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ABSTRACT

As social networking services and e-commerce are growing rapidly, the number of online users is also 
dynamically growing. They contribute content to the digital world. In such a dynamic environment, 
meeting the demand of computing is very challenging especially with existing computing models. 
Although Spark is recently introduced to alleviate the problems with the concept of in-memory 
computing for big data analytics with many parameter configurations that allow the configuration 
and improvement of performance, it has a performance bottleneck which requires investigating the 
performance improvement mechanism by focusing on the combination of scheduling and shuffle 
manager with data serialization with intermediate data caching options. The standalone cluster 
computing model was selected as experimental methodology with submit command line for data 
submission. Three Spark applications, WorkCount, TeraSort, and PageRank, were selected and 
developed for experiment. As a result, 2.45% and 8.01% performance improvement are achieved in 
OFFHEAP and Memory Only Ser data caching options, respectively.
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1. INTRODUCTION

As the digital universe increase in size due to the daily transformation of everything related to people, 
enterprises, and environments to the digital universe, it becomes challenging to analyze it(H. Zhang 
et al., 2018). According to a study observed and predicted by IDC, the size of data in the digital 
universe will exceed around 44 zettabytes by 2020(Aggarwal et al., 2014; Tsai et al., 2018). As the 
use of the Internet is growing with the daily activities of users, data are growing daily with increasing 
data availability in a variety of features. However, these multidimensional features make design and 
analysis more complicated with intricate performance. This kind of complex data requires big data 
analytic which facilitates the performance of data analysis to reduce cost and facilitate instant decisions.

Consequently, Big Data technologies get more attention from both academia and industry as data 
are growing in volume. This helps people to understand how it is important to improve the efficiency 
of data analytic software in order to improve data processing capability (H. Zhang et al., 2018). 
Although Hadoop became one of the Big Data computational tools designed for clusters computing 
in the past two decade to run on commodity hardware to process huge data in a distributed ways 
across different machines(Aggarwal et al., 2014; Choi et al., 2015; Asuncion & Newman, 2007) with 
MapReduce implementation framework(Qiu et al., 2018;Gantz et al., 2007) for large scale distributed 
data processing(Wu & Gokhale, 2013), it is not efficient for data analytic applications, especially for 
those require interactive and iterative computational tasks(Herodotou et al., 2011; Kambatla et al., 
2009) due to its implementation read data from a disk that hinder its’ capability.

Spark is recently designed as in-memory computing (Li et al., 2017; Ewart et al., 2015) to 
overcame the limitation of Hadoop by avoiding low access of disks (Shi et al., 2015; Jiang et al., 
2014; Adinew et al., 2019). However, sometimes disk access is also required for reading the RDDs, if 
they are not fully cached (K. Zhang et al., 2017; Garg & Janakiram, 2018). Moreover, Spark has the 
ability to persist recomputed data in memory (Baig et al., 2018; Zhou et al., 2018) which eliminates 
a significant amount of I/O that happens in the case of reading disk (Xu et al., 2016; Adinew et al., 
2020). Although Spark overcame the limitation of Hadoop (K. Wang & Khan, 2015), still it has a 
performance bottleneck, which has been trying to address by different researcher. However, still very 
challenging to get the best performance (Rahman et al., 2018; Koliopoulos et al., 2016) so that it 
requires to find a way to optimize its performance based on the optimization framework defined in 
R. Zhang et al. (2015). Accordingly, we focus on a combination of Scheduler and Shuffle manager 
with data serialization and data caching mechanism to improve performance of Spark application.

Consequently, from this research work, we identified the following lists as contributions of our 
work.

• Scheduling and Shuffling with data serialization and data caching option was proposed to improve 
performance of Spark application.

• The execution performance of Spark applications in Scheduling and Shuffle Manager with 
data serialization in different intermediate data caching options on different Algorithms was 
investigated.

• The relationship between Scheduler and Shuffler Manager with data serialization, and data 
caching options were identified.

• It was confirmed that FIFO Scheduler and Sort Shuffle Manager in the OffHeap data caching 
option slightly shows high performance than others combinations regardless of data serialization.

• It was confirmed that Tungsten-Sort Shuffler with FIFO Scheduler shows good performance 
regardless of data serialization in serialized data caching options in all algorithms and in all 
datasets.

• It was confirmed that Memory Only Ser data caching option shows good performance than 
Memory And Disk Ser data caching option, almost in all combinations
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• Overall, it was confirmed that the performance of Scheduler and Shuffle Manager varies and 
depends on data serialization and data caching options and algorithms.

The rest of this research is organized in a section based. Where Section 2 describes the proposed 
model. Section 3 describes research Methodology. Section 4 describes Experimental process. Section 
5 illustrate Experimental Results. Section 6 discusses Experimental result. Section 7 mentions related 
work of the research. Finally, Section 8 Summarizes the conclusion of the research.

2. PROPOSeD MODeL

This research focuses on investigating the execution performance of Spark applications in using 
scheduling and shuffle Manager with data serialization in different intermediate data caching options. 
The experiment focuses on Spark configuration parameters that were defined as one of performance 
optimization parameters, which were defined as

SparkPerf = Func(A, D, R, C), 

Where SparkPerf denotes the performance of Spark platform, A denotes the user’s application, 
D denotes the input data, R denotes the platform’s resources, and C denotes the Spark platform 
parameters configuration, Func denotes a performance function of Spark performance in using A, 
D, R, and C as parameters (G. Wang et al., 2017). However, this experiment particularly focuses on 
Configuration parameter c which may require the selection of certain parameters with careful selection 
due to improper selection may lead to significantly degrade its performance (Du et al., 2019)[8, 23]. 
The performance optimization category used for this experiment is illustrated in Figure 1.

Figure 1. Spark Performance Optimization Categories
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2.1. Scheduling
As Spark application is submitted to cluster computing, submitted application will get its’ independent 
executor to process the tasks. The scheduler decomposes a job into different stages according to RDD 
dependencies and submits the stages one by one to the executors. It uses a FIFO scheduler as a default 
scheduler when applications are computed in the standalone cluster. However, it can be changed at 
any time when an application is running (Zhou et al., 2018).

2.2. Data Shuffling
Spark keeps data distributed across cluster nodes while data being partitioned. So that, during the 
execution of an application, each data partition is fed into corresponding Worker nodes. However, 
during data processing, input data (RDDs) are shuffled across machines as a job progresses (Choi 
et al., 2015). Therefore, data shuffling is one of the very important parameter configurations, which 
guarantee to shuffle data persisted in the storage to provide better reliability after successful completion 
of execution task.

2.3. Data Serialization
Spark can be configured to use either the default Java serialization or the Kryo serialization libraries 
(H. Zhang et al., 2018; Koliopoulos et al., 2016). According to a study2020(Tsai et al., 2018, Zhou 
et al., 2018) Kryo offers high-performance improvements over Java serialization. However, its effect 
is not assessed in such a multi-layer experimental structure with a combination of other parameters.

2.4. RDD Caching Mechanism
Data Caching is the way to keep data in memory to create a mechanism to bring the best performance 
and speed up data retrievals processing mechanism. Data Caching is simplified using localizing 
RDDs to make every node maintain their own cache without considering the problems of coherency. 
Moreover, Spark adds its caching semantics with persist (). Although the default way of the data 
caching option is to store Java objects directly into memory, users can also by themselves explicitly 
can cache an RDD according to their requirement in different data caching options. Accordingly, 
RDDs are stored for while in JVM heap memory bypassing Storage Level object with MEMORY 
ONLY data caching option. However, persisting RDDs in memory by itself causes significant overhead 
in GC time. To alleviate this problem, Spark offers various data caching options and enables a user 
to implement custom caching strategies. However, this practice demands expert knowledge of the 
underlying platform and extensive experimental evaluation of the different options with other different 
parameters such as Data serialization, Scheduler, and Shuffler as a combination to simplifies task 
for users while selection.

3. MeTHODOLOGy

This experiment follows the Spark standalone cluster computing model by selecting as best deployment 
model, approaches, and methods as shown in architectural defined in Figure 2, which emphasis an 
RDD computation approach. Moreover, a cluster computing component and their interaction were 
also identiðed as the Driver, the Master, the Cluster Manager, and the Executor(s), which run different 
Worker. Application anatomy and workloads were also identified, developed, and used for evaluating 
Spark performance under different combinations of these parameters that were listed in table 2.

For data submission, submit command line is used that allows submitting application and 
configuration to Spark. Architectural Model is designed to show how different RDD on different 
workers is processed as shown in Figure 2.
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4. eXPeRIMeNTS

4.1. environment Variable
Environment variable that is used to support our experimental activities are categorized and listed 
as Hardware and Software environment variables. The hardware that is used for our experiment is a 
standalone laptop where the details specifications are listed and described in Table 1 together with 
details of Software used for experiments.

4.2. Configuration Variables Parameters
For this experiment, six different configuration parameters were used. Their details are listed and 
described in Table 2 with their default and new value.

4.3. Parameter Selection
Spark has almost more than 180 parameters that can be easily adjusted (configured) by users according 
to their own application requirements to increase its performance. These large parameters option 
creates very complex interactions between parameters in their combination which required appropriate 
ways of parameter tuning. If it is carefully tuned, such a large space in parameter configuration 
enables a lot of opportunities for performance improvement. Accordingly, six main parameters were 
selected, which independently has a high impact on Spark performance but not checked yet in their 
combination in any of research. The Choice of optimal Shuffling and Scheduling with data serialization 
on different storage levels requires in-depth systems-level knowledge which was not assessed yet 
through experimentation. The reasons for selecting these parameters are individually they have a 

Figure 2. Show RDD submission to workers with block allocation

Table 1. Hardware and software configuration environments

Hardware Software

Memory:4GB with additional 2GB GPU Window 10 OS with 64-bits

Hard Disk:750GB Spark 2.4.4 with Hadoop 2.7

Intel(R) Core(TM)i5-5200U CPU@2.20GHz Scala 2.11.12 JDK 11.0.1 Python3.7.1
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highly significant impact on Spark application performance, but their combined performance is not 
checked yet in any of the researchers.

4.4. Model Selection
Although several common models are available under machine learning for data analytic techniques 
which are used to measure the performance of a different application.We select some Spark benchmarks 
for this experiment such as WordCount, Sort, and PageRank for applying different parameter tuning 
in order to investigate the effect of Scheduling and Shuffling in different data serialization and in 
different intimidate data caching options. We selected those benchmarks because having a join 
operation appears frequently in such applications which creates a lot of shuffling. They are also the 
real representation of Spark application, which are used alone as well as by integrating with different 
applications which are implemented in a wide range of applications. They are implemented in Spark 
Scala code.

4.5. Programming Language
Although Spark supports several common programming languages to write a code such as Scala, 
Java, Python, etc, our BenchMark is implemented in Scala using IntelliJ ideal as environment IDE 
by integrating with SBT. Python was used to draw the bar chart and others software were used as 
experimental support.

4.6. experimental Steps
In order to investigate their performance improvement. We first install and configure Spark according 
to our deployment model requirements for huge data analytics. IntelliJ idea was also install by 
integrating with Scala and SBT to write different Spark application that helps to do this experiment. 
Then we create a Spark cluster that holds one master that launches the driver program and two 
workers that launch different Executors as JAVA processes. After forming a cluster, applications 
were submitted to the Spark cluster with different parameters configuration values with dataset 

Table 2. Parameters configuration used for experiment with default and new value

Categories Parameters Description Default 
Value New Value

Shuffle 
Related 

Parameter

Spark.shuffle.
manager

Manage shuffle metadata on the 
driver(Shuffle Handle) 

and running tasks on executors to access the 
metadata

Sort Sort and 
Tungster-sort

spark.shuffle.service.
enabled Enables the external shuffle service false True

Scheduling 
mode spark.scheduler.mode Scheduling mode submitted to SparkContext FIFO FAIR

Data 
Serialization spark.serializer It is used for caching serialized objects Java 

Serializer
Java Serializer 
Kryo Serializer

Data 
Storage Storage Level

All cached RDD can be stored in different 
data caching levels in deserialized format None

MEMORY ONLY 
MEMORY AND 

DISK,DISK 
ONLY, OFFHEAP

All cached RDD can be stored in different 
data caching levels in serialized format None

MEMORY ONLY 
SER 

MEMORY AND 
DISK SER
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from the command line using submit command. Then, the driver program was launched to run in 
JVM by creating a SparkContext object. Then, Master assigns tasks with resources to workers in the 
cluster for computation. The submission mode is using cluster deploy mode with different parameters 
setting. The submitted applications were decomposed into tasks and wait in queue for execution 
as the JAVA process is launched. Executors were execute tasks assigned by Worker according to 
resources allocated to them. In the end, the results were replayed to the Master by driver program by 
collecting and combining all results from each Worker. Finally, execution time was collected as one 
of the performance evaluation mechanisms for Spark application in Spark optimization which were 
directly accessed from its web as the performance of the applications at the end of each computation. 
Then, experimental results were visualized in different forms such as figures and tables, which show 
performance comparison between the default value and new value of those configuration parameters.

Sample commands that were submitted with different parameters configuration as job are shown 
in below, which is taken from PageRank algorithm sample code.
C: Users mesay IdeaProjects untitled6>spark- submit --master 
spark://113.54.216.149:7077 
--deploy-mode cluster --conf “spark.rpc.askTimeout=10000s” 
--conf”spark.network.timeout=80000s” -- conf”spark.shuffle.
service.enabled =True” 
--conf “spark.shuffle.manager=tungsten- sort” --conf “spark.
storage.level= MEMORY ONLY” --class Spark-PageRank PageRank.jar 
file:D: Messay 360 PageRank web.txt spark://113.54.216.149:7077 2

Each application run under one driver and multiple executors to allow parallel process that run 
under different executors. Accordingly, tasks were submitted three times for computing average of its 
computational time for every parameter’s configuration. So that experiments were done repeatedly 
to make sure that the experiments are well evaluated.The experiment was done in two-phase where 
the first phase focuses on non-serialized data caching options with other parameters. Whereas the 
second phase focuses on Serialized data caching options.

4.7. Workloads and Datasets
For this experiment, a number of different dataset samples were used. Datasets that were used in 
phase one was accessed from different data sources such as the Stanford dataset [3] and the UCI 
of Machine Learning Repository. Where some of the datasets that were used in phase two were 
constructed manually from the dataset used in phase one which was accessed from the above data 

Table 3. Dataset used in phase one

Applications Input size

PageRank 31.3MB,71.8MB

TeraSort 11KB,22KB,43KB

WordCount 2MB,4MB,16MB

Table 4. Dataset used in phase two

Applications Input size

PageRank 32MB, 72MB, 500MB, 750MB, 1GB

TeraSort 11KB, 22KB, 43KB, 252KB, 531MB, 735MB

WordCount 2MB, 8MB, 16MB, 1GB, 2GB, 3GB
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sources by customizing it to increase the data size. A WordCount, TeraSeort, and PageRank algorithms 
were selected and used to evaluate Spark performance under different parameters value and different 
dataset sizes. The algorithms and datasets that were used for the experiment one are listed in Table 
3. The datasets that were constructed and used for experiment phase two are listed in table 4.

5. eXPeRIMeNTAL ReSULT

The experiments were done alternatively by combining different Scheduler and Shuffle managers 
along with data serialization in different algorithms in different data caching options in two-phase.

The experimental activities pass through the different stages during data computation. Depending 
on computational activities, each stage has its own operations in each computational task like map, 
join, groupBykey, reduceByKey and so on which include different scheduling and shuffling operations. 
These data computation steps are called RDD transformation and action which is visualized as RDD 
DAG or job graph. It shows how jobs are executed. A job graph for PageRank was illustrated in Figure 
4 which include different details of transformations and actions under the different stage of its task.

5.1. experimental Result Visualization
This section describes performance comparison between different applications and datasets for non-
serialized data caching options with other Spark parameters. The result is visualized with different 
Schedulers with different Shuffler in different data serialization in different dataset sizes in different 
machine learning applications as is shown in Figures 4 to 6.

Performance comparison between Memory Only Ser and Memory and Disk Ser storage level 
with the combination of other parameters configuration are shown in Figures 7 to 9.

Figure 4: Illustrate Performance Achieved in Scheduling and Shuffling with Data Serialization 
in Different

Figure 3. Job Graph (DAG) in cluster computing from PageRank algorithms
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Storage Level in Spark Sort Algorithm
As shown in Figure 4, the FIFO scheduler with Sort shuffler together with Java serialization on 
OffHeap data caching show best performance than other different combinations in Spark Sort 
Algorithm. Whereas Memory and Disk data caching option also show good performance by following 
next to OffHeap data caching option.

As shown in Figure 5, the FIFO scheduler and Sort shuffle manager with java serialization on 
Offheap show good performance than other combinations in Spark Word Count Algorithm. Whereas 
the OffHeap data caching option also shows good performance next to the Disk Only data caching 
option regardless of data serialization and data size.

As shown in Figure 7, FIFO Scheduler and Tungsten- Sort Shuffler have higher performance 
improvement on Memory Only Ser data caching option than Memory And Disk Ser data caching 
option regardless of data serialization on Spark Sort Algorithm in all datasets. Whereas specifically 
in Memory And Disk Ser data caching option still FIFO Scheduler Tungsten-Sort Shuffler with Java 
data serialization shows higher performance improvement in all datasets.

As shown in Figure 8, again FIFO Scheduler and Tungsten-Sort Shuffler have higherperformance 
improvement on Memory Only Ser data caching option than Memory And Disk Ser data caching 
option regardless of data serialization on Spark Word Algorithm in all datasets.

Figure 4. Combination of other parameters 

Figure 5. Illustrate Performance Achieved in Scheduling and Shuffling with Data Serialization in Different Storage Level in Spark 
Word Count Algorithm



Journal of Technological Advancements
Volume 1 • Issue 1

10

As shown in Figure 9, again FIFO Scheduler and Tungsten-Sort Shuffler show higher performance 
improvement on Memory Only Ser data caching option than Memory And Disk Ser data caching 
option regardless of data serialization on Spark PageRank Algorithm in all datasets.

Figure 7. Illustrate Performance Evaluation between Memory Only Ser and Memory And Disk Ser in Scheduling and Shuffling in 
Different Data Serialization in Spark Sort Algorithm

Figure 8. Illustrate Performance Evaluation between Memory Only Ser and Memory And Disk Ser in Scheduling and Shuffling in 
Different Data Serialization in Spark Word Count Algorithm

Figure 6. Illustrate performance achieved in scheduling and shuffling with data serialization in different storage level in spark 
page rank algorithm
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Table 5 and 6 show details of performance improvement result for Non-Serialized Data Caching 
Options and Serialized Data Caching Options respectively. Every computation was done by using 
default configuration result as base result. So that the performance improvement was calculated as 
the difference between new configuration result and default value result. Where default value and 
new configuration of these parameters are described in Table 2.

Figure 9. Illustrate performance evaluation between memory only ser and memory and disk ser in scheduling and shuffling in 
different data serialization in spark page rank algorithm

Table 5. Performance improvements result for non-serialized data caching options

Application Storage Level Java Kryo

Sort Scheduler + 
Shuffler

FF + 
Sort

FF + 
T-Sort

FR + 
Sort

FR + 
T-Sort

FF + 
Sort

FF + 
T-Sort

FR + 
Sort

FR + 
T-Sort

Memory Only -5.38 0 -1.1 1.07 -7.53 -1.06 -0.54 17.28

Memory&Disk -4.31 -2.18 -2.2 -1.07 -3.23 -2.11 -0.22 19.1

Disk Only 1.08 -6.53 1.1 -3.2 -2.16 -3.16 -0.22 18.19

Heap 1.08 -3.27 0 -3.2 -7.53 -6.32 -0.75 1.82

WordCount Memory Only 0.98 0.01 1.93 -2.95 0 -3.42 4.81 2

Memory&Disk 7.77 5.83 3.85 1.48 2.95 1.47 4.81 2

Disk Only 3.48 2.72 2.69 -0.99 1.57 3.32 3.65 2.01

Heap 5.83 3.89 3.85 2.95 0 0.49 2.89 -1

PageRank Memory Only 15.2 -8.79 -1.28 -5.07 2.8 4.1 -6.36 3.14

Memory&Disk -5.81 -11.3 -16.67 -10.13 -1.62 -0.59 -7.52 0.15

Disk Only 15.67 -0.7 3.39 1.27 4.42 1.03 4.77 0.15

Heap 11.84 -1.82 0 0.99 3.68 4.1 -2.46 3.28
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6. DISCUSSION

Experiments were done in two phases on three representatives of a Spark application such as 
WorkCount, TeraSort, and PageRank. They were used as workloads to evaluate performance achieved 
in changing the value of the above six experimental parameters configuration. The experimental 
results are shown in Figure 4 to 9 which describe, which Scheduler and Shuffle Manager in which data 
serialization such as Java and Kryo serialization with which intermediate data caching options such as 
Memory Only, Memory And Disk, Disk Only, OffHeap, Memory Only Ser, and Memory And Disk 
Ser in Spark data computing show high-performance improvement, that can seen in two categories.

The results in experimental phase one were depicted and shown in graphs as they are illustrated in 
Figures 4 to 6. The experimental results observed in different algorithms are summarized as follows.

1.  In Spark Sort Algorithm, FIFO scheduler with Sort shuffler together with Java serialization in 
OffHeap show the best performance than others different combination, whereas Disk Only data 
caching option also show good performance than other different combinations follow OffHeap 
data caching option.

2.  In Spark Word Count Algorithm, FIFO scheduler and Tungsten-sort shuffle manager with java 
serialization in Memory and Disk Only show good performance than others combination, whereas 
OffHeap also shows good performance follow Memory and Disk data caching option.

3.  In Spark Page Rank Algorithm, FIFO scheduler and Sort shuffle manager with Kryo serialization 
in OffHeap show good performance than other different combination, whereas Disk Only data 
caching option also show good performance than others different combinations follow OffHeap 
data caching option.

Table 6. Performance improvement result for serialized data caching options

Data 
Caching 
Options

Data 
Serialization

Scheduler 
+ 

Shuffler

Sort WordCount PageRank

D-1 D-2 D-3 D-1 D-2 D-3 D-1 D-2 D-3

Memory 
Only 
SER

Java

FF+T-Sort 11.92 11.33 11.14 20.5 3.55 3.44 1.64 4.49 4.06

FR+Sort -1.32 -1.89 -2.07 8.44 2.84 -2.95 -1.09 -2.57 -5.41

FR+T-Sort -0.66 7.55 10.11 0 0 -0.5 1.64 4.17 0

Kryo

FF+Sort -9.94 3.78 8.05 18.1 3.55 -3.93 1.09 -2.57 2.71

FF+T-Sort 0 -1.89 -2.48 9.64 1.42 0.5 1.09 0.65 -2.71

FR+Sort -19.87 -5.67 -1.24 14.5 4.97 -3.44 -2.72 -2.57 -8.11

FR+T-Sort -43.03 -11.33 -1.45 19.3 3.55 3.44 -2.18 -4.81 0

Memory 
and Disk 

SER

Java

FF+T-Sort 15.89 7.28 4.29 1.37 -2.05 -1.98 1.09 5.96 1.34

FR+Sort 3.53 9.1 10.11 0 1.37 -2.47 0.55 -0.32 4

FR+T-Sort -10.01 0 2.48 -1.37 0.69 -3.95 1.09 2.83 2.67

Kryo

FF+Sort -1.19 7.28 9.28 1.37 1.37 0.99 -1.64 -2.83 4

FF+T-Sort 7.65 -5.46 -11.14 1.37 7.49 3.45 1.09 2.83 2.67

FR+Sort 2.95 1.82 0.41 8.22 2.05 0 1.09 3.45 4

FR+T-Sort 5.3 7.28 7.01 2.74 5.45 0.5 1.09 3.14 -1.34
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6.1. Performance From Scheduler and Shuffler Perspective
If(FIFO Scheduler and Sort Shuffle Manager) Performance is good 
with Kryo Serialization 
in Offheap Data Caching. 
ElseIf(FIFO Scheduler and Tungest Shuffle Manager) 
Performance is good with Kryo Serialization in Offheap Data 
caching. 
ElseIf(FAIR Scheduler and Sort Shuffle Manager) 
Performance is good with Java Serialization in Default Data 
caching almost in all 
algorithms. 
ElseIf(FAIR Scheduler and Tungest Shuffle Manager) Performance is 
good with Java 
Serialization regardless of the Data caching mechanism.
In general, the result shows FIFO Scheduler and Sort Shuffle Manager with kryo Serialization in 
Offheap data caching relatively has good performance.

Overall, as we observed from the above three experimental results which were done in phase one, 
performance in Scheduling and Shuffling varies and depends on data serialization and data caching 
options as well as it also varies from algorithm to algorithm.

In general, although the result varies across algorithms, FIFO Scheduler and Sort Shuffle Manager 
in OffHeap data caching option slightly show high performance than others combinations regardless 
of data serialization in most of the algorithms.

The results from experimental phase two are shown in Figures 7 to 9, which compare performance 
between Memory Only Ser or Memory And Disk Ser in different Scheduler and Shuffler with different 
dataset sizes. Accordingly, the result of performance comparison between Memory Only Ser and 
Memory And Disk Ser with different data serialization in different Scheduler and Shuffler, Memory 
Only Ser with FIFO Scheduler &TungstenSort Shuffler shows overall high performance regardless 
of data serialization in all three workloads and in all datasets. When we compare performance 
between Java data serialization and Kryo serialization with the above combinations of parameters 
configuration, Java data serialization with FIFO Scheduler and TungstenSort Shuffler shows overall 
high performance regardless of data caching options in all three workloads and in all datasets. As 
we also compared performance between Scheduler and Shuffler, FIFO Scheduler and TungstenSort 
Shuffler show high performance improvement regardless of data serialization and data caching options 
in all workloads and datasets. However, in Memory And Disk Ser data caching option, Kryo show 
overall good performance improvement in all Scheduler and Shuffler in all workloads and in all dataset 
next to Java data serialization with FIFO Scheduler. TungstenSort Shuffler in both Memory Only Ser 
and Memory And Disk Ser data caching options show good performance. In general, TungstenSort 
Shuffler shows best performance improvement in all combination, FIFO Scheduler with TungstenSort 
Shuffler also show best performance improvement. From a data serialization perspective, Java data 
serialization is slightly high performance than kryo in all data caching options, in all workloads, and 
all datasets. Memory Only Ser data caching option show good performance almost in all combinations 
than Memory And Disk Ser data caching options.

7. ReLATeD WORK

Although many researchers were tried to analyze the parameters configuration of Spark platforms 
in order to improve Spark performance by modifying the default configuration in a way to increase 
the performance of Spark applications, they were focused on certain common individual parameters. 
Consequently, authors of (K. Zhang et al., 2017) investigate the influence of different intermediate 
data caching options on execution performance of Spark applications, by a comparison of disk-based 
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caching and other data caching options. The experiment also extends to compared serialization of 
RDD with an encoding of DataFrame in intermediate data caching The authors (Xu et al., 2016) 
examine how to improve overall memory utilization and also work in the way to minimize performance 
degradation by designing MEMTUNE to improve the performance of Spark. It is designed to monitors 
memory consumption in garbage collection and memory paging frequency, during tasks computation 
using a statistical data collection mechanism. It also uses this information to dynamically adjust data 
cache space which is implemented under Spark options such as MEMORY ONLY and MEMORY 
AND DISK. MEMTUNE will use APIs to manage the RDD cache automatically. The authors 
of(Koliopoulos et al., 2016) propose an automatic data caching selection mechanism which helps to 
explores the memory impact of different workloads using different storage levels. It is a framework 
designed for in-memory distributed systems that automatically selected the optimal storage level based 
on data size and cluster characteristics. In authors (Tsai et al., 2018) identify the existence of more 
effective memory resource requirements for computing tasks on large data analytic applications. An 
author proposed a prediction model which forecasts an application memory requirement based on 
its service level agreement which is implemented in machine learning algorithm in effective ways.. 
In authors (Zhou et al., 2018), it was proposed an I/O- aware data analytical model to reason out 
the performance improvement of Spark applications. It also focus on the effective utilization of I/O 
bandwidth together with different data access sizes and different numbers of CPU cores. In authors 
(Baig et al., 2018) they evaluated the performance of the Spark platform using different algorithms on 
NUMA hardware. They performed their experiments on a single machine that hold and manage the 
number of executors in each worker, number of cores, and memory allocated to each worker together 
with other different parameters. In authors (Rahman et al., 2018), it was proposed and developed 
an effective, self-tuning approach, namely SMBSP, based on Artificial Neural Network (ANN) to 
avoid the drawbacks of manual parameters tuning. The experiment was done using five parameters 
and 5 different dataset sizes. In reference (Wu & Gokhale, 2013), the authors designed Profiling and 
Performance Analysis based System (PPABS) framework in the way to automate the tuning strategies 
of the Hadoop application based on its configuration requirement. In authors (R. Zhang et al., 2015), 
it was proposed an engine that will recommend configurations for those newly submitted data analytic 
jobs. The aim of designing an engine is to alleviate the issue shown in a modified k nearest neighbor 
algorithm, which finds desirable configurations from similar past jobs that have performed well. In 
authors (K. Wang & Khan, 2015), the authors were tried to model simulation-driven prediction that 
can predict job performance in high accuracy prediction for Spark platform. The model is designed in a 
too simple way to predict memory usage and to predict the overall execution time of Spark applications 
in default parameters as well as in changing the default value of different parameters configuration.

Although several research efforts were carried to investigate and mitigate the impact of different 
RDD cache options, they did not investigate the relationship of Scheduling and Shuffling with different 
RDD caching options with different data serialization mechanism. The most related works to our 
work are the authors(K. Zhang et al., 2017) and authors(Xu et al., 2016). In the former, the authors 
focus on the influence of different intermediate data caching options by a comparison of one storage 
caching option with other caching options without taking into consideration others parameters such 
as scheduler and Shuffler as well as data serialization. In the latter, the authors examine the way to 
improve overall memory utilization and reduce performance degrading mechanism which follows 
GC overhead improvement approach.In both works, it does not investigate the relationship of data 
serialization in different cache storage options.

In general, some of the related work followed a normally GC overhead approach in measuring 
the performance improvement and none of them did focus to investigate performance impact of 
scheduling and shuffling with data serialization and data caching options.



Journal of Technological Advancements
Volume 1 • Issue 1

15

8. CONCLUSION

As data grows in different dimensions it requires appropriate data analytic. Among several big 
data analytic tools, Apache Spark is the most dominant that requires further optimization in the 
parameter’s configuration domain. Accordingly, we proposed and configure different scheduling and 
shuffling with data serialization on different intimidate data caching options to improve performance 
of Spark application. Experiments are done in two phases as experiments one and two on three 
representative Spark applications to evaluate performance achieved in changing the default values. In 
experimental one, although the performance of Scheduler and Shuffle Manager varies and depends 
on data serialization, data caching options, and algorithms, it was observed FIFO Scheduler and Sort 
Shuffle manager in OffHeap data caching options slightly show the best performance than others 
different combinations in almost all of algorithms. In experimental two, Tungsten-Sort Shuffler with 
other combinations and performance in all combinations especially with FIFO Scheduler it shows 
good performance. In data caching options, the Memory Only Ser data caching option shows the 
best performance than Memory And Disk Ser data caching option almost in all combinations. In 
a conclusion, even though performance varies and depends on data serialization and data caching 
options and algorithms, 2.45% and 8.01% performance improvement are achieved in experiments 
one and two, respectively.
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