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Chapter 1

Introduction

A life cycle of capital products consists of different phases: design, introduction, growth,

maturity, decline and out-of-production (Levitt, 1965; Wagner et al., 2012). In the first

two stages of a life cycle, the installed base increases as Original Equipment Manufacturers

(OEMs) produce and sell new products. Furthermore, the maturity phase is associated

with replacement of old capital products and a decline in the OEM’s production rate of the

new ones. These two factors contribute to the capital product proceeding to the decline

phase of its life cycle. The decline phase is usually associated with an end-of-production

decision of the OEM: the capital product becomes out-of-production. It is not uncommon

that a capital product is kept in operation for a long period of time after it becomes out-

of-production. Even after end-of-production, OEMs desire to keep their capital products

in operation as he has a service obligation and the after-sales services are a profitable

revenue stream.To do so, they employ specific support programs to extend the economic

life time of capital products as long as possible. ‘FLYFokker Support Solutions’ by Fokker

Services or Saudi Aramco’s investment decision for extending its oil extraction facilities

(Dipaola and Okada, 2013) can be considered two good examples of such programs.

Spare parts are one of the main inputs of after-sales services. Naturally, the demand for

spare parts changes according to the changing life cycle of the underlying capital products.

In the introduction and growth phases, the number of products in use increases, which

eventually stimulates the spare parts demand. After the maturity phase, the size of the

installed base starts decreasing due to replacements of old products with new ones. This is

so, because customers want to have access to the latest technology and because they may

like to avoid the high maintenance costs that typically come with aging equipment. The

declining number of capital products suppresses spare parts demand which may result in

a gradual decay or even sudden death of spare parts demand. One possible consequence of

this is obsolete inventory, which ties up a significant portion of working capital for OEMs.
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To mitigate this problem, scholars proposed various methods to consider obsolescence

risk in inventory control and demand forecasting. Note that demand risk for spare parts

supply chains becomes more serious after the end-of-production date of capital products.

Furthermore, declining installed bases and dropping demand rates eventually elevate

the supply-side risk for spare parts of aging capital products. Depending on a spare part’s

characteristics, this risk may appear as varying lead times, increasing minimum order

quantities, or the permanent loss of suppliers. Since supply-side risk is the main focus of

this thesis, we discuss causes, symptoms, their impact on OEMs and means of mitigation

in the sections below.

1.1 Causes of Supply Risk

Problems in spare parts supply are caused by many different factors such as economic

factors, raw material unavailability, process obsolescence and environmental regulations.

Empirical evidence (Chapter 2) suggests that among these many different factors, the

economic reasons are the main cause triggering supply-side problems for spare parts.

From the perspective of spare parts suppliers, production of components/parts for a

capital product has different dynamics before and after an end-of-production announce-

ment by an OEM. When a capital product is in production, its OEM keeps ordering from

suppliers. Spare parts requirements for after-sales services can be satisfied easily, e.g.

by picking spare parts from the production line Cohen et al. (2006). After the end-of-

production announcement (by the OEM), spare parts demand might be a reliable stream

of revenue or a factor crippling the capacity utilization of the supplier, depending on the

size of the installed base.

For large installed bases, keeping a stock of spare parts and producing to maintain an

inventory level might contribute to the profitability of spare part suppliers positively. If

the installed base is small or gradually shrinking, keeping a spare parts inventory or even

producing in make-to-order fashion might hurt the financial performance of a supplier due

to non-moving inventory or decreasing capacity utilization because of set-ups. Eventually

a spare parts supplier will seize its support for old capital products and will no longer

accept orders from the OEM or other third-party service providers. This is called an end-

of-support decision of the supplier. The rationality of this decision is further explained in

Chapter 3.

Next to the economic factors, there may be other reasons for supply problems. Raw

material unavailability might be due to changes in raw material markets or the loss of

raw material suppliers. Losing a supplier might lead to serious and long term disruptions,
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depending on the uniqueness of the supplier. Process obsolescence stands for obsolete

manufacturing processes or technologies which were available at the time of spare parts

design. Over time advancement in manufacturing technologies and tooling may cause

older methods to become obsolete. Environmental factors may introduce other risks. For

instance, changes in regulations of a country or region may restrict the use of a specific

raw material or manufacturing method. As another example, suppliers may go bankrupt

due to financial problems.

1.2 Symptoms and Impact of Supply Risk

Supply risk might manifest itself in different forms, such as increasing mean and variance of

the lead time, more frequent or longer supply disruptions, and increasing minimum order

quantities. Each symptom has different effects on service rates and inventory related

costs of the buyers. Increasing lead time duration and variability lead to stock-outs

and lower service rates. Higher minimum order quantities yield larger batches which

naturally increase inventory holding costs. Supply disruptions might be of a temporary

or permanent nature. The effects of temporary disruptions might be mitigated by multi-

sourcing or by capacity reservation contracts. Permanent loss of a supplier may require

additional actions such as the development of a new supplier, licensing new part drawings,

or changing the entire subsystem of a capital product. The resolution of a permanent loss

of a supplier naturally depends on the underlying cause and may take up-to several years.

Recall that supply problems are a by-product of decreasing demand rates. As sup-

ply problems may lead to decreasing service rates, this may create extra motivation for

customers to further replace their capital products: a vicious cycle. In our experience,

supply problems are either overlooked or dealt with ad hoc manner by decision makers,

which is another aggravating factor for supply risk in the service sector.

1.3 Dealing with Supply Problems

Supply problems can be treated with different approaches such as using advance warn-

ing signals, state-dependent inventory control policies, sourcing from multiple suppliers.

capacity reservation or capacity flexibility agreements with suppliers, etc (Tomlin, 2006;

Serel et al., 2001; Tsay, 1999). After conducting an empirical analysis regarding the extent

and characteristics of the supply risk, one method or a combination of several methods

should be utilized to mitigate the risk. Naturally, the method chosen should be appro-

priate for the issue at hand. For instance, nonstationarity of supply risk can be treated
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with state-dependent inventory policies, whereas dual sourcing may be found to be more

preferable for lead time variability problems. Similarly, capacity flexibility of a reliable

supplier is recognized as a useful approach for dealing with long and infrequent supply

disruptions.

From another perspective, suitable supply risk mitigation methods can be character-

ized as either proactive or reactive. A proactive approach requires utilization of advance

warning signals which are capable of detecting supply problems using various indicators,

such as lead time, price, environmental conditions or even financial performance of a sup-

plier. Such an advance warning system not only provides some extra time to an OEM for

dealing with the problem before it occurs, it may also signal problematic suppliers. The

latter property is especially crucial for OEMs who rely on a very large supplier base. The

author’s personal contacts with a Dutch OEM experiencing occasional supply disruption

problems revealed that in absence of advance warning signals, the OEM has to rely on

the supplier sending an end-of-support notification to which he can respond in a reactive

manner. If the supplier does not send such a notice the company most likely discovers the

disruption only after a spare part demand arrives and he tries to place a replenishment

order.

1.4 Business Context

In this thesis we focus on supply problems for spare parts inventory control and service

management. Research questions raised in each chapter of the thesis is taken from a

Dutch Original Equipment Manufacturer, Fokker Services (FS), who provides mainte-

nance service for aging (and out-of-production) aircraft.

Spare parts supply chains of FS consist of three important features which make them

interesting for scientific analysis. First the majority of the fleet maintained by FS consists

of out-of-production aircraft which is associated with increasing supply and demand risk.

Declining fleet size and lower utilization yield decreasing demand for after-sales services

by its very nature. Despite this trend, it is still critical for the company to satisfy their

customers’ maintenance needs in order to maintain the company’s brand and reliability.

Second, similar to other OEMs, FS is subject to significant competition from third-

party service providers for its after-sales services. Those companies compete with their

relatively low prices. Therefore, FS needs to provide its timely services for reasonable

prices. This stands for high spare parts availability together with low inventory cost.

This competition from the third-party service providers is aggravated by the existence of

internet-based secondary markets, which is the third important feature of the company.
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Internet-based secondary markets, e.g. ilsmart.com, fipart.com, are online trading

platforms on which traders, brokers, part suppliers and even customers can trade spare

parts. The effects of these markets on FS are twofold: On the positive side they constitute

a potential supply source with lower prices and fast deliveries. On the negative side the

availability of spare parts are not guaranteed and they aggravate the price competition

that FS is faced with.

Each of these three important features are addressed in this thesis. In addition, Chap-

ter 2 presents a detailed description of the relevant business context for this thesis.

This PhD project is a continuation of a close collaboration between Erasmus University

and FS. This collaboration is a branch of a larger project, PROSELO by DINALOG,

that resulted in two PhD dissertations as well as numerous master theses on service

logistics before the publication date of this manuscript. By considering supply problems

for spare parts of aging capital products, this PhD dissertation completes a series of

previous analyses on spare parts supply chains within the PROSELO project.

1.5 Overview of the thesis

This PhD thesis consists of four chapters on supply-side problems of spare parts of aging

capital products. The thesis starts with an empirical analysis on supply problems using

purchase history data and specific case studies (Chapter 2). This initialization is con-

sistent with our practice-oriented approach to scientific inquiry in the field of operations

management. Chapter 3 uses the findings of the empirical study as input and justification

for its modeling assumptions. Therefore, Chapters 2 and 3 consist of two complementary

legs of a supply risk mitigation solution. Chapters 4 and 5 focus on secondary markets

and its effects on spare parts inventory control. We summarize our results in Chapter 6

of the manuscript.

Our study on supply risk of spare parts starts with an empirical investigation into the

characteristics, severity and symptoms of supply problems. In this manner, Chapter 2 is

devoted to a statistical analysis of purchase history data of spare parts taken from FS.

We find that lead time is a statistically significant indicator for future supply disruptions.

This finding indicates that supply disruptions are coupled with random lead times for

spare parts of out-of-production systems.

In Chapter 3 we analyze nonstationary random lead time and supply disruptions in

a single supplier setting. We prove that the state-dependent base stock policy is optimal

assuming that order crossovers are not allowed. In addition, we find that the coupled

effect of random lead time and disruptions can be larger than the summation of individual
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effects. Therefore, it is important for OEMs to consider these two factors together in their

inventory control policy.

In Chapter 4 we consider a dual sourcing problem setting. Increasingly, maintenance

companies utilize secondary markets to satisfy their demand since those markets provide

immediate deliveries and cheaper prices. However, secondary markets include spare parts

in various conditions such as serviceable, overhauled, as-removed etc. Giving such parts

to customers, who seek for new spare parts, leads to a substitution penalty, which has

to be considered in the inventory policy. Analytically, we find that the optimal policy

is complex and dependent on the current state of the system. Therefore, we develop

heuristic methods which perform well compared to the optimal policy. In addition, we

extend the heuristic approach to address nonstationary random demand.

Chapter 5 of the thesis considers secondary markets from a different perspective. As

mentioned above, spare parts prices on secondary markets are lower than the prices of

part suppliers. Therefore, these markets stand for potential supply sources as analyzed

in Chapter 4. In addition, these cheap spare parts attract some customers of OEMs since

secondary markets are accessible to all parties. Hence, OEMs’ replenishment and pricing

policy should take secondary markets as (limited) supply sources as well as competitors

who attract demand. By assuming a linear, price-dependent demand we consider the

profit maximization of an OEM for by analyzing the competition with secondary markets

in a dual sourcing setting.

The research output presented in Chapters 2-5 are based on different research papers

written together with several scholars. Chapter 2 is a joint work with Taoying Farenhorst-

Yuan and Rommert Dekker. For this chapter, I am thankful to Erwin van der Laan for

his valuable comments and guidance. In addition, I acknowledge the importance of the

work by Xishu Li, who extended the study presented in Chapter 2 with a more advanced

model and additional data. Chapter 3 is based on a research conducted with Erwin van

der Laan and Rommert Dekker. Chapter 4 is a result of a year-long collaboration with

Alan Scheller-Wolf from Tepper School of Business, whom I visited in the second year

of my PhD for three months. Finally the research in Chapter 5 is conducted under the

supervision of Erwin van der Laan and Rommert Dekker.



Chapter 2

Empirical Analysis for Supply Risk

for Spare Parts of Out-of-Production

Systems

2.1 Introduction

In todays competitive business world, all aspects of spare part management are crucial

for all parties involved in maintenance/operations of capital goods. Customers seek to

minimize downtime costs of their capital goods by ensuring timely high quality mainte-

nance service with affordable prices. Original Equipment Manufacturers (OEMs), on the

other hand, consider after-sale market as a key element not only for sustained customer

loyalty, but also to increase their annual revenues. Bandush and Dezvane (2003) report

that up to 30% of total revenues of many manufacturers come from service activities. It is

a well-established phenomenon that companies, which are capable of having sustainable

growth in revenue even in a stagnating economy , focus on providing high quality service

to their customer base (Wise and Baumgartner, 1999; Bundschuh and Dezvane, 2003; Co-

hen et al., 2006). By getting closer to their downstream, they become more familiar with

the customer needs which cannot be learnt by any other means (Wagner et al., 2012).

For OEMs, demand for after-sales services is not the only input that must be followed.

In spare parts supply chains, these companies exist in the middle and they have to follow

suppliers, as well as the customer needs and expectations. In order to follow changes in

customer and supplier side, companies employ analytic tools that can extract information

from the data. Studies in supply chain literature provide statistical evidence for the

benefit of business analytics applications for companies (Trkman et al., 2010; de Oliveira
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et al., 2012; Trkman, 2010). For OEMs, monitoring spare part supply becomes more

critical after the end-of-production date of capital goods since decreasing demand rate

and introduction of new models might lead spare parts suppliers to stop production as

explained in Chapter 1.

Spare part supply failure is defined as “losing original manufacturers or suppliers of

items or raw materials” (Feldman and Sandborn, 2007). This loss may take place with

or without advance notification. In some cases, suppliers notify OEMs of end-of-support

decision and give them last-time buy opportunities. Nevertheless, most changes in the

supply-side occur without any advance notice and needless to say, the latter case puts

OEMs in a more difficult situation. On the other hand, OEMs need to satisfy their

customer demand to keep the reliability of its capital products. Therefore, they develop

alternative supply sources by using various methods such as searching for a new supplier,

investigation into secondary markets, developing a new supplier or re-designing the spare

part or the entire subsystem which the spare part is installed in. Except the first two,

other procedures might be a very long and costly especially for high-tech spare parts of

capital goods. Hence, predicting possible changes in supply side is crucial for OEMs since

it enables them to take proactive actions for supply failure risk.

For prediction of future changes in the supply-side, the analysis of existing data with

an analytic tool is crucial. The data consists of various types of information for a vast

amount of part numbers. Analytic tools, which can quantify the supply risk using the

data, allow OEMs to take proactive actions to mitigate the supply failure risk. This is

also the reason for rapid development of business analytics applications for supply risk

management in the literature (Sandborn et al., 2007; Solomon et al., 2000; Trkman et al.,

2010).

In this study, we consider four supply chain characteristics, price, lead time, and order

interval and order size, as supply failure indicators for prediction. The main research

question is as follows: Can changes in supply chain characteristics be associated with

supply risk of spare parts? Specifically, a spare part supplier may increase its price or

postpone delivery dates due to various reasons such as maintaining the profitability or

simply to motivate its customers to find another supplier. Hence, fluctuations in price or

lead time of a spare part may indicate its suppliers intention to stop the production of the

spare parts in future. Furthermore, supply failure risk might arise from improper ordering

policies of OEMs. When a supplier receives demand orders infrequently or in very low

volumes, it might consider altering its product family and announcing end-of-support

which yields supply failure for an OEM.



2.1 Introduction 9

This research is triggered by an OEM that provides maintenance service for out-of-

production aircraft in the Netherlands. Company managers approached the authors with

supply failure problems for many spare parts. For most of the parts, supply failures take

place without advance notification and they have to deal with lack of proper part supply.

They asked for possible indicators that can be used as advance warning in case they do

not have a partnership agreement with the supplier.

Our literature review indicates that spare parts supply may also fail due to the factors

other than suppliers’ decisions such as technology maturity, decreasing demand volume,

raw material availability or environmental regulations. These factors are considered in

many commercial applications for approximate predictions of supply failure time. Never-

theless in our discussions with employees, we uncovered that only 30% of failures can be

explained with those factors. The majority of failures, on the other hand, occur due to

suppliers’ decision with or without any indication due to economic reasons. Such supply

problems are the most difficult and costly ones for the company. Supply chain charac-

teristics; price, lead time, and order interval and order size, are evaluated as potential

indicators of supply failure in this study.

In addition to this practical problem, our study aims to fill a research gap in spare part

management literature. In their comprehensive study Rojo and Roy (2010) report that

the relationship of supply failure with supply chain characteristics and market trends is a

research gap that has never been studied before. Considering that the majority of supply

problems stems from economic reasons (Figure 2.2), however, supply chain characteristics

and market trends potentially have a significant statistical power to explain the supply

risk in spare parts.

To investigate our research question, we obtain purchase history data that belongs

to spare parts with failed and healthy supply. Supply chain characteristics are measured

and their relationships with the failure probability are tested with logistic regression

which is a suitable statistical method for dichotomous dependent variables (Agresti, 1996).

In this analysis, supply failure stands for the dependent variable whereas supply chain

characteristics of each part constitute independent variables. Furthermore, results of

logistic regression are tested and confirmed with non-parametric hypothesis tests.

This chapter consists of six sections. Related literature is reviewed in Section 2.2 and

the details of problem setting are discussed in Section 2.3. Our research methodology

and analysis results are presented in Sections 2.4 to 2.6. Managerial implications of our

results take place in Section 2.7.
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2.2 Related Literature

Relevant literature for our research question comprises two different research streams. On

one hand, there are studies on technology obsolescence, mostly published in engineering

journals, which deal with spare part supply problem for high-tech capital goods. On the

other hand, studies in operations management and operations research journals consider

supply risk for a wide variety of items. Scholars publishing in the former group use statis-

tical tools and qualitative arguments for technology obsolescence issue whereas studies in

the latter group employ empirical (and rarely) mathematical models for different aspects

of the supply risk. In this chapter, we review both research streams briefly and discuss

the position of our study in the literature.

Technology obsolescence studies consist of empirical works for estimating for supply

failure time. In this literature, losing a supplier of a spare part or a specific raw material is

called “obsolescence” (Rojo and Roy, 2010; Singh and Sandborn, 2006; Singh et al., 2004),

and estimating the obsolescence date of a part is referred as “obsolescence forecasting”.

It is stated that early methods in this research stream are “scorecard” and “availability

factor”. The former method relies on indexing technology maturity of different compo-

nents of a spare part and giving specific weights to each component. The risk measure is a

weighted average of scores. The latter method employs obsolescence dates of similar parts

and part components to calculate obsolescence-risk-free time window for the part (Singh

and Sandborn, 2006; Solomon et al., 2000). In recent studies, researchers employ sales

data and a life cycle curve, which is assumed to be a Gaussian curve, to forecast obsoles-

cence date of a part. Solomon et al. (2000) assume that an obsolescence takes place in a

fixed time window, which is expressed with mean and standard deviation of the Normal

distribution fitted to the sales data. This study is extended by Sandborn et al. (2007)

by considering part-specific obsolescence windows depending on the manufacturer-specific

characteristics. Note that sales data used in these approaches is not always available for

OEMs of capital products. Even if it is, reliability and accuracy of such data would be

questionable especially if these methods are employed by different parties. In a related

research stream, scholars consider leading indicators for major demand changes of short-

life cycle products (Meixell and Wu, 2001; Wu et al., 2006; Aytac and Wu, 2013). In

this data-driven approach historical demand data is evaluated with different scenarios in

a Bayesian fashion. Although the primary motives of these studies are analyzing demand

scenarios, they report a nonzero time lag between shifts in demand pattern and some

statistically significant indicators. These approaches are not useful for OEMs they exist

in the middle of spare part supply chains and their demand is indirectly related with their
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supply risk. Furthermore, these methods ignore the effects of the supply risk on supply

chain characteristics. Obsolescence forecasting and risk assessment studies are reviewed

by Rojo and Roy (2010) who report that the relationship between market dynamics and

obsolescence risk is understudied in the literature. To the best of our knowledge, apart

from Li et al. (2015), there is no study focusing on supply chain indicators for obsolescence

risk assessment in the literature. Our study is aimed to fill this gap.

In operations management literature, effects of supply disruption on supply chains are

studied by various researchers (Craighead et al., 2007; Ellis et al., 2010; Hendricks and

Singhal, 2005a,b; Kleindorfer and Saad, 2005; Zsidisin et al., 2004). Supply disruption

refers to all temporary problems including machinery failures as well as a political turmoil

in suppliers country. Kleindorfer and Saad (2005) provide a very insightful framework

that summarizes disruption studies in operations management literature. They state that

management of disruption risk comprises three main tasks: specification of the risk source

(see Blackhurst et al. (2008); Chopra et al. (2004)), assessment and quantification of the

disruption risk (Zsidisin et al., 2004; Hendricks and Singhal, 2005a,b; Wagner and Bode,

2006); and mitigation of the supply risk (Chopra and Sodhi, 2012; Craighead et al., 2007).

In addition, Ellis et al. (2010) study the role of buyers risk perception on their decision

making processes. They conclude that decisions of purchase managers are affected by their

risk perceptions which are directly related to the buyers control over the risk source. The

implicit assumption in all of these studies is that the material supply continues unchanged

after a disruption ends. On the contrary, spare part supply failure problems are of more

permanent nature and usually the entire supply chain changes when a supply failure case

is solved. In that sense, these problems constitute a more problematic subclass of supply

disruptions in the literature. To the best of our knowledge, our study is the first one that

concentrates on the spare part supply failure problem empirically using logistic regression.

Logistic regression is reported to be appropriate for nonlinear relationship between

independent variables and dichotomous dependent variable (Agresti, 1996). This model

is utilized in operations management literature in various studies (Keizers et al., 2003;

Lapré and Scudder, 2004). Keizers et al. (2003) conduct an empirical study, with logistic

regression, in order to diagnose the production planning model being used at a Mainte-

nance Repair Organization (MRO). They search room for improvement in the existing job

scheduling system without dealing with the technical details of the underlying algorithm.

In another study, Lapré and Scudder (2004) try to explain trade-off between cost and

service quality in aviation industry. They transform the dependent variable (service qual-

ity) into a dichotomous variable in order to solve the problems with logistic regression.

Also Gravier and Swartz (2009) consider logistic regression model for the relationship
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between technological attributes of a part and its obsolescence risk. In our study, on the

other hand, logistic regression is used for studying the relationship between supply risk

and changes in supply chain characteristics, which are measured with slopes of respective

linear regression models. It is noteworthy that our analysis approach resembles to the

meta-modeling applications that are common in simulation literature (Jin et al., 2001).

In the following section, a detailed description of the problem setting and conditions, in

which the maintenance company operates, are presented.

2.3 Aircraft Original Equipment Manufacturer

Like all capital goods, aircraft are subject to preventive and corrective maintenance during

its economic life time. In those maintenance operations, dysfunctional parts need to be

replaced with new (or functional) ones. In case of spare part unavailability, the aircraft

stays out-of-operation (Aircraft on Ground-AOG) until the spare part is delivered to the

repair shop. Therefore, spare part availability is one of the key factors that determine

customer satisfaction for maintenance companies in all sectors.

On the other hand, aircraft maintenance and part manufacturing have some special

features making the spare part supply chain management problem more complex. Com-

panies in aviation industry are subject to strict regulations from international aviation

authorities such as European Aviation Safety Agency (EASA) or Federal Aviation Admin-

istration (FAA). These regulatory institutions set up safety rules to airline operators and

issue certificates for manufacturers and maintenance organizations. It is strictly stated

that parts to be installed to an aircraft must bear a certificate issued by an EASA (or

FAA)-approved manufacturing company. Also maintenance tasks can only be performed

by approved MROs. These regulations, which almost all airline operators in the Western

world are subject to, limit the number of manufacturers in spare part supply. Needless to

say, these factors make the management of spare part supply failure problem more critical

and more complex.

The company, which we contact with, is an OEM/MRO providing service for out-

of-production aircraft in the Netherlands. It manages a supply chain of spare parts to

satisfy its customers maintenance demand. Nevertheless, since those capital goods are

not manufactured anymore, their spare parts are subject to significant supply failure risk.

Due to various factors, part manufacturers tend to stop their production and allocate

their capacities to their other products. When this happens, the company faces with a

supply failure problem which threatens its service level due to lack of part supply for
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maintenance. In order to solve these problems, the company has a dedicated technical

support group in its purchasing department.

Investigations into this support group reveal that the company follows a seven-step

procedure for solution of spare part supply failure cases. These are: last-time buy, buying

from secondary market, resourcing to other suppliers, development of Part Manufacturer

Approval (PMA), and development of repair, redesign of part and redesign of the system.

These procedures are executed in the order of expected cost. A detailed description of

each step is presented in the following paragraphs.

Last-time buy is an opportunity of making a final purchase before a supplier stops the

manufacturing. The company forecasts its total spare part demand until the expected

end-of-service time of aircraft fleet in operation and places a final order to the supplier.

Although last-time buys yield high inventory holding costs, this procedure is the most

desired solution for the company since it is an opportunity of purchasing a certified spare

part from its supplier. Yet it can only be done if the supplier issues a warning beforehand.

Buying at the secondary (surplus) market is the second step for solution of supply

failure problems. Secondary market is a common name for spare part trade between

different players, such as MROs, repair shops, dismantlers or airline operators in aviation

industry. This trade takes place through online trading platforms such as fipart.com or

ilsmart.com. Different parties log in to these websites and search for the spare parts that

they need. Although secondary market is a cheaper solution for the supply failure there

might be some quality problems with those parts and its not a guaranteed supply source

in the long term.

Resourcing is the next solution if the last time buy and secondary markets are found to

be impossible. For resourcing of a spare part, the company needs to find an alternative,

EASA (or FAA) - approved manufacturer. The main purpose of this procedure is to

find a new supplier for the identical spare part that customer demands. Nevertheless an

alternative supplier is not always available for a spare part.

If no alternative supplier can be found, development of a Parts Manufacturer Approval

is taken into account. In this procedure, the company takes the responsibility of the

manufacturer and issues its own airworthiness certificate for the spare part. Therefore, a

series of quality control tests is applied to manufactured parts by the company. When this

long and complicated procedure is impossible, development of repair comes into play as

the next procedure. Broken parts are collected from customers and diagnosis procedures

are run to test for repairability. After repaired parts are subject to functionality tests,

they join the serviceable spare part inventory for the next customer demand.
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Redesign of the part is the second most expensive solution of supply failure cases.

Components are re-designed with current raw material and manufacturing technologies

and they are sent to approval to regulation authorities. Approval of a design is followed

by selection of manufacturer and quality control processes for new parts. After all these

procedures, new parts become available for selling to customers.

If redesigning the spare part is impossible due to mismatches between functionalities

of new design and existing system, redesign of the system is considered in order to solve

the problem. This alternative, however, is the most expensive and the longest one for the

company. Naturally, it is always the least desired solution in supply failure cases.

Redesign of the 

Part

57%

Last Time Buy

10%

Resourcing

23%

Others

10%

Figure 2.1: Percentages of Seven-Step Supply Failure Solutions

Statistics for solved supply failure problems indicate that part redesign is the most

frequently used solution whereas the sum of cheaper solutions constitutes only a minority

of all cases (See Figure 2.1). Although it takes longer (up to six months) and costs more,

other alternatives are impossible in most cases. Hence, taking precautions proactively

against future supply failure problems is critical for staying competitive for the company.

Proactive supply risk management requires advance indicators of failure to allow the

company to start preparations for a replacement part. In this study, we focus the rela-

tionship between supply failures and variations in supply chain characteristics which are

price, lead time, order interval and order size by hypothesizing that those measures can be

used as advance indicators for supply problems. Our hypotheses and method of analysis

are discussed in the following section.
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2.4 Methodology

Failure in spare part supply is a major risk that needs to be considered by OEMs. Our

investigations through different departments of the company indicate that the majority

of supply problems are due to suppliers’ decisions triggered by economic factors such as

profitability, capacity utilization etc. In this study, we hypothesize that the effects of

those factors on supply chain characteristics, price and lead time, as well as inventory

control parameters (frequency and size of replenishment orders), are significant indicators

for supply failures. Therefore, the relationship between these features and supply failure

risk is analyzed through an empirical analysis of spare part purchases of the company.

The research steps of this empirical analysis is as follows: Firstly, we accessed the

database of spare parts for which supply failure already took place. Those parts are

grouped according to their functions in an aircraft. Secondly, control-group parts, which

have functioning supply chains, are chosen by using the functionality criteria. Next, pur-

chase history data for failed-supply and control group parts is analyzed and supply chain

characteristics are measured for each spare part. Finally, hypotheses for the relationship

between supply failure probability and supply chain characteristics are built and they are

tested with logistic regression model. Results of empirical analysis are verified with the

experts in the company.

Data collection phase of this study starts with our access to failed-supply part database

maintained by the technical support group in the procurement department. We collect

part number, the last supplier, and failure reason and solution information from that

database. Analysis of this data set shows that the majority of supply failure cases happen

due to suppliers production stop decision rather than technology obsolescence or raw

material availability (Figure 2.2). Also 42% of all supply failure cases are found with no

specific cause information in that database.

Investigations into these statistics reveal that missing cause data stems from the fact

that this column didn’t exist when the database was first started. It is added two years

after the initialization. Hence, the supply failure entries in this period have no specific

cause information. Experts in the technical support group state that this 42% can be

assumed to have the same distribution with the rest of supply failure cases.

After a preliminary analysis on failed-supply database, we obtain the purchase history

data for those parts and group them based on their structures and functionalities. Our

classification scheme results with three main categories for failed-supply spare parts: air-

frame components, electronics parts and interior parts. The idea behind this classification

is that the dynamics of supply chain characteristics might change for different part groups.
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Figure 2.2: Cause Distribution of Supply Failure Cases

For instance, electronic parts have shorter life-span compared to structural parts due to

rapidly changing production technologies in electronics industry. Also, external factors,

such as environmental regulations or raw material availability, have different impacts on

various part groups because of differences between their raw materials and production

technologies.

Specifically, airframe components are structural parts in an aircraft. Their main func-

tion is providing integrity and preserving the electronic and mechanical components inside.

Landing gears or doors are good examples of airframe components in an aircraft. Elec-

tronic components, on the other hand, function in the control of aircraft. Their lead

times are relatively shorter compared to the other part groups. Finally, interior compo-

nents have direct contact with passengers. Their supply chains are subject to changes in

raw material technologies and strict environmental regulations. Seats or passenger panels

are good examples for interior components in an aircraft.

The classification of failed-supply parts is followed by development of control groups in

this study. In order to test the impact of supply failure risk, spare parts with a functioning

supply chain are taken as control group. We select 50 spare parts for each group among

recently purchased 8000 parts within the last six months.

Purchase history data of selected control parts are analyzed carefully and some parts

are eliminated from the analysis since they are found suspicious due to successive switches

between different suppliers. With this elimination we aim to be completely certain about

the health of supply chain for control group parts. The sample size of each group is given
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in Table 2.1. Also, the data set for a representative spare part, Part A, is depicted in

Figures 2.3 and 2.4 below.

Table 2.1: Parts Groups for Obsolete and Control Groups

Group Number Part Group Failed-Supply Parts Control Group
1 Airframe Components 10 45
2 Electronic Parts 33 42
3 Interior Parts 16 48

Total 59 137
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Figure 2.3: Purchase History Data Including Order Size and Order Dates

For the representative part in Figures 2.3 and 2.4, the purchase history dates back to

1998. This is an electronic component and a typical slow moving item. Replenishment

orders vary between one and ten (Figure 2.3) and each replenishment order was delivered

in less than three months regularly until 2007 (Figure 2.4). In that year fluctuations in

supply chain characteristics started and had continued until 03-02-2011. Having received

an order from its customer on that day, the company sent a Request for Quote to the part

manufacturer which replied with its production stop notification on the same day. Since

then the company has sourced this item from the secondary market. Like this part, we

possess such historical information for 196 spare parts in our data set. Using this data

we calculate each supply chain characteristics as follows:

Firstly, price stands for the amount of money paid to the manufacturer of a spare

part. Since we consider historical purchase data in our analysis, we remove the effect
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Figure 2.4: Order Interval, Order Size, Price and Lead Time

of inflation from actual price values. In order to do so, we discounted all prices with a

certain inflation rate. Also, the effect of fluctuating currency rate is removed from price

values of spare parts from multiple suppliers located in different countries.

Secondly, lead time is defined as the amount of time between order and delivery date

for each replenishment order. For calculation, we take the time at which the order is

physically delivered to the warehouse of the company. In case of partial deliveries, we

take the completion date of the whole order as the delivery date. Although this approach

seems to create additional variation for lead times, we consider the partial delivery as a

different form of lead time increase in our analysis.

Order interval is the time period between successive replenishment orders. Starting

from the first entry, order dates of successive purchase entries are subtracted from each

other to calculate this measure. An important detail in this calculation is that the time

period between last purchase and supply failure date is found to be significantly larger

than the average order period for some parts. An exemplary case for such a dominating

last time interval is given in Figure 2.5.

The purchase history for the part given in Figure 2.5 shows some irregularities at the

beginning. Towards the end, the order sizes rise and the last purchase order is placed

on 12-3-2008. Afterwards, no replenishment order was given to the manufacturer and

on 10-08-2011 the company received a notification from the supplier stating that the
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Figure 2.5: Consideration of the Time Period between the Last Purchase and Supply

Failure Date

production of this part is completely stopped. In order to capture the effect of such long

periods between the supply failure and the last purchase, we define another variable, order

interval with supply failure (OrderIntSupFail), including this interval. At this point we

should point out that this extended order interval variable will be compared with regular

order intervals in control group since it is impossible to calculate the time period between

supply failure and the last purchase for failed-supply parts.

Finally, order size stands for quantity of the item that is ordered to the manufacturer

and this variable directly taken from purchase history data without any additional adjust-

ment procedure. Our hypotheses capturing the relationship of these supply chain features

with the supply failure probability are discussed in the following subsection.

2.4.1 Hypotheses for Suply Chain Characteristics and Supply

Failure Risk

Based on the supply chain management literature, we develop hypotheses for the relation-

ship between supply failure probability and the four supply chain characteristics, price,

lead time, order size, larger order interval. In this section, each hypothesis is discussed

respectively.

Price of spare part is the first relationship we analyzed. This hypothesis relies on the

fact that decreasing installed base of aging capital products yield decaying spare parts

demand. Therefore producing such spare parts no longer contributes to the profitability
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of a supplier who tends to compensate his decreasing profitability by increasing his prices.

As an extreme example, spare parts of antique cars are usually more expensive than parts

of modern automobiles since such parts are not suited for massive production due to

extremely small installed base. Similarly, Cattani and Souza (2003) prove that spare parts

suppliers need extra incentives (given that their prices are fixed) to postpone their end-

of-support announcements and keep their production line open. In the absence of such

(contractual) incentives, it is natural to argue that spare parts suppliers increase their

prices as capital products get old. This relationship is articulated in our first hypothesis

as follows:

H1: Increasing price of a spare part is associated with increasing supply failure prob-

ability.

Lead times of replenishment orders are expected to become longer as spare parts orders

placed by OEMs of aging capital products decay. The rationale behind this hypothesis

follows from the study by Duenyas and Neale (1997). They show that in a queuing system

with two customer classes, if one customer has a higher expected demand rate and priority

than the other, orders from the customer with low demand rate is backlogged until they

reach a certain threshold. The translation of this result to our context is as follows: Spare

parts suppliers produce for old and new capital products. Since new capital products yield

more spare parts demand compared to the aging ones, suppliers usually give less priority

to those orders and backlog them until they reach a certain threshold. This stands for

increasing mean and variability of lead times for spare parts of aging capital products.

This result also explains the end-of-support announcement by suppliers which can be

denoted by the backlogging threshold being equal to infinity. Note that suppliers’ attitude

towards backlogging orders is referred as consolidation of orders. The relationship between

supply risk and lead time of spare parts is hypothesized in the following statement:

H2:Increasing supply failure risk is associated with increasing lead time of replacement

orders.

Note that the previous two characteristics are mainly supplier-related and they are

beyond OEMs’ control. Since OEMs of capital products are in the middle of those supply

chains, spare parts orders received by a spare part supplier is output of the OEM’s inven-

tory control policy parameters such as order size and order interval. Specifically, order

size is defined as the amount of item that is placed to a part supplier at each replen-

ishment time. Naturally, decreasing order sizes from an OEM is expected to yield lower

profitability for the supplier which motivates him to stop producing that spare part and

announce end-of-support. This relationship is articulated in the following hypothesis:
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H3: Smaller replenishment order sizes yield higher supply failure probabilities for spare

parts.

Order interval, is the amount of time between successive orders. Less frequent orders

to spare part suppliers might lead to a higher probability of supply risk for OEMs. Since

each manufacturing equipment ties up some capital for a company, keeping production

equipment available for spare parts with infrequent orders decrease return of investment

for suppliers. Therefore, spare parts suppliers tend to sell or discard these equipment

to increase their liquidity. This relationship between order interval of an OEM and its

supply failure risk is presented in the following hypothesis:

H4: Longer time periods between successive orders, i.e. larger order intervals, lead to

a higher probability of supply failure.

Our last hypothesis in this study is about the relationship between the time period

since the last replenishment order and supply failure probability. The reason behind

this argument is that a supplier might intend to cancel its manufacturing capability if it

does not get any replenishment order for a long period of time (See, Figure 2.5). This

might be an important factor for spare parts of out-of-production capital goods which are

characteristically subject to decreasing consumption rates. Not ordering a spare part for

a long period of time lowers “perceived” order rate of an OEM and this perception can

motivate a supplier to announce end-of-support. The hypothesis can be articulated is as

follows:

H5: Longer time periods between supply failure date and the last purchase are associ-

ated with higher probabilities of supply failure.

In our five hypotheses, the association between the supply failure probability and the

supply chain characteristics is captured. To test these claims, purchase history data of

196 spare parts is analyzed with the logistic regression model which is presented in the

following section.

2.5 Analysis for Testing Hypotheses

Logistic regression is a specific type of Generalized Linear Models. It is suitable for binary

response variables and being used in various fields in empirical studies (Agresti, 1996).

Since, the existence of supply failure for a spare part is represented with a binary variable

in this study, logistic regression is chosen as the analysis methodology. Furthermore,

another interesting property of this model is that change in the dependent variable is not

the same for all values of independent variables. Specifically, dependent variable changes

less near 0 and 1 against one unit increase in independent variable when it is compared



22 Empirical Analysis for Supply Risk for Spare Parts of Out-of-Production Systems

to changes around 0.5 (Agresti, 1996). This property also makes the logistic regression

model very suitable for the probability of supply failure using independent variables. In

fact, Agresti (1996) states that the dependent variable of logistic regression constitutes

cumulative distribution function of logistic distribution when there is a single independent

variable with a non-negative coefficient. The functional form of the multivariate logistic

regression model is given in Equation 2.1 below.

Π(x) =
exp(α + β1x1 + β2x2 + ...+ βnxn)

1 + exp(α + β1x1 + β2x2 + ...+ βnxn)
, (2.1)

where, Π(x) stands for the supply failure probability of all spare parts.

Modeling of supply failure probability with logistic regression requires a single measure,

which is capable of representing “meaningful” changes in supply chain characteristics, for

each independent variable in logistic regression equation. Specifically, historical data of

supply chain characteristics is subject to noise due to variations in daily transactions of

the company. However, all of these variations are not significant for supply failure. Our

investigations indicate that changes in trends are more important than daily variations for

explaining supply failure risk through supply chain characteristics. Therefore, we need to

apply a transformation to remove the noise from the data at hand. To do so, we develop

a two-step transformation scheme in this study.

In the transformation scheme, a linear regression model is fit to all time series of each

supply chain characteristic. In these regression models, purchase dates constitute the

predictors of characteristics and entire time series data of each spare part is employed.

Then, slopes of the linear regression models are used to calculate the values for the

independent variables (xij) as follows:

xij = 1, if αij > 0; 0, otherwise, (2.2)

where αij is the slope of jth characteristic for part i. By employing this transformation,

“necessary” amount of information is taken from data set and we obtain an “overview”

of trend changes in all supply chain characteristics.

The categorical dependent variable is formed as follows:

yi = 1, if the supply is failed; 0, otherwise, (2.3)

where i stands for the spare part index.

At this point we should acknowledge the fact that our transformation scheme has two

drawbacks: Firstly, it might underestimate the impact of sudden breaks in the supply
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chain characteristics. Since linear regression considers the entire history, using its slope

possibly undershoots the impact of the structural changes taking place after a certain point

in time. This may lead to underestimation of supply failure risk of spare parts. Secondly,

using slopes of linear regression without significance (or p-value) information might yield

misleading transformations and inaccurate results about the relationship between supply

failure and supply chain characteristics. In order to handle these issues, we replicate

logistic regression analysis with truncated data sets and apply non-parametric hypothesis

tests respectively.

For the first drawback, we check the existence sudden swings and evaluate their effects

on our results, if any. To do so, we conduct the same transformation and logistic regression

analysis with the data sets including purchase entries only after certain time points.

Particularly, we build respective data sets with purchase entries after 2006, 2007 and

2008 and replicate the same analysis using each data set. We find that our results with

these data sets yield no significant covariates in the logistic regression. Our interpretation

of this result is that there isn’t any important structural change, which might affect

the results of our analysis, in the historical data of supply chain characteristics. This

interpretation is also verified with visual checks of data set at hand.

For the second concern, we employ non-parametric hypothesis tests to our data to

check our claims about supply chain characteristics with a different approach. Non-

parametric tests are common way of testing hypotheses about sample statistics without

assuming any distribution for the sample. Test statistics of these methods are based on

the rank and sign transformations which follow certain properties, such as asymptotic

normality or binomial distribution under certain assumptions (Maritz, 1995). In non-

parametric tests, these properties of rank and sign transformations are employed in order

to accept (or reject) the null hypothesis.

In our analysis, Mann-Whitney U (or Wilcoxon rank-sum test) and two-sample median

tests, which are non-parametric hypothesis tests for distributions and medians of two

independent samples, are employed to compare supply chain characteristics for failed-

supply and control groups. The main motivation behind these tests is that we aim to

verify logistic regression results and test the impact of our transformation scheme, in

which we employ the slopes of linear regression, on the results with a method which is

completely independent of any assumption.

For these two tests, we employ the following transformation: the first observation

of each supply chain characteristic is subtracted from the last observation and the ra-

tion of this difference to the first observation is calculated. For characteristic i with n

observations, the variable percent change is formulated as follows:
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si =
xi,n − xi,1

xi,1
(2.4)

Despite abovementioned drawbacks, our analysis method has certain advantages from

both theoretical and practical perspectives. Firstly, it is possible to focus on the impacts

of long term trends in independent variables using this method. The slope of a regression

line summarizes the trend information in the data set and removes the variations from

daily transactions. Secondly, our method is generic, simple and easy-to-understand for

managers. Measuring changes with a linear regression model and using its slope for

further calculations allow managers to have faith in the results since they are capable of

understanding the dynamics of the methodology.

Another advantage of our methodology is that it is easy to implement in companies. In

our calculations, we use an Excel spread sheet for calculations of independent variables and

SPSS 20 for obtaining the logistic regression results. In other words, a supplier assessment

tool can easily be developed in the companies with our approach. We should stress that

such an assessment tool has absolute importance for all service companies dealing with

thousands of spare parts and suppliers. Having advance indicators for possible future

supply failure may allow a company to start direct negotiations with the supplier or

proactively apply solution steps in Section 2.3.

As noted above, most of supply failure cases are solved with re-design of spare parts

in the company. Due to various reasons, such as raw material availability, changes in

manufacturing technology or supplier bankrupts, the first five solution steps of the seven

step procedure are usually found to be inapplicable in the company. Nevertheless, redesign

procedures take a long period of time and such a reactive and time-consuming approach

threatens the service level of the company. Therefore, advance indications of any future

supply failure problem contribute to the risk management and customer satisfaction at

the company.

Results of logistic regression model and non-parametric tests are presented and dis-

cussed in the following section.

2.6 Results

In order to analyze the effects of changes in supply chain characteristics on the supply

failure, lead time, order size, order interval and order interval with supply failure variables

are calculated as described in the previous section. For price variable, specifically, we

remove the inflation effect using 2% and 4% discounting rates respectively before the
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transformation. 4% discount rate is suggested by the company experts as a common

approach to inflation removal in aviation industry whereas the usage of 2% is motivated

by the average inflation rate in the Netherlands. By discounting with the two inflation

rates, we obtain two different data sets including five supply chain characteristics for 196

spare parts. Since results of statistical analyses are similar for the two data sets, we only

present results for 2% discount rate in this section.

The main research methodology in our study relies on the comparison of four supply

chain characteristics for failed-supply and control part groups. For this purpose, we

employ two different transformation schemes, in Equations 2.2, 2.3 and 2.4, to obtain a

single value out of time series data of each supply chain characteristic. In the first scheme

(Equation 2.2 and 2.3), we calculate slopes of linear regression and transform them to

binary variables. Percentage of positive-valued observations in failed-supply and control

groups for each characteristic and results of two-proportion z-tests, which compare these

percentages with each other using pooled standard errors, are given in Table 2.2.

Table 2.2: Percentage of Spare Parts with Positive-Slope Supply Chain Characteristics

Supply Chain Charact. Failed-Supply Control Group P Value of Hyp. Test
Order Interval 61,7% 62,0% 0.873
Order Size 56,7% 50,8% 0.305
Price 63,3% 77,5% 0.029
Lead Time 53,3% 41,2% 0.128
Order Int. Sup.Fail 81,7% - 0.009

Results in Table 2.2 indicate that, there is statistically significant difference between

two part groups only for price variable. For control group parts, the amount of parts

with increasing price values constitutes 77.5% percent of parts in this group whereas this

ratio is 63.3% in failed-supply parts. Also, the second significant difference between two

groups is found in comparison of extended order interval values with order intervals in

control group. Since there is no supply failure in control group parts, OrderIntSupFail

variable is compared with order interval variable of control group. The result of this test

indicates that the time period between the last purchase and the supply failure does create

statistically significant difference.

The second transformation employed in this study (Equation 2.4) uses the difference

between the first and the last observations of each supply chain characteristic. The ratio

of this difference to the first observation gives us the percent change in each variable for

each spare part. Average percent changes and p-values of two-sample t-tests are presented

in Table 2.3.
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Table 2.3: Average Percent Change in Supply Change Characteristics

Order Interval Price Order Size Lead Time
Failed-Supply 73.83% 75.78% 245.76% 229.68%
Control Group 295.41% 379.17% 154.36% 100.60%
P-Value of Hyp. Test 0.005 0.001 0.283 0.147

Results of hypothesis tests indicate that two groups have different means for price

and order interval variable whereas percent change for lead time and order size are not

statistically significant from each other. For all supply chain characteristics, we observe

increases up to 54 times of the initial value. It seems like these extreme values are the most

dominant effect in our hypothesis tests. Thats why we employ non-parametric tests, which

are presented in Table 2.4 and 2.5 below, for comparison of supply chain characteristics.

Table 2.4: Non-Parametric Test Results for Distributions of Percent Change Variables

Variable P-value Decision
Order interval 0.315 Retain the null hypothesis
Price 0 Reject the null hypothesis
Order size 0.173 Retain the null hypothesis
Lead time 0.39 Retain the null hypothesis

Table 2.5: Non-Parametric Test Results for Medians of Percent Change Variables

Variable P-value Decision
Order interval 0.532 Retain the null hypothesis
Price 0 Reject the null hypothesis
Order size 0.616 Retain the null hypothesis
Lead time 0.212 Retain the null hypothesis

For comparison of percent change values across supply failure variable, we employ

Mann-Whitney U non-parametric test for distributions and two-sample test for median.

These tests have sameness of distributions and equality of medians as null hypotheses

respectively. Results of these tests indicate that the distribution and medians of percent

values are the same for all supply chain characteristics but the price. The distribution

and the median of percent changes for price variable are significantly different for two

groups. Therefore, we reach the conclusion that the difference we found in Table 2.3 is

meaningful for price value whereas significance of order interval difference is only stems

from the extreme values yielded by the transformation scheme.

In order to analyze the relationship between supply failure probability and supply

chain measures, we run the logistic regression model. Two data sets are entered to SPSS
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20, and binary logistic regression is run for each of them. For logistic regression, a

categorical variable, which stands for spare part groups, is added to the model to check

for the differences between supply failure probabilities in each part group.

For goodness-of-fit of logistic regression model, Hosmer-Lemeshow test and likelihood

ratio test is considered. Hosmer-Lemeshow test compares estimated values with observa-

tions. The null hypothesis is that the estimated values are not significantly different from

observations for all groups. The test statistics approximately follow Chi-square distribu-

tion with (g − 2) degrees of freedom, where g stands for the number of groups (Agresti,

1996). Likelihood ratio test, on the other hand, compares two different models through

their maximum value of log-likelihood functions. Usually in this test the model including

only constant term is compared with the one including all predictors. The test statistic

follows Chi-square distribution with degrees of freedom which is equal to the number of

predictors in the model.

Results of Hosmer-Lemeshow test (See Table 2.6) and likelihood ratio tests indicate

that the logistic regression fits our data set well. Hosmer-Lemeshow test shows that

estimated values are not different from observations whereas likelihood ratio test, of which

the test statistics is equal to 229.63 (p value 0.0001), shows full model is significantly

different from the one including only regression constant.

Table 2.6: Hosmer - Lemeshow Test

Chi-square df P-Value
4.429 8 0.816

Logistic regression results are presented in Table 2.7. As can be seen from these re-

sults, price change is found to be the most significant factor in the regression model.

Nevertheless, counter-intuitively, the coefficient of price variable is negative in the regres-

sion equation. It indicates that price increase is more associated with the control group

than failed-supply parts. This interesting result is discussed with the managers at the

company in order to find some explanations and verify our intuition into the problem.

Two plausible explanations are raised in these discussions.

Firstly, suppliers want to sell all spare part inventory at hand when they are about

to make a production stop decision (end-of-support). Especially for out-of-production

capital goods, suppliers, which keep spare part stocks, provide price discounts to their

customers to eliminate the excess inventory. Secondly, demand for spare parts of out-

of-production capital goods characteristically declines due to renewal and discard of old

products. In order to compensate their manufacturing set-up costs and to keep their

operations profitable, spare part manufacturers need to increase their prices regularly. On
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the contrary, when they intend to stop production or lose their interest in manufacturing

a part, they do not make price increase for it.

Table 2.7: Results of Logistic Regression

Variables in the Equation
B S.E. Wald Df P-Value

OrderInt -0.1 0.33 0.091 1 0.763
OrderSize 0.206 0.325 0.402 1 0.526
Price -0.857 0.356 5.789 1 0.016
LeadTime 0.624 0.329 3.586 1 0.058
CompLevel 0.189 0.208 0.829 1 0.363
Constant -0.952 0.585 2.65 1 0.104

Another slightly significant factor is changes in the lead time. Significance of this

variable, with positive regression coefficient, is consistent with our intuition into the supply

failure and confirms our second hypothesis. It indicates that spare part manufacturers

tend to postpone their delivery dates as they intend to stop the production of a spare part.

To sum up, regression results confirm our second hypothesis whereas other hypotheses

about the association of supply failure with price, order size and order period are falsified.

These findings are consistent with the statistics provided in Table 2.2 through 2.5 above.

Furthermore, as discussed in Section 2.4, it is possible to consider the time period

between the last purchase and the supply failure date in the order interval (see Figure

2.5). To see the explanatory power of this extended order interval, we replace the variable

OrderInt with OrderIntSupFail in the regression equation. Regression results are given

in Table 2.8 and 2.9.

Table 2.8: Hosmer-Lemeshow Test for Model with Modified Order Interval

Chi-square df P-value
4.503 8 0.809

First of all we should note that Hosmer-Lemeshov test shows that the new regression

model explains more variability in dependent variable than the previous model (See, Table

2.6). Also log-likelihood value of this model is calculated as 222.429 (p-value 0.0001).

Therefore, we can state that the model with OrderIntSupFail has more power and provide

better predictions of supply failure.

In addition, regression coefficients in Table 2.9 indicate that extended order interval

and price are strongly significant covariates in the regression equation. Also, one can

argue that lead times have some explanatory power in this new model depending on the



2.6 Results 29

Table 2.9: Logistic Regression Results with Order Interval with Supply Failure Date

Variables in the Equation
B S.E. Wald Df P-Value

OrderIntSupFail 1.032 0.399 6.698 1 0.01
OrderSize 0.081 0.334 0.058 1 0.809
Price -0.813 0.363 5.01 1 0.025
LeadTime 0.597 0.337 3.14 1 0.076
CompLevel 0.215 0.216 0.994 1 0.319
Constant -1.775 0.652 7.4 1 0.007

significance level selection. Therefore, results of this logistic regression model confirm our

fifth and second hypothesis about the supply failure.

The same analysis is run for each part type in order to see the implications of supply

failure on different part types. Logistic regression results for electronic parts are given in

Table 2.10 and 2.11. Also, significance level and sings of regression coefficients of logistic

regression models for other part groups are depicted in Table 2.12 below.

Apart from high significance level given in Table 2.10, price is found to be a significant

covariate in the logistic regression equation. Also, order interval is the second important

variable in the model depending on the selection of significance level. These results show

that price increase is more associated with control-group electronic parts and explanations

above are valid for this part type. In addition, Table 2.11 shows that increasing order

intervals are associated with healthy-supply parts. This stands for a clear evidence of

decreasing demand volumes that explains negative coefficient of price covariates. Inter-

estingly, changes in lead time are found to be insignificant for this part type. Significant

covariates for other part types are given in Table 2.12.

Table 2.10: Hosmer and Lemeshow Test for Logistic Regression for Electronics Parts

Chi-square df P-value
1.926 6 0.926

Table 2.11: Logistic Regression Results for Electronics Parts

B S.E. Wald Df P-Value
OrderInt -0.924 0.536 2.976 1 0.085
OrderSize 0.279 0.506 0.304 1 0.581
Price -1.148 0.583 3.871 1 0.049
LeadTime 0.508 0.508 1.001 1 0.317
Constant 0.854 0.681 1.573 1 0.21
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Table 2.12: Summary of Regression Results for Each Part Type

Airframe Comp. Electronic Parts Interior Comp.
Sign P-Value Sign P-Value Sign P-Value

Order Interval (+) / . 0.8 / . (-) / . 0.09 / . (+) / . 0.58 / .
OrderIntSupFail . / (+) . / 0.23 . / (-) . / 1 . / (+) . / 0.03
Order Size (+) / (-) 0.83 / 0.81 (+) / (+) 0.58 / 0.63 (+) / (-) 0.79 / 0.97
Lead Time (+) / (+) 0.02 / 0.03 (+) / (+) 0.32 / 0.29 (+) / (+) 0.94 / 0.58
Price (-) / (-) 0.04 / 0.04 (-) / (-) 0.05 / 0.03 (-) / (+) 0.98 / 0.70

For the results in Table 2.12, we should note that the logistic regression models are

calculated first with order interval variables. Afterwards, order intervals of failed-supply

group are replaced with extended order interval variable, which includes the time period

between supply failure and the last purchase entry. Results of these two models are

separated with a slash in each cell in Table 2.12. Specifically, results on the left hand side

of slashes belong to models with order intervals whereas values on the right-hand-side are

calculated with the variable OrderIntSupFail.

Obviously, different factors are important for supply failure of different part types

in this analysis. For instance, lead time and price variables are significant for airframe

parts whereas extended order interval is the only important factor for interior component.

Although these results are not powerful enough due to sample size limitations (see, Table

2.1), they show us the benefit of having respective analysis for different part groups. In

addition to the general results about the whole spare part population, such information

might enable procurement department employee to make replenishment orders according

to part-group-specific characteristics which may result with better management of supply

failure risk.

2.7 Managerial Implications

In this chapter, we study the relationship between supply chain characteristics and supply

failure probability using an empirical model. Managerial implications of our analysis can

be evaluated in two different levels: relevance and usage of our results in the specific

company, which we contact with, and generic implications for all companies providing

maintenance service for capital goods.

For the OEM, our results indicate that fluctuations in price and lead time of replen-

ishment orders are associated with the supply failure risk of a spare part. Therefore,

company managers should follow trend changes in price and lead time of spare parts in

order to anticipate irregularities as early as possible. In addition, we find the effect of
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time period between supply failure and the last purchase significant in our analysis. This

finding implies that inventory controllers should place regular replenishment orders for

spare parts and those orders should be kept in small sizes for slow moving items. This

prevents long time periods between successive orders which might lead to a supply failure

case. Needless to say, such a strategy helps for reducing inventory holding cost as well.

Especially, for a company dealing with thousands of parts and suppliers, supply risk

assessment has critical importance. By using an assessment tool based on our study, pro-

curement managers can anticipate the risky suppliers which are likely to stop production

of spare parts. They can start direct communications with them in order to confirm the

findings of our model and they even start supply failure solution procedures proactively.

As discussed above, more than half of the supply failure cases are solved with redesign

of the whole part, which is the fifth step in supply failure solution procedure being used in

the company. In most cases, redesign procedures take a long period of time depending on

the complexity level. Therefore, having advance indications about a possible supply failure

also enables the company to start solution procedures before the next demand shows up.

Besides, having such indications might increase the usage of less costly solution steps,

including making a last-time buy, developing an alternative supplier for the spare part.

Advance indications of potential supply failure can easily be computed by using the

empirical model in this study. Having built the data set including categorical dependent

and independent variables with an Excel spread sheet, one can compute the supply failure

probability for each part using the regression coefficients in Table 2.3 and the formulation

given in Equation 2.1. Furthermore, these probabilities can be combined with criticality

of spare parts in order to obtain the assessment of supply failure risk of each spare part.

We should note that such a risk assessment tool requires re-calculations of regression

coefficients as new failed-supply parts appear over time. Naturally, it is also possible

to develop a computer program making those calculations internally and producing part

(or supplier)-level risk assessment with continuous access to purchase history data and

built-in criticality information.

In generic terms, we provide an easy-to-implement supply-failure risk assessment

method, which can be converted to a business analytics tool. Thanks to simple structure

of logistic regression equation, our analysis procedure can easily be understood by man-

agers. We should admit that it is hard to make generic remarks about our findings since

our data set is limited to only one company. Nevertheless, our analysis approach allows

practitioners in different sectors to build their own models by considering sector-specific

factors that might affect the supply failure probability.
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Furthermore, our results constitute counter-evidence for constant price and determin-

istic lead time assumptions in inventory control models. We find that lead time and price

of spare parts change significantly as capital products get older. Therefore, managers in

service sector should approach those inventory control models with reluctance to mitigate

the impacts of supply failure on their companies. Increasing lead times and fluctuating

prices might cripple the service level and annual profits of a company in service sector.

From academic point of view, on the other hand, these results point out the require-

ment of new models assuming random and non-stationary lead time and price for optimal

procurement and inventory control.

2.8 Conclusion

Supply failure for spare parts of capital goods is a common problem for all parties that are

involved in maintenance activities. The life cycle of spare parts is shorter than the capital

goods. This mismatch becomes more problematic when the parent product becomes out-

of-production and it requires time consuming solutions in most cases. On the other hand,

operators of these capital products cannot tolerate high downtime costs which may lead

them to phase those products out earlier than expected in case of spare part scarcity.

Replacing capital products before the end of their economic life time is not only a loss for

the whole economy, but also it stands for loss of business for OEMs that provide service.

In order to mitigate the effect of the mismatch between the parent product and its

parts, companies should take proactive actions for supply failure of spare parts (Rojo

and Roy, 2010). Possible actions for a supply failure problem consist of seven-step so-

lution procedure starting from a last-time buy from the part supplier and ending with

redesign of the entire system. Regardless of the procedure applied, the efficiency of the

solution procedure heavily depends on the existence of advance signals about the future

supply failure. Hence development of an analytic tool that can produce advance signals

of potential supply failures is crucial for maintenance companies.

Our literature review reveals that different factors might be indicators of future supply

failure for spare parts. Technology maturity, environmental regulations, or number of

potential suppliers in the market might indicate a potential supply failure in future.

Furthermore, supply chain characteristics, price, lead time, order interval and order size,

might also be indicators for supply failure based on the suppl chain management literature.

Since the former group of indicators are well studied by many researchers, we focus on

the latter variables in this study.
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To test these claims, purchase history data for failed-supply and healthy parts, which

is the control group in this study, is obtained from the company. Changes in supply chain

characteristics are measured and two different transformations are applied. In the first

scheme, changes in supply chain characteristics over time are expressed by a single variable

using slope of linear regression. This transformation allows us focusing on the effect of

trends in spare part supply chain on supply failure risk while removing the variation from

daily transactions. Calculated values constitute predictors of supply failure probability

in logistic regression equation.

In our second transformation, on the other hand, the first and the last entries of the

supply chain characteristics are used and percent change between these two values are

calculated. Obtained values are used in non-parametric hypothesis tests in which we

compare supply chain characteristics for failed-supply and control groups.

Results of our analyses indicate that three factors are significant for supply failure

probability. Longer lead times and longer intervals between the last purchase and the

supply failure date are associated with supply failure risk. This indicates that increasing

lead times of spare parts might be a signal for future supply failure and a long period

of time since the last purchase might have a boosting effect on the failure probability.

Price increase, on the other hand, is found to be more related with the control group in

the analysis. The interpretation of this result is that due to decreasing demand volumes,

manufacturers need to increase their prices to keep their operations profitable. When they

lose their interest in production of a spare part, they do not make additional increase to

sell their spare part inventory.

On one hand, we should acknowledge the fact that our results are far from generality

since our data set is limited to only one company. More general results require data set

from different companies in different sectors. On the other hand, this weakness does not

overshadow the methodology we follow in this study. We propose an easy-to-implement

and generic analysis approach for supply failure risk of spare parts. Practitioners in

different sectors can easily use this approach with the addition of sector-specific factors

for the supply failure. Combining the results of our approach with criticality information

of spare parts yields a comprehensive assessment tool for supply failure risk which is a

critical issue in maintenance of (especially out-of-production) capital goods.

Furthermore, this study constitutes a first attempt for investigation of the relationship

between supply chain measures and upstream risk. Our results point out new research

questions for mathematicians in inventory control theory for requirement of new models

with more realistic assumptions.
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2.9 Epilogue

The material presented in this chapter was extended by Li et al. (2015) using the propor-

tional hazard model and additional data for failed-supply and control group parts. The

proportional hazard model is widely utilized in the maintenance literature to estimate

equipment breakdowns (Özekici, 2013). Furthermore, Gallagher et al. (2010) used the

same model for estimating survival probability of cancer patients. The study by Li et al.

(2015) extended the usage of the proportional hazard model to supply failure risk. Also,

validation of supply risk estimation was conducted with questionnaires sent to suppliers.

It appeared that the results of that study are consistent with the results presented in this

chapter.

At the end of the analysis, we formed an application team to build a supply risk

assessment tool using the proportional hazard model. The tool is intended to work with

a spare parts population consisting of more than 500,000 part numbers. Such a massive

application required intensive analysis of the program and its results. Therefore, the

application project was designed to consist of three different phases: building, verification

and validation.

Building was completed by two graduate students, Joeri Admiraal and Tommy Blom,

from the Department of Econometrics at Erasmus University. The tool was programmed

with Access macros and SQL queries, which are the programs used in the company. The

program consists of procedures for cleaning and processing raw data and calculating the

covariates. When the program was complete it yielded extremely low survival probabilities

for a very large number of parts. This marks the milestone for the next phase of the

project: verification.

The verification phase started with manually checking all procedures to remove any

bugs from the tool. Later, we focused on the parts with extremely low survival probabil-

ities. When we had a closer look at the records, we found some unreasonably small order

intervals for some parts. A deeper investigation revealed that the employees maintaining

the records were paying more attention to order quantity and price information than the

order delivery time. Since the delivery time of replenishment orders is the main input

for lead time calculations and order interval, such an approach in record keeping creates

irregular measurements for lead time covariates of the model. One good example to such

improper record keeping application is the following.

Sometimes, warehouse personnel miscount the number of spare parts delivered to the

company and deliveries are recorded in the system with delivery time and order number

information. When someone finds the mistake, he puts another record with the same
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order number but the correct order size. Naturally, the second record enters with its own

system time, which creates two different lead times for the same order. Since occasionally

such irregularities and “data corrections” take place for many parts, an extra piece of

program is required to detect and correct such glitches in the database.

Another difficulty regarding the application project was the limited number of ob-

servations for some parts. The data analysis revealed that some non-moving parts had

been ordered once or twice since the starting date of the record keeping. Due to the lack

of data to calculate covariates, the proportional hazard model generated extremely low

survival probabilities, which may lead to a high number of false positives (type-1 error),

that is calculating a low survival probability for a “healthy” spare part. To overcome this

problem, we removed the parts with less than five observations. Note that false negatives

(type-2 error), which represent undetected supply failures, are more dangerous for the

company than false positives. However, having too many false positives may cripple the

reliability of the tool and might create too much additional work, since each detected

supply risk case needs to be investigated manually.

At the time of writing this manuscript, the application of the supply risk assessment

tool was in the validation phase, which includes manual evaluation of the results of the

risk assessment tool by contacting each supplier.





Chapter 3

Spare Parts Management Under

Markov-Modulated Supply Risk

3.1 Introduction

Capital goods usually have a long life span. For instance, aircraft can last up-to 30 years.

After the maturity phase of the life cycle, the number of systems in operation starts to

decline, since better systems are on the market. Asset owners’ have the intention to

keep their existing capital goods in operation to maximize their return on investment

and for this they rely on maintenance companies. The latter, however, are troubled with

the risk of losing their suppliers due to changes in technology (Rojo and Roy, 2010),

suppliers’ financial problems and bankruptcy (Babich et al., 2007), or simply due to

parts becoming less profitable for suppliers, which in our experience is the most common

cause. After losing a supplier, maintenance companies will try to restart their spare parts

supply process. Depending on the complexity of the manufacturing process and raw

material availability this may take up-to one year, especially if the part number needs to

be changed and re-certified. Aviation is one of the typical sectors where long recovery

times from disruptions occur, partly due to the fact that each supplier manufactures more

than one spare part and suppliers possess the technical drawings and proprietary rights.

Empirical evidence from aviation (Li et al., 2015) suggests that supply disruption risk

is coupled with lead time variation. Analysis of the empirical data reveals that increasing

lead time variability is the most important indicator for the risk of losing suppliers for

spare parts.

The link between lead time variability and loss of supplier can be explained as follows.

Consider the entire manufacturing processes of a supplier as a single queue with a batch
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processor and arrivals from two customers whose orders cannot be processed in a single

batch. When Customer 1 has higher priority than Customer 2, while having a higher

expected order rate, Duenyas and Neale (1997) show that orders from Customer 2 are

delayed, become more variable, and even completely declined as priority difference gets

larger. In our context, Customer 2 may stand for a maintenance company providing

service for aircraft, whose priority gets lowered due to aircraft entering their post-maturity

phases. This motivates to consider supply disruptions together with lead time variability

for inventory control of spare parts.

In this study, we analyze the effects of coupling non-stationary random lead times

and supply disruptions on inventory performance, which is unique in literature. To this

end we formulate a dynamic programming model for the control of spare parts inventory

that combines Markov-modulated random lead times with supply disruption risk. A

state-dependent base-stock policy is proven to be optimal by showing the equivalence of

our original multi-state functional equation to a single-state one which is the technical

contribution of this chapter. Furthermore, we suggest a new queuing system, which

generates Markov modulated random lead times without order crossovers.

We evaluate the coupled effect of random lead time and supply disruptions as well

as their individual effects on total cost under different scenarios. To this end, we set-up

scenarios specifying presence or absence of random lead times and supply disruption risk,

the type of disruptions (i.e. long and infrequent vs. short and frequent), and the stability

characteristics of the supply system. The stability characteristics refer to non-increasing

supply risk (“stable supply”) and increasing supply risk over time (“unstable supply’).

The main results are twofold: First, we find that both random lead times and supply

disruptions have substantial effects on costs and service rates. More importantly, their

coupled effect can be up-to 10% of the optimal total cost even for low levels of individual

risks whereas the coupled effect might be as high as 30% when lead time variability and

disruption risk is high. Second, the effect of nonstationarity on the total cost can be as

high as the summation of all risk factors combined. In other words, these risk factors

should not be studied in isolation, but should be explicitly modeled together in inventory

control of spare parts.

An important tactical issue for dealing with supply disruptions is prevention vs. treat-

ment decision which is also recognized as proactive vs reactive approaches to supply risk

mitigation. Due to limited resources, managers usually have to give more priority to either

one of these. To address this tactical decision, we compared the savings from decreasing

disruption probabilities with increasing recovery probabilities. Prevention of disruptions

is found to be more cost-effective when the disruption risk level is low. Increasing severity
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of the disruptions risk, on the other hand, makes the treatment more beneficial ceteris

paribus.

As managerial insights we find that managers should consider lead time variability

together with supply disruption in their spare parts inventory management as their cou-

pled effect is much bigger than the summation of their individual effects. As we find that

nonstationarity is a very important aspect, managers should utilize certain threat signals

indicating the level of risk and take proactive or reactive action accordingly.

The remainder of this chapter is structured as follows: In the next section, we position

our study within the relevant extant literature. In Section 3.3, we introduce a motivational

business case which puts our mathematical model into a business context. Next (Section

3.4), we present our mathematical model and the characterization of the optimal policy.

Section 3.5 is devoted to our impact analysis of non-stationary supply risk factors on

inventory performance. In the final section (Section 3.6), we discuss our main findings

and directions for future research.

3.2 Literature

Relevant literature for our work consists of two main parts: random lead time and supply

disruption studies. In the inventory management literature there is ample amount of

research on both topics. Stochastic lead times have been of interest for scholars since the

1950s and various approaches have been developed for inventory control in this setting.

Supply disruption studies were rather scarce in the early times of inventory research but

the subject has been studied extensively during the last two decades. Since our study

considers these two forms of supply risk together, we review both topics.

We divide studies on stochastic lead times into two subcategories based on the as-

sumption on the movements of outstanding orders. In the first category, order crossovers

are not allowed. This type of supply resembles sequential processors such as queueing

systems working under the FIFO principle (Zipkin, 2000).It is known that inventory posi-

tion constitutes sufficient information for optimal control of such systems (Kaplan, 1970;

Ehrhardt, 1984; Song and Zipkin, 1996). Kaplan (1970) shows that the no crossover as-

sumption allows the reduction of a multi-state dynamic programming formulation to a

single state one which considers inventory position. The main idea is the same as the one

introduced by Scarf (1960) for deterministic lead times. Since the crossover assumption

implies that delivery of an order means the delivery of all prior outstanding orders, the

inventory system can be controlled optimally through inventory position.
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Kaplan’s work is extended by Ehrhardt (1984) who utilizes the random variable At

representing the position of the outstanding order that is delivered in period t (Nahmias,

1979). Independence of At and At+1 provides a useful tool for optimality of base stock

policies (Ehrhardt, 1984). Since the no order crossover assumption makes the lead times of

successive periods dependent, calculating lead time distributions is difficult. To overcome

this, Zipkin (1986) suggests the notion of “virtual customer” in a single server queueing

system working under the FIFO principle as an exemplary stochastic process for stochastic

lead times. In this queueing system, an order is associated with a customer arriving to

the queue (Zipkin, 2000). Another significant contribution to this research stream is by

Song and Zipkin (1996), who consider Markov-modulated random lead times without

supply disruptions. The same lead time process in a multi-echelon setting is considered

by Muharremoglu and Tsitsiklis (2008). In addition to these studies, Song (1994b, 1994a)

are important contributions which deepen our understanding of stochastic lead times and

their effects on base stock levels and optimal costs. These contributions are useful for the

monotonicity conditions developed in this chapter.

In the second category of stochastic lead time studies, which is not directly relevant to

our study, order crossovers are allowed and lead times of sequential periods are assumed

to be identically distributed. This type of supply process resembles a queueing system

with an infinite number of parallel servers (Zipkin, 2000). Key papers in this research

stream are Robinson et al. (2001), Bradley and Robinson (2005), Hayya et al. (2008).

Supply disruption studies constitute the second main research stream relevant to our

research. Disruptions are defined as temporary unavailability of supply due to various

exogenous reasons. They are characterized by the interarrival times of “up” and “down”

states (Tomlin, 2006). In other words, two features of supply disruptions are of interest

from an inventory control perspective: length and frequency. For this problem, Özekici

and Parlar (1999), an extension to Parlar et al. (1995), consider an exogenous Markov

chain which drives supply availability as well as system parameters such as ordering cost

and holding cost. Their major assumption is immediate delivery of replenishment orders.

Li et al. (2004) analyze supply disruptions occurring with an alternating renewal process,

in which interarrival times of successive disruptions follow a general distribution. They

find that a base stock policy is optimal if disruptions follow a non-decreasing failure rate

distribution. Tomlin (2006) suggests dual sourcing, inventory holding, and acceptance

as potential strategies for dealing with supply risk and proves the optimal strategy for

deterministic demand. In our study we focus on the coupled effect of supply disruptions

and random lead times, which are driven by an exogenous Markov chain. Hence, another

focus of our study is the nonstationarity in supply-side risk.
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Markov chains for modeling dynamic environmental changes is not a new idea. Song

and Zipkin (1993), Beyer and Sethi (1997), Gallego and Hu (2004), Cheng and Sethi

(1999), Song and Zipkin (1996), Muharremoglu and Tsitsiklis (2008), Scheller-Wolf and

Tayur (1999), Arifoğlu and Özekici (2010; 2011) consider Markov chains as a driving

mechanism of exogenous factors. Apart from the latter two, all papers assume perfectly

observable Markov chains as we choose to do. This modeling choice can be motivated

with the empirical evidence by Li et al. (2015).

Studies considering random lead times together with supply unavailability is very

scarce in the literature. To the best of our knowledge, the only example is by Mohebbi

(2003) who considers both factors in a lost sales environment. In that study Mohebbi

assumes an (s,Q) policy and analyzes the system performance numerically. In our study,

the focus is on the non-stationary nature of random lead times as well as supply disrup-

tions. We also develop a dynamic programming formulation considering order movements

explicitly. In addition, Tomlin and Snyder (2006) and Song and Zipkin (1996) are the

closest studies to our work. Tomlin and Snyder (2006) consider Markovian supply dis-

ruptions with “age-dependent” durations and zero lead times, whereas Song and Zipkin

(1996) evaluate Markov-modulated random lead times without disruption risk. Our study

extends these two by considering both factors in the same model. As important theo-

retical contributions, we prove that the base stock policy is optimal for this setting and

we develop monotonicity conditions. As an important managerial contribution, we show

that from a cost and service level perspective the coupled effect of supply disruptions

and random lead times is much more prominent then the case where they are considered

separately.

3.3 A Motivational Case Study

As a motivational example of this study, we selected a spare part from the group of parts

having supply problems. This part (say Part A) is a strip made of polyurethane which for

some models is applied on the aircraft’s nose in order to distribute static electricity from

the nose towards the body. Despite its simplicity the part is critical since accumulated

static electricity may jeopardize radio communication.

Our communication with the MRO indicated that the supplier announced end of sup-

port on October 10, 2011, since the raw material polyurethane was no longer available.

Receiving this notification, the MRO started an investigation with the engineering de-

partment and they realized another raw material was available which could provide the

same functionality and could be used as a substitute. Since the engineering department
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needed to develop new technical drawings, the supplier could only re-start manufacturing

as of December 9, 2011. The two-month disruption resulted in unsatisfied demand and a

decreasing service rate for the company.

Analysis of purchase history data indicated that lead time fluctuations typically in-

crease towards the disruption (as in Figures 3.1 and 3.2). Employees of the procurement

department confirmed this phenomenon and explained that suppliers tend to delay the

manufacturing of parts that are at end-of-life, since they give priority to other parts.
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Figure 3.1: Order Quantities for Part A
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Figure 3.2: Lead Time Process for Part A



3.3 A Motivational Case Study 43

As demonstrated in our motivational example, lead time variability and supply dis-

ruptions make spare parts management a challenging task for MROs, especially if they

use performance contracts. The timely availability of spare parts is essential for avoid-

ing significant downtime costs, e.g aircraft on ground for airline companies (Wong et al.,

2007). Although these two risk factors are recognized by managers, most decision tools

do not consider them in their calculations due to lack of information or proper models.

Personal communications with maintenance companies reveal that managers have an in-

complete understanding of the effects of random lead time and supply disruption on their

total costs and service levels. In addition, nonstationarity of these risks, for which empir-

ical evidence is presented by (Li et al., 2015), is typical for spare part supply chains, as

product components and production technologies have their own life-cycles.

In this study, we analyze the effects of coupling non-stationary random lead times

and supply disruptions on inventory performance, which is unique in literature. To this

end we formulate a dynamic programming model for the control of spare parts inventory

that combines Markov-modulated random lead times with supply disruption risk. A

state-dependent base-stock policy is proven to be optimal by showing the equivalence of

our original multi-state functional equation to a single-state one. The main technical

contribution of this chapter follows from the proof of optimal policy and monotonicity

analysis of the mathematical model, as well as a new stochastic system which can be used

for modeling and analysis of Markov-modulated sequential supply systems (Zipkin, 2000).

In addition, we conduct mathematical analysis of the optimal policy for supply failures,

which we define as permanent loss of spare parts supply, in Appendix 3.C. As a more

problematic subclass of supply disruptions, the optimal policy does not change if the

supply system cannot be restarted after a disruption occurs.

Using our mathematical model and the optimal policy, we evaluate the coupled effect

of random lead time and supply disruptions as well as their individual effects on the

total cost under different scenarios. To this end, we set-up scenarios specifying presence

or absence of random lead times and supply disruption risk, the type of disruptions (i.e.

long and infrequent vs. short and frequent), and the stability characteristics of the supply

system. The stability characteristics refer to non-increasing supply risk (“stable supply”)

and increasing supply risk over time (“unstable supply’).

The main results of these analyses are twofold: First, we find that both random lead

times and supply disruptions have substantial effects on both costs and service rates.

More importantly, their coupled effect can be up-to 10% of the optimal total cost even

for low levels of individual risks. Second, the effect of nonstationarity on the total cost

can be as high as the summation of all risk factors combined. In other words, these risk
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factors should not be studied in isolation, but should be explicitly modeled together in

inventory control of spare parts. Note the that results for supply failure case in Appendix

3.C is qualitatively the same but the deviations from the optimal policy are larger when

the supply risk factors are ignored.

An important tactical issue for dealing with supply disruptions is prevention vs. treat-

ment decision which is also recognized as proactive vs reactive approaches to supply risk

mitigation. Due to limited resources, managers usually have to give more priority to either

prevention or treatment of supply disruptions. To address this tactical decision making

problem, we compared the savings from decreasing disruption probabilities with increas-

ing recovery probabilities. Results of these experiments revealed that prevention creates

more savings when the disruption risk level is low. Increasing severity of the disruption

risk makes the treatment more beneficial ceteris paribus .

3.4 Model Formulation

In order to address nonstationary supply risk factors, we consider an exogenous, discrete-

time Markov chain that drives the supply system. The states of the Markov chain, which

we assume to be perfectly observable, consist of two groups: healthy states and disruption

states. In healthy states, the inventory manager can place replenishment orders to the

supplier considering the known lead time distribution and supply disruption probability

of each state. The lead time distribution and disruption probabilities vary across the

healthy states of the Markov chain.

When the Markov chain is in state i, two events are possible at the end of a period:

either the supplier stays healthy and jumps to a healthy state with probability q(i), or a

supply disruption occurs and the system goes to state di with probability q̄(i). In case

of disruption, the system is in state di, either the system comes back to the associated

healthy state with probability ξ(i) or it stays in the same disruption state. ξ(i) can be

interpreted as the probability of finding a solution to the supply problem by procurement

department within one time period. Note that considering a different disruption state for

each healthy state (i and di), which is a modeling choice rather than technical requirement,

allows us to assign different recovery probabilities for each disruption state. This can be

motivated by the fact that solving supply problems may become more difficult as fleet in

operation gets older. One possible configuration of the Markov chain, which is consistent

with this description, is given in Figure 3.3.
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Figure 3.3: State space of the Markov chain driving the supply process.

The transition matrix P on state space B of the Markov chain has the following form:

P =

(

QP (I −Q)

Ξ (I − Ξ)

)

(3.1)

where

Q(i, i) = q(i),Q(i, j) = 0 ∀ i 6= j ∈ Bh,

Ξ(i, i) = ξ(i),Ξ(i, j) = 0, ∀ i 6= j ∈ Bh,

and

P = {pij :
∑

j

pij = 1, ∀i, j ∈ Bh}.

pij is the transition probability from healthy state i to healthy state j, and Bh is the

totally ordered subset of B including healthy states of the Markov chain. Note that if

we assume the same ordering relationship between disruption states, i.e. i � j ⇒ di �

dj, ∀ i, j ∈ Bh , then B becomes a lattice since the product set of two chains forms a

lattice. As a modeling choice, disruption probabilities as well as the first two moments of

lead time distributions are assumed to be increasing in the indices of the Markov chain

states in Figure 3.3. In other words, more “problematic” states are positioned to the

“right-hand side” of the Markov chain.

Replenishment orders are delivered to the inventory after a random number of periods.

This randomness makes the supply system intractable due to the random movements of
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outstanding orders. To deal with this problem, Kaplan (1970) suggests the no order

crossover assumption which guarantees that no order can be delivered after the ones

placed later. We adopt this contribution to our study and assume that outstanding

orders cannot cross each other in the supply system.

Assumption 1 Outstanding orders cannot cross each other in the supply system.

As a consequence, the position A(i) of an outstanding order when the supply system is

in state i is a random variable that is independent of the position of all prior outstanding

orders (Nahmias, 1979).

In our context, where we have supply disruptions together with random lead times,

outstanding orders after disruption require special attention. In practice, when a disrup-

tion occurs, the status of outstanding orders depends on various factors such as the size

of the supplier, the commitment level between the two firms, the existence of contractual

fines, etc. All possible scenarios for outstanding orders exist between two extreme cases:

Firstly, all outstanding orders are preserved after supply disruption, that is, outstanding

orders will still be delivered although no new order placements are possible. This sce-

nario is consistent with make-to-stock manufacturing systems and deliveries from overseas

manufacturing plants. Secondly, suppliers might cancel all outstanding orders after dis-

ruption. This situation is more consistent with make-to-order systems that manufacture

slow-moving and high-value capital products and/or their components. In such a case, the

company does not receive previous orders nor can it place new ones and has to continue

with its existing inventory until the supply system recovers. In this study, we consider

the first case, which is articulated in the following assumption. The second case can be

analyzed in a similar way by setting delivery probabilities in disruption periods to zero.

Assumption 2 Deliveries of outstanding orders continue (no new orders can be placed)

during disruption periods.

The order of events in each period is as follows: The inventory manager perfectly

observes the supply system and decides that period’s replenishment order. The acquisition

cost is paid at the time of order placement. After random delivery and demand are

realized, holding and shortage costs are incurred and the supplier’s state changes. For

notation we refer to Table 3.1.

The random outstanding orders in each period require a multi-state recursive equation

for the total discounted cost over the planning horizon. Due to the curse of dimensional-

ity, however, mathematical analysis is problematic. Therefore, we develop an equivalent

single-state cost function (see Appendix 3.A). The main idea of the state-reduction is
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Table 3.1: Notation

h : holding cost per unit per period
p : shortage cost per unit per period
c : acquisition cost per unit per period
α : discount rate per period
D : random demand of a single period
Dl : l-period convolution of random demand D.
L(i) : random lead time of an order when the supplier is in state i
Al(i) : position of the earliest outstanding order to be delivered within l − 1 periods.
i∗+ : random variable indicating the next healthy state after state i.
di : random variable indicating the disruption state of healthy state i.

to combine all future holding and backlog costs with the current period’s acquisition

costs (Kaplan 1970). In the remainder of the chapter, we continue with the reduced cost

function.

We define holding and backlog cost l-periods from now, given that the current inven-

tory level is x, as follows:

C l(x) = αlE
[

hmax(x−Dl+1, 0) + pmax(Dl+1 − x, 0)
]

. (3.2)

In stationary random lead time models, the cost function in Equation 3.2 would be

weighted with lead time probabilities to obtain the expected single period costs. In non-

stationary systems, however, lead time probabilities should be considered together with

Markov transition probabilities until delivery takes place, as they are dependent. Given

that the supplier is in state i and the inventory level is equal to x, the single period cost

function, due to Song and Zipkin (1996), is as follows:

Ĉ(i, x) =
∑

l≥0

Pr{L(i) ≤ l ≤ L(i+)}C
l(x), (3.3)

The single period cost function for a disruption state, Ĉ(di, x), can be obtained by re-

placing i and i+ with di and di+ (see Theorem 2 in Appendix 3.A).

If an order is placed to the supplier when it is in state i, the probability of this order

being delivered within l periods is Pr{L(i) ≤ l}. The probability of the next period’s

order being delivered later than l-periods is Pr{L(i+) > l}. Therefore Pr{L(i) ≤ l ≤

L(i+)} = Pr{L(i) ≤ l} − Pr{L(i+) > l} gives the probability of this period’s order only

covering the demand of the next l-periods. This concept is dubbed inventory coverage

by Song and Zipkin (1996). From that perspective, the function Ĉ(.) is a mere extension

of the single-period cost function in Ehrhardt (1984) and Kaplan (1970). Furthermore,
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the following lemma from Song and Zipkin (1996) is useful for developing insight into the

probability statement Pr{L(i) ≤ l ≤ L(i+)} and cost function Ĉ(i, x).

Lemma 1 (Song and Zipkin, 1996) If the (supply) process i is stationary, then

Pr{L(i) ≤ l ≤ L(i+)} = Pr{L(i) = l}.

Multi-period cost function for the problem is given in Equation 3.4 which consists of

single period cost and two cost terms associated with two possibilities for a healthy state

i: Cost term associated with being in another healthy state is αq(i)Ef̃n−1(i
∗
+, y − D),

and the cost term for the possibility of jumping to the disruption in the next period

αq̄(i)Eg̃n−1(d
i, y − D). In Equations 3.4 and 3.5, x represents the sum of outstanding

orders at the beginning of a period, whereas y stands for the inventory position after

the order placement. These equations can be interpreted as follows: In each period the

decision maker places an order considering the supplier’s state, its disruption probability,

holding, shortage, and acquisition costs.

f̃n(i, x) = min
y≥x

{c(y − x) + q(i)Ĉ(i, y) + q̄(i)Ĉ(di, y) + αq(i)Ef̃n−1(i
∗
+, y −D) (3.4)

+ αq̄(i)Eg̃n−1(d
i, y −D)}, i, i∗+ ∈ Bh,

and

g̃n(d
i, x) = Ĉ(di, x) + αξ(i)Eg̃n−1(d

i, x−D) + ξ̄(i)Ef̃n−1(i, x−D). (3.5)

The following section gives summary of analytic characterization of the optimal base stock

levels.

3.4.1 Optimal Policy

To analyze the function f̃n(i, x) and derive the optimal control policy, we utilize the

following transformation first introduced by Veinott (1965): Wn(i, x) = f̃n(i, x) + cx.

This leads to Wn(i, x) = min{Gn(i, y) : y ≥ x}, where,

Gn(i, y) = cy(1−αq(i))+q(i)Ĉ(i, y)+q̄(i)Ĉ(di, y)+αq(i)EWn−1(i
∗
+, y−D)+αq̄(i)Eg̃n−1(d

i, y−D).

(3.6)

In Equation 3.6, cy(1−αq(i)) stands for the trade-off between purchasing this period

or leaving it to the next one. This trade-off includes the effect of discounting combined

with the disruption risk. Also, we should note that the structure of Equation 3.6 is the
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same as the function G(y) in Song and Zipkin (1996) if we take q(i) = 1. Lemma 2

establishes the convexity of single period cost functions.

Lemma 2 Both of Ĉ(i, y) and Ĉ(di, y) are convex in y.

The proof is given in Appendix 3.A. Theorem 1 states the convexity of Equations 3.5

and 3.6, and the optimal policy.

Theorem 1 Following statements are true:

1. g̃n(d
i, x), Gn(i, x), Wn(i, x) are convex in x,

2. a state-dependent base stock policy is optimal.

The proof of the theorem is presented in Appendix 3.A. The optimal policy can be

characterized with Sn(i), which is the optimal inventory position after the replenishment

order when there are n periods ahead and the supply system is in state i. We analyzed

monotonicity conditions for Sn(i) and derived sufficient conditions for monotone base

stock levels over Markov states. Unfortunately, these conditions are very intricate and

it is hard to develop intuition from them. Therefore, we omit them in this chapter and

proceed to the analysis of random lead times supply disruption (and their coupled effects)

on total cost and service levels.

3.5 Impact Analysis for Nonstationary Supply Risk

Factors

To investigate the combined effect of random lead time and supply disruption, we need

to construct a stochastic process which generates Markovian random lead times and dis-

ruption events (Section 3.5.1). Using this stochastic process, we calculate the optimal

base stock levels under different risk scenarios (that is, considering only one risk factor, or

both, or none). Subsequently, the performance of these optimal policies are tested with

simulation in the benchmark scenario, which includes both risk factors (Section 3.5.2). In

this way, we analyze the impact of ignoring one or both of the risks in terms of costs and

service level.
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3.5.1 A Queueing System to Model Random Lead Time and

Supply Disruptions

We need a stochastic process which a) is driven by an exogenous Markov chain, b) is capa-

ble of producing state-dependent lead time distributions, and c) precludes order crossovers.

Song and Zipkin (1996) suggest three different stochastic processes that satisfy these con-

ditions. In this study, we consider a queueing system consisting of two semi-dependent

queues.

For the exogenous Markov chain (condition a), we consider a discrete-time Bernoulli

queue, which is dubbed Queue #1 and depicted in Figure 3.4. The number of items in this

queue determines the healthy states of the Markov chain. To include supply disruptions,

we modify this queuing system with state-dependent disruption probabilities. Specifically,

at the end of each period when there are i items in the system, the supply process stays

healthy with probability q(i) or a disruption occurs with probability 1− q(i). Given that

it stays healthy, an item arrives at Queue #1 with probability e, and an item leaves the

queue with probability d. These probabilities allow us to directly calculate the Markov

chain transition matrix in (3.1). After a supply disruption, neither arrivals nor departures

are enabled until the system jumps back to the associated healthy state.

To generate state-dependent random lead times without order crossover, we consider

another discrete-time queue with partial-batch bulk service, with batch size K, and finite

queue capacity, C, where K = C. This queueing system is dubbed Queue #2 in Figure

3.4. A possible example of such a queueing system, besides our supply chain context, is a

ferry port, in which the queueing area is equal to the capacity of a single ferry. The FIFO

rule applied to this queue precludes order crossovers, whereas the partial-batch server

provides completely random deliveries independent of previous orders. In our supply

chain context, an example is a production manager who makes decisions for consolidating

customer orders.

The effect of the Markov chain on the delivery system in Queue #2 is obtained by

the process rate of the partial-batch server, which is dependent on the number of items in

Queue #1. In our ferry port example, the Markovian state variable may stand for random

weather conditions affecting the departure or arrival of ferries, whereas in our context it

could be an exogenous factor effecting the consolidation frequency.

In each period, an item arrives at Queue #2 with probability a. This item is associated

with that period’s replenishment order if there is an available space in the queue (enters

position 0 to random outstanding order vector). Otherwise, the arriving item is discarded

and that period’s order is added to the order associated with the last item in the queue
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Figure 3.4: Queueing Systems for Impact Analysis

(position 1 in outstanding order vector). In each period, the server releases all items in

the queue, since K = C, with probability b(i), where i is the state of the Markov chain.

Otherwise, all items wait in the queue. One possible realization of the system is depicted

in Figure 3.4 when i = 6 and C = K = 10.

For a non-stationary supply system, there are two possible extreme scenarios: the

system stays healthy over the entire planning horizon, or it proceeds to more risky states

and eventually fails. In order to evaluate these two scenarios, we run the stochastic process

with different e and d values. Due to the way that we order Markov chain states (Section

3.4), e < d implies the stable supply scenario in which the supplier moves to a healthier

state with higher probability than moving to a riskier state. A possible example of this

situation is spare parts which are at the beginning of their life cycle. Even if exogenous

changes occur, the supply system stays stable for such parts. In the other extreme, we

have the unstable scenario, that is e > d. This situation occurs especially when capital

products are at the final phase of their life cycle. Suppliers of spare parts tend to stop

manufacturing over time and this tendency is reflected in increasing lead times and higher

supply disruption probabilities.

Furthermore, two types of disruptions are recognized in the literature: Long and infre-

quent disruptions (LID) and short and frequent disruptions (SFD). In order to evaluate

the effect of these two types of disruptions, we consider them in our scenario analysis in

addition to the stable and unstable supply process.
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In the scenario analysis, we evaluated the effect of each individual risk factor as well

as their combined effect on total cost and service levels. Besides the scenarios with

random lead times, we consider scenarios with deterministic lead times, while keeping

expected lead times equal (Runs #1&#3 and #2&#4 in Table 3.2). Similarly, besides

the scenarios with supply disruption risk, we run scenarios without disruption risk by

setting associated probabilities to zero (Runs #1&#5 and #3&#7 in Table 3.2). Since

each computation is conducted for unstable and stable supply scenarios together with

LID and SFD respectively, we obtain sixteen different scenarios as given in Table 3.2.

Table 3.2: Specifications of Scenarios with Markovian Lead Time and Supply Disruptions

Run# Supp. Tendency Disrpt. Type Rnd. LT Disruption Scenario
1 Unstable LID NO NO Det. LT
2 Stable LID NO NO Det. LT
3 Unstable LID YES NO Rnd. LT
4 Stable LID YES NO Rnd. LT
5 Unstable LID NO YES Det. LT & Disrpt.
6 Stable LID NO YES Det. LT & Disrpt.
7 Unstable LID YES YES Rnd. LT & Disrpt.
8 Stable LID YES YES Rnd. LT & Disrpt.
9 Unstable SFD NO NO Det. LT
10 Stable SFD NO NO Det. LT
11 Unstable SFD YES NO Rnd. LT
12 Stable SFD YES NO Rnd. LT
13 Unstable SFD NO YES Det. LT & Disrpt.
14 Stable SFD NO YES Det. LT & Disrpt.
15 Unstable SFD YES YES Rnd. LT & Disrpt.
16 Stable SFD YES YES Rnd. LT & Disrpt.

In addition to these runs, we consider a scenario with state-independent deterministic

lead time without supply disruption. In this scenario, which is dubbed Run#0, deter-

ministic lead time is assumed to be equal to the average of expected lead times of all

states. Calculated optimal base stock levels of each scenario in Table 3.2 are used in a

simulation model of the benchmark scenario to compare the effect of ignoring both supply

risks on the inventory performance. The development of the scenarios and their results

are presented in the following sections.

3.5.2 Setup of The Computational Study

In order to evaluate deviation of each run from the optimal policy (benchmark), we fed

finite-horizon order-up-to levels into a simulation model. This procedure started with
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selection of parameter values for disruption and supply recovery probabilities as well as

random lead time for each state.

In order to obtain realistic and applicable results, we considered a Markov chain con-

sists of three healthy and three disruption states. Each disruption state was assumed to

be associated with only one healthy state and the set of healthy states were assumed to

be totally ordered within each other.

For state-dependent random lead times, we considered two different sets of parameter

values for the service rate of Queue #2 (b(i)), given in Table 3.3. As can be seen from the

table, parameter set 1 was considered to see the effect of significant lead time variations

over Markov states. The parameter set 2 aimed to investigate the supply risk factors

when the first two moments of lead time distributions are very close to zero. This way,

we aimed to develop a better understanding for the interaction between supply disruption

and random lead time.

Table 3.3: Random Lead Time Parameters for Each Markov State

Parameter Set State 0 State 2 State 3
Set 1 0.6 0.4 0.2
Set 2 0.9 0.85 0.8

For disruption behavior of the model, we calculated disruption and recovery proba-

bilities (q(i) and ξ(i) for i = 1, 2, 3) that make expected number of disruption periods

equal to 5%, 10% and 15% of the planning horizon under four different supply scenarios:

stable-LID, unstable-LID, stable-SFD and unstable-SFD. Details of these calculations and

calculated parameter values are given in Appendix 3.B.

Using the parameter values in Table 3.3 and Appendix 3.B, we calculated the optimal

base stock levels using the value iteration algorithm for 100 periods. The finite horizon

base stock levels for the benchmark scenario (unstable-LID with both lead time and supply

disruption risks) are given in Figure 3.5. As can be seen, all base stock levels converge to

an infinite horizon base stock level and end-of-horizon effect appears there are 10 periods

are remaining in the planning horizon. Also, there are significant differences between base

stock levels of different states.

To evaluate the performance of the optimal policy, we developed a simulation model.

The main reason behind this approach was that it requires to evaluate multi-state dynamic

programming formulation for the total cost. This also stands for the main motivation

behind Theorem 2 in Appendix 3.A.

The performance measures we track in our simulation model are total discounted cost,

total discounted backlog cost, ready rate (fraction of time with positive stock on hand) and



54 Spare Parts Management Under Markov-Modulated Supply Risk

0 

5 

10 

15 

20 

25 

30 

1
0

0
 

9
5

 

9
0

 

8
5

 

8
0

 

7
5

 

7
0

 

6
5

 

6
0

 

5
5

 

5
0

 

4
5

 

4
0

 

3
5

 

3
0

 

2
5

 

2
0

 

1
5

 

1
0

 

5
 

S
ta

te
-D

e
p

e
n

d
e

n
t 

B
a

se
 S

to
c
k

 L
e

v
e

ls
 

Remaining Planning Horizon  

State (0) 

State (1) 

State (2) 

Figure 3.5: Base Stock Levels for the Benchmark Scenario

fill rate (fraction of demand that can be satisfied immediately from stock on hand (Axsäter,

2006)). Total cost and total backlog costs are common performance measures in inventory

control simulations. Ready rate and fill rate are important service measures for the service

sector, since most customer contracts utilize one of these (Oliva and Kallenberg, 2003).

To determine the number of replications, we first conduct a pilot study consisting of 5000

replications. Results of this study are used to compute the total number of replications

which is set to 50,000. To control the variance, we use common random numbers which

cause dependency between replications. Therefore, paired t-tests are employed to check

whether there is statistically significant difference between scenarios.

The discount rate per period is set to 0.995, which leads to a 6% annual discount

rate over the entire planning horizon, since a period stands for a month for our empirical

analysis presented below. Without loss of generality, we set the acquisition cost equal

to 2 per item. The holding cost is equal to 0.2 and backlog cost is equal to 4 per item

per period (0.1 and 2 are taken as holding and backlog cost rate multipliers). Random

demand in each period is assumed to follow a Poisson distribution with mean 2.

3.5.3 Coupled Effect of Random Lead Time and Supply Disrup-

tion

In this section we present total cost and service rate values for unstable-LID scenario with

5% of the planning horizon as disruption periods. The rest of results ((un)stable-SFD with

10% and 15% disruption) are given with stacked-bar charts indicating deviations from the

optimal total cost created by each supply risk factor.
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Results of unstable-LID scenario indicate that ignoring random lead times creates

larger total and backlog cost compared to ignoring disruption risk in the system. Calcu-

lated deviations from the benchmark (policy with random lead time and supply disruption

in Figure 3.6) are 11.3% and 4.9% of the optimal cost for these two risk factors whereas

ignoring both risk factors (policy with deterministic lead time) creates 27.6% deviation

from the benchmark. In other words, the combined effect of the two risk factors is almost

twice of the summation of their individual effects. This indicates the importance of con-

sidering both risk factors in a single model which is commonly ignored in practice as well

as in literature. Finally, we consider the value of recognizing nonstationarity by compar-

ing state-independent deterministic lead time with the benchmark. The deviation from

the optimal cost is 45.52%. Therefore, we conclude that value effect of nonstationarity

on total cost is as large as the summation of all other risk factors for this parameter set.

Similar results are obtained for service rates using Figure 3.7. Specifically, ignoring

all risk factors yield a service level around 65% which is unacceptable in practice. On

the other hand, recognizing random lead times creates service level very close to the

benchmark. Note that these deviations under different scenarios explain extra surplus

inventories in service sector as follows: Inventory managers implicitly aware that their

models do not consider many different risk factors. Hence, they prefer carrying extra

inventory to avoid stock-outs due to unexpected supply chain glitches. We can argue that

employing threat-dependent control policies might lead them to obtain the same service

levels with lower inventory levels.
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Time Parameter Set 1
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Figure 3.7: Service Rates for Unstable-LID Scenario for Lead Time Parameter Set 1

Due to space limitations, analysis results for stable-LID and (un)stable-SFD scenarios

are presented through total cost deviations from the benchmark in Figures 3.8 and 3.9.

In these charts, the effect of each supply risk is calculated using total cost values from

the associated scenario. Specifically the formulation of the percent cost deviation due to

random lead time for unstable-LID is

∆RLT =
TC5 − TC7

TC7

,

where TCi is the discounted total cost of Run#i in Table 3.2. The percent deviation due

to disruption (∆Disrupt) is calculated by replacing TC5 with TC3 in the same formula.

Formulations for deviations due the coupled effect ∆coupled and nonstationarity ∆nonsta.

are given below:

∆coupled =
TC1 − TC7

TC7

−∆RLT −∆Disrupt,

∆nonsta. =
TC0 − TC7

TC7

−∆coupled.

With these formulations we aim to see effects of each factors on the total cost when

they are ignored by the decision maker. Naturally, percent deviations for other scenarios,

stable-LID and (un)stable-SFD, can be calculated using appropriate runs from Table 3.2.

Percent deviations for all scenarios are presented in Figures 3.8 and 3.9.

Results in Figures 3.8 and 3.9 indicate that increasing expected number of disruptions

leads to larger deviations due to disruption as well as the coupled effect whereas it depletes
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Figure 3.8: Percent Deviation from the Optimal Total Cost for LID, Lead Time Set-1

the deviation due random lead time. This is due to the fact that increasing disruption

risk leads to higher inventory levels which mitigates the effect of random lead time on

inventory performance. Furthermore, the effect of nonstationarity is larger for unstable

supply scenarios compared to stable ones. Expectedly, when the supply health tends to

get worse over time, such as in aging aircraft, ignoring supply-side risk creates larger

deviation in total discounted costs.

Another important observation can be done between the two types of disruptions.

Results indicate that long and infrequent disruptions have larger effect on system per-

formance compared to short and frequent disruptions although the expected number of

disruption periods are the same. This also holds for the coupled effect of random lead

time and supply disruptions.

Results of the same experiments with random lead time parameter set 2 (Table 3.3)

are given in Figures 3.10 and 3.11. Under this scenario, the effect of disruption is as large

as 50% and the coupled effect is up-to 11% of total optimal cost. Also, we find that the

effect of nonstationarity on total cost deviation is almost zero in these runs (that’s why

we didn’t depict them in Figures 3.10 and 3.11). This indicates that state-dependent lead

time distributions are more important for nonstationarity than state dependent disruption

probabilities.

Furthermore, a closer look to all figures reveal that the deviation due to disruption

and random lead time is larger in the stable supply scenario compared to the unstable

one. The reason behind this intriguing result is that under stable supply scenario system
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Figure 3.9: Percent Deviation from the Optimal Total Cost for SFD, Lead Time Set-1

carries less inventory which can compensate the effects of disruptions and random lead

time.
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Figure 3.10: Percent Deviation from the Optimal Total Cost for LID in Lead Time

Set-2

In order to see the same effects under different cost parameters, we run a sensitivity

analysis in which we consider {0.2, 0.3, 0.4, 0.6} as holding cost rates and {0.9, 0.95, 0.99, 0.995}

as service levels which are used to calculate backlog cost rates using the critical fractile.
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Set-2
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Calculated holding and backlog cost rates are multiplied with the acquisition cost, 2 per

item, to obtain cost parameters of the analysis.

Figure 3.12: Percent Deviations from the Total Costs for LID-Unstable with 5 % Ex-

pected Disruption

Results of the sensitivity analysis are only presented for LID-unstable and SFD-stable

scenarios since these two scenarios stand for upper and lower bounds for effects of supply

risk on total cost and service rates. Our sensitivity analysis indicates that the coupled

Figure 3.13: Percent Deviation from the Total Costs for SFD-Stable with 5% Expected

Disruption
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effect of random lead time and disruptions can be larger than 200% of the total optimal

cost for high service levels under the LID-unstable scenario. When all risks are ignored

the total cost deviation can rise up-to 500% of the optimal cost when the service rate

is set to 99.5%. The nature of the deviation is much different for short and frequent

disruptions for which the effect of random lead time is as high as the coupled effect of the

two scenarios. These results indicate the importance of considering both risk factors in

a single model to aim higher service rates with more reasonable inventory levels. In the

next section, we discuss the comparison between two tactical level approaches to supply

risk mitigation: prevention and solution.

3.5.4 Dealing with Supply Disruptions: Prevention vs. Treat-

ment

On the tactical level, employees of procurement departments can deal with supply disrup-

tion in two different forms: prevention and/or solution. Prevention of supply disruptions

can be performed by means of advance warning signals which utilize some indicators to

predict future supply disruptions (Li et al. (2015), Hendricks and Singhal (2003), Hen-

dricks and Singhal (2005a), Tomlin and Snyder (2006)). By using these advance signals,

employee of procurement departments can proactively start a procedure to address the

problem. Such procedures can be exemplified with direct communication with supplier or

development of an alternative supplier by procurement departments.

All efforts for preventing supply disruptions can be represented as decreasing disrup-

tion probabilities of healthy states in our model. To analyze the value of these efforts for

a company, we executed calculations with decreasing supply disruption probabilities and

measure the percent decrease in total cost. Specifically, we calculated optimal base stock

levels, cost and service rate figures by replacing q(j) with q̃(j) given below:

q̃(j) = q(j)− β, for j 6= 0 and β = 0.002 ∗ k, (3.7)

for k = 1..9. β represents the average change in supply disruptions as a result of efforts

in the associate department of the company whereas k stands for the amounts of effort

put into the prevention. We set the unit change in disruption probability to a very small

value (0.002) in order to see the effects of smallest changes on the total cost.

Conversely, solution of disruptions stands for the efforts spent to investigate and solve

the disruption problems and restart the supply process after the disruption takes place. All

these efforts are recognized as reactive approaches to disruption mitigation. The effect

of extra efforts into developing solutions reactively can be represented with increasing
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disruption recovery probabilities which can be formulated below:

ξ̃(j) = ξ(j) + γ, j 6= 0 and γ = 0.002 ∗ k, for k = 1..9. (3.8)

By replacing disruption recovery probabilities with ξ̃(i), we calculated base stock levels

and total cost for k = 1, ..9, and compared these results with the case where k = 0. Results

of all these calculations are given in Figures 3.14 and 3.15.
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Figure 3.14: Percent Savings in Total Cost for Prevention and Solution of Disruptions

(LID, 5% Disruption

Our results indicate that the prevention is much more important than the solution

when the expected number of disruption periods is set to 5. Savings are especially promi-

nent (14% for β = 0.1) for long and infrequent type of disruptions in unstable supply

scenario. This indicates the value of advance warning signals for dealing with supply risk

(e.g. (Li et al., 2015)) when they are applied with threat-dependent policies as in our

study or (Tomlin and Snyder, 2006). As an expected result, efforts for dealing with supply

risk are found to be to be more important in unstable supply than stable supply and in

LID compared to SFD.

We conducted the same analysis with different expected disruption periods. Since the

largest savings are obtained in LID scenarios in the previous results (Figure 3.14), we

only consider LID for this sensitivity analysis of which results are given in Figure 3.17

and 3.16.

In these figures, expected periods of disruptions are given in the x-axis whereas maxi-

mum savings for each value of k are presented with iso-saving curves. Also, we give regions
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where prevention (solution) is more beneficial than (prevention) with different colors. Re-

sults indicate that the prevention (proactive approach) is more advantageous for smaller

levels of disruption risk whereas the solution (reactive approach) becomes more important

as the disruption risk level is increasing. Furthermore, the threshold levels, below which

the solution is better than the prevention, depends on the level of disruption risk as well

as the amount of efforts spent in these two activities. Another important observation

is that the solution becomes more beneficial in higher disruption risk levels in unstable

supply scenario compared to the stable one. This indicates that proactive approaches are

more valuable for unstable supply case.

3.5.5 Application of the Model to Part A

To gain further understanding on the practical value of our model, we evaluated the

performance of the optimum policy and infinite horizon base stock levels on the empirical

data that belongs to the part A presented in Section 3.3. This analysis was conducted

in four successive stages. First, we calculated historical inventory levels using the current

inventory level and monthly demand and purchase data obtained from the MRO. Our

calculations start in 2006 as this is the starting date of the demand data. Second, we

calculated historical supply risk levels using purchase history data. Third, we calculated

model parameters for optimization. Fourth, we evaluated the savings obtained from the

optimal policy.
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Figure 3.16: Percent Savings in Total Cost for Prevention and Solution of Disruptions

(LID-Unstable)

Regarding the second stage, we used the statistical model by (Li et al., 2015) to

calculate survival probabilities of the supplier of Part A for each month. To transform

survival probabilities to transition probabilities pij in (3.1) of a Markov chain with two

states (state 0 is healthy; state 1 is unhealthy) we chose 0.75 as a threshold level. For

months when the survival probability is higher than 0.758, the supplier is assumed to

Figure 3.17: Percent Savings in Total Cost for Prevention and Solution of Disruptions

(LID-Stable)
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be in state 0 whereas crossing this level represents the Markov chain jumping to state 1.

Using this discretization a time series data is obtained from monthly survival probabilities

of the supplier.

In the third stage, we used purchase history data for similar parts from the same

supplier to calculate the maximum likelihood estimator for the geometric distribution,

which is the lead time distribution in our queuing system of Section 3.5.1. Calculated

lead time parameters are given in Table 3.4. For the disruption probabilities of the model,

q(i), we used cross-validation results by Li et al. (2015). In these tests, 160 out of 186

parts had survival probability less than 0.75. Investigation into the suppliers of those

parts indicated that 21 of those were already obsolete at the time of the analysis. We

used this statistic as an estimator for disruption probability of state 1 ()“unhealthy”

state) whereas the disruption probability of state 0 is assumed to be 0. For the disruption

recovery probability, ξ(i), we used the average solution time for disruption cases, which is

4.15 months. Due to lack of data, we assumed that the recovery probabilities are identical

for both Markov states. All estimated parameters of the model are presented in Tables

3.4 and 3.5.

Acquisition cost of the part is 158.39 whereas the backlog cost rates are calculated

using the critical ratio and assuming holding cost rate is 0.1 with service lvel being equal

to 0.9 and 0.99. Calculated optimal base stock levels for two different service levels are

given in Table 3.4.

Table 3.4: Parameters and the Result of the Model for Part A

Markov States Lead Time MLE q(i) ξ(i) Base Stock (0.9) Base Stock (0.99)
Healthy 0.53 0 0.2406 9 16
Unhealthy 0.47 0.1346 0.2406 15 30

Table 3.5: Transition Probabilities (pij) for the Markov Chain of Part A.

Good Bad
Healthy 0.929 0.071

Unhealthy 0.032 0.968

In stage 4, we compare the optimal inventory levels with the historical inventory levels

(Figure 3.18). Our policy not only provides smoother inventory levels, but also gives a

better preparation for the disruption, which took place in December 2011. Discounted

total costs indicate that our policy creates savings of 10.25% and 20.31% compared to

“Business-As-Usual” (BAU) for service rates 0.90 and 0.99. Surprisingly, we find higher
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service rates leading to more cost savings which comes from the backlog costs in the year

of 2006 (see Figure 3.18). Other savings come from lower inventory holding costs during

the undisrupted months of the supply system. Unfortunately, demand during disruption

was not captured in our demand data. Hence, we can only speculate about the savings

on the backlog cost during the disruption, which took two months for this part.
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Figure 3.18: Inventory Levels for Part A

In addition, we conducted the same analysis with different holding costs and threshold

levels for discretization of survival probabilities. The results of this analysis are given in

Table 3.6. In general, we reached the conclusion that increasing threshold levels leads to

less cost savings compared to BAU for this part since the company switches to the higher

base stock level (base stock level of state 1). This result can be observed for 0.99 service

levels in Table 3.6. For 0.90, on the other hand, setting the threshold level 0.65 leads to

some backlog costs around 2009 which leads to less savings compared to the threshold

level of 0.75 (setting the threshold level to 0.85 saves backlog costs for the same time

period).

Results of this analysis indicates that for high service levels (0.99) increasing threshold

level decreased the savings from the optimal policy since it indicates that the company is

more risk-averse against disruptions. For moderately high service levels (0.90), we found

different results since decreasing threshold level leads to some extra backlog costs which

didn’t appear when the threshold level is set to 0.75. These new backlog costs depleted

cost savings from inventory holding.
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Table 3.6: Application with Different Threshold Levels, Service Rates and Holding Costs

Threshold Levels
Holding Cost Rate Service Rate 0.65 0.75 0.85

0.1 0.9 6.02% 10.25% 4.84%
0.1 0.99 23.14% 20.31% 13.18%
0.3 0.9 16.93% 15.30% 16.22%
0.3 0.99 32.98% 28.65% 21.23%

At this point we should stress that the author’s personal communication with managers

in the service sector indicated that 4.15 months of average solution time for disruption

cases is very optimistic. It is argued that solution to disruption problems of spare parts

require engineering knowledge and usually engineering departments of companies are ex-

tremely busy with new product development and research processes. Hence, disruptions

get lower priority in companies and may last up-to three years. A unique feature of the

MRO, whom authors have contact with, is that it has a dedicated technical group for

rapid solution of disruptions. Therefore, we postulate that the relevance of our study is

even higher than may be reflected in this section.

3.6 Summary and Discussion

Supply-side risks for spare parts of capital products are very important for maintenance

companies. Empirical evidence suggests that towards the end-of life of capital products

their spare parts suppliers eventually stop their manufacturing and/or delay deliveries to

the maintenance companies. This behavior creates random lead times coupled with supply

disruption risks, which are nonstationary in nature. In order to address the combined

effect of these two risks, we consider a supply system driven by an exogenous Markov

chain in a finite horizon setting.

Given that order crossovers are not allowed, we prove that the state-dependent base

stock policy is optimal. Analysis reveals that intricate sufficient conditions are necessary

for establishing the monotonicity of optimal base stock levels.

We conduct an impact analysis to address the effect of ignoring random lead times

and disruption risks under stable and unstable supply scenarios. Our experiments indicate

that ignoring stochastic lead times or supply disruptions leads to a significant increase

in costs and a decrease in service levels, especially when the health of the supplier tends

to get worse over the planning horizon. We observe that the combined effect of supply

disruption and random lead times is even more than the sum of the individual effects and
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can create cost differences of up to 90% when the nonstationary nature of these risks is

ignored.

Our analysis indicates that efforts in prevention of supply disruptions are more valuable

than the capability of solving supply disruptions quicker. Hence, supply risk assessment

tools and their employment in risk dependent policies are critical in the service sector.

An application of our model, which compares the optimal policy with historical inven-

tory levels, indicates that recognizing random lead time together with supply disruption

risk not only creates at least 11% savings in total discounted costs, but also makes the

company more prepared for supply disruptions.

3.7 Epilogue

The research output of this chapter was presented to the OEM. The managers in the

company decided to further test the implementation of the model. This phase of the study

should start with replicating the application in Section 3.5.5 to a larger, random sample

of spare parts. Such a large-scale application requires calculation of survival probabilities

using the model by Li et al. (2015), choosing a proper threshold for transformation of

survival probabilities to Markov states and estimating lead time parameters which will

be used to obtain state-dependent base stock levels.

Calculation of survival probabilities should be conducted using the coefficients of the

proportional hazard model (Li et al., 2015) for each month. Afterwards, survival probabil-

ities should be transformed into Markov states using a threshold level. In our application,

we used 0.75 as a threshold level below which a supplier was assumed to be in the ‘risky’

state. Choosing a proper threshold level is a decision that should be done by managers

based on their attitude towards supply risk. Since survival probabilities calculated by the

proportional hazard model are generally decreasing, choosing a high level of threshold

means a risk-averse approach to supply disruptions, as the system will jump to the risky

state early. On the other hand, a low threshold level indicates a risk-seeking attitude of

managers, since the system will jump to the risky state late.

Once historical Makov states are obtained using the proportional hazard model, the

next step should be parameter estimation for state-dependent lead time distributions using

the lead time data of each part. This can be done with the maximum likelihood estimator

of the geometric distribution as in Section 3.5.5. Note that it is also possible to evaluate

different stochastic systems generating lead time distributions other than geometric, such

as negative binomial, Poisson etc. Estimated lead time parameters should be used to

calculate state-dependent base stock levels for each part.
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Calculation of base stock levels was conducted with the value iteration algorithm

in our application. After a proper truncation of the state space, the value iteration

algorithm was run until it converged to infinite horizon solution. In MATLAB 2014a,

this calculation took us approximately 20 min. for a single part. To implement this

model for a large part sample, one should develop a computer program with more low-

level programming languages, e.g. C++, C# etc., which would definitely shorten the

calculation time. Alternatively, one can search for an efficient heuristic approach with

small deviation from the optimal cost. In their paper, Song and Zipkin (1996) present

a numerical experiment using a myopic cost function which generates near-optimal base

stock levels for Markov-modulated random lead time model without supply disruption.

Therefore, the myopic cost function given in this chapter might be a good starting point

for a search of heuristic approach.

In order to test the performance of the state-dependent base stock policy, one should

consider historical inventory levels which would be used to obtain ’Business-as-usual’

(BAU) cost indicating the inventory-related costs (acquisition, holding and backlog) if this

model is not implemented. Since the company does not keep monthly inventory levels in its

database, one should calculate historical inventory levels using classic inventory recursion,

demand and purchase history, and current inventory level of each part. The current

inventory level will be the boundary condition for the inventory recursion. Naturally, the

implementation of this model for all part numbers in the OEM’s database would start if

the inventory-related cost obtained from this model is lower than BAU cost as in Table

3.6.

In addition to the possibility of implementing this model in a stand-alone software

which can communicate with the ERP system of the OEM, this model may be considered

as a module in a larger supply risk mitigation system considering the existence of multiple

suppliers, and secondary markets (as supply source), possibility of capacity reservation or

capacity flexibility contracts with suppliers. A replenishment policy for parts, which can

be supplied from a supplier and secondary markets, is addressed in the next chapter.

3.A State Reduction for Random Lead Time and Sup-

ply Disruptions

Although we use some results and notations from Song and Zipkin (1996) in our model, the

addition of supply disruption to the state reduction is new. The Markov chain transition

diagram is given in Figure 3.3.
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We start with the notation for random variables governing the movements of outstand-

ing orders placed in previous periods. Outstanding orders are kept in a random vector

z = {zit}i≥0 where z0 represents the current period’s order. Using outstanding orders in

each position, we can define another random variable xjt which represents inventory level

and outstanding orders together at time t as follows:

xjt = xt +
∑

k≥j

zkt,

where xt stands for inventory level at time t. In this notation, inventory position is

expressed as x0t . Since we consider a finite horizon problem and the time index is given

as subscripts of cost functions, we suppress t from this point on. We should note that,

an outstanding order vector can be transformed into an inventory position vector, x =

{xj}j≥0.

In our analysis, the random moves of outstanding orders will be represented with the

following variable.

Definition 1 Define N(j|i) as the position of an outstanding order that moves to position

j within k-periods time (Song and Zipkin, 1996).

Using the variable above, we can write state dependent random lead time, L(i), as follows:

{L(i) = k} = {Nk+1(∞|i) = 0} = {Ak+1(i) = 0},

where position ∞ stands for the delivery of the outstanding order and random variable

Al(i) is defined in Table 3.1 in Section 3.4 and by Song and Zipkin (1996).

Pr{Al+1(i) > 0} = Pr{L(i) > l}. (3.9)

Definition 2 Define equation fn(i, x) as the optimal cost function when the supplier is

in healthy state i and there are n periods ahead in the planning horizon.

Definition 3 Define equation gn(d
i, x) as the total discounted holding and backlog costs

after supply disruption takes place and the planning horizon is equal to n.

In our model, we assume the supplier is available in state i ∈ Bh and placing a new order

becomes impossible when the supplier reaches states di ∈ B/Bh. Each disruption state

is denoted with an index, i, which represents the state just before the supply disruption.

Namely, if the supply disruption takes place when the supplier is in state 2, the disruption

state is named d2.
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As stated above, the cost function fn(.) is the summation of acquisition, holding, and

backlog cost for n-period dynamic programming model given that the supplier is available

at the beginning of period n. When the supply system in healthy state i, it might disrupt

with probability 1 − q(i) or it stays healthy with probability q(i). After the disruption,

which is represented with Markov chain’s jumping to the associated disruption state di,

we accumulate holding and backlog costs in the cost function gn(.). When the supply

system is in the disruption state di, there are two possibilities for the next period: it

stays in state di with probability ξ(i), or it starts again with probability ξ̄(i). Considering

the no order crossover assumption explained in Section 3.4, our dynamic programming

equation can be written as follows:

fn(i, x) = min

{

c(x0 − x1) + EC(xA
1(i) −D) + αq(i)Efn−1(i

∗
+, {x

N(j|i) −D}j≥1) (3.10)

+ αq̄(i)Egn−1(d
i, {xN(j|i) −D}j≥1)

}

,

where

gn(d
i, x) = EC(xA

1(di) −D) + αξ(i)Egn−1(d
i, {xN(j|di) −D}j≥1) (3.11)

+ αξ̄(i)Efn−1(i, {x
N(j|i) −D}j≥1).

In Equation 3.10, i∗+ represent the next healthy state after the healthy state i. The

first term of the equation is acquisition cost. The second term is one period holding and

backlog cost which is defined as follows:

C(x) = hmax(x, 0) + bmax(−x, 0).

The third and fourth terms represent the two above-mentioned possibilities of the supply

system given that it is in a healthy state. The terms of in Equation 3.11 arr the same

with Equation 3.10 except the acquisition cost.

fn(i, x) is a multi-state recursive equation which is hard to minimize. The state re-

duction algorithm for this function is proved in this appendix. To this end, we need the

following definition and lemma. Definition 4 is an adaptation of the random lead time

definition by Song and Zipkin (1996) to disruption states.

Definition 4 Define L(di) as the (random) amount of periods required to receive all out-

standing orders when the supply is in disruption state di. It can be characterized as

follows:
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Pr{L(di) > l} = Pr{Al+1(di) > 1}. (3.12)

In Lemma 3, we present three identities which have the similar proofs. Since they are

directly used in Theorem 2, we express them explicitly. Note that we define di+ as the

random variable indicating the next state of the supply system after the disruption state

di.

Lemma 3 The following entities is true for L(di):

1. Pr{L(di) > l−1, i+ = di} = Pr{L(i) > l, i+ = di}+Pr{L(i) ≤ l ≤ L(di), i+ = di},

2. Pr{L(di+) > l − 1, di+ = di} = Pr{L(di) > l, di+ = di}+ Pr{L(di) = l, di+ = di},

3. Pr{L(di+) > l − 1, di+ = i} = Pr{L(di) > l, di+ = i}+ Pr{L(di) ≤ l ≤ L(i), di+ = i}

Proof For the first entity, given that {i+ = di} we can state the following:

Pr{L(i) > l} = Pr{Al+1(di) > 1}, (3.13)

= Pr{Al+2(i) > 1, Al+1(di) > 1}+ Pr{Al+2(i) ≤ 1, Al+1(di) > 1},

= Pr{Al+2(i) > 1}+ Pr{Al+2(i) ≤ 1, Al+1(di) > 1},

= Pr{Al+2(i) > 0}+ Pr{Al+2(i) = 0, Al+1(di) > 1} − Pr{Al+2(i) = 1, Al+1(di) = 1},

(3.14)

= Pr{L(i) > l + 1}+ Pr{Al+2(i) = 0} − Pr{Al+2(i) ≤ 1, Al+1(di) = 1}, (3.15)

= Pr{L(i) > l + 1}+ Pr{Al+2(i) = 0} − Pr{Al+1(di) = 1},

= Pr{L(i) > l + 1}+ Pr{L(i) ≤ l + 1} − Pr{L(di) ≤ l},

= Pr{L(i) > l + 1}+ Pr{L(i) ≤ l + 1} − Pr{L(i) ≤ l + 1, L(di) < l}, (3.16)

= Pr{L(i) > l + 1}+ Pr{L(i) ≤ l + 1 ≤ L(di)}. (3.17)

In the above derivation, Equation 3.13 follows from Definition 4. Equation 3.14 comes

from the fact that in disruption, no new order can be placed (Pr{A(di) = 0} = 0). Hence,

Pr{Al+2(i) = 1} = Pr{Al+2(i) = 1, Al+1(di) = 1}+ Pr{Al+2(i) = 1, Al+1(di) > 1},

. Similar equation for {Al+2(i) = 0} yields Equation 3.15. Also the same fact (no orders

during disruption) yields

{Al+2(i) ≤ 1, Al+1(di) = 1} = {Al+1(di) = 1}.
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Last expression in Equation 3.16 is given in Song and Zipkin (1996). Finally, note that

{Al+2(i) > 0} = {L(i) > l + 1}. This completes the proof of the first identity.

Given that di+ = di, the second identity is expressed as follows:

Pr{L(di+) > l} = Pr{Al+1(di+) > 1},

= Pr{Al+2(di) > 1, Al+1(di) > 1}+ Pr{Al+2(di) = 1, Al+1(di) > 1},

= Pr{Al+2(di) > 1}+ Pr{Al+2(di) = 1} − Pr{Al+2(di) = 1, Al+1(di) = 1},

= Pr{L(di) > l + 1}+ Pr{L(di) ≤ l + 1} − Pr{Al+1(di) = 1},

= Pr{L(di) > l + 1}+ Pr{L(di) ≤ l + 1} − Pr{L(di) ≤ l},

= Pr{L(di) > l + 1}+ Pr{L(di) = l + 1}. (3.18)

For the third entity we can state the following under the condition of {di+ = i},

Pr{L(i) > l} = Pr{Al+1(i) > 0},

= Pr{Al+2(di) > 1, Al+1(i) > 0}+ Pr{Al+2(di) = 1, Al+1(i) > 0},

= Pr{Al+2(di) > 1}+ Pr{Al+2(di) = 1, Al+1(i) > 0},

= Pr{L(di) > l + 1}+ Pr{Al+2(di) = 1} − Pr{Al+2(di) = 1, Al+1(i) = 0},

= Pr{L(di) > l + 1}+ Pr{L(di) ≤ l + 1} − Pr{Al+2(i) = 0},

= Pr{L(di) > l + 1}+ Pr{L(di) ≤ l + 1} − Pr{L(i) ≤ l + 1},

= Pr{L(di) > l + 1}+ Pr{L(di) ≤ l + 1 ≤ L(i)}. (3.19)

Equations 3.17, 3.19 and 3.18 give the desired results. �

Even though there is some technical difference in the proof, the probability expressions

derived in Lemma 3 are the same with Song and Zipkin (1996). In Theorem 2 we prove

state reduction transformation for the whole model in Equation 3.10. The following lemma

are will be used in that theorem.

Theorem 2 The main model in Equation 3.10 can be transformed into single-stage re-

cursive equation as follows:

fn(i, x) = C̃(i, x) + f̃n(i, x
1), (3.20)

and

gn(d
i, x) = C̃d(d

i, x) + g̃n(d
i, x1), (3.21)
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where

f̃n(i, x
1) = min

y≥x
{c(y−x1)+Ĉ(i, y)+αq(i)Ef̃n−1(i

∗
+, y−D)+αq̄(i)Eg̃n−1(d

i, y−D)}, i∗+ ∈ Bh,

and

g̃n(d
i, x) = Ĉ(di, x) + αξ(i)Eg̃n−1(d

i, x−D) + ξ̄(i)Ef̃n−1(i, x−D).

The single period cost function in the recursive equation is as follows:

Ĉ(i, x) =
∑

l≥0

Pr{L(i) ≤ l ≤ L(i+)}C
l(x). ∀ i, i+ ∈ B.

and

C̃(i, x) = E
∑

l≥0

1{L(i) > l}C l(xA
l+1(i)).

Proof by induction. Under proper initial conditions we can state

g̃N(d
i, x) = f̃N(i, x) = 0, ∀i ∈ B/Bh, ∀x.

Hence,

fN(i, x) = C̃(i, x),

and

gN(d
i, x) = C̃d(d

i, x).

This provides the initialization. Now suppose the statement it is true for n− 1. For n,

fn(i,x) = min
x0≥x1

{

c(x0 − x1) + EC(xA
1(i) −D) + αq(i)C̃(i∗+, {x

N(j|i) −D}j≥1)+ (3.22)

+ αq(i)Ef̃n−1(i
∗
+, x

0 −D) + αq̄(i)C̃d(d
i, {xN(j|i) −D}j≥1) + αq̄(i)Eg̃n−1(d

i, x0 −D)
}

,

and

gn(d
i, x) =EC(xA

1(di) −D) + αξ(i)
[

C(di, {xN(j|di) −D}j≥1) + Eg̃n−1(d
i, x1 −D)

]

+

αξ̄(i)
[

C̃(i, {xN(j|di) −D}j≥1 + Ef̃n−1(i, x
1 −D)

]

. (3.23)

Now we are going to analyze terms in Equations 3.22 and 3.23 respectively. For

single period holding and backlog costs, in Equation 3.23, we will present the following

statements, which are adapted from Song and Zipkin (1996).

EC(xA
1(i) −D) = Pr{L(i) = 0}C0(x0) + E1{L(i) > 0}C0(xA

1(i)), (3.24)
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EC(xA
1(di) −D) = Pr{L(di) = 0}C0(x1) + E1{L(di) > 0}C0(xA

1(di)). (3.25)

Also, the third term of Equation 3.22 can be written as follows:

C̃(i∗+, {x
N(j|i) −D}j≥1) = E

∑

l≥0

1{L(i+) > l}C l(xN(Al+1(i+)|i) −D). (3.26)

Note that Song and Zipkin (1996) show that N l+1(j|i) = N(N l(j|i∗+)|i) and {L(i∗+) >

l} = {L(i) ≤ l+1 ≤ L(i∗+)}∪{L(i) > l+1}. Note that i and i∗+ are two healthy states of

supply process. Given that system stays in the healthy states (this condition is considered

with probability q(i)), following statements hold:

αC l(xN(Al+1(i∗+)|i) −D) = C l+1(xA
l+2(i)) (by definition of C l(.)), (3.27)

and

αC̃(i∗+, {x
N(j|i) −D}j≥1) = E

∑

l≥0

1{L(i∗+) > l}αC l(xN(Al+1(i∗+)|i) −D), (3.28)

=
∑

l≥0

Pr{L(i) ≤ l + 1 ≤ L(i∗+)}C
l+1(xA

l+2(i)) +
∑

l≥0

E1{L(i) > l + 1}C l+1(xA
l+2(i)).

(3.29)

Since {L(i) ≤ l + 1} ⇒ {Al+2(i) = 0}, Equation 3.29 becomes,

C̃(i∗+,{x
N(j|i) −D}j≥1) =

∑

l≥0

Pr{L(i) ≤ l + 1 ≤ L(i∗+)}C
l+1(x0) +

∑

l≥0

E1{L(i) > l + 1}C l+1(xA
l+2(i)),

(3.30)

=
∑

l≥1

Pr{L(i) ≤ l ≤ L(i∗+)}C
l(x0) +

∑

l≥1

E1{L(i) > l}C l(xA
l+1(i)). (3.31)

The fifth term in Equation 3.22 is analyzed as follows:

αq̄(i)C̃d(d
i, {xN(j|i) −D}j≥1) = αq̄(i)E

∑

l≥0

1{L(di) > l}C l(xN(Al+1(di)|i) −D). (3.32)

Let’s make the following observations: Before a supply disruption occurs, each pe-

riod’s order is added to the position 0 in inventory position vector x. Thanks to no order

crossover assumption, delivery probabilities in each term can be expressed with the po-

sition of delivered order in the outstanding order vector: {Al+1(i) = 0} = {L(i) ≤ l}.
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Recall that the outstanding order vector is transformed the inventory position vector x.

After the supply disruption, on the other hand, new orders are impossible. Given that the

supply system is in state i and will jump to the disruption state is di in the next period

(this condition is considered with probability q̄(i)), the following statements hold:

{N(Al+1(di)|i)} = {Al+2(i)}.

Using the second expression of Lemma 3, we can write the following:

αq̄(i)C̃(di, {xN(j|i) −D}j≥1) = q̄(i)E
∑

l≥0

1{L(di) > l}αC l(xA
l+2(i) −D),

= q̄(i)

(

∑

l≥0

Pr{L(i) ≤ l + 1 ≤ L(di)}C l+1(x0) + E
∑

l≥0

1{L(i) > l + 1}C l(xA
l+2(i))

)

,

= q̄(i)

(

∑

l≥1

Pr{L(i) ≤ l ≤ L(di)}C l(x0) + E
∑

l≥1

1{L(i) > l}C l(xA
l+1(i))

)

. (3.33)

Using Equations 3.24, 3.31, 3.33, we write Equation 3.22 as follows:

fn(i, x) =

C̃(i, x) + min
x0≥x1

{

c(x0 − x1) + Ĉ(i, x0) + q(i)Ef̃n−1(i
∗
+, x

0 −D) + q̄(i)Eg̃n−1(d
i, x0 −D)

}

,

= C̃(i, x) + f̃n(i, x
1).

This proves the theorem for Equation 3.20. To prove Equation 3.21, we focus on the

second and the fourth terms in Equation 3.23. The second term is very similar to the

fifth term of Equation 3.20 except the index of random variable N(j|.).

αξ(i)C(di, {xN(j|di) −D}j≥1) = αξ(i)E
∑

l≥0

1{Al+1(di) > 1}C l(xN(Al+1(di)|di) −D).

The following statement is true given that the supply process is in the disruption state

di and it will stay in the same state in the next period (This condition is expressed with

probability ξ(i) in the second term in Equation 3.23):

{N(Al+1(di)|di)} = {Al+2(di)}. (3.34)
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Using the equality in (3.34), we can write the following:

αξ(i)C(di, {xN(j|di) −D}j≥1) =

ξ(i)E
∑

l≥0

αC l+1(xA
l+2(di))

(

1{L(di) > l + 1}+ 1{L(di) = l + 1}
)

,

= ξ(i)E
∑

l≥1

C l(xA
l+1(di))

(

1{L(di) > l}+ 1{L(di) = l}
)

,

= ξ(i)E
∑

l≥1

1{L(di) > l}C l(xA
l+1(di)) + ξ(i)

∑

l≥1

Pr{L(di) = l}C l(x1).

(3.35)

Similar expansion will be applied to the fourth term in Equation 3.23.

αξ̄(i)C̃(i, {xN(j|di) −D}j≥1) = ξ̄(i)E
∑

l≥0

1{L(i) > l}αC l(xN(Al+1(i)|di) −D).

Given that the supply process is in the disruption state di and it will jump back to healthy

state i (this condition is expressed with ξ̄(i)), the following statement hold:

{N(Al+1(i)|di)} = {Al+2(di)}.

Using this equality and the third expression of Lemma 3, we can make the following

statement:

ξ̄(i)C̃(i, {xN(j|di) −D}j≥1) =
∑

l≥0

E1{L(i) > 0}C l+1(xA
l+2(di)),

=
∑

l≥0

E

(

1{L(di) > l + 1}+ 1{L(di) ≤ l + 1 ≤ L(i)}

)

C l+1(xA
l+2(di)),

=
∑

l≥1

E1{L(di) > l}C l(xA
l+1(di)) +

∑

l≥1

Pr{L(di) ≤ l ≤ L(i)}C l(x0). (3.36)

Using Equations 3.25, 3.35 and 3.36, we can rewrite Equation 3.23 as follows:

gn(d
i, x) =

∑

l≥0

E[1{L(di) > l}C l(xA
l+1(di))] + ξ(i)

∑

l≥0

Pr{L(di) = l}C l(x0)

+ ξ̄(i)
∑

l≥0

Pr{L(di) ≤ l ≤ L(i)}C l(x0) + αξ(i)Eg̃n−1(d
i, x1 −D)

+ αξ̄(i)Ef̃n−1(i, x
1 −D),
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which is equal to

gn(d
i, x) = C̃d(d

i, x) + Ĉd(d
i, x) + αξ(i)Eg̃n−1(d

i, x1 −D) + αξ̄(i)f̃n−1(i, x
1 −D),

= C̃d(d
i, x) + g̃n(d

i, x).

�

Lemma 4 Ĉ(i, y) is convex in y.

Proof

The convexity of Ĉ(i, y) and Ĉ(di, y) follows from the convexity of C l(x) which can be

easily shown by taking the second forward difference of C l(x). �

Lemma 5 Suppose Bh is an totally ordered state space of a stochastically monotone

Markov chain and h(i, u) is a function from Bh × R to R. For two elements {i, j :

j � i, j ∈ Bh, i ∈ Bh} and a given u, h(i, u) ≥ h(j, u) implies Eh(i+, u) ≥ Eh(j+, u)

where i+ represents the next state of the Markov chain given that the present state is i.

Proof

Eh(j+, u)− Eh(i+, u) =
∑

k∈B

pjkh(k, u)−
∑

k∈B

pikh(k, u),

=
∑

k∈Bh

h(k, u)(pjk − pik).

Using summation by parts,

∑

k∈Bh

Eh(k, u)(pjk − pik) =
N−1
∑

k=0

k
∑

u=o

(pju − piu)(h(k, u)− h(k + 1, u)) +
N
∑

u=0

(pju − piu)h(N, u),

=
N−1
∑

k=0

(1−
N
∑

u=k+1

pju − 1 +
N
∑

u=k+1

piu)(h(k, u)− h(k + 1, u)),

=
N−1
∑

k=0

(
N
∑

u=k+1

piu −

N
∑

u=k+1

pju)(h(k, u)− h(k + 1, u)) ≤ 0.

The last inequality follows from the negativity of (
∑N

u=k+1 piu −
∑N

u=k+1 pju) which is

implied by the monotonicity of the Markov chain. �
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3.B Parameter Values for Supply Disruption Behav-

ior of the Model

In this section, we present our calculation scheme of parameter values to obtain desired

numbers of expected disruption periods. For this purpose, we run an algorithm which

calculates expected expected amount of periods spent in disruption states for an irre-

ducible Markov chain in a finite horizon. The algorithm utilizes conditional expectations

for each period in the following way: Define Γn(i) as expected number of periods spent

in disruption states in n-period planning horizon. Then,

Γn(i) =
∑

j∈Bh

q̄(i)pijΓn−1(j) + q(i)Γn−1(d
i),

and

Γn(d
i) = 1 + ξ(i)Γn−1(i) + ¯ξ(i)Γn−1(d

i),

where Γ1(d
i) = 1 and Γ1(i) = 0 for all i ∈ Bh. Using a Markov chain for which the state

space consists of three healthy states, we run two nested for loops for α ∈ [0.001, 0.4] and

β ∈ [0.19, 0.25] which constitutes disruption and recovery probabilities as in Table 3.7.

Resulting parameter values from this search is given in Table 3.8.

Table 3.7: Parametrized Disruption and Recovery Probabilities of the Markov Chain

State 0 State 1 State 2
Supply Disruption (q(i)) 0.001 3/2α 2α
Disruption Recovery (ξ(i)) β β/2 β/3

3.C Analysis for Supply Failure

In this appendix, we consider supply failures, which we define as permanent loss of suppli-

ers. Note that it is not difficult to show that the Theorem 2 hold when ξ(i) = 1, ∀i ∈ B,

therefore omitted here. In this section, we first present monotonicity conditions of base

stock levels for the supply failure case. Later, we will proceed to our numerical experi-

ments. Our results indicate that the coupled effect of random lead time and disruptions

and the effect of nonstationarity are elevated versions of the disruption results presented

in Section 3.5.

We will start our analysis by formulating our model for Markov-modulated supply

failure and random lead time. We should start with the result of supply failure (permanent
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Table 3.8: Parameter Values for Disruption Behavior of the Model

5% Disruption Periods e d q(0) q(1) q(2) ξ̄(0) ξ̄(1) ξ̄(2)
stable-LID 0.8 0.1 0.001 0.0105 0.014 0.256 0.128 0.085
stable-SFD 0.8 0.1 0.001 0.0075 0.01 0.248 0.124 0.083
unstable-LID 0.12 0.1 0.001 0.0375 0.05 0.99 0.495 0.33
unstable-SFD 0.12 0.1 0.001 0.0255 0.034 0.95 0.475 0.317
10% Disruption Periods
stable-LID 0.8 0.1 0.001 0.0195 0.026 0.216 0.108 0.072
stable-SFD 0.8 0.1 0.001 0.0135 0.018 0.204 0.102 0.068
unstable-LID 0.12 0.1 0.001 0.0765 0.102 0.98 0.49 0.327
unstable-SFD 0.12 0.1 0.001 0.0555 0.074 0.96 0.48 0.32
15% Disruption Periods
stable-LID 0.8 0.1 0.001 0.0285 0.038 0.192 0.096 0.064
stable-SFD 0.8 0.1 0.001 0.0225 0.03 0.212 0.106 0.071
unstable-LID 0.12 0.1 0.001 0.1245 0.166 0.99 0.495 0.33
unstable-SFD 0.12 0.1 0.001 0.0915 0.122 0.99 0.495 0.33

loss of supplier) on the single period cost function Ĉ(di, y). As stated in Theorem 1 of

Song and Zipkin (1996), P{L(i) ≤ l ≤ L(i+)} = Pr{L(i) = l}, ∀l ≥ 0, when i+ = i.

Therefore,

Ĉ(di, x) =
∑

l≥0

Pr{L(di) = l}C l(x) =
∑

l≥0

Pr{L(di) = l}C l(x), (3.37)

assuming the random movements of outstanding orders in a disruption state (di) follows

the same distribution with its associated healthy state (i).

Then multi-period cost function can be expressed as follows:

f̃n(i, x) = min{c(y − x) + q(i)Ĉ(i, y) + q̄(i)Ĉ(di, y) + αq(i)Ef̃n−1(i+, y −D)+ (3.38)

αq̄(i)Eg̃n−1(d
i, y −D) : y≥x},

where

g̃n(d
i, x) = Ĉ(di, x) + αEg̃n−1(d

i, x−D). (3.39)

Transformation Wn(i, x) = f̃n(i, x) + cx leads to

Wn(i, x) = min{Gn(i, y) : y ≥ x}, (3.40)
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where,

Gn(i, y) =cy(1− αq(i)) + q(i)Ĉ(i, y) + q̄(i)Ĉ(di, y) + αq(i)EWn−1(i+, y −D) (3.41)

+ αq̄(i)Eg̃n−1(d
i, y −D).

The following theorem is presented without proof since its proof is the same with Theorem

1.

Theorem 3 The following statements are true.

a) Both of Ĉ(i, y) and Ĉ(di, y) are convex in y.

b) g̃n(d
i, x) is convex in x,

c) Gn(i, y) is convex in y,

d) Wn(i, x) is convex in x,

e) the state-dependent base stock policy is optimal.

The state-dependent optimal base stock policy can be characterized with Sn(i), which

is the optimal inventory position after the replenishment order when there are n periods

ahead and the supply system is in state i. In the remainder of the section, we analyze the

monotonicity conditions of time-dependent inventory policy parameters to derive further

managerial insight into the problem.

We assume the inventory position to be a discrete variable, since this is more realistic

in a spare parts context. Hence, define the forward difference operator ∆xh(x) = h(x +

1)− h(x). We suppress the subscript for notational simplicity throughout the appendix.

Unless otherwise stated, ∆ implies the forward difference of functions with respect to

inventory level or inventory position variables, e.g. x or y. The first forward difference of

our cost functions

∆Wn(i, x) =







0, for x < Sn(i),

∆Gn(i, x), for x ≥ Sn(i).

where

∆Gn(i, x) = c(1− αq(i)) + q(i)∆Ĉ(i, x) + q̄(i)∆Ĉ(di, x) + αq(i)E∆Wn−1(i+, x−D)

+ αq̄(i)∆Eg̃n−1(d
i, x−D),

and

∆g̃n(d
i, x) = ∆Ĉ(di, x) + α∆Eg̃n−1(d

i, x−D). (3.42)
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Since costs after supply failure constitute a major component of Gn(i, x), we should start

our monotonicity analysis with g̃n(d
i, x). For the analysis we utilize stochastic ordering

(Shaked and Shanthikumar, 2007), which is defined as follows.

Definition 5 X and Y are two random variables. X ≥st Y if

P{X > l} ≥ P{Y > l} ∀l ∈ (−∞,∞).

The effect of stochastically ordered lead times on the infinite horizon base stock policy

is analyzed from the average and discounted cost perspectives by Song (1994a) and Song

(1994b), respectively. In the latter study Song proved that the stochastic order relation-

ship is sufficient for α = 1. We use similar arguments to understand this effect on the

single period costs before and after supply failure in a finite-horizon setting. In the fol-

lowing lemma, we show the monotonicity conditions after supply failure for α < 1 and

prove that the monotonicity is preserved over the rest of the planning horizon.

Lemma 6 For two states of the Markov chain {i, j : j � i, j, i ∈ Bh} if

1. L(i) ≥st L(j),

2. p

h+p
≥ Ω1(i, j, α, y),

where

Ω1(i, j, α, y) =
φ(i, α, y)− φ(j, α, y)

ψ(i, α)− ψ(j, α)
, (3.43)

ψ(i, α) =
∑

l≥0

αlPr{L(i) = l},

and

φ(i, α, y) =
∑

l≥0

αlPr{L(i) = l}Pr{Dl+1 ≤ y},

then

a) ∆Ĉ(di, x) is non-increasing in i,

b) ∆g̃n(d
j, x)−∆g̃n(d

i, x) ≤ 0.

Proof of Lemma 6:

The proof of the lemma consists of two parts. First we prove that, for given conditions,

the statement a holds. Note that statement a is proved for α = 1 by Song (1994a).
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Hence, we will only focus on α < 1 here. To establish conditions 1 and 2, we start with

the following statement:

∆Ĉ(di, x) =
∑

l≥0

Pr{L(i) = l}∆C l(x),

=
∑

l≥0

Pr{L(i) = l}αl(−p+ (p+ h)Pr{Dl+1 ≤ y}).

Let us define two generating functions:

ψ(i, α) =
∞
∑

l=0

αlPr{L(i) = l},

φ(i, α, y) =
∑

l≥0

αlPr{L(i) = l}Pr{Dl+1 ≤ y}.

Using these statements we write

∆Ĉ(di, x)−∆Ĉ(dj, x) = −p(ψ(i, α)− ψ(j, α)) + (p+ h)(φ(i, α, y)− φ(j, α, y)),

for α < 1. The second condition of the lemma implies the statement a if ψ(j, α) ≥ ψ(i, α)

and φ(j, α, y) ≥ φ(i, α, y) given that L(i) ≥st L(j). Hence we only need to show (for

statement a) that L(i) ≥st L(j) implies ψ(j, α) ≥ ψ(i, α) and φ(j, α, y) ≥ φ(i, α, y). Note

that L(i) ≥st L(j) is defined as

Pr{L(i) ≤ l} ≤ Pr{L(j) ≤ l} ∀l ∈ [0,∞). (3.44)

Let us define

ψ̃(i, α) =
∞
∑

l=0

αlPr{L(i) ≤ l}. (3.45)

Equation 3.44 yields

ψ̃(j, α) ≥ ψ̃(i, α).

By interchanging summation indices in Equation 3.45, we can state that

ψ̃(i, α) =
ψ(i, α)

1− α
,

implying

ψ(j, α) ≥ ψ(i, α).
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To establish φ(j, α, y) ≥ φ(i, α, y) for α < 1, we write

φ(i, α, y)− φ(j, α, y) =
∑

l≤0

αlPr{Dl+1 ≤ y}
[

Pr{L(i) = l} − Pr{L(j) = l}
]

.

Using summation by parts,

φ(i,α, y)− φ(j, α, y) =

−
∑

l≥0

l
∑

k=0

(

Pr{L(i) = k} − Pr{L(j) = k}
)

(Pr{Dl+2 ≤ y}αl+1 − Pr{Dl+1 ≤ y}αl),

= −
∑

l≥0

(Pr{L(i) ≤ l} − Pr{L(j) ≤ l})(Pr{Dl+2 ≤ y}αl+1 − Pr{Dl+1 ≤ y}αl).

The negativity of the first parenthesis comes from the stochastic order in condition 1, and

the negativity of the second parenthesis comes from the convolution of identical random

variables. Therefore,

φ(i, α, y)− φ(j, α, y) ≤ 0,

which proves statement a. Statement b is proved by induction. For initialization,

∆g̃1(d
j, x)−∆g̃1(d

i, x) = ∆Ĉ(dj, x)−∆Ĉ(di, x) ≤ 0.

Assume it is true for n. For n+ 1,

∆g̃n+1(j, x)−∆g̃n+1(i, x) = ∆Ĉ(dj, x)−∆Ĉ(di, x)+αE∆g̃n(d
j, x−D)−αE∆g̃n(d

i, x−D).

First two terms are non-positive due to the assumption of the lemma, the non-positivity

of the last comes from the induction hypothesis. �

Lemma 6 shows that the stochastic ordering between lead times of different states is not

enough for the discounted cost case. We also need the function Ω1(.), which captures the

relationship between discount rate and lead time demand. The behavior of this function

for its different parameters is presented in Figure 3.19.

Our numerical experiments indicate that Ω1(.) is smaller than zero for the majority of

the considered parameter values. This indicates that the second condition of the lemma

is satisfied most of the time. Therefore, if we define an optimum inventory position after

supply failure, Zn(d
i), then we can claim that it is monotonic in unhealthy states of the

Markov chain. In other words, the amount of required inventory to mitigate the effect

of random lead time after failure increases as the supply system gets worse. To obtain a
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Figure 3.19: Ω1(i+ 1, i, α, y), i ∈ [0, 9]

similar monotonicity analysis for the whole system, we need to consider the monotonicity

of the single period cost function before failure and establish its relationship with the

stochastic ordering of lead time distributions.

The monotonicity conditions for the single period cost (Ĉ(i, x)) for α = 1 are given in

Song and Zipkin (1996) as follows: Define R(i, l) = Pr{L(i) ≤ l ≤ L(i+)} , then

l
∑

m=0

(R(i,m)−R(j,m)) ≥ 0, 0 ≤ l <∞, (3.46)

and
∞
∑

l=0

R(i, l)−
∞
∑

l=0

R(j, l) = 0. (3.47)

For the discounted cost case (α < 1), we need one more condition as stated in the

following Lemma.

Lemma 7 For α < 1, ∆Ĉ(i, x) ≥ ∆Ĉ(j, x) if

1.
l
∑

m=0

(R(i,m)−R(j,m)) ≥ 0, 0 ≤ l <∞,

2.
∞
∑

l=0

R(i, l)−
∞
∑

l=0

R(j, l) = 0,

3. p

h+p
≥ Ω2(i, j, y),
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where

Ω2(i, j, , y) =

∑

l≥0

αlPr{Dl+1 ≤ y}
(

R(i, l)−R(j, l)
)

∑

l≥0

αl
(

R(i, l)−R(j, l)
) . (3.48)

The proof of Lemma 7 is omitted since it is similar to the initial part of the proof

of Lemma 6. Ω2(.) in Equation 3.48 gives the functional relationship between inventory

coverage, R(i, l), convoluted demand, and the discount rate. The behavior of this function

for different values of its parameters is given in Figure 3.20.

Ω2(.) is difficult to interpret. As can be seen in Figure 3.20, this function maps

different states of the Markov chain to a large variety of values. Since result of Lemma

7 is an input in Theorem 4, given below, we cannot say that conditions of Theorem 4

are always satisfied in our stochastic process. Also, our numerical experiments show that

this function leads to negative values for smaller values of α such as 0.1. In other words,

our monotonicity results are more reliable in an environment with high interest rates

compared to more stable economies with lower inflation rates.

Theorem 4 states the sufficient conditions for monotonicity of optimal base stock levels

given that supply failure probabilities are non-decreasing over healthy states of the Markov

chain.

Theorem 4 Suppose q(i) ≥ q(j) for two states of a Markov chain {i, j : j � i, i, j ∈

Bh}. If

1. ∆Ĉ(j, x) ≤ ∆Ĉ(i, x),
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Figure 3.20: Ω2(i+ 1, i, α, y), i ∈ [0, 9]
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2. ∆Ĉ(dj, x) ≤ ∆Ĉ(di, x),

3. ǫthrn ≥ ǫ = q(i)− q(j) while cα +∆g̃n(d
j, x) > 0,

where,

ǫthrn (i, j, α, x) = q̄(i)

(

∆gn(d
i, x)−∆gn(d

j, x)

cα +∆gn(dj, x)

)

, (3.49)

all hold, then

a) ∆Wn−1(j, x)−∆Wn−1(i, x) ≤ 0,

b) ∆Gn(j, x)−∆Gn(i, x) ≤ 0,

c) Sn(j) ≥ Sn(i),

Proof Take two states, j � i on the state space Bh of a Markov chain. For n = 1,

∆W0(j, x) = ∆W0(i, x) = 0,

and

∆G1(j, x)−∆G1(i, x) = cαǫ+q(j)∆Ĉ(j, x)−q(i)∆Ĉ(i, x)+q̄(j)∆Ĉ(dj, x)−q̄(i)∆Ĉ(di, x).

We know q(j)∆Ĉ(j, x)− q(i)∆Ĉ(i, x) ≤ 0 under the assumptions of the theorem. So,

cαǫ+ q̄(j)Ĉ(dj, x)− q̄(i)∆Ĉ(di, x) ≤ 0 ⇒ ∆G1(j, x)−∆G1(i, x) ≤ 0.

Since,

cαǫ+q̄(j)∆Ĉ(dj, x)−q̄(i)∆Ĉ(di, x) = q̄(i)
(

∆Ĉ(dj, x)−∆Ĉ(di, x)
)

+ǫ
(

cα +∆Ĉ(dj, x)
)

,

cα + ∆Ĉ(dj, x) ≤ 0 implies ∆G1(j, x) − ∆G1(i, x) ≤ 0. If cα + ∆Ĉ(dj, x) > 0 then,

ǫ ≤ ǫthr1 (x) implies the desired inequality since ∆g̃1(d
i, x) = ∆Ĉ(di, x). Therefore b is true

for n = 1 under these assumptions. b implies c.

Assume the theorem is true for n. For n+ 1 ,

∆xWn(j, x)−∆xWn(i, x) =



















0, for x ≤ Sn(i) ≤ Sn(j),

−∆Gn(i, x) ≤ 0, for Sn(i) ≤ x ≤ Sn(j),

∆Gn(j, x)−∆Gn(i, x) ≤ 0, for Sn(i) ≤ Sn(j) ≤ x.
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This proves a. To show b is true for n+ 1,

∆Gn+1(j, x)−∆Gn+1(i, x) = cαǫ+ q(j)∆Ĉ(j, x)− q(i)∆Ĉ(i, x) + q̄(j)∆Ĉ(dj, x)

− q̄(i)∆Ĉ(di, x) + αq(j)E∆Wn(j+, x−D)− αq(i)E∆Wn(i+, x−D)

+ αq̄(j)E∆g̃n(d
j, x−D)− αq̄(i)E∆g̃n(d

i, x−D).

We know q(j)∆Ĉ(j, x)− q(i)∆Ĉ(i, x) ≤ 0 from assumptions of the theorem.

q(j)E∆Wn(j+, x−D)− q(i)E∆Wn(i+, x−D) ≤ 0,

can be easily shown using Lemma 5 since we show that ∆Wn(j, x) ≤ ∆Wn(i, x). Therefore,

cαǫ+ q̄(j)∆Ĉ(dj, x)− q̄(i)∆Ĉ(di, x)+αq̄(j)E∆g̃n(d
j, x−D)−αq̄(i)E∆g̃n(d

i, x−D) ≤ 0,

(3.50)

implies ∆Gn+1(j, x) − ∆Gn+1(i, x) ≤ 0. Let us recall that ∆g̃n+1(d
j, x) = ∆Ĉ(dj, x) +

αE∆g̃n(d
j, x−D). Therefore, Equation 3.50 equals to

= cαǫ+ q̄(j)∆g̃n+1(d
j, x)− q̄(i)∆g̃n+1(d

i, x),

= q̄(i)
(

∆g̃n+1(d
j, x)−∆g̃n+1(d

i, x)
)

+ ǫ
(

αc+∆g̃n+1(d
j, x)

)

.

Using Lemma 3, we can state that if αc+∆g̃n+1(d
j, x) ≤ 0, then ∆Gn+1(j, x) ≤ ∆Gn+1(i, x).

Otherwise, ǫ ≤ ǫthrn (x) implies the desired inequality (for statement b) which also implies

the statement c. �

Theorem 4 indicates that even when forward difference of single period costs before

and after supply failure (∆Ĉ(i, x) and ∆Ĉ(di, x)) are ordered over states of the Markov

chain, this ordering cannot be preserved without another condition on failure probabilities

of different states due to the nonstationary character of the failure risk. Since the supply

failure probability changes over the states of the Markov chain, the trade-off between

buying or waiting becomes more complicated. Specifically, postponing the procurement

to the next period yields discounted acquisition cost together with higher stock-out risk

after the supply failure. This trade-off can be seen in the third condition of Theorem 4.

Also the following corollary shows that the order between single-period costs over different

states is preserved when q(i) = q, ∀ i ∈ Bh.

Corollary 5 If q(i) = q, ∀i ∈ Bh, and conditions 1 and 2 of Theorem 4 hold, then

a) ∆Wn−1(j, x)−∆Wn−1(i, x) ≤ 0,

b) ∆Gn(j, x)−∆Gn(i, x) ≤ 0,
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c) Sn(j) ≥ Sn(i).

The proof of Corollary 5, can easily be done if q(i) − q(j) = ǫ = 0 in the proof of

Theorem 4. Please note that the sufficient conditions of Theorem 4 are intricate and may

fail occasionally. However, our numerical experiments indicate that the monotonicity of

optimal base stock levels still holds, especially for “risky” states of the Markov chain.

3.C.1 Results of Numerical Experiments

In this subsection, we present results of our analysis on coupled effect of random lead time

and supply failures. For this, we employ the queueing system discussed in Section 3.5.1.

As is pointed in Section 3.5.2, the methodology we followed is based on calculating optimal

order-up-to levels using value iteration algorithm and plugging them into simulation to

understand their performances under different scenarios.

We used a smaller scenario setting (than the presented in Table 3.2) only including

existence of disruption, random vs. deterministic lead time and supply tendency. Hence,

we evaluated 8 different scenarios for this part of the study.

One major downside of considering supply failure is the possibility of complete domi-

nation of backlog costs due to early supply failures. To prevent this, we collected empirical

data from a maintenance repair organization, Fokker Services, and calibrated failure be-

havior of our model to the following statistics:

Table 3.9: Failure Duration Statistics From Empirical and Simulated Data

Empirical Durations Simulated Durations
Mean 4.1548 4.1566
Std. Dev. 6.5313 11.9145
C.I. 0.3303 0.1810

Distribution of disruption length is given in the following histogram. Note that we

consider a Markov chain consisting of 10 healthy and 10 disruption states in order to see

the effect of large state space on our results.

Calibrated arrival (e), departure (d) and the state-dependent supply failure probabili-

ties for Queue #1 (Figure 3.4) are given in Table 3.10 and Table 3.11. The state-dependent

delivery probabilities for Queue #2, which generates random lead times, are given in Ta-

ble 3.11. Due to the delivery probabilities, the first two moments of the state-dependent

lead time distributions are higher for unhealthy states than those of healthy states.

Using the parameter values in Tables 3.10 and 3.11, we calculate the optimal base

stock levels using the value iteration algorithm for 100 periods. The finite horizon base
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Figure 3.21: Histogram of Failure Durations for Simulated and Real Data

Table 3.10: Arrival (e) and Departure (d) Probabilities for Queue #1

Scenario e d
Unstable supply 0.12 0.1
Stable supply 0.08 0.1

stock levels for the benchmark scenario (with both lead time and supply failure risks) are

given in Figure 3.22. Optimal base stock levels of unhealthy states (states 6-10 in Table

3.11) are depicted with bold-dashed lines whereas others are given with thin straight

lines. As can be seen, even small differences in failure probabilities may lead to significant

differences in optimal base stock levels. This is most apparent at the early stages of the

planning horizon, whereas optimal base stock levels converge towards the end.

Unfortunately, initial supplier conditions and initial inventory levels of spare parts

are unknown in our data set, e.g., the purchase history of spare parts might start with

suppliers that are moderately healthy or not. To mimic this feature in our simulation,

we consider 20% of 100 periods as warm-up period. During the warm-up, the supply

failure events are disabled to prevent each replication from starting with failed supply.

This configuration of the simulation model generates supply failures in 15% of 50,000

replications in the unstable scenario (benchmark). This ratio drops to 2% for stable

supply.

The performance measures we track in our simulation model are total discounted cost,

total discounted backlog cost, ready rate (fraction of time with positive stock on hand) and

fill rate (fraction of demand that can be satisfied immediately from stock on hand (Axsäter,
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Table 3.11: State Dependent Delivery Probabilities for Queue #2

State Index 0 1 2 3 4 5 6 7 8 9 10
Supply Failure Probabilities: 0 0 0 0 0 0 0.01 0.02 0.03 0.04 0.05
Delivery Probabilities: 0.6 0.55 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1
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Figure 3.22: Base Stock Levels for the Benchmark Scenario

2006)). Total cost and total backlog costs are common performance measures in inventory

control simulations. Ready rate and fill rate are important service measures for the service

sector, since most customer contracts utilize either of these (Oliva and Kallenberg, 2003).

To determine the number of replications, we first conduct a pilot study consisting of 5000

replications. Results of this study are used to compute the total number of replications

which is set to 50,000. To control the variance, we use common random numbers which

cause dependency between replications. Therefore, paired-t-tests are employed to check

whether there is statistically significant difference between scenarios.

The discount rate per period is set to 0.995, which leads to a 6% annual discount rate

over the entire planning horizon, since a period stands for a month in our calibration.

Other system parameters are taken as follows: Without loss of generality, we set the

acquisition cost equal to 2 per item. The holding cost is equal to 0.2 and backlog cost is

equal to 4 per item per period. Random demand in each period is assumed to follow a

Poisson distribution with mean 2.

Simulation results for the five different scenarios with unstable supply are given in

Figures 3.23 and 3.24. Table 3.12 shows the percent difference of each scenario compared
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to the benchmark. These results indicate that the effect of ignoring random lead time

together with supply failure can increase the total cost of up to 51% for the unstable

supply scenario (run 0). Ignoring only supply failure risk creates 13.24% loss (run 3).

Taking both forms of supply risk into account suppresses backlog costs (Figure 3.23) and

leads to an increase of up to 17% in ready rate and up to 13% in fill rate. In terms of

costs, comparing run 3 with run 5, we observe that the effect of supply failure is more

prominent than that of the random lead time. Also, the effect of the nonstationarity in

supply risks (run 0 versus run 1) is as important as the effect of supply failure (run 3

versus run 7).

In the stable supply scenario (Figure 3.26 and Table 3.13), the cost of ignoring supply

risk factors is less in terms of all the performance measures. Our simulation results

indicate that ignoring both the random lead time and the supply failure (run 2) can lead

to a decrease of up to 11.2% (ready rate) and up to 7.1% (fill rate). One important

observation is the decreased effect of supply failure compared to the unstable supply

scenario. Obviously, considering supply-side risks, especially supply failure, has a higher

priority when the supply system is unstable. Also, the effect of ignoring nonstationarity

in the system seems to be less important in the stable supply case.
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Figure 3.23: Total Costs for Unstable Supply

In the maintenance sector, operators of capital goods can incur extremely high down-

time costs even if a single spare part is unavailable. For instance, consider aircraft on

ground situations in the airline industry (Wong et al., 2007) or shutdowns in refineries

(Trimp et al., 2004). This is one of the main motivations of performance-based contracts
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Figure 3.24: Service Measures for Unstable Supply

Table 3.12: Percentage Differences When Supply Side Risk Is Ignored (Unstable Supply

Scenario)

Run# Policy Name Total Cost Backlog Cost Fill Rate Ready Rate
0 State Indp. Det. LT 50.9 ± 1.3 14204 ± 621 16.1 ± 0.1 21.2 ± 0.8
1 State Dep. Det. LT 37.5 ± 1.2 10163 ± 502 12.8 ± 0.1 17.04 ± 0.8
3 State Dep. Rand. LT 13.2 ± 0.8 4243 ± 315 3.1 ± 0.1 3.3 ± 3.2
5 Det. LT & Supp. Fail. 6.5 ± 0.1 913 ± 13.1 6.5 ± 0.03 10.1 ± 0.5
7 Rand. LT & Supp. Fail. 0 0 0 0

Table 3.13: Percentage Differences When Supply Side Risk Is Ignored (Stable Supply

Scenario)

Run# Policy Name Total Cost Backlog Cost Fill Rate Ready Rate
0 State Indp. Det. LT 13.9 ± 0.6 2364 ± 194.8 8 ± 0.07 12.4 ± 0.1
2 State Dep. Det. LT 11.1 ± 0.5 1826 ± 162.3 7.1 ± 0.06 11.2 ± 0.06
4 State Dep. Rand. LT 2.1 ± 0.4 542.3 ± 111.3 0.56 ± 0.04 0.61 ± 0.04
6 Det. LT & Supp. Fail. 6.4 ± 0.1 690.5 ± 9.8 6 ± 0.03 9.9 ± 0.04
8 Rand. LT & Supp. Fail. 0 0 0 0



94 Spare Parts Management Under Markov-Modulated Supply Risk

0 

50 

100 

150 

200 

250 

300 

350 

400 

450 

500 

Policy with 

State Indpnt. 

Policy with 

Det. LT 

Policy with 

Policy Rand. LT 

Policy with 

Det. LT & Supp. 

Fail. 

Policy with 

Rand. LT & 

Supp. Fail. 

Total Cost 

Backlog Cost 

Figure 3.25: Total Costs for Stable Supply

and criticality of service rates. From a modeling perspective, this implies extremely high

backlog costs. To understand the effect of supply risk for extreme backlog cost rates, we

run the above analysis under various backlog multipliers, which we define as backlog cost

over acquisition cost (Figures 3.27 and 3.28).

The combined effect of random lead times and supply failure increase to 2500% when

the backlog multiplier is set to 100 in the unstable supply scenario (Figure 3.27). Further-

more, the effects of supply failure and random lead times seem to be very close, whereas
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Figure 3.26: Service Measures for Stable Supply



3.C Analysis for Supply Failure 95

0% 

500% 

1000% 

1500% 

2000% 

2500% 

2 5 10 25 50 100 

To
ta

l 
C

o
st

 P
e

rc
e

n
t 

D
if

fe
re

n
ce

 

Backlog Cost 

Rand. LT Effect 

Sup Fail. Effect 

Combined 

Effect 

Figure 3.27: Effect of Random Lead Times and Supply Failure Under Different Backlog

Costs (Unstable Supply)

their combined effect is much more than the sum of the individual effects. For the stable

supply scenario (Figure 3.28), the combined effect can create cost increases of up to 800%.

Here we can clearly observe the dominating effect of random lead times compared to the

effect of supply failure. These results may provide an explanation for the overstocking

behavior often observed in the maintenance sector (Ghobbar and Friend, 2002). One
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Figure 3.28: Effect of Random Lead Times and Supply Failure Under Different Backlog

Costs (Stable Supply)
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can argue that the managers are aware of the potential affects of supply problems on

their service level. However, they tend to keep more stock than they need due to lack of

quantitative models or proper decision making tools.

3.C.2 Summary and Discussion

In this part of the thesis, we present a more problematic subclass of supply disruptions:

supply failures which we define to be permanent loss of supplier. We present analytical

and numerical analysis from our model.

In general our results are in parallel with the ones presented in Sections 3.5.3 with

disruptions. We find the coupled effect of random lead time and supply failure larger than

the coupled effect with disruptions. This result is parallel to our understanding.

We can easily extend results of prevention vs treatment analysis presented in Section

3.5.4 to supply failures. Since supply failures aggravates the effect of supply risk on

total cost, we expect proactive approach even more important compared to disruptions.

Similarly this result implies the importance of advance warning signals and statistical

indicators as in Chapter 2.



Chapter 4

Dual Sourcing with Stock-out

Dependent Substitution

4.1 Introduction

In many businesses, companies prefer having multiple suppliers in order to ensure unin-

terrupted supply of their raw material or components of their products. Among these

suppliers, the procurement department may have a preferred one due to a close relation-

ship or strategic partnership between companies, as in ‘Partnering for Success Program’

by Boeing (Wilhelm, 2014). Supplier preference of a company may also stem from a qual-

ity difference between candidate suppliers. In fact, Abdolshah (2013) recognizes quality

to be the most important criterion of vendor selection problems. When the supplier pref-

erence is due to a quality difference, companies may primarily purchase from a regular

supplier with higher quality, and keep a back-up supplier which provides possibly lower

quality items, on short notice. Hence another natural factor in supplier selection is the

difference between supplier lead times.

This sort of lead time difference may stem from many factors such as geographical

location, manufacturing process, supplier capacity etc. Regardless of the cause, the effect

of lead time difference on procurement decisions is recognized as a very important factor

affecting total cost and service level of companies (Chopra et al., 2004). In addition,

having different products with similar functionality but possibly different quality levels

introduces substitution into the problem setting.

In practice, substitution may arise in many different forms, depending on customer

behavior and decision makers’ capability of manipulating customer demand. Among

different types of substitution, two of the most common are price-dependent and stock-
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out dependent substitution. The former considers the preference of customers when they

face multiple products with similar functionality but different price and quality levels. In

the latter case, customers are assumed to choose their first preference when that product

exists in the inventory. In case of a stock-out they are offered another product. Hence,

the probability of substitution depends on the stock levels of products in this case.

We consider a procurement problem including two suppliers: the first supplier delivers

high quality items after a nonzero lead time, whereas the second supplier, potentially a

spot market, has a random capacity and provides cheaper, lower quality items with im-

mediate delivery. Hence the trade-off is among speed, quality and capacity uncertainty.

In addition we consider the demand-side effects of having a price and quality difference

between suppliers. Specifically, customers are assumed to prefer the higher quality prod-

uct, and they are offered substitution in case of stock-out. When this happens, we assume

that customers accept the substitution and the company incurs a substitution cost which

may be interpreted as a discount on the product price or a penalty for the customer’s

dissatisfaction.

One of many possible examples for this problem setting in practice is sourcing from

secondary markets and original equipment manufacturers (OEMs) for maintenance com-

panies. In the following section, we present a business case of a maintenance repair

organization (MRO), which is the primary motivation of this study.

4.1.1 Motivational Examples

The authors have contacts with a mid-size Maintenance Repair Organization (MRO) in

Europe which provides maintenance service for aircraft. The fleet, operated by asset

owners or airlines, needs (un)planned maintenance, which creates random spare parts

demand. In addition, the company sells spare parts to other maintenance centers as well

as airline operators. There are more than 500,000 spare parts (numbers) in the company’s

spare parts database.

For spare parts sourcing, the company utilizes original equipment manufacturers (OEM,

regular supplier) as well as spot markets (back-up supplier). OEMs provide brand new

parts to the company in perfect quality with positive lead times (in magnitude of months)

whereas spare parts on spot markets can be in various conditions, e.g. overhauled, ser-

viceable, as-removed etc., with virtually always immediate delivery (a couple of weeks at

most). This is due to the fact that traders on spot markets do not manufacture parts

directly, but instead sell their existing inventory.
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In general, OEMs are assumed to have infinite capacity since annual spare parts de-

mand is relatively small compared to the capacity of their suppliers. Sourcing from spot

markets, on the other hand, is limited to the amount of spare parts available (capacity

of the back-up supplier) at a decision epoch. This availability is random and depends on

various factors such as the size of the installed base in use, surplus inventory from some

airline operators, cannibalism of dismantled aircraft etc. Characteristics of both supply

sources are summarized in Table 4.1.

On the demand side, customers have different attitudes towards the price and the

condition of spare parts. Some customers are willing to pay extra for brand new spare

parts and they demand high service rates from the MRO. These (loyal) customers have

the highest priority and their demand must be satisfied as soon as possible. In case

of a new part stock-out, the company utilizes spare parts from spot markets to avoid

aircraft-on-ground situations, which creates costs for airline operators and may lead to

large contractual fines to the MRO. However, supplying spare parts in other than new

condition pays less (there is a discount on the price), and it may have an implicit cost

for the company due to the fact that repetition of such cases might hurt the relationship

with their loyal customers. Although the company also has price-sensitive customers, it

gives lower priority to such customers and focuses on quality-sensitive customers.

In addition, the company’s (spare parts) demand depends on the aircraft in operation

(the installed base). An increasing number of aircraft in use stimulates the customer

demand, whereas a declining number of aircraft slow the demand rate. In general, the

company has access to fleet utilization information which can be used as an indicator for

changing demand rate.

Another application area of our problem setting is component supply for a manufac-

turing company which can use new parts as well as remanufactured components from

used products (Robotis et al., 2005). After collection, used products are disassembled

and some of their components are refurbished for use in production of new products. In

each period, the production planner first checks the (random) amount of existing reman-

ufactured components, and then orders new ones from its suppliers, which can deliver

after a nonzero lead time due to manufacturing and/or transportation. Assuming cus-

tomer attitude towards the products including remanufactured components is different

(in a negative way), we need to consider a nonzero substitution cost, such as a discount

on selling price, together with other inventory-related cost rates (Robotis et al., 2005).
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4.1.2 The Contribution of the Study

In this study, we established a single period cost function similar to Robotis et al. (2005),

which we then employ in a multi-period dynamic programming model. Since math-

ematical analysis of the multi-period cost function reveals that it has convexity (and

pseudo-convexity) only under some restrictive assumptions, we developed a heuristic my-

opic approach to calculate the policy parameter for the back-up supplier, whereas a

simulation-based algorithm is developed for orders to the regular supplier. In our nu-

merical experiments, we compare our policy with three other heuristic approaches from

Sheopuri et al. (2010) (they show that these heuristics outperform other existing methods

in the literature) as well as either optimal solutions or lower bounds.

Our results indicate that our method produces policies close to the optimum. These

findings indicate that there is a significant motivation for managers to recognize the

quality difference between suppliers (and the customer preference among them) which is

commonly ignored in literature as well as inventory management software used in practice.

Another finding from our experiments is that the performance gap between our method

and other heuristics gets larger when the capacity of the back-up supplier has positive

or negative drift. This feature causes the deviation of other heuristics increases rapidly

whereas our method generates more reliable results. This feature is especially important

in the case of spare parts sourcing from spot markets, as availability on spot markets

grows or shrinks by the installed based. Furthermore, we extend our results to Markov-

modulated demand to capture nonstationarity in demand. These generated policies are

tested with empirical data from a Maintenance Repair Organization who employs spot

markets for sourcing spare parts.

This chapter consists of six main sections. In the next section, we present a brief re-

view of relevant literature, placing our contribution in context. In Section 4.3 we present

the single period problem and its mathematical properties; this comprises a fundamental

building block of our multi-period problem. Section 4.4 is devoted to the development of

multi-period formulation which is the primary focus of this study. This is followed by the

presentation of our heuristic method and its performance compared to other methods in

Section 4.5. Extension of our heuristic is to Markov modulated demand is provided in Sec-

tion 4.6 whereas Section 4.7 includes an application of Markov-modulated demand policies

to an empirical demand data. In Section 4.8 we present summary and our conclusions.
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4.2 Literature Review

Related literature to our work consists of two major research streams: studies on dual-

sourcing and substitution literature. We will provide a brief review of contributions to the

both research streams in this section. While doing so, more attention is spent on latest

contributions to the both areas of the inventory control literature.

Early contributions on dual sourcing problems are by Barankin (1961), Daniel (1963),

Fukuda (1964) and Whittemore and Saunders (1977). Among these studies Fukuda (1964)

proved the optimality of the dual index policy for two supply options with k and k + 1

periods of lead times. Whittemore and Saunders (1977) showed that the optimal policy

is highly state-dependent and complex when the lead time difference between suppliers

is more than one period. Similarly Feng et al. (2006) showed that the base stock pol-

icy is only optimal under restrictive conditions (contrary to the claim by Zhang (1996))

when there are three suppliers with lead times of k, k + 1, and k + 2 periods. Lawson

and Porteus (2000) showed the optimality of a modified base stock policy for the multi-

echelon dual sourcing problem in a serial supply chain. In his problem setting, decision

maker in each echelon decides between expedited (immediate delivery), regular (1 pe-

riod later) or delayed delivery option (2 periods later). Veeraraghavan and Scheller-Wolf

(2008) contributed to this literature showing the separability of the two policy parame-

ters which is exploited for calculation of optimal parameter values in a fast algorithm.

Their method relies on simulation for overshoot distributions to calculate the base stock

level for expedited supplier. Arts et al. (2011) contributed to this research stream by

providing an approximation for the overshoot distribution using Markov chains. Another

important contribution is provided by Sheopuri et al. (2010) who proved the equivalence

of dual sourcing problems to the lost sales problems and use this property to develop new

heuristics which outperform dual index policy when the lead time difference between two

suppliers is longer than one. They also used this equivalence to provide another proof (in

addition to Whittemore and Saunders (1977)) for non-optimality of order-up-to policies

for dual sourcing problems with arbitrary lead time difference.

In addition to the studies on the optimal policy, scholars consider other inventory

control policies for dual sourcing problems. Studies by Scheller-Wolf et al. (2007), Song

and Zipkin (2009), Moinzadeh and Schmidt (1991), Allon and Van Mieghem (2010), Ju

et al. (2015) can be considered in this sub-category of dual sourcing literature. Among

these studies, the study by Ju et al. (2015) is the closest one to our study in the sense

that they consider the quality of back-up supplier, which is expressed with a Binomial
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yield, in their problem setting. An extensive review of the dual sourcing literature (until

2003) can be found in Minner (2003).

Substitution studies in the inventory control literature can be categorized as firm-

driven and customer-driven substitution (Hopp and Xu, 2008). In firm driven substitution,

the seller makes the decision of substituting unsatisfied demand with other products.

Therefore, substitution decision is considered as a part of the problem (Bassok et al.,

1999; Van Mieghem and Rudi, 2002). For the customer-driven substitution, customer

preference is considered in a probabilistic manner (Nagarajan and Rajagopalan, 2008;

Hopp and Xu, 2008). We only review firm-driven substitution studies in this section,

since our problem setting is closer to that research stream. A review of the literature on

the firm-driven substitution can be found in Kök et al. (2009).

Bassok et al. (1999) consider firm-driven downward substitution for a single period

model for N products with immediate deliveries. They show some characteristics of

the optimal policy and provide a greedy algorithm which is shown to be optimal under

a certain assumption. Van Mieghem and Rudi (2002); Van Mieghem (2004) consider

multiple-storage points with multiple products in a newsvendor setting, which they call

“newsvendor network”. Harrison and Van Mieghem (1999) provide optimality for a sin-

gle period model and show the conditions for the optimality of the myopic policy in a

multi-period setting. Rao et al. (2004) consider a multi-period substitution problem with

stochastic programming and suggest a heuristic procedure utilizing optimization, dynamic

programming and simulation-based optimization. He claims that his approach performs

reasonably well and is capable of solving industrial scale problems. Axsäter (2003a,b) rec-

ognize applicability of lateral transshipment models to firm-driven substitution problem.

They develop a lateral transshipment decision rule for N warehouses following the (R,Q)

policy for inventory control (Axsäter, 2003b). A recent review of lateral transshipment

literature is provided by Paterson et al. (2011).

In this study, we consider quality difference between suppliers in a dual sourcing prob-

lem. Apart from the study by Ju et al. (2015), quality difference has not been addressed

in the literature although it is recognized as the one of the key elements for supplier selec-

tion (Abdolshah, 2013). Note that Ju et al. consider the quality difference with Binomial

random yield whereas our approach utilizes a constant cost rate for satisfying high quality

product with a low quality product. Furthermore, our study contributes to substitution

study by considering the lead time difference between suppliers in a multi-period setting.
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Table 4.1: Supply-side Characteristics of the Problem Setting

Characteristic Regular Supplier Back-up Supplier
Capacity Infinite Markovian
Quality High Low

Lead Time Positive Immediate delivery

4.3 Single Period Model

We consider a periodic review model, denoting the low quality inventory as x and the high

quality inventory as y, as in Figure 4.1. The regular, high quality supplier has unlimited

capacity, whereas the capacity of the back-up supplier is random, we model this capacity as

a Markov chain with a known transition matrix. (Note that the Markovian characteristic

of the capacity is only relevant in the multi-period setting, presented in the next section.)

Furthermore, we assume that the regular supplier delivers high quality products with a

positive lead time, LR, whereas orders to the back-up supplier are delivered in the same

period.

We assume constant unit acquisition cost with the regular supplier’s cost cr greater

than the back-up supplier’s cost cs. The characteristic features of the two suppliers are

summarized in Table 4.1.

We assume that the company only receives demand for high quality products; incoming

high quality demand is satisfied from existing high quality inventory in each decision

period. In case of a stock-out, low quality products are used as substitutes (downward

substitution, Figure 4.1). We assume that customers accept this substitution. When both

high and low quality inventories are zero, demand is backlogged. These demand-side

assumptions are motivated by the business case explained in Section 4.1.1.

Other assumptions are as follows: Excess inventory on hand incurs linear holding costs

with cost rates hr ≥ hs for high quality and low quality items, respectively. Unsatisfied

demand incurs per-period backlog cost rate b. We assume backlogging is more costly than

substitution, b ≥ ψ. All cost parameters and state variables are listed in Table 4.2.

The events of each period take place in the following order: First, previous orders

from the regular supplier arrives. The decision maker reviews the inventory levels of the

two products and checks the capacity of the back-up supplier. He places his orders to

both channels, incurring the acquisition costs. The back-up supplier delivers the ordered

low-quality products immediately and random demand arrives. If existing high quality

inventory is sufficient to satisfy the demand, all customers leave the system with high

quality items. If the demand is larger than the high quality inventory level then all
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Table 4.2: Cost parameters and state variables of the problem setting

Variable Explanation
t time index in the multi-period period.
y inventory level for high quality products.
x inventory level for low quality products.
cr acquisition cost from regular supplier.
cs acquisition cost from back-up supplier.
hr holding cost of high quality items obtained from regular supplier.
hs holding cost of low quality items obtained from back-up supplier.
ψ cost of satisfying high quality demand with low quality product.
b backlog cost.
α discounting rate.
φ(.) cumulative distribution function (cdf) of random demand.
K capacity of back-up supplier in current period.
qrt order to regular supplier at period t

high quality items are used and remaining demand is satisfied with low quality items.

Unsatisfied demand after the substitution, if any, is backlogged. At the end of the period,

inventory holding, substitution and backlog costs are incurred.

Figure 4.1: Dual Sourcing with Single Demand Class, Different Quality Levels and

Demand Substitution

The single period cost function with high (y) and low (x) quality stocks is as follows:

L(y, x) ,

y
∫

s=0

[hr(y−s)+hsx]dφ(s)+

y+x
∫

s=y

[hs(x+y−s)+ψ(s−y)]dφ(s)

∞
∫

s=y+x

[b(s−y−x)+ψx]dφ(s).

(4.1)
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where y ∈ R, x ∈ R
+ and φ(.) is cdf of demand. Please note that our single demand

class assumption implies that the low quality inventory level (x) can only take non-

negative values. The first integral considers the case when incoming demand is smaller

than the high quality inventory level; in this case, we incur holding costs accordingly. In

the second integral, we cover the possibility of having customer demand exceed the high

quality stock, but fall below the total inventory. In that case, substitution cost and holding

cost of low quality items are incurred. In the last integral, we consider the possibility

of demand being larger than the summation of high quality (y) and substitutable (x)

products. In that case, backlog and substitution costs are incurred. The following lemma

establishes the structural property of the cost function.

Lemma 8 L(y, x) in Equation 4.1 is jointly convex in y and x.

The convexity of the single period cost function implies that inventory levels that

minimizes the single period cost exist. This result provides the main building block for

the multi-period problem in the following section.

4.4 Multi-Period Model

For the multi-period problem, define Vt(K, y, x) as the minimum cost function of the

system when the inventory levels are y and x for high and low quality items, the capacity

of the back-up supplier is K and there are t periods until the end of the planning horizon.

In our analytical formulation, we assume the lead time of the regular supplier is one

period. The dynamic programming formulation of the multi-period problem is as follows:

Gt(K, vt, wt) = L(y, wt) + cs(wt − x) + cr(vt − y) +

y
∫

s=0

αEVt+1(K+, vt − s, wt)dφ(s)

(4.2)

+

y+wt
∫

s=y

αEVt+1(K+, vt − y, wt + y − s)dφ(s) +

∞
∫

s=y+wt

αEVt+1(K+, vt + wt − s, 0)dφ(s),

and

Vt(K, y, x) = min
x≤wt≤x+K,

y≤vt

{Gt(K, vt, wt)}, y ∈ R, x ∈ R
+, (4.3)
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where vt and wt stand for order-up-to levels for the regular and the back-up suppliers

respectively, and K+ stands for the random capacity of the back-up supplier in the next

period. In this recursive equation, we consider the same cases in the single period function.

Specifically, if the single period demand is lower than the existing high quality inven-

tory level, this demand is supplied from the high quality inventory stock and the state

of the system at the beginning of the next period is given in (4.2) in the first integral.

If the demand is higher than the high quality inventory level but less than the sum of

the inventories, substitution takes place where the amount of substituted demand can be

denoted by D− y. In such a case, the current period’s order constitutes the starting high

quality inventory level at the beginning of the next period, as in the second integral. If

the demand is larger than the summation of both types of stocks, then all existing low

quality items are used for substitution and the rest of the demand is backlogged (the third

integral).

Unfortunately, the analysis of this cost function reveals that joint convexity (and even

pseudo-convexity) in vt and wt holds only under quite restrictive conditions. A complete

convexity analysis of the multi-period function is given in Appendix 4.B. These analyses

indicate that the optimal policy is complex and state-dependent which we confirmed

through numerical experiments. To solve the problem, we developed a heuristic solution

presented in the next section.

4.5 Heuristic Approach

Mathematical analysis of the multi-period cost function reveals that the optimal policy is

state-dependent and highly complex. Therefore development of a simple and applicable

heuristic approach is potentially valuable. To this end, we developed a heuristic policy

which considers two order-up-to levels for high and low quality inventories respectively.

The low quality order-up-to level, w, is found by using a myopic cost function, whereas

calculation of the high quality order-up-to level, v, relies on a simulated distribution of

the total amount of lead time demand satisfied via substitution. The methodology we

used to calculate these two order-up-to levels are presented in the successive subsections.
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4.5.1 Order-up-to Level for Low Quality Inventory

In order to derive the myopic policy for w, we apply the following transformation which

is similar to Song and Zipkin (1993) and Veinott (1965).

Wt(K, y, x) = Vt(K, y, x) + csx+ cry. (4.4)

Then, our cost function becomes

Wt(K, y, x) = min
x≤w≤x+K,

y≤v

{

G̃t(K, y, v, w)
}

,

where

G̃t(K, y, v, w) = H(y, v, w) +

y
∫

s=0

αEWt+1(K+, v − s, w)dφ(s)

+

y+w
∫

s=y

αEWt+1(K+, v − y, w + y − s)dφ(s) +

∞
∫

s=y+w

αEWt+1(K+, v + w − s, 0)dφ(s),

(4.5)

and

H(y, v, w) =crv(1− α) + w(cs − crα) + L(y, w) + α(cr − cs)
[

y+w
∫

s=y

(y + w − s)dφ(s)

+ wPr{D ≤ y}
]

+ αcrµ. (4.6)

We define H(y, v, w) as the myopic single period cost function. It captures holding,

substitution and backlog costs of having y and w amounts of high and low quality items

in stock given that the order-up-to level of high quality inventory is v. The role of the

single period cost function is obvious in this equation and the terms in the last brackets

stand for the expected low quality products left after demand realization. Therefore, the

myopic cost function captures the tradeoff between buying at the current period instead

of the next one and savings from high quality acquisition cost due to substitution.The

mathematical structure of the myopic cost function is given in the following lemma.

Lemma 9 H(y, v, w) is jointly convex in v and w for a given y.
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Convexity of H(y, v, w) is not surprising given the fact that the single period cost

function is jointly convex and the function is separable in v and w. Also the convexity of

the nonlinear terms in brackets (in Equation 4.6) follows from Lemma 8.

In addition to the convexity, we should note that H(y, v, w) includes a linear term

in v which implies that v becomes zero when we minimize the single period myopic cost

function. Hence, this function can only provide potentially good base stock levels for

the back-up supplier, w, for a given high quality inventory level y. The following result

establishes the relationship between y and w∗(y) that minimize the myopic cost function.

Lemma 10 Suppose w∗(y) minimize H(y, v, w) for a given y. Then w∗(y) satisfies

y + w∗(y) = F−1(1− γ),

where F (.) is the cdf of one-period demand and

γ =
cs(1− α) + hs

b− ψ + α(cr − cs) + hs
. (4.7)

Note that since the cost of the high quality item is assumed to be larger than the

market price cs of the low quality item (cr ≥ cs) and then the backlog cost is smaller than

the substitution cost, γ ≤ 1. Lemma 10 indicates that the summation of the low-quality

order-up-to level (w) and high quality inventory level (y) is equal to a constant at the

minimum of the myopic cost function. This constant factor, γ, which is similar to the

well-known critical fractile (Porteus, 2002), is a function of the difference between backlog

cost and substitution cost. Increasing the difference of these two parameters motivates

substitution (a similar relationship also holds for the acquisition cost difference between

two suppliers). The following corollaries indicate other intuitive relationships between low

quality items and cost parameters. The results are evident from Equation 4.7.

Corollary 6 w∗(y) is decreasing and linear in y.

Corollary 7 For a given high quality inventory level, the order-up-to level for market

purchases w∗(y) is a decreasing function of substitution cost and holding cost of low quality

inventory.

This concludes the methodology we use for calculating order-up-to levels for low quality

inventory. The simulation-based approach for calculating high quality order-up-to level

is presented in the next section.
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4.5.2 Base Stock Level for High Quality Inventory

In order to calculate orders to the regular supplier at period t, denoted by qrt , we need

to establish the relationship between high quality inventory level and the demand distri-

bution. To this end, let us define a random variable St as the demand satisfied by low

quality products in period t. For given low quality base stock level, wt, and high quality

inventory level at period t, yt, St is given as follows:

St =







min(wt, Dt − yt), if Dt ≥ yt,

0, otherwise.

Note that the substitution that takes place in each period can also be considered lost

sales as in Sheopuri et al. (2010) from the regular supplier’s perspective. Similarly, the

amount of demand supplied with high quality products is defined as Zt = Dt − St.

We can derive recursive equations for the high quality inventory level by using St and

Zt given that the lead time of regular supplier is LR ≥ 1.

yt+1 = yt + qrt−LR − (Dt − St),

= yt + qrt−LR − Zt.

Multi-period recursive equations for high quality inventory are given as follows:

yt+2 = yt+1 + qrt+1−LR − Zt+1,

...

yt+LR = yt+LR−1 + qrt+LR − Zt+LR .

Let us define D
(m)
t as the convoluted random demand between periods t and t+m−1,

and Z
(m)
t the total demand satisfied by high quality products over the same interval.

Using these random variables, we can write the high quality inventory level at period t as

follows:

yt = IPt−LR − Z
(LR)

t+LR , (4.8)

where IPt stands for inventory position for high quality products. This equation indicates

the dependence between the amount of substitution and the high quality inventory level

for a given inventory position. Due to the difficulty of deriving an analytical expression of

substituted demand, our heuristic approach relies on the simulation of Z
(LR)
t . Note that

from this point on we drop the subscript indicating time.
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Suppose that the distribution of non-substituted demand, Pr{Z(LR) = k} is known

and Θv is the set including all possible realization of Z(LR) for a given inventory position

v. Using Equation 4.8 and considering the capacity of the back-up supplier, the myopic

cost function for given high and low quality base stock levels (v and w) can be written as

follows:

g(y, v) := H(y, v,min(w∗(y), K)), (4.9)

whereas the expected myopic cost function is

ḡ(v) :=
∑

u∈Θv

Pr{Z(LR) = u}g(v − u, v), (4.10)

by using the simulated distributions of Z(LR). In our heuristic, we use v∗ = argminv∈R ḡ(v)

as the base stock level for orders to regular supplier. The following theorem characterizes

v∗ under certain conditions.

Theorem 8 If hr − hs + ψ ≥ α(cr − cs), then the following statements hold.

1. g(u, v) is a convex function of v for each u,

2. ḡ(v) is a convex function of v,

3. v∗ = argminv∈R g(u, v) exists.

Even when the condition of Theorem 8 does not hold, we leverage the theorem to

provide inspiration to our heuristic. Specifically, Lemma 10 and Theorem 8 are utilized

for the calculation of base stock levels for the regular and the back-up suppliers in our

heuristic algorithm given below.

Algorithm 1 The Algorithm for Modified Myopic Approach

1: for all v do
2: Simulate Pr{ZLR

= i}, ∀ i ∈ Θv;
3: Calculate ḡ(v) =

∑

i∈Θv

Pr{ZLR

= i}g(v − i, v);

4: end for
5: Calculate v∗ = argmin ḡ(v);

As stated above, our heuristic approach relies on the distribution of ZLR

which is

obtained through simulation. Since this random variable depends on the high quality

base stock level v, the simulation has to be run for all values of v. In the third step of

the algorithm, we calculate the base stock level for the regular supplier for a given v and
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realization of ZLR

. At the end of the third step, the calculated expected myopic cost

functions, ḡ(v), are stored in a vector of which the minimum is found in the final step of

the algorithm. Note that this heuristic approach requires a run of simulations to develop

empirical distributions at the beginning of the planning horizon. In our experiments,

presented below, the average required time for this process was approximately 30 seconds.

Once the base stock level for high quality products are calculated, the rest of the decisions

are made in milliseconds. In the following section, we present the performance of our

heuristic policy.

4.5.3 Dual Sourcing Heuristics form Sheopuri et al. (2010)

In our numerical experiments, we consider three heuristic policies from Sheopuri et al.

(2010): vector-based heuristic, demand allocation(U) and demand allocation(L).

Vector based heuristic is an adaptation of an heuristic policy from lost sales literature

to the dual sourcing problems. It uses a ratio cs/(cs + h) and all outstanding orders to

place new orders to the regular supplier. That heuristic was first suggested by lost sales

problems by Morton (1971). Orders to the back-up supplier are placed by using the base

stock policy (for the expedited supplier) from Veeraraghavan and Scheller-Wolf (2008).

Demand allocation heuristics are essentially base stock policies for the regular sup-

plier. They prescribe ordering (to regular and back-up suppliers) as much as the previous

period’s demand in order to keep the inventory position at the base stock level. For di-

vision of the order between suppliers, Sheopuri et al. (2010) suggested three myopic cost

functions capable of considering all outstanding orders. Then they show that the order

quantity minimizing the first extended myopic function, denoted by q1(Dt−1), overesti-

mates orders to the back-up supplier whereas minimizers of other two functions, denoted

by q2(Dt−1) and q
3(Dt−1), underestimate it. They call q1(Dt−1) as Demand Allocation(U)

heuristic whereas max(q2(Dt−1), q
3(Dt−1)) as Demand Allocation(L).

4.5.4 Numerical Results

In this section, we compare our heuristic method with the heuristics by Sheopuri et al.

(2010). In addition, we calculated the optimal policy for a set of numerical experiments

using full dynamic programming with a proper discretization. For the rest, we considered

best dual index policy as the benchmark for our policy which is commonly used (Arts

et al., 2011; Veeraraghavan and Scheller-Wolf, 2008; Sheopuri et al., 2010), and recognized

to be the “best available heuristic in the literature” (Sheopuri et al., 2010). Although

Sheopuri et al. (2010) showed their heuristics’ costs lower than the best dual index policy,
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the optimality gap of these policies is still an unanswered question. Therefore, we chose

to use the best dual index policy as a benchmark in this study.

During optimization of a multi-state, recursive equation, one has to deal with a large

state space even after a proper truncation is applied. This is especially when the lead

time of regular supplier is longer than one period (the size of the state space is more than

8 million when the lead time is equal to three periods). This very large number of states

stems from the fact that outstanding orders, current inventory levels and capacity of the

back-up supplier need to be kept as state variables.

The test bed we employed in our study consists of two major components. First, we

devise our test bed with ten different factors. We treat the five most important as variable

whereas the rest are constant. Second, we extend the test bed in Sheopuri et al. (2010) to

evaluate different drifts (increasing and decreasing) for the evolution of the capacity of the

back-up supplier. Details of each test bed and results obtained from them are presented

below.

Our Test Bed

In our test bed we vary lead time of the regular supplier, planning horizon, substitution

cost rate, holding cost rate for low quality items, and the rate of demand distribution.

Values for these factors are given in Table 4.3. Constant factors, on the other hand, are

backlog cost, high quality holding cost, acquisition costs for the regular supplier and the

back-up supplier. Parameter values of constant factors are given in Table 4.4. In addition,

we assumed that the Markovian capacity of the back-up supplier would take integer values

between zero and four, and it would follow the transition matrix P given below.

Table 4.3: Values of Variable Factors for Our Test Bed

Regular Supplier
Horizon

Substitution Low Quality
Demand

Lead Time Cost Rate Holding Cost
1 24 50 6 Poisson(2)
3 36 100 8 Poisson(4)

150 10
200

Table 4.4: Constant Factors for Our Test Bed

Backlog Acquisition Cost Acquisition Cost High Quality
Cost Rate Regular Supp. Back-up Supp. Holding Cost

200 100 60 10
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P =

















α 1− α 0 0 0

β γ β 0 0

0 β γ β 0

0 0 β γ β

0 0 0 1− α α

















, (4.11)

where α = γ = 0.5, and β = 0.25.

In this experiment set-up, a full factorial design with given values yields 48 experiments

for each lead time option for the regular supplier. Results, comparing our algorithm those

from Sheopuri et al. (2010), by the optimal cost are summarized in Table 4.5 whereas a

detailed list of all results are provided in Appendix 4.C.

Table 4.5: Deviations from the Optimal Policy for Test Bed 1

Vector-Based Demand Alloc.(U) Demand Alloc.(L) Mod. Myopic
Average 11.5% 56.4% 62.7% 6.0%
Std.Dev. 8.7% 45.1% 39.4% 2.0%
Max 30.8% 136.4% 136.4% 12.2%
Min 3.2% 7.0% 7.0% 3.2%

As can be seen from Table 4.5, our Modified-Myopic policy deviates 6% from optimal,

whereas the vector-based heuristic from Sheopuri et al. (2010) deviates by 11%. A closer

look at the results indicates that the majority of the deviation of the vector-based heuristic

stems from runs with LR is equal to 3 (Figure 4.2). In fact, when LR = 1 results of paired

t-tests indicate that vector-based heuristic is better in 20 of 48 runs whereas in 4 runs

the difference was statistically insignificant. This means that the modified myopic policy

is better than the vector-based heuristic in 50% of runs. But for runs with LR = 3, the

modified myopic policy is significantly better in 36 out of 48 runs. Thus compared by the

vector-based heuristic, the modified myopic policy performs much better when the lead

time of the regular supplier is longer. The performance of demand allocation heuristics

(U&L) is significantly worse than vector-based heuristic.

Extended Version of the Test Bed of Sheopuri et al. (2010)

For our second test bed, we extended that of Sheopuri et al. (2010), which considers

geometric demand along with different lead times and cost parameters. Furthermore,

Sheopuri et al. set the cost of the regular supplier to zero and try different values for the

cost of the back-up supplier since they benchmark against dual index policies and it is

shown that the performance of a dual index policy is mainly effected by the cost difference
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Figure 4.2: Deviation from the optimal policy for different lead times

between the suppliers (Veeraraghavan and Scheller-Wolf, 2008; Sheopuri et al., 2010). We

adapt this approach to our problem setting by setting the cost parameters of the both

suppliers to zero and trying nonzero values for the substitution cost. Cost parameters

and lead times of the regular supplier are given in Table 4.6.

Table 4.6: Parameters of the Test Bed 2

Reg.Supp LT High Qual. Hold. Low Qual. Hold. Backlog Substitution Demand
1 5 3 15 20 Geom.(0.4)
2 5 85/3 40 Geom.(0.5)
3 95 60

Combining factors in Table 4.6 and removing runs with substitution costs being larger

than backlog costs from the test bed, we obtain 144 runs (48 runs with each lead time

value) which constituted the “core” of test bed 2. In these core runs, we consider the

transition matrix P in Equation 4.11 for the capacity of the back-up supplier.

As an extension, we evaluated two alternate scenarios for the capacity of the back-up

supplier: a drift towards larger or smaller values depending on its transition matrix. These

scenarios could represent situations which a spot market (or gray market) had increasing

(or decreasing) availability due to changes in the installed base. The considered transition

matrix for these two scenarios are given by P+ and P− below. Also, we considered two

different sets of values for β and γ for each scenario. The main motivation behind this

approach was to evaluate the sensitivity of our heuristic under different back-up supplier
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characteristics.

P+ =

















α 1− α 0 0 0

β γ γ 0 0

0 β γ γ 0

0 0 β γ γ

0 0 0 1− α α

















, P− =

















α 1− α 0 0 0

γ γ β 0 0

0 γ γ β 0

0 0 γ γ β

0 0 0 1− α α

















,

where (α, β, γ) = {(0.5, 0.2, 0.4), (0.5, 0.163, 0.419)}. Expected back-up supplier capac-

ities in these four different scenarios are listed as follows: Π+
1 = 2.811, Π+

2 = 3, Π−
1 =

1.189, Π−
2 = 1. By this extension, the total number runs evaluated in the second test bed

is 720.

Due to large state spaces, we only calculated the optimal policy for LR = 1 and the

core run set (48 runs with the transition matrix P ) for LR = 3. In the rest of the test

bed, heuristic policies are compared to the best dual index policy (which is calculated by

a search over all possible values of policy parameters for each given random sample path

of demand and market capacity). To see the gap between the best dual index and the

optimal policy, we calculated the performance of both for the core run set with LR = 3.

The deviation of the best dual index policy (from the optimal) is -0.03%. Also note that

for 69% of runs the best dual index policy is lower than the optimal policy due to the fact

that we search for the best policy parameters for each demand sample path.

Statistics for deviations of all heuristics from the benchmarks are given in Table 4.7

whereas the results of all heuristics will be provided by the author upon request. Our

results indicate that the vector-based policy deviates from the benchmark by an average

of 48% while the modified myopic policy’s deviation is only 19.1%. The demand allocation

heuristics by Sheopuri et al. (2010) suffer the largest deviations among all candidates. In

addition, deviations of the modified-myopic heuristic have smaller standard deviation and

a much smaller maximum compared to the vector-based and demand allocation heuristics.

In addition, we considered dual index policy for this problem setting. To optimize the

parameter values, we use “brute-force” search over the parameter space. Results indicate

that the dual index policy is slightly better than our heuristic for this test bed.

From computation time point of view, Sheopuri et al. (2010) cite that his heuristic

has the same computational complexity with the dual index policy by Veeraraghavan

and Scheller-Wolf (2008), who consider infinite horizon, average cost criteria. In this

study, we obtain dual index parameters using brute force search with simulation, therefore

computation time of dual index policy is not a fair benchmark to compare the performance

of our method (brute force search takes too much time). However, Sheopuri et al. (2010)
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state that their policy has the same computational complexity with the dual index policy

(Veeraraghavan and Scheller-Wolf, 2008). Therefore, we compare our method with vector-

base heuristic. Results indicate that our method is almost 2 times faster than the vector-

based heuristic. Therefore, we conclude that although dual index policy has a marginally

smaller deviation (1%), our policy is much efficient than this policy.

Table 4.7: Deviations from the Benchmark for Test Bed 2

Vector-Based Dem. Alloc.(U) Dem. Alloc.(L) Modf. Myopic Dual Ind.
Average 48.3% 210.5% 218.6% 19.1% 17.6%
Std.Dev 53.9% 110.5% 110.5% 13.4% 9.3%
Max 304.9% 586.7% 586.7% 63.9% 46.3%
Min 0.2% 35.4% 29.1% 0.3% 0.6%

A closer look at the deviations indicates that the largest portion of deviations appear

for runs with LR > 1. Also we find that scenarios with positive market drift leads to

lower deviations compared to the ones with negative drift. This indicates that cases with

decreasing capacity of the back-up supplier are more difficult to deal with compared to the

situation where the capacity of the back-up supplier improves over time. Furthermore, the

breakdown of the deviations into holding, substitution and backlog costs (Table 4.8) shows

that the substitution cost of the modified myopic heuristic has 0.01% average deviation

from the optimal policy for LR = 1 and the main deviations stem from high quality orders.

This result is not surprising given the fact that we use the base stock level minimizing

the myopic cost function in our solution.

Table 4.8: Breakdown of Cost Deviations

Heuristic Name Holding Substitution Backlog
Vector-Based 17.3% 2.5% -6.3%

LR=1 Modified-Myopic 1.1% 0.01% 3.4%
Dual Index 1.0% -3.1 % 4.7%
Vector-Based 45.4% -8.1% 20.2%

LR=2 Modified-Myopic -6.1% 5.5% 28.8%
Dual Index 6.1% 3.3 % 10.2 %
Vector-Based 51.9% -14.1% 36.1%

LR=3 Modified-Myopic 4.7% -1.7% 21.5%
Dual Index 6.7 % 5.2 % 8.2 %
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4.6 Markov-Modulated Demand

In practice, a demand distribution rarely follows a stationary distribution for the entire

life cycle of a product. In most cases, customer demand is affected by environmental or

product-related factors such as annual economic growth rate, age of the product, seasonal

variations (e.g. holiday season in U.S.), etc. Such demand nonstationarity can potentially

be addressed in two different ways: via an exogenous Markov chain that drives the demand

process, or by using Bayesian approach for the demand distribution. In this section, we

consider the former method to address the demand nonstationarity in our problem setting.

In single sourcing problems with Markov modulated demand, the optimality of a state-

dependent base stock policy has been proven by many scholars (Song and Zipkin, 1993,

1996; Gallego and Hu, 2004; Muharremoglu and Yang, 2010). Assuming that the decision

maker can perfectly observe the demand state, each state has an associated base stock

level that is used for replenishment order of that period. Furthermore, the optimality of

the same policy has been proved when the exogenous Markov chain can only be partially

observed (Arifoğlu and Özekici, 2010) or completely hidden (Arifoğlu and Özekici, 2011).

To consider Markov-modulated demand in our dual sourcing setting with substitution,

we extended our heuristic policy to incorporate state-dependent base stock level either

for the back-up supplier or the regular supplier (but not both). These two heuristics are

presented in the following sections.

4.6.1 State-Dependent Base Stock Level for the Back-up Sup-

plier

State-dependent base stock levels for the back-up supplier are denoted with w∗
j (yt) where

j stands for the state of the Markov chain. For this case, it is not difficult to show that

Lemma 10 holds for each demand state respectively.

To calculate the static base-stock policy for the regular supplier, we use simulation to

obtain the distribution of the demand satisfied with high quality inventory; this depends

on the state of the Markov chain and is denoted by ZLR

j . We denote the support of the

distribution of ZLR

j by Θj
v for a given base stock level v of high quality products.

The formal description of the heuristic can easily be obtained by adding the demand

state as a parameter to the functions in Equations 4.6 and 4.9. These extended functions

are used to obtain ḡ(j, v) for each demand state j and each base stock level v, similar to

the procedure shown in Equation 4.10. Using the stationary distributions of the Markov
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chain, πj, we take the weighted average of ḡ(j, v) as follows:

ḡ(j, v) =
∑

i∈Θj
v

πjPr{Z
LR

j = i}g(j, v − i, v), (4.12)

G(v) =
∑

j∈Ω

πj ḡ(j, v), (4.13)

where Ω is the state space of the Markov chain (driving the demand distribution). Re-

quired computation steps for the heuristic policy are summarized in Algorithm 2.

Algorithm 2 State-Dependent Base Stock Level for the Back-up Supplier

1: for all v do
2: Simulate Pr{ZLR

j = i}, ∀ i ∈ Θj
v, ∀j ∈ Ω;

3: Calculate G(v) =
∑

j∈Ω

πj
∑

i∈Θj
v

Pr{ZLR

j = i}g(j, v − i, v);

4: end for
5: Calculate v∗ = argminG(v);

In the third step of the algorithm, the function G(v) uses the state-dependent base

stock levels for the low quality inventory w∗
j (v−i) for a given Markov state, j, a realization

of ZLR

j , i, and high quality base stock level, v (This is analogous to Equation 4.9). All

calculated G(v) are stored in a vector at the end of the third step and these stored values

are used to find the high quality base stock level in the last step of the algorithm. The

computational complexity of this algorithm is not different from Algorithm 1 since we this

heuristic uses only single base stock level for the regular supplier. Our second approach

for Markov-modulated demand is presented in the following section.

4.6.2 State-dependent Base Stock Level for the Regular Sup-

plier

Our second approach considers state-dependent base stock levels for the regular supplier

and a single base stock level for the back-up supplier since increasing number of control

parameters might decreases the practicality of the method.

To this end, we consider the weighted average of state dependent base stock levels

for the back-up supplier, w∗
j (yt) as the base stock level for low quality products. Define

base state dependent base stock levels for the regular supplier v̄∗ = (v∗1, v
∗
2, ..., v

∗
N) for a

Markov chain with N states. Since the distribution of the demand satisfied with the high

quality products depends on v̄∗, we run simulations for ZLR

v̄ for all possible values of v̄∗,

which requires nested search loops as can be seen in Algorithm 3. Using the simulated
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distributions, we calculate the values for base stock levels for the regular supplier. The

algorithm of this approach is given below for a Markov chain consisting of N states.

Algorithm 3 State-dependent Base Stock Levels for the Regular Supplier

1: for all v1 do
2: for all v2 do
3: ...
4: for all vN do
5: Simulate Pr{ZLR

v̄ = i}, ∀ i ∈ Θj
v̄;

6: for all j ∈ {1, 2, ..., N} do
7: Calculate ḡj(vj) =

∑

i∈Θj
v̄

Pr{ZLR

j = i}g(j, vj − i, vj);

8: end for
9: Calculate G(v̄) =

∑

j∈{1,2,..,N}

πj ḡj(vj);

10: end for
11: ...
12: end for
13: end for
14: Calculate (v̄∗) = argminv1,v2,...,vN G(v̄);

4.7 Empirical Study

For evaluation of the performance of the modified myopic policy for Markov-modulated

demand, we run an empirical analysis using data from the Maintenance Repair Organi-

zation (MRO), presented in Section 4.1.1. Our empirical study consists of three major

phases: Data collection and sampling, parameter estimation, and testing the heuristic.

Each phase is discussed in respective subsections below.

4.7.1 Data Collection and Sampling

In order to test our heuristic for the procurement problem of the MRO, we collected the

empirical data corresponding to 14046 spare parts (due to other classifications of spare

parts, which are not relevant for the results of the study, the majority of spare parts in

the company’s database is eliminated). We took a sample of 139 parts using a sampling

procedure summarized in Appendix 4.D. The part sample, is further categorized based on

parts’ average annual demand and OEM prices. As a result, we obtain six part categories

including 20.9 parts on average. 4 part numbers from each category are randomly selected

into a test set whereas the rest of the parts are used to train model parameters. Note
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that one part in the test group is eliminated since there was no demand for this part for

the entire planning horizon (104 months).

4.7.2 Parameter Estimation

For our next step, we sought historical availabilities for our sampled parts from a well-

known spare parts trading platform (ilsmart.com), as well as fleet utilization data. The

historical market availability data is used to train the Markov transition probabilities for

the capacity of the back-up supplier, whereas fleet utilization data is used for training the

Markov chain driving the customer demand. Twelve months of data for market availability

was used.

For each part, we checked Poisson, geometric and negative binomial distributions as

candidate demand distributions to be used in our heuristic policy. These distributions are

recognized to be potentially relevant by Syntetos et al. (2012). Among these candidates,

the geometric distribution is found to the best. Using the maximum likelihood estimators

of the geometric distribution, we estimated parameters for the customer demand.

Acquisition cost from OEM was available for all parts in our sample in the database

of the company. However for 13 of 23 parts in the test set, the price information was

unavailable on the secondary market. Therefore, we assumed that the market price of

these parts are 80% of the acquisition cost. Furthermore, we found that the available

market price is higher than the price of OEM for 7 parts.

In our test group, we have 12 parts with 1 month of OEM lead time. Also we have 2

parts with 2, 4, 5 and 7 months of lead times whereas 3 parts with 3 months of lead time

from OEM.

For holding cost rate, we considered {0.1,0.15,0.2,0.3} to be multiplied with the ac-

quisition cost. For each holding cost multiplier, we considered {0.9,0.95,0.99,0.995} as

services rates through which we calculated backlog cost rates using the critical ratio.

Substitution cost rates are assumed to be equal to 80% of the backlog costs for the parts

whose the market acquisition cost is smaller than the OEM cost.

4.7.3 Tests

Using the parameter values described as well as holding and backlog cost rates, we run

our two heuristics for Markov-modulated demand and used the best dual index policy as

the benchmark. The total number of parameter set (each set consists of 23 parts) is 16.

The results of the two policies, the one with state-dependent parameters for the back-up

supplier (formulated in Algorithm 2) and the one with state-dependent parameters for
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the regular supplier (formulated in 3), are presented in Table 4.9 together with dual index

policy with four parameters for each state.

These results indicate that although our heuristic policies uses only three indices (in-

stead of four), it may perform better than the dual index policy for Markov-modulated

random lead time. Also note that the performance of policy3 is, naturally, better than

the performance of policy2 since it regulates two indices for the high quality supplier.

Table 4.9: Deviations of the Two Heuristic Policies for Markov-Modulated Demand

LR Policy2 Policy3 Dual Index
1 22.3% 13.2% 20.9%
2 13.9% 8.5% 20.3%
3 32.4% 34.1% 17.8%
4 41.4% 29.8% 32.7%
5 56.5% 58.5% 54.7%
7 43.7% 19.0% 48.9%

4.8 Conclusion

When making sourcing decision from two suppliers, three features are usually critical:

lead time, quality and cost differences between suppliers. For example, in many business

settings, companies source from local and off-shore suppliers to satisfy their demand.

Although it may be ignored in many cases, different suppliers rarely produce identical

products; rather they are substitutable. If customers have different attitudes towards

different quality levels, then stock-out dependent substitution should be considered.

In this study, we considered stock-out dependent substitution in dual sourcing prob-

lems. We consider two suppliers (regular and backup). In our problem setting, the

regular supplier has a longer lead time, high quality, more expensive products whereas

the back-up supplier provides immediate deliveries of low quality, cheaper products. An-

other important aspect of the back-up supplier is its random capacity, which is assumed

to be Markovian. Assuming only high quality demand arrives to the system, the quality

difference between products leads to stock-out dependent, downward substitution for high

quality product. This substitution takes place in exchange for substitution cost.

The mathematical analysis of the multi-period cost function reveals that the cost func-

tion presents convexity or pseudo-convexity only under unrealistic conditions. Therefore,

we proceed to a heuristic approach in order to bring a solution to the problem.
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In this study, we suggest a modified version of dual index policy of which base stock

levels are calculated using a myopic cost function and a simulation-based algorithm. We

call this policy modified-myopic heuristic.

In numerical experiments we compare our policy with three different dual sourcing

heuristics from the literature. These heuristics are the most recent contributions. All

of these heuristics are benchmarked to the numerical optimum solution for some parts

of the test bed or the best dual index policy for another. Our results indicate that,

modified-myopic policy outperforms heuristics by Sheopuri et al. (2010) but is slightly

worse than the dual index policy. Gaps between our policy and the others are rather

close when the lead time of the regular supplier is set to 1 whereas the gap is much

larger when we consider lead times larger-than one. These results also indicates existence

of significant potential by recognizing the quality difference between suppliers as well as

customer attitudes towards it.

Next, we extended our heuristic policy for Markov-modulated demand. Assuming

the decision maker can perfectly observe the states of the Markov chain (driving the

demand), we consider state-dependent base stock levels for the back-up supplier and the

regular supplier in respective heuristics. These heuristics are evaluated using empirical

data. Our results indicate that our policies performs well against the dual index policy

which caries two base stock levels for each state of the Markov chain. Note that significant

deviations of our policy from the benchmark indicate that the search for better policies

for Markov-modulated demand is still open.

4.A Proofs of Theorems

Proof of Lemma 8

The components of the Hessian matrix for L(y, x) is given as follows:
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∂

∂y
L(y, x) =

y
∫

s=0

hrdφ(s) +

y+x
∫

s=y

(hs − ψ)dφ(s)−

∞
∫

s=y+x

bdφ(s), (4.14)

∂2

∂y2
L(y, x) = (hr − hs + ψ)φ(y) + (b+ hs − ψ)φ(y + x) ≥ 0. (4.15)

∂

∂x
L(y, x) =

y
∫

s=0

hsdφ(s) +

y+x
∫

s=y

hsdφ(s) +

∞
∫

s=y+x

(−b+ ψ)dφ(s), (4.16)

∂2

∂x2
L(y, x) = (hs − ψ + b)φ(y + x) ≥ 0, (4.17)

∂2

∂x∂y
L(y, x) = (hs + b− ψ)φ(y + x). (4.18)

The positivity of second partial derivatives come from our assumptions: hr ≥ hs and

b ≥ ψ. For positive semidefiniteness of Hessian matrix we need the non-negativity of the

following:

∂2L(y, x)

∂x2
∂2L(y, x)

∂x2
−

[

∂2L(y, x)

∂x∂y

]2

= φ(y + x)φ(y)[hr − hs + ψ](hs − ψ + b) ≥ 0. (4.19)

�

Proof Lemma 9

Let us write the components of Hessian matrix.

∂H

∂v
= cr(1− α),

∂2H

∂v2
= 0,

∂H

∂w
= cs − crα + Lw(y, w) + α(cr − cs)

y+w
∫

0

dφ(s),

∂2H

∂w2
= Lww(y, w) + α(cr − cs)φ(y + w) ≥ 0,

∂2H

∂w∂v
= 0.

Hence H(y, v, w) is convex in (v, w). �
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Proof of Lemma 10

As stated in Lemma 6, w∗(y) can be calculated with the first order condition of H(y, v, w)

which is

cs − crα + Lw(y, w) + α(cr − cs)

y+w
∫

0

dφ(s) = 0.

This leads to

cs − crα + (hs + α(cr − cs))

y+w
∫

s=0

dφ(s) + (−b+ ψ)

∞
∫

s=y+w

dφ(s) = 0.

cs − crα + (hs + α(cr − cs))F (y + w) = (b− ψ)(1− F (y + w)),

F (y + w)(b− ψ + α(cr − cs) + hs) = b− ψ + αcr − cs,

F (y + w) =
b− ψ + αcr − cs

b− ψ + α(cr − cs) + hs
,

y + w = F−1

(

1−
cs(1− α) + hs

b− ψ + α(cr − cs) + hs

)

. (4.20)

�

Proof of Theorem 8

Statement a implies b which leads to c. Hence we only need to show the first statement

is true. Before doing so let us recall Lemma 10:

w∗(u− i) + u− i = F−1(1− γ)

where γ is defined in Equation 4.7. Also, we will define two variables to simplify the

following derivations.

A = min(F−1(1− γ)− u+ i,K),

and

M = A+ u− i.
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Now, we can write g(u, i) as follows:

g(u, i) =H(u− i, u, A),

=(cRu+ csA)(1− α) + L(u− i, A) + αcrµ+ α(cs − cR)

M
∫

s=u−i

(s− u+ i)dφ(s)

+ α(cs − cR)APr{D ≥M}.

To get the first partial derivative of g(u, i), let us first state that

∂A

∂u
=







−1, if u ≥ F−1(1− γ) + i−K,

0, otherwise.

And,

∂M

∂u
=







0, if u ≥ F−1(1− γ) + i−K,

1, otherwise.

The first partial derivative of g(u, i) w.r.t u,

∂g(u, i)

∂u
=(cR + cs

∂A

∂u
)(1− α) + Ly(u− i, A) + Lx(u− i, A)

∂A

∂u
(4.21)

+ α(cs − cR)
∂

∂u

[

M
∫

s=u−i

(s− u+ i)dφ(s) + APr{D ≥M}
]

.

Let’s derive the first partial derivative of the last expression in brackets:

∂

∂u

[

M
∫

s=u−i

(s− u+ i)dφ(s) + APr{D ≥M}
]

(4.22)

=

M
∫

s=u−i

−dφ(s) +
∂M

∂u
(M − u+ i)φ(M)− 0 +

∂A

∂u
Pr{D ≥M} − Aφ(M)

∂M

∂u
,

(4.23)

=

M
∫

s=u−i

−dφ(s) +
∂A

∂u
Pr{D ≥M}. (4.24)
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Hence,

∂

∂u
g(u, i) =(cR + cs

∂A

∂u
)(1− α) + Ly(u− i, A) + Lx(u− i, A)

∂A

∂u

+ α(cs − cR)

[

M
∫

s=u−i

−dφ(s) +
∂A

∂u
Pr{D ≥M}

]

.

For the second partial derivative, let us first state that ∂2M
∂u2 = ∂2A

∂u2 = 0. Hence,

∂2

∂u2
g(u, i) =Lyy(u− i, A) + 2Lyx(u− i, A)

∂A

∂u
+ Lxx(u− i, A)

[

∂A

∂u

]2

(4.25)

+
∂

∂u
α(cs − cR)

[

M
∫

s=u−i

−dφ(s) +
∂A

∂u
Pr{D ≥M}

]

. (4.26)

Let’s again work on the partial derivative of the last expression.

∂

∂u

M
∫

s=u−i

−dφ(s)+
∂2A

∂u2
Pr{D ≥M} = −φ(M)

∂M

∂u
(
∂A

∂u
+1)+φ(u−i)+

∂2A

∂u2
Pr{D ≥M}.

Therefore, using Equations 4.15-4.17 we can write

∂2g(u, i)

∂u2
=Lyy(u− i, A) + 2Lyx(u− i, A)

∂A

∂u
+ Lxx(u− i, A)

[

∂A

∂u

]2

+ α(cs − cR)

[

− φ(M)
∂M

∂u
(
∂A

∂u
+ 1) + φ(u− i)

]

,

∂2g(u, i)

∂u2
=(hr − hs + ψ)φ(u− i) + (hs − ψ + b)φ(M)

(

1 + 2
∂A

∂u
+

[

∂A

∂u

]2
)

+ α(cR − cs)

[

φ(M)
∂M

∂u
(
∂A

∂u
+ 1)− φ(u− i)

]

,

=(hr − hs + ψ − α(cR − cs))φ(u− i) + (hs − ψ + b)φ(M)

(

1 +
∂A

∂u

)2

+ α(cR − cs)

[

φ(M)
∂M

∂u

]2

≥ 0.

The last equation comes from ∂M
∂u

= ∂A
∂u

+ 1. The proof is complete. �
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4.B Convexity Analysis of Multi-Period Problem

The convexity of multi-period model will utilize Lemma 8 in Section 4.3. The convexity

condition of the multi-period model is established in the following theorem.

Theorem 9 If

Vtx(K, v − y, 0)− Vty(K, v − y, 0) ≥ 0, ∀v ∈ R, y ∈ R, 1 ≤ t ≤ T, ∀K, (4.27)

then

a) Gt(K, v, w) is jointly convex in v and w,

b) Vt(K, y, x) is jointly convex in y and x.

Proof Let’s check the components of Hessian matrix for function Gt(K, v, w):

∂Gt

∂v
= cR +

y
∫

s=0

αEVt+1y(K+, v − s, w)dφ(s) +

y+w
∫

s=y

αEVt+1y(K+, v − y, w + y − s)dφ(s)

+

∞
∫

s=y+w

αEVt+1y(K+, v + w − s, 0)dφ(s), (4.28)

∂2Gt

∂v2
=

y
∫

s=0

αEVt+1yy(K+, v − s, w)dφ(s) +

y+w
∫

s=y

αEVt+1yy(K+, v − y, w + y − s)dφ(s)

+

∞
∫

s=y+w

αEVt+1yy(K+, v + w − s, 0)dφ(s), (4.29)

∂Gt

∂w
=
∂L

∂w
+ cs +

y
∫

s=0

αEVt+1x(K+, v − s, w)dφ(s) +

y+w
∫

s=y

αEVt+1x(K+, v − y, w + y − s)dφ(s)

+

∞
∫

s=y+w

αEVt+1y(K+, v + w − s, 0)dφ(s), (4.30)
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∂2Gt

∂w2
=
∂2L

∂w2
+

y
∫

s=0

αEVt+1xx(K+, v − s, w)dφ(s) +

y+w
∫

s=y

αEVt+1xx(K+, v − y, w + y − s)dφ(s)

+

∞
∫

s=y+w

αEVt+1yy(K+, v + w − s, 0)dφ(s)

+ αφ(y + w)E[Vt+1x(K+, v − y, 0)− Vt+1y(K+, v − y, 0)], (4.31)

∂2Gt

∂w∂v
=

y
∫

s=0

αEVt+1xy(K+, v − s, w)dφ(s) +

y+w
∫

s=y

αEVt+1xy(K+, v − y, w + y − s)dφ(s)

+

∞
∫

s=y+w

αEVt+1yy(K+, v + w − s, 0)dφ(s). (4.32)

Let’s start with stating that the statement is true for t = T since

VT (K, y, x) = min
x≤w≤x+K,

y≤v

L(v, w).

Suppose it is true for t+ 1. For t, considering induction hypothesis for Equation 4.29

and 4.31 together with the condition of the theorem brings the non-negativity of second

partial derivatives of Gt(K, v, w) w.r.t v and w. The positive semidefiniteness of Hessian

matrix can be shown as follows:

Let us use symbolic letters for integrals given in Equations 4.29 - 4.32:

∂2G

∂v2
= (A1 +B1 + C1), (4.33)

∂2G

∂w2
= (A2 +B2 + C1 +D), (4.34)

∂2G

∂w∂v
= (A3 +B3 + C1). (4.35)

The desired property comes if

(A1 +B1 + C1)(A2 +B2 + C1 +D)− (A3 +B3 + C1)
2 =

(A1 +B1 + C1)(A2 +B2 + C1)− {A2
3 +B2

3 + C2
1 + 2A3B3 + 2A3C1 + 2B3C1} ≥ 0.

Followings are true thanks to induction hypothesis and the condition of the lemma

(A1A2 − A2
3) + (B1B2 − B2

3) ≥ 0,



4.B Convexity Analysis of Multi-Period Problem 129

and

(A1 +B1 + C1)D ≥ 0.

So we need to show the followings are true

A1B2 +B1A2 − 2A3B3 ≥ 0,

and

C1(A2 +B2 + A1 +B1 − 2A3 − 2B3) ≥ 0.

From induction hypothesis we know A1A2 − A2
3 ≥ 0 and B1B2 − B2

3 ≥ 0. So,

A1B2 +B1A2 − 2A3B3 ≥
A2

3B2

A2

+
B2

3A2

B2

− 2A3B3 =
(B3A2 − A3B2)

2

B2A2

≥ 0

The non-negativity of the other condition can be shown in a similar way. �

Theorem 9 establishes the fact that the convexity of the multi-period model requires

that the first partial derivative of the minimum multi-period cost, Vt(K, y, x), with re-

spect to low quality inventory level x should be larger than the first partial derivative

with respect to high quality inventory y. Unfortunately, we couldn’t prove any sufficient

conditions that satisfy this. However intuitively, we argue that when the holding cost

rates of high quality and low quality inventories are equal to each other, the desired result

can be obtained. This intuition is expressed in the following conjecture.

Conjecture 1 If hr = hs, then

Vt(K, y +∆, x) ≤ Vt(K, y, x+∆), ∀y ∈ R, x ∈ R
+, ∆ ∈ R

+.

Before testing our intuition with numerical experiments, we also investigated the

pseudo-convexity of the multi-period cost function which can provide us a single min-

imizing point for order-up-to levels of the two inventories. To this end, we adapt the

definition of pseudo-convexity from Bazaraa and Shetty (1979).

Definition 6 (Bazaraa and Shetty, 1979) Let En be a n-dimensional Euclidean space, S

be a nonempty open set in En, and left f : S → E1 be differentiable on S. The function f

is pseudo-convex if for each x1, x2 ∈ S with ∇f(x1)
T (x2−x1) ≥ 0 we have f(x2) ≥ f(x1).

Note the similarity between the first order convexity and pseudo-convexity conditions.

During our investigation into pseudo-convexity, we need the following extension on the

support of the minimum cost function.
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Vt(K, y, u) = Vt(K, y + u, 0), ∀ u ∈ R
−. (4.36)

This extension does not have any effect on the structure of the optimal policy since it

is never optimal to have an order-up=-to level smaller than zero. This reasoning directly

follows from the fact that the system only backlogs high quality demand. Now, we are

ready to state the theorem for pseudo-convexity:

Theorem 10 For period t, suppose v∗t , w
∗
t are two values such that ∂

∂v
Gt(K, v

∗, w∗) =
∂
∂w
Gt(K, v

∗
t , w

∗
t ) = 0 for a given K, ẏ and ẋ. If

∂

∂y
Vt(K, v

∗
t − ẏ, w∗

t )−
∂

∂x
Vt(K, v

∗
t − ẏ, w∗

t ) ≥ 0,

a) Gt(K, v, w) is pseudo-convex in v and w ∀ y ∈ R and x ∈ R
+,

b) (v∗, w∗) is unique, global minimizer of Gt(K, v, w) for a given K,

c) Vt(K, y, x) is jointly convex in y and x.

Proof

For t = N , VN(K, y, x) = 0 . So,

GN(K, v, w) = cs(w − x) + cr(v − y) + L(y, w).

Since L(y, w) is jointly convex in y and w, GN(K, v, w) is jointly convex in v and w which

proves the statements a, b and c. Assume a-c are true for t+1. For t, we need to show the

following condition for pseudo-convexity of Gt(K, v, w): For two different points (v1, w1)

and (v2, w2)

[

∂
∂v

Gt(K,v1,w1)
∂
∂w

Gt(K,v1,w1)

]T

[ v2−v1
w2−w1

] ≥ 0 ⇒ Gt(K, v2, w2) ≥ Gt(K, v1, w1).
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Let us start with the right-hand-side inequality for a given ẏ.

[

∂
∂v

Gt(K,v1,w1)
∂
∂w

Gt(K,v1,w1)

]T

[ v2−v1
w2−w1

] = (v2 − v1)

[

cR +

ẏ
∫

s=0

αEVt+1y(K+, v1 − s, w1)dφ(s) (4.37)

+

ẏ+w1
∫

s=ẏ

αEVt+1y(K+, v1 − ẏ, w1 + ẏ − s)dφ(s) +

∞
∫

s=ẏ+w1

αEVt+1y(K+, v1 + w1 − s, 0)dφ(s)

]

+ (w2 − w1)

[

∂

∂w
L(ẏ, w1) + cs +

ẏ
∫

s=0

αEVt+1x(K+, v1 − s, w1)dφ(s)

+

ẏ+w1
∫

s=ẏ

αEVt+1x(K+, v1 − ẏ, w1 + ẏ − s)dφ(s) +

∞
∫

s=ẏ+w1

αEVt+1y(K+, v1 + w1 − s, 0)dφ(s)

]

.

We handle the terms in Equation 4.37 in four different groups: In the first group we

will evaluate the terms of a single period:

(v2 − v1)c
R + (w2 − w1)(c

s+
∂

∂w
L(ẏ, w1)) = ∇(crv1 + csw1 + L(ẏ, w1))

t [ v2−v1
w2−w1

] ,

≤ (crv2 + csw2 + L(ẏ, w2))− (crv1 + csw1 + L(ẏ, w1)).

(4.38)

The inequality follows from the convexity of L(ẏ, w). In the second group, we consider

the first integral term.

α

ẏ
∫

s=0

[

(v2 − v1)EVt+1y(K+, v1 − s, w1)− (w2 − w1)EVt+1x(K+, v1 − s, w1)

]

dφ(s)

= α

ẏ
∫

s=0

∇EVt+1(K+, v1 − s, w1)
T [ v2−v1

w2−w1
] dφ(s)

≤ α

ẏ
∫

s=0

[

EVt+1(K+, v2 − s, w2)− EVt+1(K+, v1 − s, w1)

]

dφ(s)

= α

ẏ
∫

s=0

EVt+1(K+, v2 − s, w2)dφ(s)− α

ẏ
∫

s=0

EVt+1(K+, v1 − s, w1)dφ(s). (4.39)

The inequality in Equation 4.39 follows from the first order condition of the convexity of

Vt+1(.) implied by the induction hypothesis. The third group of terms include the second
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integral in Equation 4.37.

α

ẏ+w1
∫

s=ẏ

E

[

(v2 − v1)Vt+1y(K+, v1 − ẏ, w1 + ẏ − s) + (w2 − w1)Vt+1x(K+, v1 − ẏ, w1 + ẏ − s)dφ(s)

]

= α

ẏ+w1
∫

s=ẏ

∇EVt+1(K+, v1 − ẏ, w1 + ẏ − s)T [ v2−v1
w2−w1

] dφ(s)

≤ α

ẏ+w1
∫

s=ẏ

[

EVt+1(K+, v2 − ẏ, w2 + ẏ − s)dφ(s)− EVt+1(K+, v1 − ẏ, w1 + ẏ − s)dφ(s)

]

=

ẏ+w1
∫

s=ẏ

αEVt+1(K+, v2 − ẏ, w2 + ẏ − s)dφ(s)−

ẏ+w1
∫

s=ẏ

αEVt+1(K+, v1 − ẏ, w1 + ẏ − s)dφ(s)

(4.40)

The last group of terms include the last integral:

α

∞
∫

s=ẏ+w1

(v2 + w2 − v1 − w1)EVt+1y(K+, v1 + w1 − s, 0)dφ(s) =

α

∞
∫

s=ẏ+w1

∇EVt+1(K+, v1 + w1 − s)T [v2+w2−v1−w1

0 ] ,

≤ α

∞
∫

s=ẏ+w1

EVt+1(K+, v2 + w2 − s, 0)− EVt+1(K+, v1 + w1 − s, 0)dφ(s)

=

∞
∫

s=ẏ+w1

αEVt+1(K+, v2 + w2 − s, 0)dφ(s)−

∞
∫

s=ẏ+w1

αEVt+1(K+, v1 + w1 − s, 0)dφ(s).

(4.41)
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The summation of terms in Equations 4.39 - 4.41 leads to the following:

∇Gt(K, v1, w1)
t [ v2−v1

w2−w1
] ≤ crv2 + csw2 + L(ẏ, w2)

+ α

[

ẏ
∫

s=0

EVt+1(K+, v2 − s, w2)dφ(s) +

ẏ+w1
∫

s=ẏ

EVt+1(K+, v2 − ẏ, w2 + ẏ − s)dφ(s)+

∞
∫

s=ẏ+w1

EVt+1(K+, v2 + w2 − s, 0)dφ(s)

]

−Gt(K, v1, w1). (4.42)

Note that w1 in the integral limits in Equation 4.42 prevents us from writing

∇Gt(K, v1, w1)
t [ v2−v1

w2−w1
] ≤ Gt(K, v2, w2)−Gt(K, v1, w1).

So, we need to analyze those integral limits under w1 ≤ w2 and w1 ≥ w2 conditions.

If w1 ≤ w2,

ẏ+w1
∫

s=ẏ

EVt+1(K+, v2 − ẏ, w2 + ẏ − s)dφ(s) +

∞
∫

s=ẏ+w1

EVt+1(K+, v2 + w2 − s, 0)dφ(s)

=

ẏ+w2
∫

s=ẏ

EVt+1(K+, v2 − ẏ, w2 + ẏ − s)dφ(s) +

∞
∫

s=ẏ+w2

EVt+1(K+, v2 + w2 − s, 0)dφ(s)+

ẏ+w2
∫

s=ẏ+w1

[EVt+1(K+, v2 + w2 − s, 0)− EVt+1(K+, v2 − y, w2 + ẏ − s)]dφ(s). (4.43)

Using Conjecture 1 we can state that Vt+1(K, v2+w2−s, 0)−Vt+1(K, v2−y, w2+ẏ−s) ≤

0 ∀s ∈ E1 which implies the pseudo-convexity of Gt(.) (statement a).

If w1 > w2,
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y+w1
∫

s=ẏ

EVt+1(K+, v2 − ẏ, w2 + ẏ − s)dφ(s) +

∞
∫

s=ẏ+w1

EVt+1(K+, v2 + w2 − s, 0)dφ(s)

=

y+w2
∫

s=ẏ

EVt+1(K+, v2 − ẏ, w2 + ẏ − s)dφ(s) +

∞
∫

s=ẏ+w2

EVt+1(K+, v2 + w2 − s, 0)dφ(s)+

y+w1
∫

s=ẏ+w2

[EVt+1(K+, v2 − ẏ, w2 + ẏ − s)− EVt+1(K+, v2 + w2 − s, 0)]dφ(s). (4.44)

Our assumption in Equation 4.36 implies that
y+w1
∫

s=y+w2

[EVt+1(K+, v2 − y, w2 − s, 0) −

EVt+1(K+, v2 + w2 − s)]dφ(s) = 0. This completes the proof of the statement a. The

statement b follows from statement a. For the convexity of Vt(K, y, x) in y and x,

∇Gt(K, v
∗, w∗) = 0 implies that

∂G

∂v
=cR +

ẏ
∫

s=0

αEVt+1y(K+, v
∗ − s, w∗)dφ(s) +

ẏ+w∗

∫

s=y

αEVt+1y(K+, v
∗ − ẏ, w∗ + ẏ − s)dφ(s)

+

∞
∫

s=ẏ+w∗

αEVt+1y(K+, v
∗ + w∗ − s, 0)dφ(s) = 0, (4.45)

∂G

∂w
=
∂L

∂w
+ cs +

ẏ
∫

s=0

αEVt+1x(K+, v
∗ − s, w∗)dφ(s) +

y+w
∫

s=ẏ

αEVt+1x(K+, v
∗ − ẏ, w∗ + ẏ − s)dφ(s)

+

∞
∫

s=ẏ+w

αEVt+1y(K+, v
∗ + w∗ − s, 0)dφ(s) = 0. (4.46)

Equations 4.45 and 4.46 leads to the following:

ẏ+w
∫

s=ẏ

αE
(

Vt+1x(K+, v
∗ − ẏ, w∗ + y − s)− Vt+1y(K+, v

∗ − ẏ, w∗ + ẏ − s)
)

dφ(s) (4.47)

= cR − cs −
∂L

∂w
+

ẏ
∫

s=0

(

αEVt+1y(K+, v
∗ − s, w∗)− αEVt+1x(K+, v

∗ − s, w∗)
)

dφ(s).

(4.48)
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Let us state that

Vt(K, y, x) = Gt(K, v∗, w∗).

Hence,

∂Vt
∂y

=
∂G∗

t

∂y
=
∂L

∂y
− cR +

ẏ+w
∫

s=ẏ

αEVt+1x(K+, v
∗ − ẏ, w∗ + ẏ − s) (4.49)

−

ẏ+w
∫

s=ẏ

αEVt+1y(K+, v
∗ − ẏ, w∗ + ẏ − s)dφ(s),

∂Vt
∂y

=
∂L

∂y
− cs −

∂L

∂w
+

ẏ
∫

s=0

[

αEVt+1y(K+, v
∗ − s, w∗)− αEVt+1x(K+, v

∗ − s, w∗)
]

dφ(s).

∂2G∗
t

∂y2
=
∂2L

∂y2
−
∂2L

∂w2
+
[

αEVt+1y(K+, v
∗ − ẏ, w∗)− αEVt+1x(K+, v

∗ − ẏ, w∗)
]

φ(ẏ) ≥ 0,

(4.50)

∂Vt
∂x

=
∂G∗

t

∂x
= −cs, (4.51)

∂2G∗
t

∂x2
= 0, (4.52)

∂2G∗
t

∂x∂y
= 0. (4.53)

Equation 4.15 and 4.17 implies that ∂2L
∂y2

− ∂2L
∂w2 = (hr−hs+ψ)φ(y) ≥ 0. Therefore, the

condition of the theorem implies that ∂2Gt

∂y2
≥ 0 and Hessian matrix is positive semidefinite

with respect to y and x. �

Conditions of Theorem 9 and 10 are very similar to each other since both of them rely

on the order between partial derivatives of the minimum cost function which is expressed

in Conjecture 1. The validity of our intuition in Conjecture 1 can be seen from Figures

4.3 and 4.4 below.

The only difference between the two experiments is the holding cost rate of the low

quality products, which is set to 10 in Figure 4.3 and 8 in Figure 4.4.

Note that although we generate some evidence for the sufficient conditions of Theorem

9, the equality of holding cost rates is not a realistic assumption since their acquisition

costs are assumed to be different. This concludes our investigation into convexity condi-
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Figure 4.3: Partial Derivatives of the Minimum Cost Function. Horizon=36, Maximum

Market Capacity=4, Supplier Capacity=25, Backlog Cost Rate=200, Substitution Cost

Rate=50, Holding Costs= (10,10), Expected Demand=2, Discount Rate=0.995

Figure 4.4: Partial Derivatives of the Minimum Cost Function. Horizon=36, Maximum

Market Capacity=4, Supplier Capacity=25, Backlog Cost Rate=200, Substitution Cost

Rate=50, Holding Costs= (10,8), Expected Demand=2, Discount Rate=0.995

tions of multi-period cost function in Section 4.4. In the next section of this appendix,

we present numerical results of our experiments with heuristic policies.

4.C Results of Numerical Experiments



4.C Results of Numerical Experiments 137

Table 4.10: Test Bed 1
Run# Horizon LR Supp Cap K b ψ cr cs hr hs D Market Sce.
Run#1 36 {1,3} 25 4.0 200 50 100 60 10 6 Pois.(2) Stable
Run#2 24 {1,3} 25 4.0 200 50 100 60 10 6 Pois.(2) Stable
Run#3 36 {1,3} 25 4.0 200 100 100 60 10 6 Pois.(2) Stable
Run#4 24 {1,3} 25 4.0 200 100 100 60 10 6 Pois.(2) Stable
Run#5 36 {1,3} 25 4.0 200 150 100 60 10 6 Pois.(2) Stable
Run#6 24 {1,3} 25 4.0 200 150 100 60 10 6 Pois.(2) Stable
Run#7 36 {1,3} 25 4.0 200 200 100 60 10 6 Pois.(2) Stable
Run#8 24 {1,3} 25 4 200 200 100 60 10 6 Pois.(2) Stable
Run#9 36 {1,3} 25 4 200 50 100 60 10 8 Pois.(2) Stable
Run#10 24 {1,3} 25 4 200 50 100 60 10 8 Pois.(2) Stable
Run#11 36 {1,3} 25 4 200 100 100 60 10 8 Pois.(2) Stable
Run#12 24 {1,3} 25 4 200 100 100 60 10 8 Pois.(2) Stable
Run#13 36 {1,3} 25 4 200 150 100 60 10 8 Pois.(2) Stable
Run#14 24 {1,3} 25 4 200 150 100 60 10 8 Pois.(2) Stable
Run#15 36 {1,3} 25 4 200 200 100 60 10 8 Pois.(2) Stable
Run#16 24 {1,3} 25 4 200 200 100 60 10 8 Pois.(2) Stable
Run#17 36 {1,3} 25 4 200 50 100 60 10 10 Pois.(2) Stable
Run#18 24 {1,3} 25 4 200 50 100 60 10 10 Pois.(2) Stable
Run#19 36 {1,3} 25 4 200 100 100 60 10 10 Pois.(2) Stable
Run#20 24 {1,3} 25 4 200 100 100 60 10 10 Pois.(2) Stable
Run#21 36 {1,3} 25 4 200 150 100 60 10 10 Pois.(2) Stable
Run#22 24 {1,3} 25 4 200 150 100 60 10 10 Pois.(2) Stable
Run#23 36 {1,3} 25 4 200 200 100 60 10 10 Pois.(2) Stable
Run#24 24 {1,3} 25 4 200 200 100 60 10 10 Pois.(2) Stable
Run#25 36 {1,3} 25 4 200 50 100 60 10 6 Pois.(4) Stable
Run#26 24 {1,3} 25 4 200 50 100 60 10 6 Pois.(4) Stable
Run#27 36 {1,3} 25 4 200 100 100 60 10 6 Pois.(4) Stable
Run#28 24 {1,3} 25 4 200 100 100 60 10 6 Pois.(4) Stable
Run#29 36 {1,3} 25 4 200 150 100 60 10 6 Pois.(4) Stable
Run#30 24 {1,3} 25 4 200 150 100 60 10 6 Pois.(4) Stable
Run#31 36 {1,3} 25 4 200 200 100 60 10 6 Pois.(4) Stable
Run#32 24 {1,3} 25 4 200 200 100 60 10 6 Pois.(4) Stable
Run#33 36 {1,3} 25 4 200 50 100 60 10 8 Pois.(4) Stable
Run#34 24 {1,3} 25 4 200 50 100 60 10 8 Pois.(4) Stable
Run#35 36 {1,3} 25 4 200 100 100 60 10 8 Pois.(4) Stable
Run#36 24 {1,3} 25 4 200 100 100 60 10 8 Pois.(4) Stable
Run#37 36 {1,3} 25 4 200 150 100 60 10 8 Pois.(4) Stable
Run#38 24 {1,3} 25 4 200 150 100 60 10 8 Pois.(4) Stable
Run#39 36 {1,3} 25 4 200 200 100 60 10 8 Pois.(4) Stable
Run#40 24 {1,3} 25 4 200 200 100 60 10 8 Pois.(4) Stable
Run#41 36 {1,3} 25 4 200 50 100 60 10 10 Pois.(4) Stable
Run#42 24 {1,3} 25 4 200 50 100 60 10 10 Pois.(4) Stable
Run#43 36 {1,3} 25 4 200 100 100 60 10 10 Pois.(4) Stable
Run#44 24 {1,3} 25 4 200 100 100 60 10 10 Pois.(4) Stable
Run#45 36 {1,3} 25 4 200 150 100 60 10 10 Pois.(4) Stable
Run#46 24 {1,3} 25 4 200 150 100 60 10 10 Pois.(4) Stable
Run#47 36 {1,3} 25 4 200 200 100 60 10 10 Pois.(4) Stable
Run#48 24 {1,3} 25 4 200 200 100 60 10 10 Pois.(4) Stable
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4.D Sampling Procedure for Empirical Tests

In order to take a sample to train our model’s transition matrix of Markovian market

capaicty and find Markov-modulated distributions, we take price and annual demand

rates for 14,046 part numbers. Since this large part population includes extreme values,

we take logarithms of cost and annual demand rates and plot them into a scatter diagram

(Figure 4.5), which is used for segmentation of part numbers.
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Figure 4.5: Sampling Scheme for Empirical Tests

In the scatter plot, log-cost (x axis) are distributed between -2 and 4 whereas log-

demand-rates (y-axis) are between -1 and 2. We divide the scatter plots into 18 segmentss

which are indicated with dashed-green lines in Figure 4.5. In order to make evenly dis-

tributed sampling within each segment we utilized diagonal lines (dashed, red lines in

Figure 4.5). Note that each diagonal line represent a curve on which the multiplication

of demand and cost of parts are equal to each other. In our sampling scheme, we took

4 parts around diagonal lines (±20%) and 4 parts from corner regions of each segment.

Note that due to limited number parts in three segments on the left-hand-side of the

scatter plot, our part sample consists of 139 part numbers in total.



Chapter 5

Pricing and Inventory Management

Against Secondary Markets

5.1 Introduction

Producers of capital products, which are referred to as Original Equipment Manufacturers

(OEMs), are increasingly paying more attention to after-sale services to their customers.

Bundschuh and Dezvane (2003) report that after-sale business volumes reached 25% of

total sales in the machine and plant construction industry. Similarly, Cohen et al. (2006)

addresses the importance of after-sale markets by stating that performance of after-sale

services is an indicator for stock prices of companies.

In a regular supply chain of an OEM, parts flow from suppliers to customers who own

and/or operate capital products. During the economic life time of capital products, they

need (un)planned maintenance services and spare parts to stay in operation and avoid

downtime costs. For many products, OEMs are not the only spare parts provider for

capital products. Third-party service providers are usually highly competitive for after-

sale services and OEMs lose a significant volume of after-sale business as soon as the

warranty period of a capital product ends (Cohen et al., 2006). The competition even

gets stronger in existence of secondary markets.

Secondary markets for spare parts are online trading platforms, e.g. ilsmart.com or

fipart.com, on which different agents, such as suppliers, traders, operators or OEMs, can

trade their spare parts. Since those markets are accessible by customers, they can play

two different roles: Secondary markets can be used by OEMs as a source of spare parts,

or they can ‘steal’ some of OEMs’ demand.
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As a supply source, secondary markets have some specific features which should be

considered explicitly. In each decision epoch, there are a certain number of available parts

on the secondary markets. Surplus inventory and cannibalization of older products are

the main sources of these spare parts. Surplus inventory represents spare parts being sold

on markets since they are no longer needed by the selling agent. For instance, an airline

operator who has an aircraft holds some spare parts inventory in its warehouse. When the

operator sells the aircraft, those parts become surplus and usually are sold on secondary

markets. Similarly if a maintenance shop purchase more spare parts than he needs from

a supplier, he can sell surplus parts on secondary markets. Cannibalization is defined

as removal of useful parts from an inoperative machine to use them for maintenance of

another machine (Fisher, 1990). In some cases, maintenance organizations remove spare

parts from capital products and sell them on secondary markets. Parts on those markets

are usually cheaper than the regular supplier’s price of parts and may be in different

conditions, such as new, serviceable, or as-removed. For some parts, such as repairable

parts of aircraft (brakes, landing gears), parts from the secondary market may be accepted

as perfect substitutes of new parts from the regular supplier. For other parts, such as

non-repairables, customers may be quality-sensitive and prefer new parts over parts from

secondary markets. In this study we will focus on the former case, whereas the latter is

left to future research.

As a source of competition, secondary markets create a challenge for OEMs’ after-

sale services with their cheaper prices and fast delivery times. Secondary markets consist

of online trading platforms which can be directly accessed by asset owners or operators.

Hence, high selling prices charged by an OEM may push some customers to purchase spare

parts from secondary markets. We refer to this division of customer demand between the

OEM and secondary markets as the primary effect of the OEM’s pricing policy.

Part prices charged by an OEM also has an effect on the total spare parts demand,

shared between secondary markets and the OEM. Specifically, high spare parts prices

increase maintenance costs of asset owners or operators, which might trigger replacement

of old capital products with new models. If there is only weak competition in the market

of capital products, replacement might be a beneficial for an OEM since customers would

buy his new models. In existence of a strong competitor, on the other hand, the OEM’s

interest might be in extending the economic lifetime of old capital products. Hence, the

pricing policy should consider the effect of spare parts prices on asset owners’ decisions,

which we refer to as the secondary effect of the OEM’s pricing policy.

In this study, we focus on the optimal replenishment and pricing policy for spare

parts of OEMs in existence of secondary markets which have a limited number of spare
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parts at any given time. These available parts are a potential supply source for OEMs

as well as customers. Therefore, those markets possess an advantage of cheaper parts,

but the also stand for a source of competition to OEMs. To understand the optimal

policy, we consider a single period model with immediate deliveries from part suppliers

and secondary markets.

Demand is modeled in two stages. First, we assume that the OEM’s price has a direct

effect on the fraction of total demand received by the OEM and the secondary markets

(primary effect). Namely, as the OEM charges higher prices for their spare parts, more

customers prefer buying from secondary markets directly, which means a demand loss

for the OEM. Second, we assume that the total demand (shared between the OEM and

secondary markets) is a decreasing function of the OEM’s spare part prices (secondary

effect). The structure of the supply chain we considered in this study is given in Figure

5.1. In addition to these two effects, we consider a finite availability of parts on the

secondary markets and assume that the OEM purchases from those secondary markets

before demand arrives. In other words, the total demand received by the OEM is a

function of his own purchases from the secondary markets.

Through our analysis we show that 1) the OEM should consider the secondary mar-

kets as their primary supply source, while the regular supplier is used only if backlogged

demand cannot be satisfied through the secondary markets; this is intuitive, since pur-

chasing from secondary markets increases the potential demand, 2) the pricing policy is

either a list price or it moves between two list prices as a non-increasing function of the

inventory level.

The remainder of this chapter is organized as follows. In the next section, we position

our study with respect to the relevant literature. Section 5.3 is devoted to a description

of a business case taken from a Western European OEM in aviation. In Section 5.4, we

present the model and its mathematical properties. Numerical results are presented in

Section 5.5. The last section is devoted to our conclusions and suggestions for future

research.

5.2 Related Literature

The literature related with our study consists of two major parts: dynamic pricing and

dual sourcing. Since the latter stream of research is reviewed in the previous chapter

in detail, we focus on the former literature in this chapter. In our review, we focus

on studies which we find the most important for our problem. A more comprehensive
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review of pricing studies is given by Chen and Simchi-Levi (2010) and Elmaghraby and

Keskinocak (2003).

Studies in pricing literature can be categorized based on the possibility of replenish-

ment during a selling season (Elmaghraby and Keskinocak, 2003). Although we consider

a single period model (which precludes possibility of replenishment during the selling sea-

son by definition), we acknowledge that dynamic models with periodic replenishments (in

a finite horizon) are also related with our research setting (Section 5.3). Therefore, we

will review both research streams in this section.

To the best of our knowledge, the first study considering a single period model in

a newsvendor setting is by Zabel (1970). He considers a single period problem with a

multiplicative demand model with constant backlog and holding cost rates. He shows the

optimal pricing and replenishment policies and analyzes monotonicity conditions of policy

parameters over cost rates and inventory level. Polatoğlu (1991) assumes that the random

demand has a general distribution between lower and upper bounds while the expected

demand is a decreasing function of the price in a single period model. He finds that the

optimal solution is base-stock type with a pricing level depending on the order quantity.

Unimodality of the profit function plays a crucial role in his analysis. Rajan et al. (1992)

considers pricing of perishable products within an inventory cycle. They derive some

monotonicity properties of the optimal price over unit purchase cost and the length of

inventory cycle. Gallego and Van Ryzin (1994) consider optimal dynamic pricing for a

company who has to sell a fixed amount of inventory over a single period. They show

monotonicity properties for the optimal price over inventory level and selling horizon.

Furthermore, they prove asymptotic optimality of the constant price policy which can

be used as a heuristic approach for the problem. Our study can be considered as an

extension to Gallego and Van Ryzin (1994) since we assume a limited control (due to

finite availability of secondary markets) over the amount of products to be sold within a

selling season.

Early studies on multi-period pricing policy are (Karlin and Carr, 1962; Zabel, 1972).

Karlin and Carr (1962) analyze joint pricing and inventory policy for some restrictive as-

sumptions, such as zero holding cost and constant pricing policy over the entire planning

horizon. An extension of this study is given by Zabel (1972) who considers the problem

setting with additive and multiplicative demand functions. He finds that the optimal

policy depends on the form of the demand function and its random variable, assuming

that the demand is a convex function of the price. Thowsen (1975) considers a convex

decreasing function for expected price-dependent demand in a multi-period model and

shows the sufficient conditions for the optimality of list price. Polatoğlu and Sahin (2000)
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extend the work by Polatoğlu (1991) to a multi-period, finite horizon problem setting

with lost sales. They find that the optimal replenishment policy is similar to order-up-to

policy under the assumption that the profit function is unimodal. Li (1988) considers

Poisson processes with price-dependent intensities for the demand process of a company.

Federgruen and Heching (1999) extend that work by considering a general distribution

with price-dependent distribution function for the demand. They show some charac-

teristics of the optimal pricing and replenishment policies and present a value iteration

algorithm to calculate policy parameters. The same problem setting is extended with

fixed ordering cost by Chen and Simchi-Levi (2004), and with lost sales by Chen et al.

(2006). Furthermore, Gong et al. (2014) consider supply risk in a dynamic pricing and

inventory management problem. They consider an additive demand model and show the

monotonicity of optimal pricing policy as well as the optimality of reorder point policy

for replenishment of products from suppliers. They also show that both customer and

retailer benefit from low supply risk. Ceryan et al. (2013) focus on capacity flexibility

and dynamic pricing in a problem setting where two products can be substituted for each

other’s demand. They find that the pricing policy depends on production capacities for

two products.

In our study we consider an additive linear model for the expected total demand and

assume a split of this total demand between OEM and secondary markets. Our demand

function resembles Zabel (1972) and Thowsen (1975) since it is a convex, quadratic and

decreasing function of price. Unlike those studies, we explicitly model the demand function

by formulating primary and secondary effects of price. Furthermore, our study is the first

one considering secondary markets both as a source of supply and a competitor. These

two properties are recognized by managers from the aviation sector. In the next section,

we present our research setting which stands for the main motivation of this study.

5.3 Research Setting

This study is motivated by an OEM providing parts and maintenance services for out-

of-production aircraft in Western Europe. Since the company does not manufacture new

aircraft, the extension of economic lifetimes of existing aircraft, by providing responsive

maintenance service for reasonable prices, is critical for the financial stability of the com-

pany.

The company has more than 500,000 part numbers in its database. Depending on

the customer demand, it sells new parts (from a regular supplier) as well as second-hand

parts in different conditions, such as overhauled or serviceable. Inventory analysts in the
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company state that as the fleet gets older, the customer base of the company turns from

quality-sensitive into price-sensitive, i.e. customers are willing to accept parts in different

conditions from secondary markets for cheaper prices. This motivates the company to

consider secondary markets in their sourcing and pricing policies.

Secondary markets in aviation largely consist of internet-based online trading plat-

forms, such as ilsmart.com ans fipart.com. Suppliers, brokers, OEMs and customers

register on these platforms by paying an annual membership fee and run queries for the

part numbers that they want to trade. In general, spare parts from secondary markets

are cheaper than prices of regular suppliers and their conditions are worse than brand

new (the condition of parts from regular supplier). Secondary markets are a beneficial

supply source for the OEM given that customers are willing to accept spare parts from

secondary markets as substitutes of brand new parts.

Another important aspect of secondary markets is their finite availability at any given

time. Spare parts owned by different traders are registered to these markets and buyers

quote the prices of these parts when they need them. Due to finite availability, one

potential strategy of the OEM is to collect all the spare parts on the market to receive

as much demand as possible if the marginal cost of purchasing from secondary markets

does not exceed the marginal profit of selling them. Otherwise the OEM can leave the

market as it is. For simplification, we assume that the OEM makes his purchase decision

from markets before the customer demand arrives. Such a leader role (as in a Stackelberg

game) is appropriate for the OEM due to its technical knowledge and natural advantage

over other traders.

The OEM categorizes its customers as loyal and price-sensitive. Loyal customers prefer

the OEM due to its reliable, high part availability and quality whereas price-sensitive

customers prefer secondary markets. Since customers in the both categories have direct

access to secondary markets, loyal customers can become price-sensitive if they decide

that the OEM’s spare parts are too high. Similarly, decreasing prices of the OEM might

motivate some price-sensitive customers to prefer the OEM instead of secondary markets.

In other words, the total amount of spare parts demand is split up between the OEM and

secondary markets and the fraction of total demand received by the OEM is a decreasing

function of its spare parts prices (primary effect of pricing).

Another important aspect of the problem setting is the tendency of asset owners to

replace their fleet with new models. Increasing average age of fleet comes with increased

maintenance and downtime costs which eventually leads asset owners to sell their existing

aircraft and buy a new model. Pricing of spare parts has such a secondary effect on

expected total demand (the summation of demand received by the OEM and secondary
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markets) due to the asset owners’ attitude towards replacing their fleet in operation. The

expected total demand is therefore a decreasing function of OEMs spare part prices.

In the next section, we consider the optimal pricing and replenishment policy for the

OEM who has secondary markets as a supply source and a competitor. Primary and

secondary effects of pricing on the company demand are considered in a single period

model and the optimal pricing and replenishment policies are analyzed.

5.4 Model

We consider an OEM who is using secondary markets as a supply source and facing

competition from secondary markets due to their lower prices. The OEM purchases both

from regular supplier and secondary markets and sets his selling price by considering

existing inventory at the beginning of the period (y), market availability (K), primary

and secondary effects of pricing on demand. We define p as the selling price of spare

parts whereas qr and qm are the amount of parts purchased from a regular supplier and

secondary markets respectively. We assume that orders to both channels are delivered

immediately and acquisition costs are denoted with cr and cm. Secondary markets have a

finite number of available parts at any given time, K ≥ qm, whereas the regular supplier

has infinite capacity.

The primary and secondary effects of the OEM’s selling price (p) on the expected

demand are modeled in two stages: First we assume a linear decreasing function for

the total expected demand D(p), which stands for the secondary effect of pricing. The

formulation of the total expected demand is given as follows:

D(p) = D0 − (p− pmin)
D0 −D

pmax − pmin

, (5.1)

where D0 and D are maximum and minimum possible demand values when the part price

is set to pmin and pmax which are maximum and minimum feasible values for the OEM’s

selling price.

Second, the total demand comes from price-sensitive and loyal customers which prefer

to go to secondary markets and the OEM respectively. The split of the total demand be-

tween these two customer classes constitutes the primary effect of pricing since increasing

the OEM’s selling price leads loyal customers to become price-sensitive. We denote the

demand from the former class of customers as ‘price-sensitive demand’ and the demand

of the latter class as ‘loyal demand’. We consider the following linear decreasing function
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to model the fraction of loyal demand which comes directly to the OEM:

ξ(p) = 1−
p− pmin

pmax − pmin

.

Without loss of generality, we set D = pmin = 0. For notational brevity, we define

γ = D0

pmax
and β = 1

pmax
, which are slopes of total demand and loyal demand respectively,

both decreasing in p.

Since the available spare parts on the market is limited, some of price-sensitive cus-

tomers might be unsatisfied after realization of demand. We assume that these customers

come to the OEM to satisfy their spare parts needs by paying the OEM’s selling price.

Therefore, total received demand of the OEM is a summation of total loyal demand and

unsatisfied (left-over) price-sensitive demand as formulated below:

Dtot = D(p)ξ(p) + [D(p)(1− ξ(p))−K + qm]+ + ǫ, (5.2)

= (D0 − γp)(1− βp) + [(D0 − γp)βp−K + qm]+ + ǫ,

whereD(p) is given in Equation 5.1 . The first term of the equality stands for loyal demand

of the OEM, whereas the second term stands for left-over, price-sensitive demand which

comes to the OEM since it is not satisfied from secondary markets due to the limited

availability. The last term in Equation 5.2, ǫ, is an additive random variable, with zero

mean and positive support on demand. Note that in the case of large K or low qm,

[(D0 − γp)βp−K + qm]+ becomes zero and the company receives only the loyal demand,

D(p)ξ(p). A schematic representation of the model is depicted in Figure 5.1.

Figure 5.1: Supply Chain of an OEM with a Secondary Market

In our model we assumed the following event sequence: At the beginning of the period,

the OEM decides orders to regular supplier and secondary markets (qr and qm), and

its selling price (p) by looking at the existing inventory (y) and the market availability

(K). Deliveries occur immediately. Afterwards, the total demand and its split between
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secondary markets and the OEM materializes. Unsatisfied price-sensitive customers come

to the OEM. The total received demand is satisfied from inventory (y+ qr + qm). Finally,

the holding cost (backlog cost) for excess inventory (for unsatisfied demand) is incurred.

Note that we assume that the backlog cost rates for both parts of total received demand

(loyal and price-sensitive) are equal to each other. Also we assume that the salvage value

of excess inventory is zero and the OEM is indifferent between loyal and price-sensitive

customers in its pricing policy. Furthermore customers are assumed to accept parts from

markets and regular suppliers as substitutes. The last assumption can be justified for

repairable items, which can be purchased from secondary markets and overhauled in a

repair shop. When a part is overhauled, the cost of buying from the secondary markets

is equal to the sum of the overhauling cost and the acquisition cost from the secondary

market. All notations of the model are presented in Table 5.1.

Table 5.1: Notation of the model

K : number of parts available on the market at the beginning of a period.
cm: cost of buying one part from the market for the OEM.
cr: cost of buying an part from the regular supplier.
h: holding cost per period per part.
b: cost of backlogged demand.
pmin : minimum selling price.
pmax : maximum selling price.
D0: maximum demand rate when the selling price is set to pmin.
D minimum demand rate when the selling price is set to pmax.
D(p): total customer demand arriving to the system.
ξ(p): fraction of loyal demand choosing the OEM.
Dtot: total amount of demand received by the OEM.
qr: order to regular supplier.
qm: number of item purchased from secondary market.
p : selling price to the customer.
z = K − qm : the amount of spare parts left on the market by the OEM.

Using these notations and assumptions, the single period profit function is formulated

as follows:

H(K, y, p, qm, qr) = pDtot− cmq
m− crq

r−h[y+ qm+ qr−Dtot]
+− b[Dtot− (y+ qm+ qr)]+,

(5.3)

where Dtot is given in Equation 5.2. The first term of Equation 5.3 is the revenue from

total received demand. The rest of the terms are acquisition cost from secondary markets

and the regular supplier, holding and backlog costs.
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The single-period profit maximization problem can be formulated as follows:

P1 : max
0≤qr,

0≤qm≤K,
0≤p≤pmax

E[H(K, p, y, qm, qr)]. (5.4)

The constraints of P1 consist of non-negativity of replenishment orders and selling prices,

and the limit on total purchase from secondary markets. The main difficulty of this

maximization problem stems from Dtot since it may take two different forms depending

on K and the amount of left-over, price-sensitive demand. Denoting the amount of parts

left on the market by the OEM with z, total received demand (Dtot, Equation 5.2) can

be written as follows:

Dtot =







D(p)− z + ǫ, if (D0 − γp)βp ≥ z,

D(p)ξ(p) + ǫ, otherwise.
(5.5)

This indicates that the objective function of P1 changes when price-sensitive demand

is larger than the amount of spare parts left on market by the OEM. This brings the

necessity of analyzing P1 on two different feasible sets: {(p, z) : (D0 − γp)βp ≥ z} and

its complement in the feasible set of P1. We refer to these two subproblems as P1.1 and

P1.2 which are analyzed in the following subsections respectively.

5.4.1 Analysis for Problem 1.1

Recall that the OEM purchases parts from the secondary markets before the demand

arrives. Therefore, the amount of spare parts left on the market for price-sensitive demand,

denoted by z, is a result of his replenishment policy. When the price-sensitive demand is

larger than the spare parts left on the secondary market by the OEM (D(p)βp ≥ z), then

the company receives the difference between the total expected demand and the amount

of parts left on the market (D(p)−z+ǫ). A transformation v = K+y+qr−D(p) simplifies

the analysis of the profit function significantly. The variable v can be interpreted as the

amount of expected excess inventory after the demand is satisfied. Using this variable,

the objective function and the maximization problem (P1.1) are written as follows:

H1(K,y, p, z, v) = p(D(p)− z + ǫ)− cm(K − z)− cr(v −K − y)− h[v − ǫ]+ − b[ǫ− v]+,

= (p− cr)D(p) + pǫ+ (cm − p)z − crv − h[v − ǫ]+ − b[ǫ− v]+ + cry +K(cr − cm),

= (p− cr)D(p) + pǫ+ (cm − p)z − (cr − b)v − (h+ b)[v − ǫ]+ + cry +K(cr − cm),

(5.6)
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and

P1.1 : max
(p,z,v)∈1F

E[H1(K, y, p, z, v)], (5.7)

where

1F = {(p, z, v) ∈ R
3 : 0 ≤ z ≤ K; 0 ≤ p ≤ pmax; (D0 − γp)βp ≥ z;K + y −D0 + γp ≤ v}.

(5.8)

The feasible set 1F consists of four different constraints. The first one is the market

capacity (the second constraint in P1), whereas the second one specifies possible values

of price (the third constraint of P1). The third constraint defines the portion of the

feasible set where Dtot = D(p)− z and the last constraint is a transformed version of the

non-negativity of orders to regular supplier (the first constraint in P1). The following

lemma establishes the convexity of 1F .

Lemma 11 The following statements hold.

(a) (D0 − γp)βp− z is jointly concave in p and z,

(b) 1F is a convex set of (p, z, v).

The proof of Lemma 11 is given in Appendix 5.A. For analyzing the objective function

we use separability of the profit function H1(K, y, p, z, v) in (p, z) and v, which can be

expressed as follows:

H1(K, y, p, z, v) = R1(p, z)− G1(v)

The first term in the profit function, R1(p, z) = (p−cr)D(p)+(cm−p)z+pǫ, is interpreted

as revenue function. The first term of the revenue function stands for the revenue minus

to acquisition cost of the regular supplier, whereas the second term represents the loss of

profit due to the amount of parts left on the market.

The second term of the profit function, G1(v) = (cr−b)v+(h+b)[v−ǫ]+−cry−K(cr−

cm), is the cost function when the expected amount of excess inventory after demand is

v. The first two terms of this function represent acquisition, holding and backlog costs,

whereas the third and fourth terms stand for the cost saving due to existing inventory

and buying from secondary market instead of the regular supplier. The following lemma

states the strict concavity of the profit functions.

Lemma 12 The following statements hold.

(a) E[R1(p, z)] is a strictly concave function of (p, z),
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(b) G1(v) is a convex function of v,

(c) The expected profit function E[H1(K, y, p, z, v)] in Equation 5.6 is a strictly concave

function of (p, z, v).

The proof of Lemma 12 is given in Appendix 5.A. Lemmas 11 and 12 imply that the

subproblem P1.1 is a maximization of a strictly concave function on a convex set. Hence,

the optimal value can be found analytically using Karush-Kuhn-Tucker conditions. The

optimal solution of the problem P1.1 is given in the following theorem.

Theorem 11 The optimal solution of the maximization problem (P1.1) is characterized
as follows:

(p∗, z∗, v∗) =































(

pmax+cr

2
, 0, F−1(φ)

)

if F−1(φ) ≥ +K + y −D(p∗), p∗ ≥ cm
(

f−1

2 (0), 0,K + y −D(p∗)
)

if F−1(φ) < K + y −D(p∗), p∗ ≥ cm,
(

f−1

3 (0), D(p∗)βp∗,K + y −D(p∗)
)

if F−1(φ) < K + y −D(p∗), p∗ < cm, D(p∗) < K,
(

f−1

4 (0),K,K + y −D(p∗)
)

if F−1(φ) < K + y −D(p∗), p∗ < cm, D(p∗) > K,

(5.9)

where φ = b−cr
h+b

, F (.) is the cdf of the random variable ǫ and the functions f2(p), f3(p)

and f4(p) are given below:

f2(p) = D0 − 2γp+ γ(b− (h+ b)F (K + y −D(p))) (5.10)

f3(p) = f2(p)−D(p)βp+ γ(p− cm)(−1 + 2βp), (5.11)

f4(p) = f2(p)−K. (5.12)

The proof of the theorem is presented in the appendix of this chapter. The optimal

pricing policy is calculated with three different functions mainly depending on the market

availability (K) and the inventory level y. Among three functions, f2(p) is the fundamental

one since it takes place in other price functions. Therefore, all of these functions have

some common properties which are useful for deriving insight into the solution. First, all

functions are nonincreasing function of µ, which is the sum of market availability and the

inventory level at the beginning of the period. This implies the relationship between the

optimal pricing policy and the existing inventory level. Second, the effect of inventory and

market availability appears through the random component of the demand. This implies

that for larger values of µ, the last term of f2(p) becomes one (limµ→∞ F (µ−D(p)) = 1)

and the optimal pricing policy becomes the list price. The list price policy stands for

a constant selling price which is independent of the inventory level of a company. A

constant mark-up policy used in practice is a good example of list price policy. Since our
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policy includes a transition between two different list prices depending on µ, we refer to

this policy as modified-list price due to the effect of randomness on the price.
When we transform decision variables from (p, z, v) back to (p, qr, qm), results pre-

sented in Theorem 11 are as follows:

(p∗, qm
∗

, qr
∗

) =































(

pmax+cr

2
,K, F−1(φ)− µ+D(p∗)

)

if F−1(φ) ≥ µ−D(p∗), p∗ ≥ cm,
(

f−1

2 (0),K, 0
)

if F−1(φ) < µ−D(p∗), p∗ ≥ cm,
(

f−1

3 (0),K −D(p∗)βp∗, 0
)

if F−1(φ) < µ−D(p∗), p∗ < cm, D(p∗) < K,
(

f−1

4 (0), 0, 0
)

if F−1(φ) < µ−D(p∗), p∗ < cm, D(p∗) > K,

(5.13)

where φ = b−cr
h+b

and µ = K + y.

Although conditions and optimal price values in Equation 5.13 are intricate, we make

some important observations about the optimal solution for P1.1. First, secondary mar-

kets are used as the primary source of supply in the solution. Orders are issued to the

regular supplier only if the summation of market availability, existing inventory minus

expected demand is smaller than a certain threshold (F−1(φ) ≥ µ −D(p∗)). Otherwise,

no order is placed to the regular supplier. This policy is called zero inventory ordering

principle (Chen and Simchi-Levi, 2010). Second, increasing amount of existing inventory

changes the optimal pricing from pmax+cr
2

to f−1
2 (0). The latter solution is a non-decreasing

function of K + y and it is always smaller than the former. In other words, increasing

inventory level (or market availability) leads to a lower optimal price level. Third, the

third solution in Equation 5.13 is on the constraint D(p)βp ≥ z of the feasible set 1F .

This might imply that when this solution is the optimal for P1.1, the profit of P1.2

might be higher than that of P1.1.

Since it is not possible to get closed form conditions for the last three solutions in

Equation 5.13 (all of them are functions of p∗), we cannot derive further insights analyti-

cally. Therefore, we employ numerical experiments to understand these conditions better

in Section 5.5. In the next section, the analysis for P1.2 is presented.

5.4.2 Analysis for Problem 1.2

In the second subprobem, we consider the possibility of demand going to secondary mar-

kets being smaller than the amount of parts left on the market, D(p)βp < z. In this case,

the OEM only receives the demand from loyal customers who choose to come directly

to the OEM instead of secondary markets. To make an analysis for H2(K, y, p, qm, qr),

which is the profit function when D(p)βp < z, let us define the another decision variable
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w = µ− z + qr −D(p)ξ(p) and recall that µ = K + y. Then,

H2(K, y, p, z, w) =

p(D(p)ξ(p) + ǫ)− cm(K − z)− cr[w − µ+ z +D(p)ξ(p)]− h[w − ǫ]+ − b[ǫ− w]+,

= (p− cr)D(p)ξ(p) + pǫ− z(cr − cm)− crw − h[w − ǫ]+ − b[ǫ− w]+ + crµ−Kcm.

(5.14)

Using H2(K, y, p, z, w) as the objective function, we can define the maximization problem

P1.2 as follows:

P1.2 : max
(p,z,w)∈2F

E[H2(K, y, p, z, w)], (5.15)

where

2F = {(p, z, w) ∈ R
3 : 0 ≤ z ≤ K; 0 ≤ p ≤ pmax}

∩ {(p, z, w) ∈ R
3 : −w − z + γp− γβp2 + µ−D0 + γβ ≤ 0; (D0 − γp)βp < z}.

The feasible set 2F consists of two different subsets. The first set includes linear con-

straints of market availability and bounds of price. Thanks to linearity of constraints the

first subset is convex. The second subset is constrained with two inequalities. The first

one follows from the non-negativity of the orders to regular supplier (qr ≥ 0) and the

transformation (w = y +K − z + qr −D(p)ξ(p)). The second inequality is based on the

function that separates the feasible sets of the two subproblems from each other. Both

inequalities form non-convex sets since they are sub-level sets of concave functions.

The objective function of P1.2 in Equation 5.14 can be written as H2(K, y, p, z, w) =

R2(p) − G2(z, w) where R2(p) = (p − cr)(D0 − γp)(1 − βp) and G2(z, w) = z(cr − cm) +

crw+ h[w− ǫ]+ + b[ǫ−w]+ − crµ+Kcm. Therefore it is separable in p and (z, w). R2(p)

stands for the profit obtained from sales of spare parts replenished by the regular supplier.

The function G2(z, w) represents the costs to be deducted from the profit. The first term

represents the amount of extra cost that stems from choosing the regular supplier instead

of the secondary market. Recall that z is defined as the amount of items left on the

market. The interpretation of the other terms are the same as for G1(z, v). The following

lemma completes the analysis for the objective function of P1.2.

Lemma 13 The following statements hold.
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a) E[R2(p)] is a strictly concave function in p on [0,Λ) and it is convex decreasing in p

on [Λ, pmax), where

Λ =
cr + 2pmax

3
.

b) G2(z, w) is convex in (z, w),

c) H2(K, y, p, z, w) is strictly concave on 2F ∩ {p : p ∈ [0,Λ)}.

The proof of Lemma 13 is given in Appendix 5.A. R2(p) is a cubic function of p and

it is strictly concave only in [0,Λ]. Lemma 13 implies that P1.2 is a maximization of

a strictly concave function on a nonconvex set. To the best of our knowledge, there is

no analytical method for P1.2. Therefore, after developing some more insight into the

structure of P1.2, we proceed to the numerical analysis of the problem.

In Lemma 13 we showed that the maximum value of R2(p) is in [0,Λ). Recall that

R2(p) is the positive part of the profit function (H2(K, y, p, z, w)). Therefore, it is intuitive

to state that the solution of P1.2 can be found in 2F∩{p : p ∈ [0,Λ)}. This result is shown

for the maximization problem without non-convex constraints in the following lemma.

Lemma 14 The following equality holds.

max
p∈[pmin,pmax],

0≤z≤K,
w∈R+.

H2(K, y, p, z, w) = max
p∈[pmin,Λ],

z≥0,
w∈R+.

H2(K, y, p, z, w)

The proof of Lemma 14, given in the appendix of this chapter, relies on statement a of

Lemma 13 and the separability of the profit function H2(K, y, p, z, w) in p and (z, w).

Unfortunately, Lemma 14 cannot be shown for P1.2 due to the nonconvex constraints

of 2F . We only conjecture the result in Lemma 14 and check its validity numerically in

Section 5.5.

Conjecture 2

max
(p,z,w)∈2F ,

p∈[0,Λ)

E[H2(K, y, p, z, w)] = max
(p,z,w)∈2F

E[H2(K, y, p, z, w)].

Finally, we present the solutions of the unconstrained P1.2, which will be useful to

understand the directions of the gradient vector and the solution of the overall problem.

Lemma 15 The following statements hold:



156 Pricing and Inventory Management Against Secondary Markets

a) (pmax+2cr
3

, 0, F−1( b−cr
h+b

)) is the optimum solution of the problem

max
0≤z≤K,
0≤p≤Λ

E[H2(K, y, p, z, w)].

b) The optimum solution of the unconstrained problem does not satisfy (D0−γp)βp−z <

0. Hence, they are not in 2F .

Lemma 15, of which the proof is given in Appendix 5.A, establishes that the gradient

vector of the objective function is towards the constraint separating P1.1 from P1.2. This

indicates that the solution of P1.2 will be on (D0 − γp)βp = z for many instances. Since

the feasible set of P1.1 includes this constraint, we expect that P1.1 will be sufficient for

solving the problem P1 in many instances of the problem. As stated above, we do not

have any analytical method to prove these properties and bring a final and definite answer

to the problem. Therefore, we moved to numerical experiments to confirm our insights

into the solution. Note that given the status of our analysis, we can only say that the

solution presented in Theorem 11 can be used as a heuristic approach to the maximization

problem P1. In the following section, we test the performance of this heuristic solution

in an extensive numerical study.

5.5 Numerical Experiments

This section consists of three major parts. First we will present results of numerical op-

timization for the first subproblem (P1.1) to analyze the relationship between different

solutions presented in Theorem 11. To this end, we employ extensive numerical experi-

ments and find regions of the state space where each solution becomes optimal. Second,

we will present some results on the validity of Conjecture 2 in Section 5.4.2. Recall that

due to the nonconvex constraints of 2F we cannot extend the result of Lemma 14 for the

whole problem although we find it to be true for most instances of our test bed. Third,

we present results of our experiments for the relationship between P1.1 and P1.2. Note

that all of experiments are conducted in MATLAB 2014a.

In order to evaluate solutions of the problem we use a test bed consisting of a factorial

design of parameters presented in Table 5.2. For inventory level, y, market capacity,

K, maximum possible demand, D0, upper bound of price, pmax, and acquisition cost

of the regular supplier, cr; we use actual values presented in the table. For acquisition

cost from secondary markets, backlog and holding cost rates, cm, b and h, we multiply

lcm, lb, lh with cr. The motivation behind this approach is avoiding the violation of the
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condition b > cr ≥ cm > h. The first inequality is classic in inventory control theory

and its violation leads the decision maker to backlog the demand instead of replenishing

the inventory. The second inequality follows from our assumption of the regular supplier

being more expensive than secondary markets. With the last inequality we aim to avoid

unrealistic scenarios since holding cost rate cannot be larger than the acquisition cost of

a spare part.

Table 5.2: Experiment Factors Consisting of the Test Bed

y K D0 Pmax cr lcm lb lh

-2 1 5 10 5 0.1 1.1 0.05
-1 5 10 25 10 0.25 1.25 0.1
0 10 20 50 20 0.5 1.5 0.25
1 20 50 100 50 0.75 2 0.5
2 1 0.75
3
4
5

In addition, some instances of the test bed, where pmax < cr, represent unrealistic

scenarios since the maximum possible price cannot be smaller than the cost of a regular

supplier. Such a situation would set the OEM’s profit to zero. We eliminated those

instances from the test bed. As a result we obtain a test bed consisting of 112640 different

instances. In our calculations we assumed that ǫ ∼ Unif(−1, 1).

5.5.1 Solutions of Problem 1.1

Conditions of Theorem 11 mostly consist of functions of the optimal price value, which

can only be expressed analytically for some specific distributions for ǫ. Therefore, to

understand the conditions of the theorem and the relationship between solutions, we

employ enumeration. To this end, we coded the problem in MATLAB and used its built-

in function fmincon which is suitable for convex optimization problems.

Our results indicate that the first two solutions in Theorem 11 are optimal in 96%

percent of cases (S1 and S2 in Figure 5.2) whereas the third solution is found to be the

optimal in 3.9% of them (S3 in Figure 5.2). This distribution stems from the fact that the

third solution appears when the summation of existing inventory and market capacity is

larger than the expected demand. Such instances can occur in our test when D0 is smaller

than K + y. The fourth solution (S4) is only optimal for small values of K and large

values of y, i.e. when the secondary markets do not bring competition and the inventory
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level is sufficient to satisfy the demand. These relationships are more obvious in Figures

5.3 and 5.4.

Figure 5.2: Solutions of Problem 1.1

In Figures 5.3 and 5.4, we present results of two experiments, which are different from

each other by the cost of regular supplier. Decreasing the value of this parameter increases

the region of S1 in which the OEM orders to regular supplier and collects all parts on the

market. This counter-intuitive result stems from the increasing gap between pmax and

cr. Specifically, when cr is smaller while everything else is the same, the OEM has larger

potential profit margin to manipulate the demand. This motivates him to increase more

inventory (by obtaining from both channels) to obtain larger profit.

Another interesting managerial question is the relationship between the optimal policy

and the market cost which is given in Figure 5.5. Recall that the first two solutions

prescribe to collect all the market while the first one prescribes ordering to regular supplier

while the second one does not. This is the reason why solution 1 is the optimal for negative

inventory levels. As the gap between costs of market and the supplier closes, collecting

all the market loses its appeal and the third solution becomes the optimal. Recall that

the third solution is defined with the quadratic function D(p)βp = z which separates

P1.1 from P1.2. In other words, when the market cost is close to the cost of the regular

supplier, the P1.2 might be more interesting for P1.

5.5.2 Analysis for Conjecture 2

For analyzing P1.2 and Conjecture 2, we enumerate the objective function as well as

the constraints of the problem in MATLAB using an appropriate discretization. In these

computations, some instances, including large K, D0 and pmax values, are eliminated from
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Figure 5.3: Solutions of Problem 1.1 for different Market Capacity and Inventory Level

for D0 = 5, pmax=50, cr=40, cm = 20, b = 44, h = 4

Figure 5.4: Solutions of Problem 1.1 for different Market Capacity and Inventory Level

for D0 = 5, pmax=50, cr=25, cm = 20, b = 44, h = 4
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Figure 5.5: Solutions of Problem 1.1 for different Inventory Levels (y) and Market Cost

(cm) for D0 = 5, pmax=50, K = 5, cr=25, b = 44, h = 4

the test bed due to memory constraints of MATLAB The total size of the test bed we

evaluated in this part of the numerical experiment is 84667.

An analysis on the results of numerical experiments reveals that in 74% of the test

bed Conjecture 2 was correct, i.e. the optimum price is smaller than Λ from Lemma 13.

A closer look at the instances, where Conjecture 2 fails, indicated that in 83% of cases

K equals to one (Figure 5.6) whereas in 16% of them K is equal to 5. This indicates

that Conjecture 2 is more reliable for larger values of market availability. Note that the

conjecture holds for all instances of K equal to 20. Reasons behind this empirical evidence

are twofold: For small values of market capacity, P1.2 becomes trivial due to the fact

that the constraint D(p)βp < z < K covers a very small area of the feasible set. In terms

of managerial insight, we can translate this observation as increasing values of market

capacity brings more fierce competition to the OEM so, it has to adjust its pricing policy

accordingly.

5.5.3 Comparison Between Problems 1.1 and 1.2

Recall from Section 5.4 that the profit maximization problem P1 consists of two separate

subproblems of which the feasible sets are mutually exclusive. The solution of the problem

P1 is equal to the maximum of P1.1 and P1.2 which are analyzed in Section 5.4.1 and

5.4.2 respectively. Although an analytical formulation of the solution is derived for P1.1,
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K=1, 83.0% 

K=5, 16.4% 

K=10, 0.5% 

Figure 5.6: Distribution of Values of K Cases in the Market Availability Where Con-

jecture 1 Fails

the non-convex feasible set of P1.2 prevents us to derive any analytical solution to be used

in comparison between the two subproblem. Therefore, we circumvent this complication

by comparing the two subproblems numerically on an extensive test bed which includes

84667 instances, as described in the previous section.

Recall that we expect a domination of P1.1 over P1.2 since the unconstrained solution

of the latter problem exists in the feasible set of the former, as stated in Conjecture 2.

Results of our experiments indicate that in 85% of the cases this expectation is true.

Properties of the test bed, on which P1.2 is larger than P1.2, are important to

understand the reliability of analytical solutions derived in Section 5.4.1. A closer look

at that portion of the test bed reveals that the majority of these test instances consists

of small values for D0 and pmax. This can be explained by the fact that smaller values

of these parameters yield larger feasible sets for P1.2 compared to its complementary

subproblem. Furthermore, numerical values of the decision variables (p, z, w) indicate

that secondary markets are still in use as the primary supply source, whereas orders

are placed to regular supplier according to zero inventory ordering principle (Chen and

Simchi-Levi, 2010). The optimal prices of P1.2 seem to be case-dependent, which means

it is difficult to derive a general rule from them.

In order to understand the magnitudes of the profits, we consider the maximum profit

over pmax ratio. This statistic is used to analyze calculated profits from the two subprob-

lems and understand the solution for P1. Distributions of test instances over this ration

are given in Figures 5.8 and 5.9.

In Figure 5.8, we provide two histograms: Blue bars represent the profit histogram

for instances in which P1.2 dominates. Red histogram depicts the profit distribution
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of P1.2 for all instances. The former distribution has a large probability mass on the

negative side and a long left-tail while the right-tail of the latter is higher and longer. This

implies that P1.2 prevents the maximization problem to have extremely small profits and

complements the subproblem P1.1.

The picture is reversed for the portion of the test bed where P1.1 dominates (Fig-

ure 5.9). Compared to all cases, P1.1 has a higher right tail. Therefore, we conclude

that P1.1 is more associated with positive profits of the problem while P1.2 stands for

minimizing the loss due to inconvenient circumstances. From a managerial point of view

this result indicates that using analytical solutions derived in Section 5.4.1 yields high

expected profits with high standard deviation. Decision makers should pay extra atten-

tion to the cases with spare parts whose maximum possible demand (D0) and maximum

possible price (pmax) are low to avoid significant losses.

5.6 Conclusion

It is known that OEMs are subject to fierce competition by third-party service providers

for their installed bases especially after the end of warranty period. This fact is aggravated

by introduction of internet-based trading platforms on which different agents can exchange

surplus or overhauled spare parts with each other. Those agents usually charge cheaper

price to their customers and this constitutes a source of competition for OEMs’ after-sale

services.
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Figure 5.8: Distribution of Profit Over pmax Ratio

In this study, we consider a business case of an OEM who provides service to out-

of-production aircraft. They are faced with a constant competition from third party

service providers (maintenance and repair shops) as well as agents on internet-based

secondary markets, such as ilsmart.com. These secondary markets are not only a source

of competition, but also potential supply sources for spare parts that can be used by the

Figure 5.9: Distribution of Profit Over pmax Ratio
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OEM. Therefore, dual sourcing and price competition should be considered for the pricing

and replenishment policies of the OEM.

In order to address this problem, we consider a single-period inventory control model

in which the customer demand can be manipulated with pricing. For the effect of price

on spare parts demand, we recognize two separate effects: The primary effect of pricing

appears through division of demand between secondary markets and the OEM, whereas

the secondary effect is on the total amount of spare parts demand.

Mathematical analysis of the model indicates that the problem should be considered

by dividing it into two subproblems since the objective function changes on different por-

tions of the feasible set. We derive an analytical solution for one of the subproblems.

Analytical results show that the pricing policy is a modified list price in which the modifi-

cation is due to the random component of the demand. The replenishment policy, on the

other hand, utilizes both channels. Secondary markets are found to be the primary supply

source, while the regular supplier is used in a complementary nature with zero inventory

ordering principle. This result stems from the fact that purchasing from secondary mar-

kets decreases spare parts availability on those markets and leads to increasing demand

for the OEM since there are only a finite amount of spare parts available at any given

time.

The analysis for the second problem indicates that the feasible set of the maximization

problem consists of a non-convex constraint. Therefore the second problem is analyzed

numerically. Results indicate that the replenishment principles found in the first sub-

problem hold for the second subproblem as well. However, the pricing policy is more

state-dependent when the second subproblem dominates the first one. Furthermore, the

first subproblem leads to higher, but more variable expected profit compared to the profit

values of the second subproblem.

A natural extension of our study is considering the multi-period optimal policy for this

problem. The policy found in this study can be used as a heuristic for the multi-period

problem. The performance of this heuristic over a finite and infinite planning horizon is

another research question left to future research. Also, we are planning to consider quality

differences (and substitution) between the regular supplier and secondary markets as well

as different demand models, such as exponential, logit etc,. for the relationship between

demand and price.
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5.7 Epilogue

In this section, joint optimization of pricing and inventory control policies is considered

for a problem setting taken from an OEM in aviation, Fokker Services. The results of this

chapter were presented to managers and engineers in the company and we encountered

good acceptance of the idea and the company asked what is needed for a large-scale field

test. In this section, we address some issues related to such a field test.

First, optimization of pricing and replenishment policies relies on the availability of a

price-dependent expected demand function. In other words, we assume that for a given

price value, we possess knowledge of expected spare parts demand the OEM will receive.

However, the price elasticity of demand has not been investigated in the company since

the OEM applies constant mark-up policy for pricing for a long period of time. Since

changing spare parts prices in order to measure the reaction of customers is not a viable

option, price elasticities of spare parts should be determined using expert judgments.

Second, we only consider an additive random variable for total expected demand.

The additive demand model assumes a constant variance of demand, independent of the

magnitude of the expectation. In the literature, a multiplicative demand model, in which

the random component is multiplied with the expected demand, is suggested to overcome

the weaknesses of the additive model. Unfortunately, the multiplicative model increases

the mathematical complexity of the profit function and leads to intricate solutions for

pricing and replenishment policies of the OEM. Intuitively, both models have some merit

in spare parts context. We can speculate that the additive model might be useful for

slow-moving parts, whereas the multiplicative model might be more appropriate for fast-

movers. Therefore, one should consider both models and derive optimal formulations in

order to have a comprehensive pricing application. Furthermore, other demand models,

e.g. logit model by Aydin and Porteus (2008), may be addressed in future research and

in the application.

Third, our model assumes that the amount of demand from price-sensitive customers

is known and it can be formulated with a decreasing linear split function ξ(p). One could

enumerate the split function by using the installed base information possessed by the

OEM. Specifically, the OEM keeps track of the number of aircraft owned/used by each

operator and it has the monthly utilization data for the entire fleet. Using fleet utilizations,

technical information and the number of aircraft in operation, one could make an estimate

for the size of the customer demand that goes to the secondary markets, which is as such

already interesting business information.
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5.A Proofs of Theorems

Proof of Lemma 11: Statement a follows from the semidefiniteness of the Hessian matrix

for (D0−γp)βp−z which is easy to show. Also the same statement can be shown with the

separability of the function (D0 − γp)βp− z in p and z, and the first quadratic function

is a concave function of p.

Statement b follows from the intersection of first, second and the fourth constraints

of 1F and the set defined by the third consraint. Convexity of that set is implied by the

fact that the third consraint is a sub-level set of the function −(D0−γp)βp+z for zero. �

Proof of Lemma 12:

For statement a, partial derivatives of the revenue function are as follows:

∂2R1(p, z)

∂p2
= −γ, (5.16)

∂2R1(p, z)

∂z2
= 0, (5.17)

∂2R1(p, z)

∂z∂p
= −1 (5.18)

Statement a follows from the negative semi-definiteness of the Hessian matrix. The

function G1(v) is a summation of acquisition cost, holding and backlog cost (Equation

5.6). It is known that it is a convex function which proves statement b. Statement c

follows from the strict concavity of R1(p, z), given in a, convexity of G1(v). �

Proof of Lemma 13: Strict concavity and convexity of R2(p) follow from the second

derivative of the function.

∂2R2(p)

∂p2
= −2(D̄β + γ) + 6γβp− 2crγβ.

When Λ > p, ∂2R2(p)
∂p2

becomes negative and positive otherwise. This proves the convex

and concavity statements. Now we need to show R2(p) is decreasing function of p in

[Λ, pmax). To this end, write the first derivative of R2(p) using γ = D0

pmax
and β = 1

pmax
.
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∂R2(p)

∂p
= (D0 +

2D0cr
pmax

) + 2p(−
2D0

pmax

−
D0cr
p2max

) + 3p2
D0

p2max

, (5.19)

=
D0p

p2max

(3p− 2cr)−
D0

pmax

(4p− pmax − 2cr),

=
D0p

p2max

(3p− 2cr)−
D0

pmax

(3p− 2cr)−
D0

pmax

(p− pmax),

=
D0

pmax

(3p− 2cr)

(

p

pmax

− 1

)

−
D0p

pmax

−D0,

= D0

(

p

pmax

− 1

)(

3p− 2cr
pmax

− 1

)

. (5.20)

In Equation 5.20, the first term is always positive whereas second terms is negative.

We will show that the last term is positive in [Λ, pmax) which guarantees that R2(p) is

decreasing in that interval. To this end, note that Λ = cr+2pmax

3
. Take a ν s.t. 2pmax−cr

3
≥

ν > 0. If p = cr+2pmax

3
+ ν, then

3p− 2cr
pmax

− 1 =
pmax − cr
pmax

≥ 0 ⇒
∂R2(p)

∂p
≤ 0,

which holds since pmax ≥ cr. Proofs of statements b and c are the same with Lemma 12,

omitted here. �

Proof of Theorem 11: The maximization problem P1.1 can be written as follows:

max H1(K, y, p, z,v) (5.21)

s.t. − z ≤0, (5.22)

z −K ≤0, (5.23)

−p ≤0, (5.24)

p− pmax ≤0, (5.25)

K + y −D0 + γp− v ≤0, (5.26)

−(D0 − γp)βp+ z ≤0. (5.27)

For the concave profit function (H1(K, y, p, z, v)) defined on the convex set 1F in

Equation 5.8, the Lagrangian function is given below:

L(λ1, ..., λ6, p, z, v) = R1(p, z)− crv − h[v − ǫ]+ − b[−v + ǫ]+ + cr(y −D0)− λ1z (5.28)

+ λ2(z −K)− λ3p+ λ4(p− pmax)− λ5(v − γp−K − y +D0)− λ6((D0 − γp)βp− z),
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Taking the first partial derivatives, we write KKT conditions as follows:

D0 − 2γp− z + crγ − λ3 + λ4 + λ5γ + λ6(−D0β + 2γβp) = 0, (5.29)

cm − p− λ1 + λ2 + λ6 = 0, (5.30)

−cr − h

v
∫

−∞

dΦ(s) + b

∞
∫

v

dΦ(s)− λ5 = 0, (5.31)

Primal Feasibility:

0 ≤ z ≤ K, (5.32)

0 ≤ p ≤ pmax, (5.33)

γp− v ≤ −K − y +D0, (5.34)

−(D0 − γp)βp+ z ≤ 0, (5.35)

Complementary Slackness:

λ1z = 0, (5.36)

λ2(z −K) = 0, (5.37)

λ3p = 0, (5.38)

λ4(p− pmax) = 0, (5.39)

λ5(γp− v +K + y −D0) = 0, (5.40)

λ6(−(D0 − γp)βp+ z) = 0, (5.41)

Dual Feasibility:

λ1,...,6 ≤ 0. (5.42)

To analyze the negativity of Lagrange multipliers, we consider three possibilities (λ1 <

0, λ2 = 0),(λ1 = 0, λ2 < 0), and (λ1 = λ2 = 0) as three different regions which are denoted

with R1 and R2 and R3. Each region is analyzed respectively.

R1: Note that in this region z = 0 due to 5.36. It is easy to show that we have only

feasible solutions with the following conditions:

1. λ3 = 0, λ4 = 0, λ5 = 0, λ6 = 0,

2. λ3 = 0, λ4 = 0, λ5 < 0, λ6 = 0,
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When λ3 = 0, λ4 = 0, λ5 = 0, λ6 = 0,

D0 − 2γp+ crγ = 0,

cm − p− λ1 = 0,

−cr + b− (h+ b)F (v) = 0.

These equations imply that v∗ = F−1
(

b−cr
h+b

)

, z∗ = 0, p∗ = (pmax+cr)/2, λ1 = cm−p where

primal feasibility requires F−1
(

b−cr
h+b

)

≥ K + y − D((pmax + cr)/2) while dual feasibility

forces (pmax + cr)/2 > cm. Dual feasibility condition is satisfied due to our assumption in

the problem setting. Recall that D(p) is given in Equation 5.1.

For λ3 = 0, λ4 = 0, λ5 < 0, λ6 = 0,

D0 − 2γp+ crγ + λ5γ = 0,

cm − p− λ1 = 0,

−cr + b− (h+ b)F (v)− λ5 = 0,

−v +K + y −D0 + γp = 0.

Solution of these equation results p∗ = f−1
1 (0), z∗ = 0, v∗ = K + y − D(p∗), λ1 =

cm − p, λ5 = −cr + b − (h + b)F (K + y − D(p∗)), where f1(p) is given in Equation

5.10. Primal feasibility requires 0 ≤ f−1
1 (0) ≤ pmax whereas dual feasibility implies

F−1
(

b−cr
h+b

)

< K + y −D(p∗).

R2: In this region z = K due to Equation 5.37. Among 16 different possible solutions

we find that only the following two are feasible:

1. λ3 = 0, λ4 = 0, λ5 = 0, λ6 = 0,

2. λ3 = 0, λ4 = 0, λ5 < 0, λ6 = 0,

When λ3 = 0, λ4 = 0, λ5 = 0, λ6 = 0: KKT conditions can be written as follows:

D0 − 2γp−K + crγ = 0,

cm − p+ λ2 = 0,

−cr + b− (h+ b)F (v) = 0,

These equations imply that p∗ = (pmax+cr)/2−K/(2γ), z
∗ = K, v∗ = F−1

(

b−cr
h+b

)

, λ2 =

(pmax+cr)/2−K/(2γ)−cm. Primal feasibility implies that F−1
(

b−cr
h+b

)

≥ K+y−D((pmax+



170 Pricing and Inventory Management Against Secondary Markets

cr)/2) while dual feasibility forces (pmax + cr)/2−K/(2γ) < cm. Note that the dual fea-

sibility condition might hold if K/D0 > 1 and cr < 2cm.

For λ3 = 0, λ4 = 0, λ5 < 0, λ6 = 0:

D0 − 2γp−K + crγ + λ5γ = 0,

cm − p+ λ2 = 0,

−cr + b− (h+ b)F (v)− λ5 = 0,

−v +K + y −D0 + γp = 0.

These equations result with p∗ = f−1
4 (0), z = K, v = K + y − D(p∗), λ2 = p −

cm, λ5 = b − cr − (h + b)F (v) where f4(p) is given in Equation 5.12. Primal feasibility

requires 0 ≤ f−1
4 (0) ≤ pmax, K ≤ (D0γp)βp whereas dual feasibility implies f−1

4 (0) <

cm, F
−1
(

b−cr
h+b

)

< K + y −D(p∗).

R3: In this region, the only feasible solution is λ3 = 0, λ4 = 0, λ5 < 0, λ6 < 0. KKT

conditions can be written as

D0 − 2γp− z + crγ + λ5γ + λ6(−γ + 2γβp) = 0,

cm − p+ λ6 = 0,

−cr + b− (h+ b)F (v)− λ5 = 0,

−v +K + y −D0 + γp = 0,

−(D0 − γp)βp+ z = 0.

These equations result with p∗ = f−1
3 (0), z∗ = (D0−γp)βp, v∗ = K+y−D(p∗), λ5 =

b− cr− (h+ b)F (v), λ6 = p− cm, where f3(p) is given in Equation 5.11. Primal feasibility

enforces 0 ≤ f−1
3 (0) ≤ pmax, 0 ≤ (D0γp)βp ≤ K whereas dual feasibility requires f−1

3 (0) <

cm, F
−1
(

b−cr
h+b

)

< K + y −D(p∗).

Finally we will state that the solution (p∗, z∗, v∗) = ((pmax + cr)/2, 0,= F−1
(

b−cr
h+b

)

)

yield larger profit than teh solution (p∗, z∗, v∗) = ((pmax+ cr)/2−K/(2γ), K, F−1
(

b−cr
h+b

)

).

Also the primal feasbility conditions of the former implies the primal feasibility of the lat-

ter whereas the dual feability of the former always hold in our problem setting. Therefore

the latter solution is eliminated which completes the proof. �

Proof of Lemma 14: In order to prove the desired result we will use separability of

the profit function H2(K, y, p, z, w) in p and (z, w). Thanks to this property and the strict
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concavity from Lemma 13, showing that R2(p) has a maximizer (using the first derivative

of the function) in [0,Λ) yield the desired result. To this end,

∂R2(p)

∂p
= (D0 +

2D0cr
pmax

) + 2p(−
2D0

pmax

−
D0cr
p2max

) + 3p2
D0

p2max

= 0.

∂R2(p)
∂p

is a quadratic function. To find its roots we will use the discriminant.

∆ = 4γ2(1− βcr)
2,

which yields the following roots: p(1) = pmax and p(2) = (pmax + 2cr)/3. The first root is

larger than Λ whereas the second one is smaller than Λ. Therefore R2(p
(2)) > R2(p

(1)). �

Proof of Lemma 15: For Statement a, the optimal value of p is given in the proof of

Lemma 14. Since

G2(z, w) = z(cr − cm) + crw + h[w − ǫ]+ + b[ǫ− w]+ − cry −K(cr − cm),

is linear in z with a positive first derivative z∗ = 0. The proof of w∗F−1
(

b−cr
h+b

)

follows

from the first partial derivative of G2(z, w) w.r.t w. Statement b follows from the fact that

D(p(2)) > 0, where p(2) = (pmax + 2cr)/3. �





Chapter 6

Summary and Conclusion

The economic lifetime of capital products is much longer than its production phase.

Keeping capital products in operation requires a stable spare parts supply. When capital

products are in-production it is easy to obtain spare parts, since Original Equipment

Manufacturers (OEMs) can increase their order sizes to ship spare parts to their customers.

After the end-of-production announcement of the OEM, obtaining spare parts becomes

more difficult due to since suppliers’ profitability and capacity utilization becomes an

important factor for the flow of spare parts. As a consequence of this dependence this

spare part flow is subject to increasing supply risk towards the end of the economic

lifetime.

From the suppliers’ perspective, producing spare parts of out-of-production systems

may yield a steady revenue stream or it may be a source of efficiency loss due to an

increasing number of production setups. To prevent excessive set-ups, suppliers might

choose to maintain some inventory which then, however, would increases their holding

cost and lower their financial performance. Naturally all of these decisions depend on the

demand rate of spare parts. On the one hand, for capital products with large installed

bases, keeping a spare part stock might be beneficial for the supplier. On the other hand,

when the installed base of a capital product is small, holding the inventory increases

the amount of non-moving parts, whereas producing them might cripple the average

utilization of the supplier. Therefore, to consolidate current orders with future ones,

suppliers choose to delay their production for incoming orders and eventually stop their

spare part support. The theoretical explanation of this phenomenon is illustrated by a

queuing system with two customer classes and a batch server in Chapter 3. From the

OEMs’ perspective, this situation implies an increasing supply risk for spare parts of

aging capital products. End-of-support announcements from suppliers stand for their

main source of supply risk.
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Another factor that aggravates the supply risk is that spare parts suppliers may be

too busy to notify OEMs of their end-of-support decisions. Dealing with large supplier

bases, it is impossible for OEMs to check their suppliers continuously for an unannounced

supply loss. Therefore, they can only discover a supplier’s end-of-support decision when

they need to buy a part. If there is no alternative supplier (and no inventory), OEMs fail

to satisfy their customers’ spare parts demand. Failing to satisfy the demand not only

means a revenue loss, it also makes the reliability of OEMs’ after-sale services question-

able and might motivate asset owners to replace their capital products. Therefore, early

detection, and mitigation of supply risk of spare parts is an important item in OEMs

agendas. To overcome the supply risk, OEMs take proactive and reactive actions such as

maintaining spare parts stock, cultivating a back-up supplier and utilization of secondary

markets, if any. Since each action incurs a cost, it is important to evaluate inventory and

replenishment policies of spare parts through mathematical models that explicitly take

into account supply risk.

Among these means of supply risk mitigation, the utilization of secondary markets

requires more attention then others. Next to being an alternative supply source, secondary

markets might be a source of competition for OEMs’ after-sales services. It is known that

OEMs are subject to fierce competition with third party service providers for after-sale

services of their capital products, especially after the end of their warranty period (Cohen

et al., 2006). The existence of secondary markets make this competition even more fierce

since different traders (or even customers) can trade their surplus spare parts. This

situation forces OEMs to consider secondary markets in their tactical and operational

decisions.

In this thesis, we consider four different spare parts management problems. Each is

motivated by a business an OEM, Fokker Services, that provides maintenance services

for out-of-production aircraft in the Netherlands. From a broad perspective, our study

started with an empirical analysis on supply risk using purchase history and demand data

from the company. After generating empirical evidence for supply risk and insight for its

underlying reasons (Chapter 2), we develop mathematical models for optimal inventory

control and replenishment policies in Chapters 3 and 4. In Chapter 5, we address pricing

and replenishment policy for spare parts when secondary markets are used as a supply

source by OEMs as well as customers.

An empirical analysis on supply risk for spare parts of aging capital products is pre-

sented in Chapter 2. At the beginning of this study, managers in the company had an

incomplete understanding of supply risk for their spare parts. The company was expe-

riencing supplier loss due to various reasons and each supply problem case triggered a
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solution procedure, depicted in Chapter 2, which could take a year. At the end of that

procedure, the company would find a new supply source and restart its supply chain.

Since this reactive approach threatened the service rate and profitability, it was necessary

to develop indicators for future supply problems. The main motivation was having a risk

measure which can trigger advance actions to mitigate the effects of supply disruptions on

the company. To this end, we hypothesize relationships between disruptions and various

supply chain features, e.g. lead time, price, order frequency, order size etc., and test them

using purchase histories of spare parts whose suppliers failed before the date of analysis.

Results indicate that supply risks are closely related with changes in lead times as well

as the time period since the last purchase. This result not only led to another empirical

study by Li et al. (2015), who considered a more advanced model for the same problem,

but also it indicated the necessity of considering random lead times and supply disruptions

in a single inventory control model, which is the focus of Chapter 3.

Random lead times coupled with supply disruptions are considered in Chapter 3. Our

review of the queuing literature indicates that coupled lead times and supply disruptions

are a natural consequence of suppliers’ optimal manufacturing schedules. To address

this problem, we develop a mathematical model considering Markov-modulated random

lead times with supply disruptions. After proving structure of the optimal policy, we

run extensive numerical experiments and evaluate different scenarios. The main output

of this study is the importance of the coupled effect of random lead times and supply

disruptions. Our analysis indicates that the coupled effect may give rise to extreme cost

increases, especially for high service levels. Furthermore, we find that proactive actions

using advance indicators are most important for mitigating the effect of supply risk.

Replenishment of spare parts from secondary markets and a regular supplier is con-

sidered in Chapter 4. Although secondary markets are useful for mitigating the supply

risk, they have particular qualities which must be considered explicitly. First, secondary

markets have limited and random availability of spare parts. In each decision epoch there

are only a limited number of parts and the spare part availability varies over time. Second,

secondary markets are cheaper and faster than regular suppliers in most cases. Third,

spare parts on secondary markets may be in different conditions which brings substitution

into the equation. We consider all of these factors in a dual sourcing setting (a regu-

lar supplier and secondary markets) and develop efficient heuristics using a myopic cost

function. Later we extend our heuristic with nonstationary demand and evaluate both

policies in extensive numerical experiments. Our results indicate that our policy is fast

and efficient while producing near-optimal solutions when the lead time of the regular

supplier is equal to one period. For larger lead times, our method deviates 17% from the
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optimal policy on average. Despite the significant deviation from the optimal cost, the

best available alternative policy is only marginally better (about 1%), while our method

is much more efficient in terms of computation time.

In Chapter 5, secondary markets are considered to be competitors for OEMs’ after-

sale services. Secondary markets are accessible for OEMs as well as customers. Due to

competitive prices, some customers choose to buy spare parts from secondary markets.

For OEMs this means demand and revenue loss. This implies the necessity of considering

price competition from secondary markets in the replenishment and pricing policies. We

consider a single-period model for this problem setting. Our analysis indicates that for the

replenishment policy, secondary markets should be considered as the main source, whereas

regular suppliers should be used as a complementary one. For pricing, a modified list price

policy is optimal in which the sum of existing inventory and the market availability is the

main factor for the optimal price value.
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Axsäter, S. 2003a. Evaluation of unidirectional lateral transshipments and substitutions

in inventory systems. European Journal of Operational Research 149(2) 438–447.
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Polatoğlu, L Hakan. 1991. Optimal order quantity and pricing decisions in single-period

inventory systems. International Journal of Production Economics 23(1) 175–185.

Porteus, Evan L. 2002. Foundations of stochastic inventory theory . Stanford University

Press.

Rajan, Arvind, Rakesh, Richard Steinberg. 1992. Dynamic pricing and ordering decisions

by a monopolist. Management Science 38(2) 240–262.

Rao, Uday S, Jayashankar M Swaminathan, Jun Zhang. 2004. Multi-product inventory

planning with downward substitution, stochastic demand and setup costs. IIE Trans-

actions 36(1) 59–71.



184 References

Robinson, L.W., J.R. Bradley, L.J. Thomas. 2001. Consequences of order crossover under

order-up-to inventory policies. Manufacturing & Service Operations Management 3(3)

175–188.

Robotis, A., S. Bhattacharya, L.N. Van Wassenhove. 2005. The effect of remanufactur-

ing on procurement decisions for resellers in secondary markets. European Journal of

Operational Research 163(3) 688–705.

Rojo, F.J., R.S.E. Roy. 2010. Obsolescence management for long-life contracts: state

of the art and future trends. The International Journal of Advanced Manufacturing

Technology 49(9-12) 1235–1250.

Sandborn, Peter, Frank Mauro, Ron Knox, et al. 2007. A data mining based approach

to electronic part obsolescence forecasting. Components and Packaging Technologies,

IEEE Transactions on 30(3) 397–401.

Scarf, H. 1960. The optimality of (S,s) policies in the dynamic inventory problem. K. Ar-

row, S. Karlin, H. Scarf, eds., Mathematical Methods in the Social Sciences . Stanford

University Press, Stanfor, 196–202.

Scheller-Wolf, A., S. Tayur. 1999. Managing supply chains in emerging markets. R. Gane-

shan S. Tayur, M. Magazine, eds., Quantitative Models for Supply Chain Management .

Springer, 703–736.

Scheller-Wolf, A., S. Veeraraghavan, G. van Houtum. 2007. Effective dual sourcing with

a single index policy. Working paper, Carnegie Mellon University, Pittsburgh .

Serel, Dogan A, Maqbool Dada, Herbert Moskowitz. 2001. Sourcing decisions with capac-

ity reservation contracts. European Journal of Operational Research 131(3) 635–648.

Shaked, M., J.G. Shanthikumar. 2007. Stochastic orders and their applications . Springer.

Sheopuri, A., G. Janakiraman, S. Seshadri. 2010. New policies for the stochastic inventory

control problem with two supply sources. Operations Research 58(3) 734–745.

Singh, Pameet, Peter Sandborn. 2006. Obsolescence driven design refresh planning for

sustainment-dominated systems. The Engineering Economist 51(2) 115–139.

Singh, Pameet, Peter Sandborn, Todd Geiser, David Lorenson. 2004. Electronic part

obsolescence driven product redesign planning. International Journal of Agile Manu-

facturing 7(1) 23–32.



References 185

Solomon, Rajeev, Peter Sandborn, Michael G Pecht, et al. 2000. Electronic part life cycle

concepts and obsolescence forecasting. Components and Packaging Technologies, IEEE

Transactions on 23(4) 707–717.

Song, J.S. 1994a. The effect of leadtime uncertainty in a simple stochastic inventory

model. Management Science 40(5) 603–613.

Song, J.S. 1994b. Understanding the lead-time effects in stochastic inventory systems

with discounted costs. Operations Research Letters 15(2) 85–93.

Song, J.S., P.H. Zipkin. 1993. Inventory control in a fluctuating demand environment.

Operations Research 41(2) 351–370.

Song, J.S., P.H. Zipkin. 1996. Inventory control with information about supply conditions.

Management Science 42(10) 1409–1419.

Song, J.S., P.H. Zipkin. 2009. Inventories with multiple supply sources and networks of

queues with overflow bypasses. Management Science 55(3) 362–372.

Syntetos, A.A., M.Z. Babai, N. Altay. 2012. On the demand distributions of spare parts.

International Journal of Production Research 50(8) 2101–2117.

Thowsen, Gunnar T. 1975. A dynamic, nonstationary inventory problem for a

price/quantity setting firm. Naval Research Logistics Quarterly 22(3) 461–476.

Tomlin, B. 2006. On the value of mitigation and contingency strategies for managing

supply chain disruption risks. Management Science 52(5) 639–657.

Tomlin, B., L.V. Snyder. 2006. On the value of a threat advisory system for managing

supply chain disruptions. Working Paper, Kenan-Flagler Business School, University

of North Carolina-Chapel Hill, USA .

Trimp, M.E., S.M. Sinnema, R. Dekker, R.H. Teunter. 2004. Optimise initial spare parts

inventories: an analysis and improvement of an electronic decision tool. Tech. rep.,

Econometric Institute Research Papers.

Trkman, Peter. 2010. The critical success factors of business process management. Inter-

national Journal of Information Management 30(2) 125–134.

Trkman, Peter, Kevin McCormack, Marcos Paulo Valadares De Oliveira, Marcelo Bronzo

Ladeira. 2010. The impact of business analytics on supply chain performance. Decision

Support Systems 49(3) 318–327.



186 References

Tsay, Andy A. 1999. The quantity flexibility contract and supplier-customer incentives.

Management science 45(10) 1339–1358.

Van Mieghem, J.A. 2004. Note-commonality strategies: Value drivers and equivalence

with flexible capacity and inventory substitution. Management Science 50(3) 419–424.

Van Mieghem, J.A., N. Rudi. 2002. Newsvendor networks: Inventory management and

capacity investment with discretionary activities. Manufacturing & Service Operations

Management 4(4) 313–335.

Veeraraghavan, S., A. Scheller-Wolf. 2008. Now or later: A simple policy for effective dual

sourcing in capacitated systems. Operations Research 56(4) 850–864.

Veinott, A.F. 1965. Optimal policy for a multi-product, dynamic, nonstationary inventory

problem. Management Science 12(3) 206–222.

Wagner, S.M., R. Jönke, A.B. Eisingerich. 2012. Strategic framework for spare parts

logistics. California Management Review 54(4) 69–92.

Wagner, Stephan M, Christoph Bode. 2006. An empirical investigation into supply chain

vulnerability. Journal of purchasing and supply management 12(6) 301–312.

Whittemore, A.S., S.C. Saunders. 1977. Optimal inventory under stochastic demand with

two supply options. SIAM Journal on Applied Mathematics 32(2) 293–305.

Wilhelm, S. 2014. 500 suppliers now partnering with boeing to cut costs, execs

say. http://www.bizjournals.com/seattle/blog/2014/05/500-suppliers-now-partnering-

with-boeing-to-cut.html?page=all.

Wise, Richard, Peter Baumgartner. 1999. Go downstream: the new profit imperative in

manufacturing. Harvard business review 77(5) 133–141.

Wong, H., D. van Oudheusden, D. Cattrysse. 2007. Cost allocation in spare parts in-

ventory pooling. Transportation Research Part E: Logistics and Transportation Review

43(4) 370–386.

Wu, S David, Berrin Aytac, Rosemary T Berger, Chris A Armbruster. 2006. Managing

short life-cycle technology products for agere systems. Interfaces 36(3) 234–247.

Zabel, Edward. 1970. Monopoly and uncertainty. The Review of Economic Studies 205–

219.



References 187

Zabel, Edward. 1972. Multiperiod monopoly under uncertainty. Journal of Economic

Theory 5(3) 524–536.

Zhang, V.L. 1996. Ordering policies for an inventory system with three supply modes.

Naval Research Logistics (NRL) 43(5) 691–708.

Zipkin, P.H. 1986. Stochastic leadtimes in continuous-time inventory models. Naval

Research Logistics Quarterly 33(4) 763–774.

Zipkin, P.H. 2000. Foundations of inventory management . McGraw-Hill New York.

Zsidisin, George A, Lisa M Ellram, Joseph R Carter, Joseph L Cavinato. 2004. An analysis

of supply risk assessment techniques. International Journal of Physical Distribution &

Logistics Management 34(5) 397–413.





Nederlandse Samenvatting

In dit onderzoek analyseren we productieketens van zogeheten Original Equipment Man-

ufacturers (OEMs) met betrekking tot reservedelen. Specifiek kijken we naar OEMs die

klantenservice bieden voor kapitaalgoederen die uit productie zijn genomen. Deze pro-

ductieketens zijn onderhevig aan stijgende leveringsrisico’s, welke veroorzaakt worden

door afnemend gebruik van corresponderende kapitaalgoederen en dalende vraag naar

reservedelen.

Om deze effecten te verminderen ontwikkelen we eerst een empirisch model dat lever-

ingsproblemen kan voorspellen. Oplossingen voor leveringsproblemen kunnen langdurige

processen vereisen. Zo moeten bijvoorbeeld reservedelen worden herontworpen, of samen-

werkingen met nieuwe leveranciers worden aangegaan. Vroegtijdige detectie van lever-

ingsproblemen stelt OEMs in staat tot proactieve maatregelen en kostenbesparingen. Een

uitbreiding van deze studie is toegepast bij een OEM die onderhoudsdiensten biedt voor

vliegtuigen uit productie.

Een van de belangrijkste inzichten uit de empirische studie is de het belang van veran-

deringen in levertijden voordat verstoringen in de productieketen ontstaan. We presen-

teren een mathematisch model waarin een Markov model de levertijden en leveringsrisico’s

bepaalt en bijbehorende fundamentele eigenschappen en de optimaliteit van toestand-

safhankelijke base stock policy om dit inzicht te verwerken in voorraadbeheerstrategieën

voor reservedelen. Onze analyse laat zien dat het gecombineerde effect van leveringsprob-

lemen en onzekere levertijden even groot kan zijn als som van de individuele effecten.

Bovendien kan niet-stationariteit in deze risico’s een kostenverhoging met zich meebren-

gen die groter is dan de som van de individuele effecten en hun gezamenlijke effect. Dit

geldt voornamelijk wanneer de OEM streeft naar hoge servicedoelstellingen.

Ook bekijken we de effectsen van de secundaire markt op de reservedelen produc-

tieketen. Op deze markten kunnen OEMs reservelen kopen die variëren in conditie, zoals

functionerend of repareerbaar. Reservedelen van secundaire markten zijn doorgaans van

lagere kwaliteit, terwijl gloednieuwe reservedelen beschouwd kunnen worden als hoog

kwalitatief. In dit proefschrift presenteren we een methode voor het oplossen van een
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voorraadbeheerprobleem met twee leveranciers die verschillen in termen van de kwaliteit

van de aangeboden reservedelen. Door dit kwaliteitsverschil expliciet te modelleren kun-

nen we betere dual sourcing strategien gebruiken dan wat in de literatuur staat. Ook

breiden we deze methode uit om rekening te kunnen houden met niet-stationaire vraag.

Een andere eigenschap van secundaire markten is dat ze concurreren met OEMs op het

gebied van klantenservice na verkoop. Goedkopere onderdelenprijzen op de secundaire

markten kunnen klanten aantrekken, waardoor de vraag naar onderhoudsdiensten van

OEMs afneemt. In deze dissertatie beschouwen we de prijscompetitie tussen een OEM en

de secundaire markten. Het innovatieve van deze studie is de interactie tussen de voor-

raadstrategie en het prijsstrategie van de OEM. Wij tonen aan dat deze interactie belan-

grijk is, omdat beide strategieën een effect hebben op de secundaire markt. Onze analyse

laat zien dat secundaire markten als voornaamste toeleverancier door OEMs gebruikt

zouden moeten worden om hun winst te maximaliseren. Ook vinden we een voorraad- en

prijsstrategie die resulteert in hoge maar onzekere verwachte winst.



About the Author
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l)SPARE PARTS MANAGEMENT OF AGING CAPITAL PRODUCTS

In this thesis, spare parts supply chains of Original Equipment Manufacturers (OEMs)

providing after-sales services to out-of-production capital products are analyzed. These

supply chains are subject to non-decreasing supply risks which are byproducts of decreasing

numbers of capital products and vanishing spare parts demand. 

To mitigate the effect of supply risk, we develop an empirical model which can detect

supply problems in advance. Since solution of supply problems may include some long proce -

dures, advance detection of those problems allows OEMs to take proactive actions and

save costs. An extended version of the study presented in this dissertation is applied in an

OEM providing maintenance service for its out-of-production aircraft.

Our empirical study indicates the significance of lead time changes before supply

disrup tions occur. To address changing lead times in control policies for spare parts inven -

tory, we present a mathematical model and its fundamental properties. Our analysis reveal

that combined effect of supply disruptions and random lead time may be as large as the

summation of individual effects of the two risk factors. This is especially true when the

OEM aims to achieve high service levels.

In addition, we consider the effects of secondary markets on spare parts supply chains.

Those markets include spare parts in different conditions (such as serviceable and as-

removed) and these parts can be purchased by OEMs to satisfy their spare parts demand.

In the last two chapters of the thesis, secondary markets are considered as a supply source

and price competitor for OEMs. Our results indicate that those markets are important

factors that alter the optimum policy of spare parts inventory control.
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