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Abstract

Intrinsically disorder proteins (IDPs) constitute a significant part of proteins that exist and act in cells of living organisms.

IDPs play key roles in central cellular processes and some of them are closely related to various human diseases, like

cancer or neurodegenerative disorders. Identification of IDPs and studying their structural characteristics have become an

important part of structural bioinformatics and structural genomics. However, growing amount of genomic and protein

sequences in public repositories pose a pressure on existing methods for identification of IDPs. Large volumes of protein

amino acid sequences need to be analyzed in terms of propensity to form disordered regions, and this task requires novel

tools and scalable platforms to cope with this big biological data challenge. In this paper, we show how the identification of

disordered regions of 3D protein structures can be efficiently accelerated with the use of Apache Spark cluster established

and scaled on the public Cloud. For this purpose, we propose Spark-based meta-predictor (Spark-IDPP), which enables

efficient prediction of disordered regions of proteins on a large-scale. Results of our performance tests show that, for large

data sets, our method achieves almost linear speedup, when scaling out the computations on the 32-node Spark cluster

located in the Azure cloud. This proves that through appropriate partitioning of data and by increasing the degree of

parallelism, we can significantly improve efficiency of IDP predictions. Additionally, by using several basic predictors,

aggregating their ranks in various consensus modes, and filtering the final outcome with a dedicated fuzzy filter, the Spark-

IDPP increases the quality of predictions.

Keywords Bioinformatics � Big Data � Intrinsically disordered proteins � Scalable computations � Apache Spark �

Cloud computing

1 Introduction

International efforts focused on understanding living

organisms at various levels of molecular organization,

including genomic, proteomic, methabolomic, and cell

signaling levels, lead to huge proliferation of biological

data collected in dedicated, and frequently, public reposi-

tories. The amount of data deposited in these repositories

increases every year, and cumulated volume has grown to

sizes that are difficult to handle with traditional analysis

tools. This growth of biological data is stimulated by var-

ious international projects, such as 1000 Genomes. The

project aims at sequencing genomes of at least one thou-

sand anonymous participants from a number of different

ethnic groups in order to establish a detailed catalog of

human genetic variations [70]. As a result, it generates

terabytes of genetic data. Apart from international initia-

tives and projects, like the 1000 Genomes, the proliferation

of biological data is further accelerated by newly devel-

oped technologies for DNA sequencing, like Next Gener-

ation Sequencing (NGS) methods. These methods are

getting faster and less expensive every year. They produce

huge amounts of genetic data that require fast analysis in

various phases of molecular profiling, medical diagnostics,

and treatment of patients that suffer from serious diseases.

However, although very useful, these methods additionally
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increase the huge gap between the number of known

genetic sequences (DNA sequences), protein sequences

[38, 61, 79] (which are encoded by genes in DNA, see

Fig. 1), and 3D protein structures [36, 52]. For example, as

of June 20, 2018 there were 209,775,348 DNA sequences

and 639,804,105 WGS sequences in GenBank database [4],

557,713 reviewed and 116,030,110 non-reviewed protein

amino acid sequences in UniProtKB/Swiss-Prot and Uni-

ProtKB/TrEMBL databases [7, 71], and (only) 141,616

three-dimensional protein structures in Protein Data Bank

(PDB) [5]. Since deep insight into 3D protein structures is a

key for understanding molecular mechanisms of many

civilization diseases and for the production of effective

drugs, structural genomics tries to determine and describe

the 3D structure of every protein that is encoded by a given

sequenced genome. This is done by combining traditional

experimental methods, like X-ray crystallography or

Nuclear Magnetic Resonance (NMR), with computational

modeling approaches that use various prediction methods

for structure determination [18, 54, 76, 80].

1.1 Intrinsically disordered proteins

Determination of 3D protein structures became an impor-

tant part of protein bioinformatics, since the knowledge of

3D protein structures allows to draw conclusions about

molecular mechanisms of cellular biochemical reactions or

particular diseases, and it supports drug design. However,

as was gradually observed from 1990s, not all known

proteins have stable (ordered) native 3D structure. Some

proteins have shorter or longer segments that indicate

instability or flexibility, which are called intrinsically dis-

ordered regions (IDRs). Such proteins are usually known

as intrinsically disordered proteins (IDPs), and they may

consist of one or several IDRs, or, in extreme case, can be

completely unstructured (intrinsically unstructured pro-

teins, IUPs). Intrinsically disordered proteins play many

important roles in cells of living organisms, and on the

basis of various studies carried out by scientists on whole

proteomes, it is estimated that the percentage of IDPs in

mammals is very large [16]. Determination of 3D struc-

tures of intrinsically disordered proteins with traditional

methods, like the X-ray crystallography or Nuclear Mag-

netic Resonance (NMR), is difficult, since, e.g., the lack of

electron density in crystal structures (which is marked in

PDB files describing protein macromolecules as

REMARK465 record). For this reason, IDP predictors have

become playing an important role in determination of

unstructured regions. IDP prediction became an important

part of the computational protein structure determination. It

supports studies of protein structural features, functional

analysis of proteins, and investigations of the relationships

between IDRs and the occurrence of particular diseases. As

strictly computational tools, IDP predictors are able to

predict protein disorder from pure amino acid sequence.

However, taking into account the number of protein amino

acid sequences in the UniProtKB/Swiss-Prot database, it is

essential to provide efficient and effective tools for IDP

prediction. These tools should be able to scale the com-

putational procedure in order to accommodate the growing

volume of DNA, and consequently, protein sequences.

Fig. 1 Relationship between

DNA sequence, protein amino

acid sequence and 3D protein

structure exemplified by a part

of GH1 gene responsible for

encoding Somatotropin protein

in Homo sapiens

(UniProtKB:P01241). The 3D

structure of Human growth

hormone (PDB:1A22)

visualized with the use of

RasMol [64]
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1.2 Spark computational platform and cloud
computing

With the growing volume of biological data describing

various aspects of living forms, increasing demand for fast

data analysis (velocity), and a variety of data formats,

structural bioinformatics has been facing the Big Data

challenge. This requires changing the way how we cope

with the biological data and redevelopment of existing

tools for data analysis and processing, thus directing us to

Big Data ecosystems. Apache Hadoop with MapReduce

processing model and Apache Spark are both popular big

data frameworks. However, since the Spark allows for

running most computations in memory, without the

necessity to store intermediate results in a file system, it

provides better performance for many applications [88].

Therefore, in order to meet the requirements for fast IDP

predictions, we decided to use Apache Spark for the

development of the efficient IDP meta-predictor described

in the paper.

Apache Spark [88] is a platform for large-scale data

processing and general-purpose computing. Spark was

generally created to run computations on computer clusters

allowing to distribute computations over the cluster nodes.

Spark divides the computational job into a number of tasks

and executes the tasks on Worker nodes of the cluster

within processes called executors. In addition to perform-

ing tasks, executors are responsible for keeping data in

memory or disk storage across tasks.

Operational data that must be processed on Spark cluster

are delivered as resilient distributed dataset (RDD). RDD

[87] is a fault-tolerant collection of elements that Spark

uses to operate on in parallel. RDDs can be created by

parallelizing an already existing collection through a

transformation or by referencing a data set in an external

storage system, such as Hadoop Distributed File System

(HDFS). Both methods are used in our solution presented

in the paper. Data delivered in the form of RDDs are

divided into a number of partitions. Spark then adjusts the

number of tasks sent for execution to the number of par-

titions the RDD collection is cut into. RDDs allow to store

processing results in memory in any stage of data pro-

cessing, e.g., between various transformations. Transfor-

mations allow to perform various operations on data and

create new data sets (RDDs) from existing ones.

Spark can be deployed in several modes, including

private clusters and clusters located on public clouds. The

latter solution enables flexible scaling the Spark cluster on-

demand in order to accommodate data growth, since the

Cloud allows users to access and use configurable com-

puting resources (e.g., servers, storage, applications, net-

works) as a service [49] without the necessity to build

entire infrastructure that supports the resources on pre-

mises. The Spark cluster can be hosted on resources pro-

visioned by a cloud provider. This allows to raise the

computing power and was applied in our solution presented

in the paper. We used Microsoft Azure cloud platform in

order to quickly scale the system performing predictions of

IDPs on large scale.

1.3 Related works

Accurate and efficient prediction of disordered regions in

protein structures on the basis of pure amino acid sequence

is one of the challenges in computational biology and

structural genomics. Existing methods for IDP prediction

rely on the analysis of various features of proteins, e.g.,

protein amino acid composition or physical-chemical

characteristics of particular amino acids. Some of the

methods are grounded in statistical observations, other use

machine learning algorithms. For example, GlobPlot [40]

is a simple prediction method that identifies regions of

globularity and disorder within protein sequences on the

basis of propensities of particular amino acids to be in

globular or non-globular states. GlobPlot calculates a

running sum of the propensity for amino acids to be in an

ordered or disordered state, and uses the sum to classify

regions of the given amino acid sequence to a particular

class. IUPred [15] is also footed on the physical founda-

tions and statistical observations of inter-residue interac-

tions in proteins structures. To discriminate between

ordered and disordered class, the IUPred uses statistical

interaction potentials. On the other hand, DisEMBL [39]

uses trained Artificial Neural Networks (ANNs) to predict

protein disorders. There are three variants of the method:

(1) Coils used to predict classic loops and coils as defined

by DSSP [29], (2) Hot loops for prediction of flexible loops

with a high degree of mobility determined by temperature

factors (B-factors), (3) Remark 465 that predicts missing

coordinates in X-ray structures, as defined by

REMARK465 records in the PDB files describing macro-

molecular structures of proteins. DISpro [10] uses evolu-

tionary information in the form of protein profiles,

predicted secondary structure and relative solvent accessi-

bility, and ensembles of 1D-recursive neural networks.

RONN [85] classifies disordered regions on the basis of

observed homology between protein sequences. The

homology is expressed in calculated alignment scores,

while comparing given protein sequences with a series of

amino acid sequences of known folding state (ordered,

disordered, or a mixture of both). Obtained alignment

scores are then used in the prediction process performed by

suitably trained regional order neural network. SPINE-D

[89] classifies residues into three classes, as structurally

ordered, disordered, and semi-ordered. The method also
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uses a trained artificial neural network. Several methods,

including DISOPRED2 [78], Poodle-s [66], Poodle-l [21],

PrDOS [26], and Spritz [73], use SVM-based classifiers to

predict disordered regions on the basis of various features

extracted from protein sequences. For example, Poodle-s,

Poodle-l, and PrDOS perform prediction on the basis of

position-specific scoring matrices (PSSMs) generated by

PSI-BLAST [1], while Spritz uses amino acid frequencies

in disordered regions. PSSMs with respect to physico-

chemical properties of amino acids are also used in iPDA

server [68] and its underlying DisPSSMP predictor.

Recent works in this area, including Xue et al. [83] and

Kozlowski and Bujnicki [33], show that meta-prediction

with the use of ensembles composed of subsets of descri-

bed basic predictors may improve the quality of prediction

results. The method presented in our paper also works on

the basis of ensemble of basic predictors. However, so far,

none of the prediction or meta-prediction methods was

designed to perform large-scale identification of disordered

regions and to deal with large volumes of protein

sequences.

Meanwhile, there are real-life problems, in which mas-

sive parallelization of computations on Apache Hadoop or

Spark, and the use of scalable environments, like the

Cloud, brought significant improvements in performance of

data processing and analysis. Big data challenge was

observed and solved in various works devoted to intelligent

transport and smart cities [11, 19, 42, 43, 74, 75, 84], water

monitoring [12, 22, 90], social networks analysis

[13, 14, 77], multimedia processing [72, 82], internet of

things (IoT) [9], social media monitoring [50], Life sci-

ences [3, 31, 32, 44, 58, 69] and disease data analysis

[6, 45, 81], telecommunication [27], and finance [2], to

mention just a few. Many hot issues in various sub-fields of

bioinformatics were also solved with the use of Big Data

ecosystems and Cloud computing, e.g., mapping next-

generation sequence data to the human genome and other

reference genomes, for use in a variety of biological ana-

lyzes including SNP discovery, genotyping and personal

genomics [65], sequence analysis and assembly

[17, 30, 34, 35, 47, 62], multiple alignments of DNA and

RNA sequences [86, 91], codon analysis with local

MapReduce aggregations [63], NGS data analysis [8],

phylogeny [24, 48], proteomics [37], analysis of protein-

ligand binding sites [23], and others. Regarding the anal-

ysis of 3D protein structures, it is worth mentioning several

works, including Hazelhurst et al. [20] and Małysiak-

Mrozek et al. [46] devoted to exploration of various atomic

interactions within protein structures, works of Che-Lun

Hung and Yaw-Ling Lin [25], and Mrozek et al.

[51, 53, 55–57], devoted to comparison and alignment of

3D protein structures, and cloud-based system for 3D

protein structure modeling presented in [54]. However,

none of the mentioned works was focused on prediction of

disordered regions.

1.4 Scope of this work

In this paper, we present an ensemble method for predic-

tion of intrinsically disordered proteins implemented in our

IDP meta-predictor (IDPP, Intrinsically Disordered Pro-

teins meta-Predictor, Sect. 2.1). We also show the imple-

mentation of the method on the Spark cluster, called Spark-

IDPP (Sect. 2.4). Spark-IDPP allows for large-scale pre-

diction of intrinsically disordered proteins or intrinsically

disordered regions of protein structures on the basis of

amino acid sequences. The IDPP classifies disordered

regions on the basis of consensus of votes cast by com-

ponent, basic predictors (Sect. 2.2). In the paper, we

examine four consensus modes in terms of the effective-

ness of prediction showing that the use of ensemble

methods leads to the increased effectiveness (Sect. 3.4).

The method is implemented on the Apache Spark, hence

Spark-IDPP, in order to provide significantly better per-

formance for large volumes of sequence data that are

processed and analyzed in protein bioinformatics. In this

paper, we also present results of performance tests on

scaling out the Spark cluster on the Microsoft Azure cloud

and increasing the degree of parallelism with the intention

of improving efficiency of performed predictions

(Sect. 3.5).

2 Methods and implementation

In this section, we show architecture of the IDPP meta-

predictor, foundations of the prediction method working on

the basis of consensus, filtering method used for elimina-

tion of outliers, and details of the implementation of the

IDPP meta-predictor on the Apache Spark.

2.1 IDPP meta-predictor architecture

IDPP meta-predictor performs prediction of intrinsically

disordered proteins or disordered regions for the given

protein amino acid sequences. General architecture of the

IDPP meta-predictor is presented in Fig. 2. It consists of

the following modules:

– Component Predictors Module (CPM),

– Consensus Module (CoM),

– Analysis Module (AM).

The Component Predictors Module (CPM) is responsi-

ble for prediction of disordered regions. Prediction can be

performed for many protein sequences provided in the

FASTA format [41] at the input of the CPM. A sample
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input sequence in the FASTA format is presented in List-

ing 1. First line of each entry in the FASTA file consists of

descriptive information, e.g., identifiers of the protein

sequence in various public repositories. Next lines consist

of amino acid sequence of the protein.

1 > DisProt|DP00004|uniprot|P49913|unigene|Hs.51120|sp|CAMP_HUMAN

2 MKTQRNGHSLGRWSLVLLLLGLVMPLAIIAQVLSYKEAVLRAIDGINQR

3 SSDANLYRLLDLDPRPTMDGDPDTPKPVSFTVKETVCPRTTQQSPEDC

4 DFKKDGLVKRCMGTVTLNQARGSFDISCDKDNKRFALLGDFFRKSKEK

5 IGKEFKRIVQRIKDFLRNLVPRTES

Listing 1 A sample input sequence in the FASTA format.

The Component Predictors Module contains several

basic predictors for intrinsically disordered regions. Each

of the component predictors accepts an amino acid

sequence at the input and performs independent predictions

of intrinsically disorder regions on the basis of the input

sequence. The CPM module of the IDPP meta-predictor

implements the following basic prediction algorithms:

– RONN [85];

– DisEMBL in three variants: Coils, REMARK 465, and

Hotloops [39];

– IUPred short and IUPred long [15];

– GlobPlot [40].

Each of the component predictors generates its results

containing the list of regions which are supposed to be

disordered. These results contain the information on the

probability that each amino acid belongs to the disordered

region or not, binary classification of belonging to the

disordered region (1—belongs, 0—does not belong), and

lists of disordered regions expressed as ranges of amino

acid positions.

The Consensus Module (CoM) aggregates results from

component predictors on the basis of consensus. There are

four consensus approaches (also called consensus modes)

implemented and tested in the Consensus Module: two

operating on binary classification from component predic-

tors and two operating on float values of the returned

probability. All will be described in details in Sect. 2.2. In

the next phase, the CoM performs filtering of the consensus

results with the use of fuzzy smoothing filter in order to

remove probable outliers. After filtering out single disor-

dered positions, the Consensus Module finally classifies

particular amino acids in the protein sequence as belonging

to a disorder region or not, on the basis of aggregated

probabilities or binary classification results. The final

classification is performed for the given cutoff threshold

obtained experimentally.

The Analysis Module (AM) allows to assess the quality

of classification and to find potential cutoff thresholds for

component predictors. The AM allows to analyze results of

the prediction process and compare them to a ground truth

(actual disordered regions that were discovered

Component Predictors 

Module

RONN

DisEMBL

GlobPlot

IUPred

COILS

REMARK465

HOTLOOPS

Short

Long

Protein 

sequences

Consensus 

Module

Analysis 

Module

Results

IDP 

regions

FASTA

Fig. 2 Architecture of the IDPP

meta-predictor
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experimentally or collected manually from literature,

stored in the DisProt database [59]). Results of the analyzes

are provided in the form of True Positive, True Negative,

False Positive, and False Negative rates.

Results of the prediction process are returned as text

files, saved on hard disk drive, or on the standard output of

the IDPP meta-predictor. For example, a result of a pre-

diction of disordered regions for a single amino acid

sequence of protein Cyclin-dependent kinase inhibitor 1B

from Homo sapiens (accession number: P46527, entry

name: CDN1B_HUMAN in the UniProtKB/Swiss-Prot

database) is shown in Listing 2. First line of the result

contains the information that allows to identify the protein.

The second line contains the information on disordered

regions identified in the sequence, expressed as ranges of

amino acid positions.

2.2 Reaching consensus

IDPP meta-predictor consists of several component pre-

dictors that classify amino acids as belonging to a disor-

dered region or not. These predictors work on the basis of

various algorithms, and they have various prediction

effectiveness. However, we assumed that the aggregation

of their votes may give improvements in the prediction

effectiveness. In our IDPP meta-predictor, we applied the

following four consensus modes—two operating on results

of binary classification from seven component predictors

(RONN, IUPred in two variants, GlobProt, and DisEMBL

in three variants) and two operating on float values of the

returned probabilities of belonging to a disordered region

(as presented in Fig. 3):

– Simple Binary,

– Weighted Binary,

– Simple Float,

– Weighted Float.

The Simple Binary (SB) consensus mode makes use of

only binary scores returned by all component predictors (0/

1 classification), and votes of all component predictors are

equally important while aggregating component decisions

(equal weights). In this consensus mode, the IDPP meta-

predictor evaluates votes of component predictors and

aggregates ranks for each ith residue in the protein amino

acid sequence according to the following formula:

preScoreIDPP�Bin
i ¼

P

j2J wjScore
Bin
i;j

P

j2J wj

; ð1Þ

where J is the set of basic component predictors (RONN,

GlobProt, IUPred short, IUPred long, DisEMBL Hotloops,

DisEMBL Remark465, DisEMBL Coils), ScoreBini;j is the

binary score returned by the jth component predictor for

the ith residue (1—belongs to a disordered region, 0—does

not belong), and wj ¼ 1:0 are weights of importance of

particular component predictors (wj ¼ 0:0, if we want to

eliminate the jth predictor from voting).

Likewise the Simple Binary consensus mode, the

Weighted Binary (WB) consensus mode uses only binary

scores returned by all component predictors (0/1 classifi-

cation), but votes of all component predictors have dif-

ferent weights while aggregating component decisions.

Weights of importance for particular component predictors

(wj in Eq. 1) are calculated according to the following

formula:

SW;j ¼
S

Smax
¼

WdisorderTP�WorderFPþWorderTN �WdisorderFN

WdisorderðTN þ FNÞ þWorderðTN þ FPÞ
;

ð2Þ

Simple/

Weighted

Binary 

Consensus

Fuzzy Smoothing 

Filter for Binary 

Values

Final 

classifica�on

based on λ

Sequence of 

classes (0/1)

Sequence of 

probabili�es

A list of 

disordered regions

Sequence of probabili�es

Simple/

Weighted

Float

Consensus

Fuzzy Smoothing 

Filter for Float

Values

Final 

classifica�on

based on λ

Sequence of 

probabili�es

Sequence of 

probabili�es

A list of 

disordered regions

Sequence of probabili�es

Fig. 3 Overview of the

information flow in the

Consensus Module in various

consensus modes

1 >DisProt|DP00018|uniprot |P46527|unigene|Hs.238990|sp|CDN1B HUMAN

2 #22 34 #96 108

Listing 2 A result of prediction of disordered regions for a single amino acid sequence.
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where: Wdisorder equals the fraction of disordered residues,

Worder equals the fraction of ordered residues, TP is the

number of true positives, TN is the number of true nega-

tives, FP is the number of false positives, and FN is the

number of false negatives. The SW ;j weighted score rewards

a correct disorder prediction higher than a correct order

prediction [28]. This is done to avoid over-prediction of an

ordered state due the fact that ordered regions are more

common in known proteins. Values of the SW ;j weighted

score for particular component predictors of the IDPP were

obtained experimentally (see Table 3 in Sect. 3.4).

In both binary consensus modes, particular amino acids

in the protein sequence (i) are then pre-classified, whether

they belong to a disordered region or not:

preClassIDPP�Bin
i ¼

1 if preScoreIDPP�Bin
i � k0

0 if preScoreIDPP�Bin
i \k0

�

;

ð3Þ

where preScoreIDPP�Bin
i is the score aggregated in one of

the binary consensus modes (Eq. 1), and k0 is a qualifica-

tion threshold determined experimentally to 0.5.

The Simple Float (SF) consensus mode makes use of

probabilities returned by all component predictors for each

residue of the amino acid chain. Votes of all component

predictors are equally important while aggregating com-

ponent decisions (equal weights, like in the Simple Binary

consensus mode). In this consensus mode, the IDPP meta-

predictor evaluates votes of component predictors and

aggregates probabilities for each ith residue in the protein

amino acid sequence according to the following formula:

preScoreIDPP�Flo
i ¼

P

j2J wjProbi;j
P

j2J wj

; ð4Þ

where J is the set of basic component predictors, Probi;j is

the probability returned by the jth component predictor for

the ith residue that the residue belongs to a disordered

region, and wj ¼ 1:0 are weights of importance of partic-

ular component predictors (wj ¼ 0:0, if we want to elimi-

nate the jth predictor from voting).

Similarly, the Weighted Float (WF) consensus mode

works on the basis of probabilities that a residue belongs to

a disordered region, calculated by component predictors.

However, while aggregating component decisions, votes of

all component predictors are weighted according to the SW ;j

score (Eq. 2).

In contrast, to binary consensus modes, results of float

consensus modes are not pre-classified, but fuzzy filtering

in the next phase is performed directly on aggregated

probabilities preScoreIDPP�Flo
i .

2.3 Filtering outliers

Disordered regions are usually formed by many successive

residues in the protein chain, rather than single amino

acids. Therefore, single amino acids or short segments

predicted as disordered regions separated by short seg-

ments of ordered regions should be eliminated from the

final result. To this purpose, we implemented fuzzy

smoothing filter that discards such small disordered ‘‘is-

lands’’. The filter runs through the sequence of classes (0/1)

or probabilities each residue in protein sequence was

assigned in the Consensus Module, and replaces each entry

by a new probability value. The new probability value for

the ith residue is calculated on the basis of classes

preClassIDPP�Bin
i (for binary consensus modes):

ProbIDPPi ¼

Piþ2

k ¼ i� 2

l ¼ k � iþ 3

lðlÞ � preClassIDPP�Bin
k

P5
l¼1 lðlÞ

;

ð5Þ

or scores preScoreIDPP�Flo
i (for float consensus modes):

ProbIDPPi ¼

Piþ2

k ¼ i� 2

l ¼ k � iþ 3

lðlÞ � preScoreIDPP�Flo
k

P5
l¼1 lðlÞ

;

ð6Þ

for neighboring residues. The pattern of neighboring resi-

dues is called the window, and slides residue by residue,

over the entire sequence of amino acids. In Eqs. 5 and 6 the

window size is equal to 5. For the ith residue, the 5-residue

window consists of the residues located at absolute posi-

tions i� 2; i� 1; i; iþ 1; iþ 2 in the protein amino acid

chain. The k iterates through neighboring residues (points

to absolute positions) in the sliding window with respect to

the ith residue being processed, l transforms the absolute

1 2 3 4 5

0.4

0.6

0.8

1

Position in the sliding window

µ
w

ei
g
h
t

Fig. 4 A fuzzy set assigning weights for disorders identified at

particular positions of the sliding window of the used filter
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position of the kth residue to the position in the sliding

window (l ¼ 1::5), and lðlÞ is the weight for the lth residue

in the 5-residue sliding window. The lðlÞ weight is cal-

culated as it is presented in Fig. 4. Such a fuzzy set defined

by a membership function allows assigning lower weights

for the first two residues in the sliding window. In conse-

quence, this weakens the influence of the first two elements

(elements preceding the current ith element in a sequence),

which is important when switching between classes. If the

following elements iþ 1 and iþ 2 are of the same class as

the ith element, the influence of the preceding two elements

i� 1 and i� 2, especially if one of them is of a different

IDP class than the ith element, decreases with the distance

from the current element. In other words, this fuzzy set

models the uncertainty at the border of regions belonging

to two different classes.

With the position-specific weight function as defined in

Fig. 4, we can notice that the following condition always

holds:

X

5

l¼1

lðlÞ ¼ 4:0: ð7Þ

For positions in the sliding window that go beyond the

beginning or end of the protein sequence, we assume that

the IDPP meta-predictor assigns the class of 1, i.e., disor-

dered, since residues located at each end of proteins

sequences are, on average, more frequently disordered than

residues located in the middle of the protein chain.

Values of the new probability calculated for each resi-

due in the protein sequence are then compared to the

experimentally determined cutoff threshold k (default

value of k is 0.5). The ith residue is classified as disordered,

if the probability is greater or equal to the k threshold:

ClassIDPPi ¼
1 if ProbIDPPi � k

0 if ProbIDPPi \k

�

: ð8Þ

After this step, each residue is finally classified as ordered

or disordered, and the Consensus Module returns a list of

disordered regions accompanied by the sequence of dis-

order probabilities, for each protein sequence provided on

the input of the IDPP meta-predictor. An example of the

filtering applied on a sequence of classes produced in

binary classification for a sample protein from the DisProt

database is shown in Fig. 5.

2.4 IDPP on the Apache Spark

Spark-IDP meta-predictor (Spark-IDPP) performs predic-

tions of disordered regions on large scale by parallelizing

computations on the Apache Spark cluster located on

Microsoft Azure cloud. The Spark-IDPP was created and

tested on Spark 1.6.1 working on Linux platform within

Microsoft Azure HDInsight service HDI 3.4.

2.4.1 Architecture of the Spark-IDPP

Overview of the execution of the IDP prediction on Spark

with the use of the Spark-IDPP meta-predictor is presented

in Fig. 6. Input data for the Spark-IDPP—many protein

sequences in the FASTA format—should be available on

the HDFS in the storage space of the Azure HDInsight

service. The input data, usually distributed in many

FASTA files, are retrieved from the HDFS and loaded into

RDD collection located on the Master node of the Spark

cluster with the use of JavaPairRDD\::[ whole

TextFilesðString path; int minPartitionsÞ func-

tion. The wholeTextFiles function allows to read

folders containing many small text files. Each file is read as

a single record and is added to the RDD collection as a

key-value pair, where a key is a path to the file, and the

value is the content of the file. The RDD collection con-

sisting of such key-value pairs is then divided into parti-

tions. The number of partitions is passed as a second

argument of the wholeTextFiles function. If the

argument is not set, the Apache Spark environment sets it

automatically by itself, but the number of partitions cannot

exceed the number of input files with protein sequences.

Spark creates a task for each data partition in the RDD

collection and places it into the FIFO queue. Tasks are then

sent to the multi-core Spark worker nodes and executed by

executors. If the number of partitions is greater than the

Fig. 5 Result of filtering applied

on a sequence of classes

produced in binary classification

for a sample protein from the

DisProt database
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number of Spark worker nodes, after completing calcula-

tions, an idle Worker node takes the next enqueued task

from the FIFO queue.

Input data retrieved from the HDFS are passed as data

streams to IDPP meta-predictor processes running on Spark

worker nodes. This is done by using

staticJavaRDD\String[ pipeðcommandÞ transforma-

tion. The pipe transformation is one of the mechanisms for

communication between running processes, and it allows to

exchange data between these processes. Each RDD parti-

tion is piped through shell commands, i.e., bash execution

script. Elements of the RDD partition, i.e., protein amino

acid sequences, are printed on standard input of the exe-

cuted process, and results are written on the standard output

of the process and returned as a RDD of character string.

The Bash script executed by the pipe transformation

saves the data from the standard input to a local text file on

a Worker node. It is necessary, since component predictors

in the CPM require paths to text files specified as execution

arguments. After saving data in a text file, a Worker node

executes the IDPP meta-predictor, which returns results on

the standard output. These results are saved in the RDD

collection on the Master node of the Spark cluster, and

then, stored as text files on the HDFS with the use of

saveAsTextFile action (Fig. 6).

2.4.2 Implementation of the IDPP on Spark

Details of the execution of the IDP prediction on Spark

with the Spark-IDPP meta-predictor are shown in List-

ings 3 and 4. Within the Spark driver program, the Spark-

IDPP application runs the main method presented in

Listing 3. The method reads the execution parameters (line

2) and loads the Spark-IDPP configuration (lines 3–4). The

configuration is loaded from the configuration file indicated

by the file path extracted from one of the execution

parameters (line 3). The configuration file consists of many

information that control the execution of the IDP prediction

on the Spark, including the path to the bash IDPP execution

script, the path to the folder with input files, the path to the

folder where the output files should be saved, the number

of partitions of the Spark to run calculations on. These data

set appropriate attributes (respectively, command, in-

putFolderPath, outputFolderPath, num-

berOfPartitions) of the SparkTools class, which

is a part of the Spark driver program. Then, the main

method creates the JavaSparkContext class object

(line 5) and starts calculations by executing the run

method of the SparkTools class object (line 6), passing

the Spark context with the Spark configuration as an

argument.

Implementation of the runmethod is shown in Listing 4.

At the beginning, after reading the start time of the job (lines

2–3), the method loads the amino acid sequences by reading

saveAsTextFile()

Storage: HDFS

Spark Master Node

par��on 1
Task 1

Task 2

Task 3

Task 4

par��on 2

par��on 3

par��on 4

FIFO

queue
RDD

collec�on

wholeTextFiles()

.

.

.

Spark Worker Node 1

pipe()
bash

execu�on script

IDP 

metapredictor

Spark Worker Node 4

pipe()
bash

execu�on script

IDP 

metapredictor

Fig. 6 Spark-IDPP—execution of the IDP prediction on Spark
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the files located in a folder indicated by the path specified in

the inputFolderPath attribute (line 5). The files are

loaded with the use of the wholeTextFiles function

(method of the JavaSparkContext class object). The

function accepts two input parameters, the first one is the

path to the folder with files, the second one is optional, but

recommended, and it suggests the number of partitions the

input data should be split into. Execution of the function

creates a key-value RDD collection (line 5),

JavaPairRDD\String; String[ class object, where the

key is the name of the file, and the value contains the content

of the file. In the next step, the pipe transformation is

invoked on the RDD collection (line 6). The argument of the

transformation is a bash IDPP execution script (stored in the

command attribute) that runs the IDPP meta-predictor. This

produces the output RDD collection with results. These

results are stored in the specified location (indicated by the

outputFolderPath attribute) by invocation of the

saveAsTextFile action (executed on the output RDD

collection, line 7).

3 Experimental results

Parallel, Spark-based implementation of the IDPP meta-

predictor (Spark-IDPP) was extensively tested in order to

verify its effectiveness and performance. The main goal of

the experiments was to address the following questions:

– What is the quality of predictions provided by the

designed meta-predictor for various consensus modes?

– What is the efficiency of massive predictions performed

on the Apache Spark with the use of the designed meta-

predictor?

– How does the performance depend on the number of

input files passed for execution?

– How scalable is the Spark-IDPP?

– What is the efficiency of Spark-IDPP compared to the

local, sequential version of the predictor?

3.1 Runtime environment

The Spark cluster used for most of the performed experi-

ments was established on the Microsoft Azure public cloud

as the HDInsight service (HDI 3.4) hosted on D13v2-sized

virtual machines (VMs) with Linux operating system.

1 pub l i c void run ( JavaSparkContext sparkContext ) {
2 SimpleDateFormat dateFormat = new SimpleDateFormat ( ”yyyy−MM−dd−

HH−mm−s s ” ) ;
3 St r ing jobStartDate = dateFormat . format (new Date ( t h i s .

startJobTime ) ) ;
4

5 JavaPairRDD<Str ing , Str ing> i n pu tF i l e s = sparkContext .
wholeTextFi les ( t h i s . inputFolderPath , t h i s . numberOfPart it ions ) ;

6 JavaRDD<Str ing> output = inpu tF i l e s . p ipe ( t h i s . command) ;
7 output . saveAsTextFi le ( t h i s . outputFolderPath + jobStartDate ) ;
8 }

Listing 4 Execution of the prediction process in the run method.

1 pub l i c s t a t i c void main ( S t r ing [ ] a rgs ) {
2 Params params = new Params ( args ) ;
3 SparkTools sparkTools = new SparkTools ( params . getConf igPath ( ) ) ;
4 SparkConf sparkConf = sparkTools . getSparkConf ( ) ;
5 JavaSparkContext sparkContext = new JavaSparkContext ( sparkConf ) ;
6 sparkTools . run ( sparkContext ) ;
7 sparkContext . c l o s e ( ) ;
8 }

Listing 3 Main function of the Spark driver program for the Spark-IDPP meta-predictor.

496 Cluster Computing (2019) 22:487–508

123



Virtual machines in the Dv2-series are intended for appli-

cations that demand faster CPUs, better temporary storage

performance, or have higher memory demands. The whole

series is based on the 2.4 GHz Intel Xeon E5-2673 v3

(Haswell) processor, and with the Intel Turbo Boost

Technology 2.0, can go up to 3.1 GHz. D13v2-sized virtual

machines used by Worker nodes of the Spark cluster had 8

virtual CPUs, 56GB RAM, and 400GB of temporal storage

space on SSD drives. Such a prepared Spark cluster was

used to run parallel procedures of the Spark-IDPP meta-

predictor and carry out assumed performance experiments.

3.2 Data set

During our experiments we used two databases of protein

sequences—one for testing effectiveness of the Spark-IDPP

meta-predictor and other basic predictors, and another data

set for testing efficiency of the Spark-IDPP. While testing

effectiveness of the Spark-IDPPmeta-predictor, we used the

DisProt data set [59, 67]. The data set that we used contained

1539 disordered regions located in 694 proteins. These

regions were discovered with the use of experimental

methods, and evidences of disorder were manually collected

from the literature. The DisProt data set provided a ‘‘ground

truth’’ while testing effectiveness of all primary predictors

and the Spark-IDPP and allowed us to calculate weighted

scores SW for basic predictors in all consensus modes.

The second database, UniProtKB [71], was used to test

efficiency of the Spark-IDPP. This database provides mil-

lions of protein amino acid sequences and was used due to

its large size. In our experiments we used various subsets of

the database.

3.3 A course of experiments

Our experiments involved testing the quality of predictions

of disordered regions and efficiency of the proposed meta-

predictor on the Spark cluster. The quality of predictions

was tested for four consensus modes in order to select the

best one. Then, we tested the performance of the meta-

predictor working on the Spark cluster for the selected

consensus mode. While testing performance, we first

experimentally established how to divide data into data

chunks and what number and size of data chunks should be

used in order to minimize the execution time for the current

cluster configuration (the number of nodes). The most

efficient division of data into data chunks was used in the

following experiments. Afterward, we changed the cluster

size for the same amount of input data in order to verify

scalability of the solution. And finally, we verified effi-

ciency and speedup achieved by the system built on the

32-node Spark cluster (cluster size was constant) for the

growing volume of data.

3.4 Effectiveness of the Spark-IDPP meta-
predictor

Effectiveness of the prediction performed with the use of

the Spark-IDPP meta-predictor was verified in a series of

tests and compared to the effectiveness of component

predictors. All component predictors and the Spark-IDPP

meta-predictor were tested on the DisProt data set ver.

6.02. This data set contains protein sequences together with

the information on the experimentally identified disordered

regions. We had to exclude three protein sequences from

the data set due to errors generated by particular compo-

nent predictors: DP00642 and DP00651 (errors generated

by the DisEMBL), and DP00195 (not fulfilling the condi-

tions of RONN).

3.4.1 Effectiveness measures

Predictors were examined in terms of sensitivity (recall,

TPR), accuracy (ACC), specificity (SPC), precision

(PREC), F1-score, and Matthews correlation coefficient

(MCC) [60], on the basis of the number of true positives

(TP), true negatives (TN), false positives (FP), and false

negatives (FN) retrieved from the confusion matrix

obtained for each of the tested predictors. The confusion

matrix, also known as a contingency table or an error

matrix, contains information about actual and predicted

values (Table 1). TP is the number of disordered protein

residues correctly classified, TN is the number of ordered

protein residues correctly classified, FP is the number of

ordered protein residues incorrectly classified as disor-

dered, FN is the number of disordered protein residues

incorrectly classified as ordered.

One of the measures that we used in our evaluation is

accuracy (ACC), which is the proportion of properly pre-

dicted disordered and ordered residues (both true positives

and true negatives) among the total number of cases

examined:

ACC ¼
ðTPþ TNÞ

ðTPþ TN þ FPþ FNÞ
: ð9Þ

Accuracy measures how well the prediction model cor-

rectly identifies particular protein residues as ordered and

disordered (the closer to 1.0, the better).

Sensitivity (Recall, or True Positive Rate, TPR) mea-

sures the proportion of true positives (TP) that are correctly

identified for all the cases that are positive in the diagnostic

test:

TPR ¼
TP

ðTPþ FNÞ
: ð10Þ

Sensitivity can be treated as the measure that examines the

probability of detection of true positive cases (correctly
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predicted disordered protein residues). With the higher

sensitivity (closer to 1.0), fewer real positive cases are

misclassified.

Specificity is the proportion of cases that are true neg-

ative (correctly classified ordered protein residues) for all

of the cases that are assessed as negatives:

SPEC ¼
TN

ðTN þ FPÞ
: ð11Þ

With the higher specificity (closer to 1.0) fewer real dis-

ordered residues (positive cases) are labelled as ordered, so

this ratio can be regarded as the percentage of ordered

protein residues (negative cases) correctly predicted as

belonging to the ordered region of the protein.

Precision (PREC, or Positive Predictive Value, PPV) is

the proportion of positive cases that are correctly identified

(TP) for all cases that are classified as positive:

PREC ¼
TP

ðTPþ FPÞ
: ð12Þ

High values of the precision (closer to 1.0) indicate better

performance of the classification model.

Two additional measures of the quality of the prediction

were also used: F-measure and the Matthews correlation

coefficient (MCC). F-measure is the weighted harmonic

mean that can be used to find the balance between the

precision (PREC) and the recall (sensitivity, TPR). It can

be calculated according to the following formula:

F � measure ¼ 2 �
ðPREC � TPRÞ

ðPREC þ TPRÞ
: ð13Þ

The Matthews correlation coefficient (MCC) was

introduced by B.W. Matthews in 1975. It takes values from

the range �1;þ1h i, where ?1 denotes perfect prediction.

The MCC can be calculated according to the following

formula:

MCC ¼
ðTP � TN � FP � FNÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTPþ FPÞðTPþ FNÞðTN þ FPÞðTN þ FNÞ
p :

ð14Þ

Additionally, we used the ROC curves (Receiver Operating

Characteristic curves) and the Area Under the Curve

(AUC) in order to assess the quality of our IDPP meta-

predictor and other IDP predictors. ROC curves and the

AUC measure are frequently used in prediction of intrin-

sically disordered proteins to evaluate performance of

prediction (classification) models. The ROC curve graph-

ically illustrates the relative trade-off between true positive

rate (TPR) indicating benefits and false positive rate (FPR),

which indicates the cost, at various settings of the dis-

crimination threshold. AUC can be considered as the

measure indicating the accuracy of the predictive model,

where 1 is the best possible value and 0.5 is the equivalent

to a random prediction.

3.4.2 Evaluation of primary, component predictors

At the beginning, we evaluated primary, component pre-

dictors that are known from literature and were also

implemented in our IDPP meta-predictor. Results of the

evaluation of component predictors are presented in

Table 2. As can be observed from Table 2, the RONN

predictor achieved the best sensitivity TPR ¼ 0:695 with

Table 1 Confusion matrix for performance evaluation of created IDPP meta-predictor

Predicted

Positive Negative

Real Positive TP (actual disordered protein residues that were correctly

classified as disordered)

FN (actual disordered protein residues that were incorrectly

classified as ordered)

Negative FP (actual ordered protein residues that were incorrectly

classified as disordered)

TN (actual ordered protein residues that were correctly

classified as ordered)

Table 2 Effectiveness of

component predictors (the best

achieved result is marked in

bold)

Name TPR ACC SPC PREC F1-score MCC

DisEMBL coils 0.507 0.688 0.744 0.379 0.434 0.229

DisEMBL hotloops 0.487 0.683 0.744 0.370 0.420 0.212

DisEMBL REMARK465 0.364 0.756 0.878 0.478 0.413 0.267

IUPred short 0.619 0.727 0.761 0.444 0.517 0.343

IUPred long 0.633 0.727 0.756 0.445 0.523 0.350

GlobPlot 0.330 0.700 0.814 0.354 0.342 0.148

RONN 0.695 0.673 0.667 0.391 0.501 0.311
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the lowest specificity SPC ¼ 0:667. On the other hand, out

of all component predictors the DisEMBL REMARK465

predictor is characterized by the best specificity

SPC ¼ 0:878, accuracy ACC ¼ 0:756, and the precision

PREC ¼ 0:478, but also the lowest sensitivity

TPR ¼ 0:364. The results for IUPred predictors, especially

IUPred Long, are quite high for each of the measures

(though not the best), and the predictor is characterized by

the best F1score ¼ 0:523 and the Matthews correlation

coefficient MCC ¼ 0:350.

On the basis of results of the effectiveness tests, for each

component predictor, we plotted the ROC curve and cal-

culated the AUC measure and SW weighted score (ac-

cording to Eq. 2). ROC curves for particular component

predictors are presented in Fig. 8. Values of the SW score

and the AUC measure for particular component predictors

are shown in Table 3.

As can be observed by analyzing the results presented in

Table 3 the IUPred, especially IUPred Long, and RONN

predictors achieved the highest values of the AUC in our

tests. They also had the highest values of the SW coeffi-

cient, and therefore, they contribute with the highest

weighted scores to the final decision made in the Consen-

sus Module of our IDPP meta-predictor working in

Weighted Binary and Weighted Float modes.

3.4.3 Evaluation of the IDPP meta-predictor

After the calculation of the SW weighted scores, we

examined the effectiveness of the proposed IDPP meta-

predictor working in all four consensus modes. All tests

were conducted with the use of the same DisProt data set

ver. 6.02 as for testing component predictors. On the basis

of the confusion matrices obtained for the IDPP meta-

predictor working in each of the four consensus modes, we

calculated values of the effectiveness measures (Table 4).

Results of the effectiveness tests presented in Table 4

show that IDPP meta-predictor working in the Simple

Binary consensus mode (IDPP-SB) is characterized by the

worst prediction quality. The value of AUC calculated for

the IDPP-SB was 0.572, which reflects that the predictor is

close to a random predictor, for which the AUC = 0.5. The

IDPP meta-predictor working in the remaining three con-

sensus modes achieved significantly better prediction

quality. Results are similar, though the Weighted Float

consensus mode led to the highest AUC = 0.752, and the

Weighted Binary consensus mode enabled to obtain the

best MCC = 0.355. Obtained results are slightly better

(AUC, MCC) or close to results achieved by particular

component predictors presented in Tables 2 and 3. The

Simple Float-based IDPP meta-predictor (IDPP-SF), which

uses regular average while striving for the consensus, is

slightly worse. It reached the AUC of 0.742 and the MCC

of 0.350. The Weighted Binary-based and the Weighted

Float-based IDPP meta-predictors (IDPP-WB and IDPP-

WF) use the weighted mean while seeking the consensus,

where weights are SW coefficients calculated for particular

component predictor (Table 3). The IDPP-WB reached the

AUC of 0.743 and the MCC of 0.355, and the IDPP-WF

reached the AUC of 0.752 and the MCC of 0.351. This

shows that the application of the SW weighted score is

beneficial, especially for IDPP predictors working on the

basis of Binary consensus (compare AUC and MCC for SB

and WB modes in Table 4). ROC curves for the IDPP

meta-predictor working in all four consensus modes are

presented in Fig. 7. Comparison of ROC curves for the

proposed IDPP meta-predictor and component predictors is

shown in Fig. 8. For the clarity of presentation we show the

ROC curve for the IDPP meta-predictor working in the

Weighted Float consensus mode (IDPP-WF).

3.4.4 IDPP meta-predictor with and without fuzzy filtering

We also checked how the fuzzy filtering influences results

of the prediction with the use of the IDPP meta-predictor.

In Fig. 9 we show ROC curves for the proposed IDPP

Table 3 Values of the SW score and the AUC measure for particular

component predictors (ordered by AUC)

Predictor SW AUC

IUPred long 0.390 0.746

IUPred short 0.380 0.740

RONN 0.362 0.721

DisEMBL COILS 0.251 0.639

DisEMBL REMARK465 0.242 0.626

DisEMBL HOTLOOPS 0.231 0.636

GlobPlot 0.145 0.572

Table 4 Effectiveness of the

IDPP predictor working in each

of the four consensus modes

Consensus mode TPR ACC SPC PREC F1-score MCC AUC

Simple binary (SB) 0.166 0.775 0.963 0.579 0.258 0.218 0.572

Weighted binary (WB) 0.663 0.720 0.737 0.438 0.527 0.355 0.743

Simple float (SF) 0.676 0.712 0.723 0.429 0.525 0.350 0.742

Weighted float (WF) 0.708 0.700 0.697 0.419 0.526 0.351 0.752
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meta-predictor working with and without fuzzy filtering in

all consensus modes. Figure 9 clearly shows that the fuzzy

filtering brings improvement in the prediction quality in all

consensus modes of the IDPP meta-predictor. This

improvement can be measured by the change in the AUC

presented in Table 5. Results presented in Table 5 show

that relative improvement after using the fuzzy filtering

ranges between 2 and 4% in all implemented consensus

modes.

3.5 Performance of IDPP-based prediction
on the cloud

We conducted a broad series of tests in order to verify

performance of the proposed Spark-IDPP method. In those

tests we investigated the execution time and speedup

achieved for various configurations of the Spark cluster and

various data load.

3.5.1 Execution time versus the number and the size

of files (data chunks)

In this series of tests we wanted to verify how the perfor-

mance of the prediction process carried out with the Spark-

IDPP meta-predictor depends on the number and the size of

input data files (input chunks) stored on the HDFS. These

tests allowed to experimentally select the appropriate files-

to-nodes ratio for various sizes of input data set used in

other performance experiments. In these tests we used a 32

MB part of the UniProtKB/Swiss-Prot database, which was

divided into a number of files of various sizes: 16 partial

files of size up to 2000 kB, 32 partial files of size up to

1000 kB, 64 partial files of size up to 500 kB, and 320

partial files of size up to 100 kB. Experiments were carried

out on the Spark cluster with 16 worker nodes. Results of

the experiments are presented in Table 6.

As can be observed from Table 6, for the 32 MB data-

base, the Spark-IDPP achieved the best performance for

many (320) files of size up to 100 kB. The execution time

was 10,146 s. For the same 32 MB input data set, the

configuration with 16 files of size up to 2000 kB and the

files-to-nodes ratio equal to 1 was almost twice less effi-

cient (19,703 s) than the configuration with 320 files of size

up to 100 kB, for which the number of files is 20 times the

number of nodes (files-to-nodes ratio is 20). We can also

observe that with the growing size of input chunks and with

the decreasing files-to-nodes ratio, the Spark platform

automatically decreased the number of data partitions. For

higher files-to-nodes ratio (20) the Spark created 16 parti-

tions, and for low files-to-nodes ratio (1) the Spark created

only 11 partitions, leaving 5 nodes of the computation

cluster idle. For this reason, the configuration with 16 input

chunks of size up to 2000 kB and the lowest files-to-nodes

ratio turned to be the slowest. This was caused by the fact

that not whole capabilities of the Spark cluster were uti-

lized and the workload was unbalanced. Only 11 nodes of

the computation cluster were used, and 5 of them had to

perform prediction for 2 data chunks, while the other nodes

were idle after processing a single data chunk. Results of

these tests allowed us to confirm that the best execution
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times are achieved when the number of files is much larger

than the number of nodes.

3.5.2 Execution time versus cluster size

In the next series of performance tests we examined scal-

ability of the Spark-IDPP by changing the number of

working nodes of the Spark cluster. During the experi-

ments, the IDPP meta-predictor was launched on the Spark

cluster with 1, 4, 8, 16, and 32 nodes. The size of the whole

input data set was constant during the course of experi-

ments and equal to 256.1 MB (the whole Swiss-Prot data

set). The data set was divided into smaller chunks in such a

way that allowed keeping the files-to-nodes ratio at the
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Fig. 9 ROC curves for the

proposed IDPP meta-predictor

working with and without

filtering in various consensus

modes: Simple Binary (a),

Weighted Binary (b), Simple

Float (c), Weighted Float (d)

Table 5 Area under the ROC

curve (AUC) calculated for the

IDPP predictor working with

and without the fuzzy filtering

in each of the four consensus

modes

AUC without filtering AUC with filtering Relative improvement (%)

Consensus mode

Simple binary (SB) 0.562 0.572 2

Weighted binary (WB) 0.722 0.743 3

Simple float (SF) 0.721 0.742 3

Weighted float (WF) 0.726 0.752 4

Table 6 Spark-IDPP total

execution time for various sizes

of input files (input chunks)

File size #Files Files-to-nodes ratio Execution time (s) #Partitions

100 kB 320 20 10,146 16

500 kB 64 4 12,377 15

1000 kB 32 2 14,719 13

2000 kB 16 1 19,703 11
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level of 20, e.g., 640 files up to 410 kB each for the

32-node Spark cluster. The results of these tests are pre-

sented in Fig. 10.

The prediction time decreases proportionally with the

growing number of Spark worker nodes. On the Spark

cluster with only one worker node the prediction took more

than 112 h (on Dv2-series VMs). The IDP prediction with

the Spark-IDPP executed on the 32-node cluster took less

than 4 h on Dv2-series VMs and less than 6 h on A-series

VMs. This gave almost ideal n-fold speedup when scaling

out the cluster from one to 32 worker nodes on the Azure

cloud. The speedup curves are presented in Fig. 11. The n-

fold speedup was calculated according to the following

equation:

Sd ¼
T1

Td
; ð15Þ

where d is the number of nodes of the Spark cluster, Td is

the execution time obtained while performing computa-

tions on the d-node cluster, and T1 is the execution time

obtained while performing computations on the 1-node

cluster.

3.5.3 Performance for growing volume of data

We also tested the performance of the Spark-IDPP for the

growing volume of protein amino acid sequences. We

wanted to verify the gain resulting from using the Spark

cluster in the IDP prediction with respect to desktop ver-

sion of the meta-predictor (Desktop-IDPP). The Desktop-

IDPP was tested on the workstation PC with CPU Core i7

4700MQ 2.4GHz (4 cores, 8 threads), RAM 16GB, storage

HDD 1TB, working under control of the Microsoft Win-

dows 7 64-bit operating system. Spark-IDPP was tested on

the 32-node Spark cluster (Dv2-series VMs) located on the

Microsoft Azure cloud. Results of the performance tests for

both versions of the IDPP predictors are presented in

Fig. 12. For predictions performed with the Spark-IDPP

data sets were divided into smaller data chunks (files) in

such a way that allowed keeping the files-to-nodes ratio at

the level of 20. The number of files depended on the whole

data set size and the number of protein sequences in the

input data set (Table 7).

Results of performance tests presented in Fig. 12 show

that the execution time for the Desktop-IDPP predictor

grows very quickly with the size of the input data set—for

256.1 MB of input data the prediction took more than 5

days. This shows how time-consuming the prediction

process is. Prediction with the Spark-IDPP on 32-node

Spark cluster took less than 4 h for the same data set.

Significant differences in execution times for large data

sets confirm that the use of the Spark cluster is all the more

justified, the larger the data set we process. For larger data

sets, like 256.1 MB, the reduction of time was significant,

and even the necessity of creation of the Spark cluster on

the Cloud (which usually takes around 20 min) was just a

fraction of time taken by the desktop version of the IDP

predictor. In Table 7 we can also observe that the number

of data partitions for various sizes of the input data set was

constant and equal to the number of nodes of the Spark

cluster. This was possible by dividing the input data set

into many (640) chunks and keeping the files-to-nodes ratio

at relatively high level (20).
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4 Discussion and conclusions

Prediction of disorder regions for protein amino acid

sequences became an important branch of 3D protein

structure prediction and modeling. The knowledge flowing

from correctly resolved protein structures translates very

well into drug design, or at least, recognition of molecular

mechanisms underlying many civilization diseases. Disor-

dered proteins constitute a wide range of molecules that

play important roles in these molecular mechanisms. Since

the number of protein amino acid sequences in world

repositories grows exponentially, availability of efficient

methods that are able to predict IDPs on highly scalable

computer clusters is very important. This belief underlies

our research.

Spark-IDPP responds to the needs very well by parel-

lelizing computations on the Spark cluster that can be

scaled on the Cloud on demand according to current

requirements for computing power. Results of our perfor-

mance tests show that we are able to perform predictions of

disordered regions on large-scale and to handle growing

amount of protein sequences by scaling the cluster hori-

zontally and vertically. As also shown in this paper, IDP

prediction on Spark clusters is the most beneficial, when it

is performed for large data sets divided into smaller chunks

(files). Best results were obtained when the number of data

chunks was much larger than the number of data nodes—

we established the files-to-nodes ratio at the level of 20.

This caused that the computational capabilities of the Spark

cluster were fully utilized, as the number of Spark data

partitions was equal to the number of nodes. Only then we

were able to achieve almost linear, above 31-fold, speedup

on 32-node Spark cluster, and to significantly reduce the

execution time.

The Spark-IDPP was developed for Spark clusters hos-

ted in local data centers or in the Cloud. However, low

entry barrier, a huge storage space, wide compute and

flexible scaling capabilities of the Cloud made it an

attractive alternative to local compute infrastructures kept

on premises. With the wide, horizontal and vertical, scaling

capabilities the Cloud enabled us to create the Spark cluster

that is able to respond to current needs of IDP prediction

and appropriately accommodate the growth of protein data

in public repositories. The use of public cloud platforms,

like Microsoft Azure or Amazon Web Services, simplifies

many tasks related to the creation and maintenance of the

Spark cluster. Firstly, within these platforms the Spark is

provided as a service, i.e., it can be easily created and

configured on-demand, when needed, and removed after

performing required computations. This ease in
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Fig. 12 Comparison of the

execution time (prediction time)

for the desktop version of the

IDPP meta-predictor (Desktop-

IDPP) and the Spark-IDPP

working on the 32-node Spark

cluster for varying size of the

input data set

Table 7 Sizes of input data sets used in the prediction process per-

formed on the 32-node Spark cluster, together with sizes of data

chunks the data sets were divided into, and the number of partitions

created by Spark during execution of the Spark-IDPP

Spark-IDPP on 32-node Spark cluster

Data size (MB) Chunk size (kB) # Partitions

5.06 8 32

20.08 33 32

40.15 65 32

100.0 160 32

200.1 320 32

256.1 410 32
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maintaining Spark clusters clearly distinguishes the solu-

tion from local Spark installations and clusters created in

IaaS clouds. Although, this comes as a cost of broader

configurability that clusters created in local data centers or

IaaS clouds can possess. Secondly, once created on the

Cloud platform, the Spark cluster can be dynamically

scaled out by adding more cluster nodes or scaled down by

releasing unnecessary compute resources. Thirdly, cloud

platforms usually provide a specialized fleet of virtual

machines that have differentiated compute capabilities

(various sizes), optimized for different tasks, e.g., for

compute-intensive or memory-intensive calculations. As a

result, it is easy to scale up by using more powerful virtual

machines. We started testing the Spark-IDPP on the Spark

cluster created on A-series virtual machines. However, we

quickly scaled up the solution to Dv2-series virtual

machines, since they provided higher compute capabilities

(better CPUs and more memory). This allowed us to further

accelerate the IDP prediction for large data sets (see

Fig. 10). The necessity of paying for the Spark cluster

performing IDP predictions must be mentioned as a dis-

advantage of using cloud platforms. However, on the other

hand, users do not have to cover the costs of maintenance

of the whole hardware infrastructure kept on premises.

Results of our experiments on the quality of predictions

prove that the proposed method is able to achieve higher

prediction effectiveness than primary predictors. With the

Spark-IDPP working in the Weighted Float consensus

mode (Spark-IDPP-WF) we were able to improve the

quality of predictions compared to basic predictors. The

quality improvement was not so significant as in

MetaDisorder reported in [33] and PONDR-FIT reported in

[83], since we were not able to implement all component

methods in the Spark-IDPP (e.g., some of them are not

available as program packages). Nevertheless, our experi-

ments confirmed that meta-prediction with the use of many

component predictors, which operate on various features

extracted from amino acid sequences and characteristics of

particular amino acids, may increase the prediction quality.

The most important unique feature of the Spark-IDPP is

its capability to work with large amounts of protein

sequence data and to provide prediction results fast, ade-

quately to the size of the Spark cluster. In such a way, it

addresses the volume characteristics of the Big Data chal-

lenge. To the best of our knowledge, this is the first method

that addresses this feature for prediction of IDPs. Among

other unique features of the Spark-IDPP, it is worth men-

tioning its four consensus modes for combining results of

basic predictors and fuzzy filtering method. Three out of

four consensus modes allow to predict disordered regions

with reasonable quality confirmed by the majority of the

effectiveness measures that were calculated. The best

results, in terms of the AUC and the MCC, were obtained

for the Spark-IDPP working in the Weighted Float con-

sensus mode (Spark-IDPP-WF), where we used weighted

score proposed in [28] to make decisions on the classifi-

cation to ordered/disordered classes. The same weighted

score was used in the MetaDisorder method [33], but we

calculated our own values of weights for used component

predictors and for the DisProt data set. The quality of

predictions returned by the Spark-IDPP working in the

Weighted Binary and the Simple Float consensus modes

was only slightly worse in terms of the AUC and the MCC,

but even better in terms of accuracy and precision. Only the

Simple Binary consensus mode did not bring satisfactory

results. Its prediction capabilities turned out to be slightly

better than random guessing. In addition, the fuzzy filtering

method that we used allowed us to efficiently eliminate

short segments outlying from neighboring ones, resulting

in smoothing final outcome of the prediction.

Future works will cover further development of the

IDPP meta-predictor and the Spark-IDPP. We plan to

increase the number of component IDP predictors in the

IDPP meta-predictor with the intention of improving the

quality of predictions. An interesting option would also be

to re-implement the code of the Spark-IDPP in such a way

that each prediction performed by a component predictor is

executed as a separate Spark transformation. Then, con-

sensus could be achieved in another dedicated transfor-

mation on separate RDD collections generated by each of

the component predictors. It is difficult to estimate the

influence of such an implementation on the performance of

the whole meta-prediction, but it would make the Spark-

IDPP more extensible toward new prediction methods. We

believe that the Spark-IDPP meta-predictor can be a

valuable tool for the whole field of protein structure

modeling and fold recognition. It complements the col-

lection of existing tools by providing better predictive

capabilities with significantly higher performance, which

can be adapted to the current needs and amount of input

data. This makes it an important alternative for desktop

software tools, for which scalability is very limited or

sometimes impossible to implement. Spark-IDPP brings a

great promise in prediction of IDP showing that advances

in computational solutions keep in pace with progress in

large-scale data gaining in bioinformatics.
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