/empty
bit operations are completed simultaneously, either agging a context-switch (on cache miss),

a synchronization fault, or successful completion of the access. In all cases, the full/empty bit
which was �rst retrieved from the tags �le is placed in one of the external condition codes for

future examination by the processor.

The support which Alewife provides for full/empty bit synchronization is external to the
processor pipeline: i.e. it occurs at the �rst-level cache. Consequently, full/empty bits never

enter the processor core. Further, individual load and store instructions have varied semantics
with respect to the full/empty bit: some cause test-and-set like operations; others invoke traps.
This places some data processing logic within the �rst-level cache. For modern processors

3Some interesting forward-progress issues appear, however. See [11].

17

stio Header, N0 I D E M M W

stio Data, N1 I | | D E M M W

ipilaunch 1, 1 I | | | | D E W Q1 Q2

I | | D E W

I D E W

Cache Bus: I I I N0 N0 I N1 N1 I � � �

Figure 13: Pipelining for transmission of a message with a single data word. Sparcle pipeline stages are

Instruction fetch, Decode, Execute, Memory, and Writeback. Network messages are committed in the

Writeback stage. Stages Q1 and Q2 are network queuing cycles. The message data begins to appear in

the network after stage Q2.

which have one level of on-chip caching, a closer integration between the processor pipeline

and full/empty bit synchronization might be desirable. This could include widening of internal
processor registers and use of special full/empty bit synchronization instructions which are

sandwiched between Alpha-style [4] load-locked/store-conditional synchronization instructions.

5.3 Fast Message Handling

Fast messaging in Alewife relies on a number of features in the CMMU. All of the network

queuing and DMA mechanisms are a part of this chip. Sparcle interfaces with these mecha-
nisms through both the external instruction interface and through special loads and stores. As

mentioned earlier, one special load and store instruction (and corresponding ASI) are reserved
for rapid descriptions of outgoing messages and rapid examination of incoming messages. The
cache controller recognizes accesses with this ASI and causes data transfers to occur to and from

message queues instead of the cache. This permits message data to be transferred between the
processor and network at the same speed as cached accesses.

Alewife employs the external instruction interface to implement the message launch mech-

anism. Consequently, message launches can be pipelined. A simple pipeline example is given
in Figure 13. Here, the two-cycle latency for stores and the lack of an instruction cache limits

the message throughput. More aggressive processor implementations would not su�er from this
limitation. Note that the use of DMA on message output adds additional cycles (not shown

here) to the network pipeline.

The close coupling between the message launch mechanism and the processor pipeline allows
a precise launch completion point to be identi�ed (corresponding to the Writeback stage of the

launch instruction). As a result, message launches are atomic. Before the launch instruction
commits, no data is placed into the network. After the launch commits, a complete output

packet is committed to the network. These atomic semantics allow a single network output port
to be shared by multiple levels of user and interrupt code without requiring that the user disable
interrupts before beginning to describe a message.

18

Figure 14: A photograph of Sparcle's test system.

6 Summary and Status

The Sparcle chip incorporates mechanisms required for massively parallel systems in a SPARC

RISC core. Coupled with a communications and memory management unit, Sparcle allows a
fast, 14-cycle context switch, an 8-cycle user-level message send, and �ne-grain full/empty bit

synchronization. The Sparcle chip was developed jointly by MIT, LSI Logic and SUN.

We received working Sparcle chips from LSI in March 1992. A single-node test system
was operational by the time Sparcle's arrived. A compiler and a runtime system for our parallel

versions of C and lisp was also operational for several months. The test system shown in Figure 14
comprises 256K bytes of SRAM memory, an I/O interface to the VME bus for downloading

programs and monitoring execution, and control logic to exercise the full/empty bit and context
switching functionality. The test system had been debugged using SPARCs4 in place of Sparcles

and could operate at a maximum clock frequency of about 25 MHz.

We have been running several parallel programs, including Sparcle's runtime system, to
exercise all of Sparcle's functionality, at the maximum speed of the test bed. Scope measurements

of critical signal timings on the chip's pins suggests we will be able to run the chips in an Alewife
node board at roughly the same speed as the original, unmodi�ed SPARCs.

One of unique aspects of the development of Sparcle was that its implementation relied
on modifying an existing design through a collaboration with industry. Although we had our

moments of trepidation, given the number of participants, and the multiple failure modes (both
technical and political), we believe this model of experimentation has been very successful for

us. This implementation strategy not only allowed us, at a university, to experiment with
architectural ideas in a real, contemporary processor design, but it signi�cantly reduced the

design e�ort from the concept stage to working chip.

Figure 15 depicts the resulting project schedule for Sparcle. Sparcle's early architecture was

4SPARC and Sparcle have only a few di�ering pins, and in fact, Sparcle provides an input signal pin M , which

allows switching between SPARC and Sparcle modes.

19

Sparcle design using SPARC begunJuly 1989

MIT, LSI, SUN collaboration set up
to implement SparcleNov 1989

April 1989

Sparcle architecture outlined,
instruction−level simulator written,
Mul−T compiler operational

March 1990
Sparcle architecture defined, and
modifications to SPARC specified

July 1991 Parallel C compiler operational

March 1991
Sparcle implemented, first program
compiled and run on Sparcle netlists

Sparcle testbed implementedAug 1991

Sept 1991
Layout and fabrication of
Sparcle begun

March 1992
Functional Sparcle’s back
from fabrication

Figure 15: Sparcle's implementation schedule.

de�ned in April 1989. A Sparcle compiler for a version of Lisp was written, and a cycle-by-

cycle simulator was also implemented at MIT. Later, a compiler for a parallel version of C was
also developed. A detailed speci�cation of the modi�cations to SPARC required to implement

Sparcle was developed by March 1990. Then, high-level changes to SPARC functional blocks
were made at SUN and lower gate-level changes level were made at LSI. These changes were

tested against Sparcle binaries produced at MIT. Then net lists were synthesized at LSI and
tested against several hundred thousands of test vectors at MIT. The test vectors included both

SPARC vectors provided by LSI and Sparcle vectors obtained from the MIT Sparcle simulator.
The test set up included a net list module for the oating-point coprocessor, and a behavioral

model for the rest of the memory and communication systems. Finally, layout and fabrication
was undertaken by LSI. During this time, a test system for Sparcle was also implemented.

While the Sparcle chip project demonstrates that a contemporary RISC microprocessor can
readily incorporate features considered by many to be critical for massively parallel multipro-

cessing, the end systems bene�t of these mechanisms can only be evaluated in the context of a
complete multiprocessor system. We are in the �nal stages of implementing the Sparcle-based

Alewife multiprocessor system. Figure 16 shows an Alewife node board with the Sparcle and
oating point unit. Figure 17 shows a 16-node Alewife system package developed by the APT

group at ISI in Los Angeles. The CMMU chip has been implemented and tested. It is being

20

Figure 16: A photograph of an Alewife node.

implemented in LSI Logic's LEA300K process, and we expect to begin its fabrication shortly.

7 Acknowledgements

The Sparcle project is funded in part by DARPA contract # N00014-87-K-0825 and in part by
NSF grant # MIP-9012773. LSI Logic and SUN Microsystems helped implement Sparcle, and

LSI Logic supported the fabrication of Sparcle. We would like to acknowledge the contribu-
tions of Dan Nussbaum, who was partly responsible for the processor simulator and run-time

system and was the source of several ideas. Our design was inuenced by Halstead's work
on multithreaded processors. Our research also bene�ted signi�cantly from discussions with

Bert Halstead, Tom Knight, Greg Papadopoulos, Juan Loaiza, Bill Dally, Steve Ward, Rishiyur
Nikhil, Arvind, and John Hennessy.

References

[1] Sarita V. Adve and Mark D. Hill. Weak Ordering - A New De�nition. In Proceedings 17th

Annual International Symposium on Computer Architecture, New York, June 1990.

[2] Anant Agarwal, David Chaiken, Godfrey D'Souza, Kirk Johnson, David Kranz, John Kubi-
atowicz, Kiyoshi Kurihara, Beng-Hong Lim, Gino Maa, Dan Nussbaum, Mike Parkin, and
Donald Yeung. The MIT Alewife Machine: A Large-Scale Distributed-Memory Multipro-

cessor. In Proceedings of Workshop on Scalable Shared Memory Multiprocessors. Kluwer
Academic Publishers, 1991. An extended version of this paper has been submitted for

publication, and appears as MIT/LCS Memo TM-454, 1991.

[3] Anant Agarwal, Beng-Hong Lim, David A. Kranz, and John Kubiatowicz. APRIL: A Pro-
cessor Architecture for Multiprocessing. In Proceedings 17th Annual International Sympo-

sium on Computer Architecture, pages 104{114, New York, June 1990.

21

Figure 17: A photograph of the 16-node Alewife package.

22

[4] Alpha Architecture Reference Manual. Digital Press, 1992.

[5] Gail Alverson, Robert Alverson, and David Callahan. Exploiting Heterogeneous Parallelism

on a Multithreaded Multiprocessor. In Workshop on Multithreaded Computers, Proceedings

of Supercomputing '91. ACM Sigraph & IEEE, November 1991.

[6] Arvind, R. S. Nikhil, and K. K. Pingali. I-Structures: Data Structures for Parallel Comput-

ing. In Proceedings of the Workshop on Graph Reduction, (Springer-Verlag Lecture Notes

in Computer Science 279), September/October 1986.

[7] David Chaiken, John Kubiatowicz, and Anant Agarwal. LimitLESS Directories: A Scalable
Cache Coherence Scheme. In Fourth International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS IV), pages 224{234. ACM, April
1991.

[8] William J. Dally et al. The J-Machine: A Fine-Grain Concurrent Computer. In IFIP

Congress, 1989.

[9] Michel Dubois, Christoph Scheurich, and Faye A. Briggs. Synchronization, coherence, and

event ordering in multiprocessors. IEEE Computer, pages 9{21, February 1988.

[10] David Kranz, Kirk Johnson, Anant Agarwal, John Kubiatowicz, and Beng-Hong Lim. In-
tegrating Message-Passing and Shared-Memory; Early Experience. In Conference on Prin-

ciples and Practice of Parallel Programming. ACM, May 1993.

[11] John Kubiatowicz, David Chaiken, and Anant Agarwal. Closing the Window of Vulnerabil-

ity in Multiphase Memory Transactions. In Fifth International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS V). ACM, October

1992.

[12] Kiyoshi Kurihara, David Chaiken, and Anant Agarwal. Latency Tolerance through Mul-

tithreading in Large-Scale Multiprocessors. In Proceedings International Symposium on

Shared Memory Multiprocessing, April 1991.

[13] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy. The Directory-

Based Cache Coherence Protocol for the DASH Multiprocessor. In Proceedings 17th Annual

International Symposium on Computer Architecture, pages 148{159, New York, June 1990.

[14] G. M. Papadopoulos and D.E. Culler. Monsoon: An Explicit Token-Store Architecture. In
Proceedings 17th Annual International Symposium on Computer Architecture, New York,

June 1990. IEEE.

[15] Charles L. Seitz. Mosaic Project Update, March 1991. Darpa VLSI woskshop.

[16] B.J. Smith. Architecture and Applications of the HEP Multiprocessor Computer System.

SPIE, 298:241{248, 1981.

[17] SPARC Architecture Manual, 1988. SUN Microsystems, Mountain View, California.

[18] Wolf-Dietrich Weber and Anoop Gupta. Exploring the Bene�ts of Multiple Hardware
Contexts in a Multiprocessor Architecture: Preliminary Results. In Proceedings 16th Annual
International Symposium on Computer Architecture, pages 273{280, New York, June 1989.

23

