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Purpose: To present a new optimization-driven design of optimal k-

space trajectories in the context of compressed sensing: Spreading

Projection Algorithm for Rapid K-space sampLING (SPARKLING).

Theory: The SPARKLING algorithm is a versatile method inspired

from stippling techniques that automatically generates optimized

sampling patterns compatible with MR hardware constraints on

maximum gradient amplitude and slew rate. These non-Cartesian

sampling curves are designed to complywith key criteria for optimal

sampling: a controlled distribution of samples (e.g., variable density)

and a locally uniform k-space coverage.

Methods: Ex vivo and in vivo prospectiveT ∗
2
-weighted acquisitions

were performed on a 7 Tesla scanner using the SPARKLING tra-

jectories for various setups and target densities. Ourmethodwas

compared to radial and variable-density spiral trajectories for high

resolution imaging.

Results: Combining sampling efficiency with compressed sensing,

the proposed sampling patterns allowed up to 20-fold reductions in

MR scan time (compared to fully-sampled Cartesian acquisitions)

for two-dimensionalT ∗
2
-weighted imaging without deterioration

of image quality, as demonstrated by our experimental results at 7

Tesla on in vivohumanbrains for a high in-plane resolution of 390 µm .

In comparison to existing non-Cartesian sampling strategies, the

proposed technique also yielded superior image quality.

Conclusion: The proposed optimization-driven design of k-space

trajectories is a versatile framework that is able to enhance MR

sampling performance in the context of compressed sensing.
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| INTRODUCTION

Magnetic resonance imaging (MRI) is one of themost powerful and safest imagingmodalities for examining the human

body. High-resolutionMRI is expected to aid in the understanding and diagnosis ofmany neurodegenerative pathologies

involving submillimetric lesions ormorphological changes, such as Alzheimer’s disease andmultiple sclerosis [1, 2, 3].

Although high-magnetic-field systems can deliver a sufficient signal-to-noise ratio (SNR) to increase spatial resolu-

tion [4], long scan times andmotion sensitivity continue hindering the utilization of high resolutionMRI. Despite the

development of corrections for bulk and physiological motion [5, 6, 7, 8], long acquisition times remain amajor obstacle

to high-resolution acquisition, especially in clinical applications.

InMRI, an image is acquired indirectly through its Fourier transform, which represents its spatial frequency content.

More precisely, the Fourier domain, referred to as the k-space, is sampled along parameterized curves generated by

varyingmagnetic field gradients. Owing to hardware and physiological constraints (e.g., peripheral nerve stimulations),

these encoding gradients have a bounded amplitude and a maximum slew rate, imposing limitations of speed and

acceleration on the sampling trajectories. In addition, the rapid decay of the MR signal prevents the measurement

of all the needed data at once. For these reasons,MR sampling is generally performed sequentially using segmented

sampling patterns composed of multiple shots. Filling the entire k-space arraymay thus require a long imaging time

especially for high-resolution imaging. In this work, wemake significant progress in accelerating the time of segmented

MR acquisitions with minimum deterioration of image quality, by limiting the number of shots using optimized sampling

patterns. The proposed strategy can be used in combination with parallel imaging [9, 10], yielding evenmore important

acceleration factors.

Most MRI sampling methods are currently based on the Shannon-Nyquist theory, which relies on the use of

Cartesian sampling, with the number of required samples increasing with the resolution. The newly developed theory of

compressed sensing [11, 12, 13] offers a promising solution for reducing theMRI scan time, since it theoretically allows

for subsampling of the k-space while guaranteeing exact reconstructions. While early theoretical results were based on

concepts such as incoherence or restricted isometry properties, more recent developments [14, 15] suggest compliance

with two criteria for optimal sampling:

(i) The sampling pattern should be distributed along a given variable density. In the case of MRI, low frequencies

should be sampledmore densely than high frequencies.

(ii) Coverage of the k-space should be locally uniform to avoid large gaps and clusters of samples.

Although seemingly unrelated, the Shannon-Nyquist and compressive sampling theories advocate for the same criteria

since both methods promote locally uniform sampling patterns and differ only in the target density (uniform density

for the Shannon-Nyquist theory and variable density for compressed sensing theory). Methods to generate point

configurations satisfying (i) and (ii) have been extensively studied in computer graphics and range from simple dart

throwing to Poisson disk sampling ormore elaborate optimal transportation-based techniques [16, 17]. Nevertheless,

since they do not account for hardware constraints and produce discontinuous samples, these algorithms are unable to

provide sampling curves forMRI.

This limitationmay explain why the 2D sampling patterns used in practice are essentially made of simple analytical

models such asCartesian lines [18, 19], non-Cartesian radial spokes [20, 21, 22], spiral interleaves [23, 24] and variations

of these patterns [25, 26, 27, 28, 29]. Although these geometrical curvesmay enable relatively rapid scanning, they do

not take advantage of all the degrees of freedom offered by the hardware and lack flexibility to comply with the above

optimal criteria. Theymay therefore be further improved to reduceMRI scan time.
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Here, we explore the feasibility and improve a method introduced recently in [15], that may overcome these

limitations by taking a radically new approach to the design of k-space sampling. The acronym of this approach is

SPARKLING for Spreading Projection Algorithm for Rapid K-space sampLING. The method relies on optimization

to generate k-space trajectories complying with criteria (i)-(ii) under the hardware constraints. A tailored distance

between the sample distribution and a prescribed density is minimized with a projected gradient descent. In this

work, we accelerate the algorithm by one order of magnitude by choosing the step size based on a Barzilai-Borwein

strategy [30]. Moreover, we suggest to use our algorithmwith highly-sampled trajectories in the samemanner as for

spiral imaging [31]. This has the double advantage of improving the sampling efficiency by maximizing the k-space

coverage per unit time, and tomitigate the side-effects of the ADC filters [32].

The proposed sampling patterns were prospectively validated both ex vivo and in vivo in healthy volunteers on a

7 TeslaMR scanner forT ∗
2
-weighted imaging. The versatility of themethodwas demonstrated for various setups and

target densities. In comparison to standard fully-sampled Cartesian acquisitions, our strategy significantly reduced

the scan timewhile maintaining good image quality. Moreover, SPARKLING-generated acquisitions were compared to

acquisitions obtained with two non-Cartesian sampling methods widely used in anatomical MRI, namely, radial and

spiral trajectories. Using the same equally accelerated gradient echo sequence (GRE) and without additional equipment,

we show that ourmethod achieves enhanced image quality. The stability of SPARKLING-generated acquisitions was

also tested for very high in-plane acceleration factors of up to 20. We chose aT ∗
2
contrast for their clinical interest at

7 Tesla but also because they allow long readouts which are favorable to highly circumvoluted SPARKLING trajectories.

Nevertheless, these trajectories may be deployed for other contrasts such asT1 with a lower expected acceleration

factor.

| THEORY

In this section, we present the SPARKLING algorithm, which is based on the theoretical works presented in [33, 34, 15].

The key idea is to optimize the samples location in the non-Cartesian k-space, in order to follow criteria (i)-(ii), while

respecting the gradient hardware constraints and additional linear constraints such as passage through the origin

of the k-space at a given time (the echo time), which is crucial for controlling the image contrast. Moreover, when

using compressed sensing, since the selection of the target density proved to be important for optimal results, we

incorporated in ourmethod a density generator that adapts to the resolution and the number of samples.

| Optimizing the sampling pattern

A k-space trajectory is usually composed of several segments k(t ), also referred to as shots, which are controlled by

magnetic field gradientsG (τ) as follows :

k(t ) =
γ

2π

∫ t

0

G (τ)dτ (1)

Hardware constraints on the maximum gradient amplitude (Gmax ) and slew rate (Smax ) induce limitations in

trajectory speed and acceleration. These limits can be expressed as inequality range constraints on each of the time

points of the discrete waveform k[i ]1≤i≤p , where p is the number of gradient timesteps. For instance, the speed
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constraint is expressed as follows:

�k̇[i ]� =






k[i ] − k[i − 1]

d t







<

γ

2π
Gmax (2)

where d t is the gradient raster time. The acceleration constraint is expressed likewise. The raster time is fixed and

typically equal to d t = 10 µs on the actual MR gradient coils. The k-space trajectory is sampled at a given sampling rate,

also referred to as the readout bandwidth (rBW = 1
∆t , where∆t is the interval between digitized samples also called

dwell time).

Following our previous work [33, 15], our objective is tominimize a L2 distance between a target density ρ and a

sampling trajectory k under the aforementioned constraints :

min
k∈Qp

d i st (ρ, ν(k)) = min
k∈Qp

1

2
�h ⋆ (ν(k) − ρ)�22 (3)

where h is a continuous interpolation kernel, ν(k) is the discrete measure supported by the curve k (see [15, top of

page 2052] for the definition of ν) and Qp is the set of curves respecting the aforementioned constraints. The symbol⋆
denotes the convolution operator.

The distance in (Equation 3) can be conveniently rewritten by expanding the L2-norm into:

min
k∈Qp

1

p2

∑

1≤i ,j≤p
H (k[i ] − k[j ])

︸                           ︷︷                           ︸
Fr (k)

− 1

p

p
∑

i=1

∫
Ω

H (x − k[i ])ρ(x ) dx
︸                                ︷︷                                ︸

Fa (k)

(4)

whereH is a well-chosen radial function. In our experiments, we selected the Euclidean distanceH (x ) = −�x�2 [35, 15].
Problem (4) can be interpreted as theminimization of a potential energy F (k) = Fr (k) − Fa (k) containing an attractive
term Fa (bringing together samples according to the target density) and a repulsive term Fr (avoiding the formation of

gaps and clusters of samples). After calculation of the derivatives of these two terms, this non-convex cost function

can beminimized by a projected gradient descent of the type kt+1 = ΠQp
�
kt − βt+F (kt )

�
, which alternates between

a non-convex distance minimization part and a projection onto the convex MR constraints Qp . Let us note that the
problem formulation in Equations (3) and (4) also accommodates tomultiple segments when considering a shot-by-shot

projection. Compared to the previous works [33], we accelerated the convergence by using a Barzilei-Borwein step-size

rule [30], allowing to reducing the computing times by a factor ranging from 2 to 10. In addition, all segments of a

SPARKLING trajectory are generated simultaneously using amulti-scale algorithm (i.e. doubling the number of particles

p at each iteration) as shown in the Supporting Information Videos S1 and S2 (see Supporting Information for video

legends).

Altogether, a non-Cartesian algorithmwas implemented onMatlab (Release 2015b, theMathWorks Inc., Natick,

MA, USA) to solve Problem (4). Typically, to generate the k-space trajectory in (Fig. 1a) (imaging matrix size: N × N

with N = 256, 32 shots, 3072 gradient points per shot so p = 98, 304 particles reached after 5 decimation levels), the

computation timewas about 10minutes on a Intel dual Core i7-5600UCPU running at 2.60 GHzwith 16GBRAM. Let

us mention that as the resolution, readout duration and field-of-view change, new SPARKLING trajectories should be

generated.
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F IGURE 1 Generation of SPARKLING trajectories for different initializations and target densities. The

maximum gradient amplitude and slew rate wereGmax = 40mT/m and Smax = 200T/m/s, respectively. The duration of

each segment was 30.72ms, and the readout bandwidth was taken equal to the gradient bandwidth (rBW=

BWgradient = 100 kHz). a, The SPARKLINGmethod applied to Cartesian lines with uniform density for N =256 and 32

segments. b, The SPARKLINGmethod applied to radial spokes with variable radial density for N = 512 and 34

symmetric segments. c, The SPARKLINGmethod applied to centered-out Archimedean spiral initialization with

variable radial density for N =256 and 8 segments (not used in experiments).

| High receiver sampling rate

The selection of a proper bandwidth appeared to be critical to design efficient trajectories. In this paper, we suggest

to use the highest possible bandwidth. The same idea guides spiral acquisitions, where a high sampling rate is used to

rapidly sweep over a large portion of the k-space [36, 31]. There are three important reasons that motivate this choice.

First, although a higher readout bandwidth increases the amount of noise per sample, it also improves the temporal
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resolution of the signal. This additional information is usually more valuable than the loss of signal. This is similar to the

principle of Sigma-Delta quantization which can be shown to be advantageous from a theoretical point of view [37].

Second, it allows a better exploration of k-space by authorizing local circumvolutions as is illustrated in (Fig. 2). Third,

the use of a high receiver bandwidth allows the filtering effects to be mitigated. These effects can actually lead to

dramatic information losses for large dwell times [? ]. Indeed, although k-space trajectories traverse a continuous

path, the signal is sampled only at discrete intervals along the path. Because of the temporal bandlimiting filters ofMR

receiver hardware, themeasured information is essentially averaged over pieces of trajectories comprised between two

sampled points [38, 39, 40]. Hence, it was necessary to incorporate a third criterion in our trajectory design tominimize

these filtering effects:

(iii) For each individual shot, assuming a certain sampling rate rBW, the distance between two consecutive samples

should be smaller than the size of a k-space pixel∆k = 1
FOV

, where FOV is the field-of-view.

Criteria (iii) can easily be incorporated to the original algorithm by adjusting the speed limitation to:

�k̇[i ]� < min

(

γ

2π
Gmax ,

1

FOV · ∆t

)

(5)

where ∆t is the sampling interval. This additional requirement tends to straighten the trajectories, since they are

designed so that consecutively acquired samples remain close to each other in the k-space. To relax this side effect, the

readout sampling rate should therefore be chosen as large as possible (i.e. the dwelltime as small as possible).

F IGURE 2 Evolution of SPARKLING patterns as a function of the readout sampling rate. Radial-initialized

SPARKLING trajectories composed of 34 shots were generated for three growing readout sampling rates. From left to

right, the readout bandwidth (rBW) is equal to 25 kHz, 50 kHz and 100 kHz respectively. Because the k-space path

between two consecutive samples acquired along an individual shot is constrained to be smaller than the size of a

k-space pixel (∆k = 5m−1), the trajectories becomemore flexible and space-filling as the rBW increases. Excluding the
readout sampling rate, all other parameters were kept constant and the same radially decaying target density was used.

The readout duration was 30.72ms, corresponding to 3072 gradient steps (displayed on the figures) per individual shot

(BWgradient = 100 kHz). The considered imagingmatrix was 512 × 512, corresponding to a resolution of 390 µm × 390
µm.

In all our experiments, to avoid interpolation between the gradient timesteps, we acquired the ADC samples at a
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rate of 100 kHz, which is equal to the gradient bandwidth: ADC samples and gradient samples are thus superimposed.

Because MR data are sampled at a high rate and samples are optimally spread along a variable density adapted to

compressed sensing, the proposedmethod allows tomaximize the amount of informationmeasured per shot for the

given bandwidth, and thus to reduce the large number of shots needed for high resolution imaging. Hence, very high

acceleration factorAF can be achievedwhile maintaining a relatively low subsampling factor R . R andAF are defined

with respect to the fully sampled Cartesian acquisition (ground truth image), leading to the formulas R = n/m and

AF = N /nc , where n = N × N is the number of pixels in the image,m is the number of collected ADC samples and nc is
the number of shots. The acceleration factor should thus be understood as ameasure of sampling efficiency.

| Target density

The selection of a proper target density ρ is critical to obtain good reconstructions in the compressed sensing regime.

This question is non trivial and currently subject to active research [41, 42, 14, 43, 44]. In particular, it should depend on

the reconstruction algorithm and on the type of images probed. In this work, we focus on the case of radially symmetric

densities, which present the advantage of yielding results invariant to translation and rotation of the sample to image.

In addition, it will allow to perform comparisons with spiral trajectories which cannot copewith anisotropic densities

contrarily to our approach. While radial densities are probably not the best possible choice for a given organ (e.g. a

brain hasmany structures with a given orientation), it is a good candidate for universal sequences capable of probing

arbitrary objects.

In the situation in which all segments of a k-space trajectory pass through the origin at a given echo time, the

sample density at the origin is excessively high. Our objective was to provide a method to generate target densities

that mitigate this effect. Considering nc segments crossing the origin with amaximum speed α , theminimal density in

the center of the k-space is that of the radial trajectories at themaximum speed (see Supporting Information Figure

S3). The density of the radial curves at a constant speed is of type f (k ) = c
`k `
for a certain c (at least asymptotically as

nc increases). However, this is only true within a given diskDr0 of radius r0 that wewish to determine. In practice, the

distance between two circularly adjacent samples (denoted∆r ad (j ) for the jt h sample from the center) should be smaller

than τ∆k0, where τ ∈ (0, 1] and∆k0 = 1
FOV

is the size of a k-space pixel. Nyquist’s theorem suggests taking τ = 1, but

selecting a lower value ensures more stability, as it allows the use of smooth interpolation functions [37]. The condition

on two circularly adjacent samples∆r ad (j̄ ) ≤ τ∆k0
therefore gives rmin = j̄ α∆t , where∆t is the sampling interval and

the index j̄ is given by:

j̄ =



τ∆k0

α∆tmin

√

2 − 2 cos(π/nc )


. (6)

Furthermore, to determine the density inside the diskDr0 , we use the fact that the total mass of the density inside the

disk should be
nc (j̄+1)

m , wherem is the total number of samples. The value of constant c defining the density f should be

such that:

∫
B
rmin
0

f (k ) dk =
nc (j̄ + 1)

m
, (7)

i.e.,

c =
nc (j̄ + 1)

m
∫
B
rmin
0

1
`k `

dk
. (8)
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Finally, we get:

f (k ) =
nc (j̄ + 1)

m2πrmin `k `
. (9)

Given, an initial target density ν : k 7→ 1

`k `d
, a value τ and the parameters describing the trajectory α , nc and∆t , we

generate an algorithm that returns a new target density ρ complying with the following three constraints:

1. Inside the diskDr0 , ρ = f . Since the analytic expression of f was derived, it suffices to set ρ(I ) = f (I ), where I is the

set of indices with `k ` ≤ rmin.

2. Two samples outside this disk should be separated by a distance greater than τ∆k0. Themean number of samples

inside a pixel x of edge length∆k0
is nsρ(x ). If the samples are uniformly distributed in the pixel, themean distance

between adjacent pixels is
∆k0√
ns ρ(x )

; we aimed for this distance to be greater than τ∆k0
. This means that ρ should

satisfy:

ρ(x ) ≤ 1

nsτ2
= ρmax . (10)

3. ρ should be proportional to ν when possible. To satisfy this criterion, we designed an iterative algorithm as follows:

• While max(ρ(I c )) > ρmax

– Find J = {k ∈ I c , ρ(k ) > ρmax}.

– Set ρ(J ) = ρmax.

– Normalize ρ in I c \ J .

For simplicity, we assumed that ρ is constant on each pixel of edge size∆k0.

| Output SPARKLING trajectories

We now show the output SPARKLING trajectories for different target densities and initializations. The considered

hardware constraints wereGmax = 40mT/m and Smax = 200 T/m/s for the gradient and the slew rate respectively.

| Uniform sampling

To illustrate the versatility of the proposed approach, we first consider a uniform density without undersampling for an

acceleration factor ofAF = 8 and an imagingmatrix of 256 × 256. Classically, the fully sampled Cartesian acquisition
wouldmeasure 512 samples (oversampling factor of 2) along 256Cartesian lines to fill the k-space grid. (Fig. 1a) displays

how our process transforms an initial Cartesian trajectory composed of 32 parallel lines, which corresponds toAF = 8.

Here, the considered readout duration is 30.72 ms, corresponding to 3072 samples (rBW = BWgradient = 100 kHz),

with the idea to performT ∗
2
-weighted acquisitions [45]. Our optimization algorithm deforms these straight lines and

uniformly scatters the non-Cartesian samples along highly sinuous curves. In this case, despite high acceleration

(AF = 8), the acquisition is not subsampled (R = 0.66). (Supporting Information Video S1) shows the generation of the

SPARKLING sampling in (Fig. 1a) and illustrates how samples are spread tomaximize coverage.
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| Variable-density sampling

The proposedmethod is particularly relevant in the context of compressed sensing where large acceleration factors can

be attained. The results of such variable-density k-space trajectories are presented for a radial initialization in (Fig. 1b)

and for an Archimedean spiral initialization in (Fig. 1c). In both cases, the input initializations did not originally comply

with the gradient hardware constraints, the target density was radially decreasing, and the considered readout duration

was also 30.72ms. (Supporting Information Video S2) shows the dynamic generation of the SPARKLING sampling in

(Fig. 1b). (Fig. 1a-c) also displays the point spread functions (PSFs) of both the input and output k-space trajectories,

defined as themodulus of the Fourier transform of the sampling pattern viewed as a set of Dirac impulses. This result

shows how the proposed method improves the PSF properties by transforming coherent patterns that are sources

of artifacts into incoherent noise, which is easily removedwith nonlinear reconstructions. The output central peak is

also better defined than initially and is surrounded by a low-energy annulus, yielding higher image quality [46, 47]. In

addition, (Fig. 3a) displays the SPARKLING trajectory composed of 16 spokes of 3072 samples used to produce the

brain image in Fig. (6b), corresponding to a 16-fold acceleration for an image size of 256 × 256.

F IGURE 3 The SPARKLING (a), variable-density spiral (b) and radial (c) trajectories used for ex vivo comparisons.

The considered imagingmatrix was 256 × 256, corresponding to a resolution of 780 µm × 780 µm . Each trajectory is
composed of 16 symmetric segments of 3072 samples (an individual shot is highlighted in yellow), resulting in an

acceleration factor ofAF = 16 and a subsampling factor of R = 1.33.

In (Fig. 4), we display the typical gradient and slew rate waveforms of a 26-shot radially initialized SPARKLING

trajectory lasting 30.72ms. While the slew rate is saturated, themaximum allowed gradient amplitude is not reached in

this case. Here, criterion (iii) limits the speed of the SPARKLING trajectory to about 12mT/m.

| METHODS

The first set of experiments involved an ex vivo human brain, which allowed assessing the performance of the proposed

strategy independently frommotion and physiological considerations. The human brain used for this studywas obtained

via the body donation program of University of Tours, France from a donor who gave his written consent before death.

The brain was extracted and fixed in formalin (formaldehyde solution at 37 % m/m, Cooper, Melun, France) diluted

in tap water to obtain a formalin concentration of 10 %). The ex vivo phantom was then immersed in a proton-free

perfluorinated liquid before the acquisitions.

Second, acquisitions were also performed in vivo on four healthy volunteers to validate the clinical potential of the
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F IGURE 4 Gradient and slew ratewaveforms of a 26-shot radially initialized SPARKLING trajectory. In (a), the

gradients on the x- and y- directions are respectively displayed in blue and yellow for the first shot. The corresponding

vectormagnitude is in orange dashed lines. (b) shows themagnified region outlined in the black box in (a). Themaximum

allowed gradient amplitude on the scanner was 40mT/m. In (c), the slew rates on the x- and y- directions are

respectively displayed in blue and yellow. The corresponding vector magnitude is in orange dashed lines. (d) shows the

magnified region outlined in the black box in (c). Themaximum allowed slew rate was 200 T/m/s.

approach. The in vivo human experiments were approved by a national ethics committee (CPP IDF 7 Kremlin-Bicêtre)

under the protocol registration number 07-042. All volunteers signed a written informed consent form.

Following typical high-field sequence specifications [45], we considered aT ∗
2
contrast with an echo time of 30ms

and a readout of 30.72 ms for both in vivo and ex vivo experiments. The long repetition time (550 ms) allows to

acquire 11 interleaved slices per excitation, but in what follows, reconstructions are only displayed for one slice. In

all the experiments, we used radially initialized in-out SPARKLING trajectories. To assess the performance of our

method, we compared it with the twomost widespread non-Cartesian trajectories inMRI: radial and variable-density

spiral trajectories. The collected multi-channel non-Cartesian data were reconstructed using a ℓ1-based nonlinear

reconstruction algorithm suggested in compressed sensing, which does not account for distortions [48, 49].

| Design of spiral trajectories

Variable-density spiral trajectories were designed using a variable effective FOV as described in [50], with amaximum

slew rate of Smax = 200 T/m/s. A symmetric segment was obtained by joining two opposing center-out spiral inter-
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leaves [51] in order for the echo time to be half of the readout time. The total duration of one interleaf was set to

30.72ms by tuning the parameters controlling the linear variable-density trajectory and the peak gradient amplitude

was between 20 and 30 mT/m. (Fig. 3b) displays the variable-density spiral sampling composed of 16 interleaves of

3072 samples used to produce the brain image in (Fig. 6c), corresponding to a 16-fold acceleration for an image size of

256 × 256.

| Design of radial trajectories

Radial trajectories were designed using a trapezoid gradient waveform, with a ramp time of 0.1 ms until reaching a

plateau amplitude of 0.98mT/m and 1.96mT/m for images sizes of 256 × 256 and 512 × 512, respectively, such that the
readout timewas 30.72ms. Radial spokes crossed the origin of the k-space at their middle time point andwere designed

to reach the corners of the k-space. (Fig. 3c) displays the radial sampling composed of 16 spokes of 3072 samples each,

which were used to produce the brain image in (Fig. 6d), corresponding to a 16-fold acceleration for an image size of

256 × 256.

| Acquisitions

All acquisitions were performed on a 7 TeslaMR scanner (Siemens Healthineers, Erlangen, Germany) with a 1Tx/32Rx

head coil (Nova Medical, Wilmington, MA, USA) and a head-only gradient system (AC84). The maximum gradient

amplitude and slew rate for this systemwere 50mT/m and 333 T/m/s, respectively. For theT ∗
2
-weighted acquisitions,

a 2DGRE sequence was modified to allow execution of arbitrary gradient waveforms complying with the hardware

constraints. All non-Cartesian trajectories were acquired using this sequence and the same parameters. The repetition

time, echo time and observation time were 550 ms, 30 ms and 30.72 ms, respectively. The FOVwas 20 cm, and the

flip angle was 25 degrees. Two resolutions were investigated: 390 µm × 390 µm × 3mmand 780 µm × 780 µm × 1.5
mm, corresponding tomatrix sizes of 512 × 512 and 256 × 256, respectively. Standard shimmingwas performed on the
studied slice for ex vivo acquisitions and on thewhole brain volume for in vivo experiments. The sampling bandwidth was

equal to the gradient bandwidth: rBW = BWgradient = 100 kHz.

For the 8-fold accelerated Cartesian acquisition using online GRAPPA reconstruction (Fig. 5d-h), the sameGRE

sequence was used with Integrated Parallel Acceleration Technology. This sequence acquires 24 reference lines for

auto-calibration. Sequence parameters were the same as above and the default oversampling factor of 2 was used for a

base resolution of 256.

| Self-calibrating nonlinear reconstruction

2DMR image reconstructions were performed by iteratively minimizing a sparsity promoting regularized Compressed

Sensing SENsitivity Encoding (CS-SENSE) criterion introduced in [52, 53, 54]. We adopted a synthesis formulation

composed of an ℓ2-norm data consistency term and an ℓ1-norm penalty term, which reads as follows:

ẑ = argmin
z∈ÃN×N

1

2

L∑

ℓ=1

�FΩSℓΨz − yℓ �22 + λ �z�1 . (11)

The decomposition (̂z) is then transformed back to the image domain by using the synthesis operatorΨ: x̂ = Ψẑ. In our

experiments,Ψwas chosen as an orthogonal wavelet transform using the Symmlet of order 8 as themother wavelet
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basis function. We used J = 4 levels of decompositions, i.e., 12 sub-bands of detail coefficients for encoding horizontal,

vertical and diagonal details on top of the low-frequency approximation. The sum of squares term in (11) encodes

parallel reception over the L = 32 channels of our phased array coil. yl ∈ Ãm represents themeasured Fourier values

of the ℓ th coil. To handle non-Cartesian Fourier samples, the non-equispaced fast Fourier transform (NFFT, version

3.2.3) [55] was therefore used to compute FΩ . The NFFT takes non-uniformly sampled k-spacemeasurements as input

data and returns an image on the Cartesian grid. Thematrix Sℓ ∈ Ãn×n (n = N × N ) in (11) is diagonal and represents
the sensitivity map associated with the ℓ th coil that enhances the specific spatial domain of the desired image x̂. To

estimate the sensitivitymaps {Sℓ }ℓ=1:L , we extended a self-calibratedmethod used in SAKE [56] or IRGN [57] to the

non-Cartesian setting, as explained below. First, for each coil, a low-resolution N × N imagewas reconstructed using
the central surface representing 20 % of the collected k-space completed by zero-filling: xLR

ℓ
= F ⋆

[Ω`20%,0]
yℓ , where

LR stands for low resolution and F ∗ defines the adjoint operator of the NFFT. Second, the square root of the sum of

squares (SSOS) was computed: w =

√
∑L

ℓ=1
�xLR

ℓ
�2. Third, the sensitivity maps were given by the pixelwise ratio of the

low-resolution image coils and the SSOS: [sℓ ]i = diag[Sℓ ]i i =
[
xLR
ℓ

]
i
/wi , [ℓ = 1 : L, (i = 1 : n). Because of this SSOS

operation, ourmethod is less dependent on the threshold (i.e., 20%) over the central surface of the k-space than the

method of [58], who directly exploits the xLR
ℓ
images as sensitivity map information. Once the sensitivity maps were

estimated, an accelerated proximal gradient method [59] was implemented to solve (11). The regularization parameter

λ controls the trade-off between data consistency and confidence in the sparsity prior, and this parameter was tuned

manually over a discrete grid of values within the interval [10−7; 10−4]. In practice, we conducted image reconstructions

for each value over this grid and retained the setting with the highest visual quality. The reconstruction times were

approximately 4 and 8 minutes for matrix sizes of n = 256 × 256 and n = 512 × 512 respectively. In all the text, the

acquired, reconstructed and displayed pixel dimensions are equal.

| RESULTS

| Ex vivo results

Prospective results of the SPARKLING strategy initialized with Cartesian lines for aT ∗
2
-weighted contrast are displayed

in (Fig. 5) in the case of the uniform-density output shown in (Fig. 1a). The acquisition performedwith the SPARKLING

trajectories thus lasted 16 s, which is 8 times shorter than the fully sampled Cartesian acquisition with an acquisition

duration of 2min 20 s for 11 slices. SPARKLING images reconstructed with nonlinear compressed sensing reconstruc-

tions are displayed in (Fig. 5b-f). We also show in (Fig. 5c-g) the results of a simple griddingmethod to reconstruct the

SPARKLING data. Both reconstructions show very little difference from the fully sampled Cartesian reference (Fig. 5a-

e), although the gridding reconstruction may be slightly noisier (Fig. 5g) than the nonlinear reconstruction (Fig. 5f).

The data corresponding to the input trajectory of 32 Cartesian lines (oversampled by a factor of 2) in (Fig. 1a) can be

typically processed online with a GRAPPA reconstruction [10] available on theMR scanner to produce the image in

(Fig. 5d-h). The degradation of the image quality, alongwith a significant decrease in the SNR, is clearly observed (Fig. 5h).

Although GRAPPA acceleration factors rarely exceed 4 in 2D Cartesian scans, we wanted to push the limits of this

product sequence tomatch our acceleration.

The radially initialized SPARKLING strategy similar to that in (Fig. 1b) was also compared to widely used radial

and variable-density spiral trajectories for an in-plane resolution of 780 µmand a slice thickness of 1.5 mm (Fig. 6). All

three acquisitions lasted 8.8 s and involved 16 segments, corresponding to a 16-fold acceleration relative to the fully

sampled Cartesian reference with an acquisition duration of 2 min 20 s for 11 slices. The subsampling factor was in

that case R = 1.33, as the long readout duration of 30.72ms allowed themeasurement of many samples per shot (3072
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F IGURE 5 Prospective validation of SPARKLING trajectories. Acquisitions performed on a ex vivo human brain

for uniform-density SPARKLING sampling (Fig. 1a output) at a resolution of 780 µm × 780 µm × 1.5mm and a total of
32 shots (AF =8 and R = 0.66). a, A fully sampled Cartesian reference lasting 2min 20 s for 11 slices. b,f, Image

reconstructed using nonlinear methods from SPARKLING acquisition lasting 16 s. c, Image reconstructed from the

same SPARKLING acquisition using a griddingmethod. d, Image acquired with the input Cartesian trajectory of (Fig. 1a)

and reconstructed with a GRAPPAmethod available on a Siemens scanner (integrated parallel acceleration technology

with a factor of 8), whose acquisition timewas 16 s. e,f,g,h, Magnified region of interest in themedial part of the

parieto-occipital cortex (delimited by a yellow square in a) of images a,b,c, and d, respectively. Image reconstructions

did not include any correction of system imperfections.

samples per shot). Using the same nonlinear reconstruction pipeline, the resulting images (top row) and corresponding

magnified images of a region of interest in themedial parieto-occipital cortex (bottom row) are shown in (Fig. 6b-f) for

the SPARKLING trajectory, (Fig. 6c-g) for the variable-density spiral trajectory and (Fig. 6d-h) for the radial trajectory.

First, let us highlight the presence of dark areas at the top of the image in the Cartesian images (probably due to off-

resonance effects). The SPARKLING reconstruction remains similar to the fully sampled Cartesian reference (Fig. 6a-e)

despite a slight loss of resolution visible on the smallest details of the brain. In comparison, the high acceleration factor

severely impairs the results of the variable-density spiral and radial reconstructions. The accelerated radial trajectory

generates a blurry image, illustrating the inefficiency of oversampling radial spokes. Themore efficient variable-density

spiral trajectory produces a higher-quality image; however the image contains notable off-resonance artifacts along the

cortical surface of the brain (Fig. 6c) as well as in finer structures visible in themagnified image (Fig. 6g).

Acquisitions were also performed with a higher in-plane resolution of 390 µm and three acceleration factors

AF =10, 15, 20. The SPARKLING trajectories were initialized with radial patterns; the 15-fold accelerated SPARKLING

trajectory corresponds to the output of (Fig. 1b). The resulting SPARKLING images and corresponding magnified

images are displayed in (Fig. 7c-d) for AF =10 (51 shots), (Fig. 7e) for AF =15 (34 shots) and (Fig. 7f) for AF =20 (26

shots). When focusing on fine brain structures in themedial parieto-occipital cortex, the stability of image quality using

SPARKLING trajectories with increasing acceleration factors is observed. In addition, the images producedwith the

SPARKLING sequence, despite their very short acquisition times, e.g. 14 s for 11 slices for the highest acceleration
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F IGURE 6 Comparison of SPARKLING sampling with variable-density spiral and radial trajectories. Ex vivo

acquisition presenting a resolution of 780 µm × 780 µm × 1.5mm and a total of 16 shots (AF =16 and R = 1.33). a,

T ∗
2
-weighted reference image and amagnified region of interest in the parieto-occipital cortex in e acquired with a fully

sampled Cartesian acquisition lasting 2min 20 s for 11 slices. b,f, Image reconstructed from a 16-fold-accelerated

SPARKLING-generated acquisition lasting 8.8 s. c,g, Image reconstructed from a 16-fold-accelerated variable-density

spiral acquisition lasting 8.8 s. d,h, Image reconstructed from a 16-fold accelerated radial acquisition lasting 8.8 s. Image

reconstructions did not include any correction of system imperfections.

factor (Fig. 7f), maintain high similarity to the fully sampled Cartesian reference, which was obtained with an acquisition

time of 4 min 42 s (Fig. 7a-b). Likewise, variable-density spiral and radial acquisitions with increasing acceleration

factors are displayed in (Fig. 7g-j) and (Fig. 7k-n), respectively. In contrast to the SPARKLING reconstructions, the spiral

acquisition yielded substantially more artifacts and the undersampled radial patterns produced an overly smoothed

image presenting streaking artifacts atAF =20. Let usmention that the signal bandwidth for the fastest spiral scans

(26 shots) was lower than that theoretically required in the high frequencies (100 kHz instead of 400 kHz). Based

on an image acquired with the correct signal bandwidth, we believe that this is unlikely to have caused significant

artifacts. Moreover, we noted a slight diffeomorphism between the reference image and the images acquiredwith the

non-Cartesian trajectories, certainly due to off-resonance effects induced by residual air bubbles in the phantom. This

is whywe did not perform quantitativemeasures of the image quality.

| In vivo results

T ∗
2
-weighted acquisitions were also performed in vivo on four healthy volunteers at an image resolution of 390 µm ×

390 µm × 3mm.
(Fig. 8) shows the brain images of two different subjects for an axial orientation in (Fig. 8a-c) and (Fig. 8d-f) and of a

third subject for a coronal orientation in (Fig. 8g). The axial reference scan in (Fig. 8a,d) lasted 4min 42 s for 11 slices

while the acquisition times of the 8-fold and 15-fold accelerated SPARKLING scan were 35 s and 18 s respectively. The

high target image quality was fairly well maintained even for the 34-shot SPARKLING trajectory (AF=16). Typically,



LAZARUS ET AL. 15

a

R
E
F
E
R
E
N
C
E

b

AF=10

c

S
P
A
R
K
L
IN
G

AF=10 - detail

d

AF=15 - detail

e

AF=20 - detail

f

g

S
P
IR
A
L

h i j

k

R
A
D
IA
L

l m n

F IGURE 7 Robustness of radial-initialized SPARKLING to very high acceleration factors. Acquisitions

performed on an ex vivo human brain for an image resolution of 390 µm × 390 µm × 3mm andwith acceleration factors
ranging fromAF =10 toAF =20. a,b,T ∗

2
-weighted reference image acquired with a fully sampled Cartesian acquisition

lasting 4min 42 s for 11 slices and amagnified region of interest in the parieto-occipital junction. Image reconstructed

from 51 shots (28 s) andmagnified region of interest are respectively displayed in c,d for SPARKLING sampling, g,h for

variable-density spiral sampling and k,l for radial sampling. Magnified images reconstructed from 34 shots (18 s) are

displayed in e for SPARKLING sampling, i for spiral sampling andm for radial sampling. Magnified images reconstructed

from 26 shots (14 s) are displayed in f for SPARKLING sampling, j for spiral sampling and n for radial sampling. Image

reconstructions did not include any correction of system imperfections.

themajority of vessels can be distinguished in the accelerated SPARKLING images although the smallest vessels were

slightly blurred in the 15-fold acceleration. (Fig. 8g) displays a set of multiple coronal slices acquired with a SPARKLING
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trajectory composed of 51 shots, lasting 28 s (AF=10). Consistent contrast and level of detail were obtained in all 11

slices.
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F IGURE 8 In vivo SPARKLING results on 3 different subjects at an image resolution of 390 µm× 390 µm× 3mm.

Axial acquisitions were performed on two different subjects (a-c) and (d-f) respectively. The fully-sampled reference

scan is displayed on the first column (a and d), while the SPARKLING acquisitions composed of 64 (AF=8) and 34

(AF=15) shots are respectively shown on the second (b-e) and third (c-f) columns. The acquisition time for 11 slices was

4min 42 s for the reference, 35 s for the 64-shot SPARKLING acquisition and 18 s for the 34-shot SPARKLING

acquisition. The bottom row (g) displays multiple coronal slices of a third subject, acquired with a 51-shot (AF=10)

SPARKLING trajectory (TA=28 s). Image reconstructions did not include any correction of system imperfections.

Furthermore, consistent with the ex vivo results, the in vivo results showed that the proposed SPARKLING strategy

outperformed the conventional variable-density spiral and radial trajectories in all cases. The results from one subject

are presented in (Fig. 9) for the highest studied acceleration factor, AF =20, corresponding to 26 shots. Notice that

all images suffer from off-resonance effects resulting in darker regions on the top of the image. (Fig. 9b) shows the

image reconstructed from the SPARKLING acquisition lasting 14 s for 11 slices. Compared to the reference (Fig. 9a),

which was obtained in an acquisition time of 4min 42 s, the SPARKLING result was able tomaintain the image quality

fairly well despite a slight loss of resolution visible on the smallest vessels. However, the spiral acquisition at the same
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acceleration factor (Fig. 9c,g) has notably more artifacts, and the 20-fold-accelerated radial reconstruction (Fig. 9d,h)

appears blurry and presents streaking artifacts.
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F IGURE 9 In vivo validation of radial-initialized SPARKLING trajectories composed of 26 shots (AF=20) and

comparisonwith spiral and radial sampling.T ∗
2
-weighted GRE acquisition on a 7 Tesla scanner at an image resolution

of 390 µm × 390 µm × 3mm. a,e, Fully sampled Cartesian reference with an acquisition time of 4min 42 s for 11 slices
and amagnified region of interest in the parieto-occipital cortex. b,f, Image andmagnified image reconstructed from a

20-fold-accelerated variable-density SPARKLING acquisition lasting 14 s for 11 slices. c,g, Image andmagnified image

reconstructed from a 20-fold accelerated variable-density spiral acquisition lasting 14 s. d,h, Image andmagnified

image reconstructed from a 20-fold accelerated radial acquisition lasting 14 s. Image reconstructions did not include

any correction of system imperfections.

| Sensitivity to imaging imperfections

To evaluate the SPARKLING trajectories’ sensitivity to imaging imperfections, we performed two simulations. One

seeks to assess the sensitivity to gradient system imperfections and the other to off-resonance effects. We compared

the SPARKLING and spiral trajectories.

| Gradient imperfections

Sensitivity to gradient imperfections can be simulated by considering a simple linear and time-invariant model of the

gradient system. Under this assumption, the gradient system’s behavior is fully described by its impulse response func-

tions, which are called the gradient impulse response functions (GIRF) [60]. Given the general low-pass characteristics

of gradient coils and amplifiers, the self-term GIRFs can be approximated by low-pass filters. To produce (Fig. 10),

low-pass filtering was performed on a spiral and a SPARKLING shots. After bilateral zero-padding of corresponding
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gradient waveforms in the time domain, a symmetric low-pass rectangular kernel of width 20was applied to the input

gradients by multiplication in the Fourier domain as described in [8]. After inverse discrete Fourier transform, the

output trajectories were obtained by time integration. (Fig. 10) shows the effects of low-pass filtering on one shot of

the spiral (in blue) and the radial-initialized SPARKLING (in orange) trajectories used for the 20-fold accelerated in

vivo experiments in (Fig. 9). The simulated errors are represented as arrows departing from the nominal trajectories

in a magnified region of the k-space center. The error vectors tend to point in the direction of the inward-pointing

normal. Compared to the spiral errors, the SPARKLING ones are not only smaller in magnitude but also present random

directions. This simple experiment provides an insight onwhy the SPARKLINGpatternsmay be less sensitive to gradient

errors than spiral patterns, even though a full validation would require measuring the trajectories either using gradient

measurement method such as [4] or a dynamic field camera such as [61]. Further comparisons should also be performed

in conjunction with a correction of gradient imperfections [8], since the SPARKLING trajectories may be harder to

correct.

F IGURE 10 Simulating the effects of system imperfections on SPARKLING and spiral trajectories. (Top row): To

simulate trajectory errors, the gradients corresponding to an individual segment of a spiral trajectory (in blue) and a

sparkling trajectory (in orange) were filtered with the same low-pass filter. Amagnified region of the center of the

k-space shows the nominal trajectories and the corresponding error vectors represented as arrows. Compared to the

simulated trajectory errors of the spiral, the ones of SPARKLING are of smaller magnitude and present random

directions. The gridded background corresponds to the Cartesian grid for the considered FOV. (Bottom row): Simulated

off-resonance PSF of radially initialized SPARKLING and spiral in-out trajectories. The off-resonance PSF of 34-shot

SPARKLING (b) and spiral (c) trajectories were simulated for a frequency offset of 25Hz. The readout duration was

30.72ms for both trajectories. Themain lobe of the spiral PSF is visibly wider than the one of the SPARKLING PSF. PSFs

were normalized so as to ensure the integral of themagnitude square of the PSF over all space be 1. Color axis scaling is

between 0 and 0.01.
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| Off-resonance effects

We also simulated the off-resonance effects on the SPARKLING trajectories and compared them to spiral patterns.

The PSF corresponding to a frequency offset of 25 Hzwas computed for both sampling patterns and the results are

displayed in (Fig. 10b-c). The main lobe of the spiral off-resonance PSF is visibly wider than the SPARKLING one.

Structured spiraled patterns are also apparent in the spiral PSF while the SPARKLING PSF presents an incoherent

structure. Moreover, a directional deformation (horizontal) can be observed on the SPARKLING off-resonance PSF.

This may be due to the radial characteristics of the SPARKLING trajectory. Nevertheless, the off-resonance effects on

SPARKLINGwill require further study. In particular, a better understanding of the anisotropic broadening of themain

lobe and the effects of the diffuse side lobes would be informative.

| DISCUSSION

Since the invention ofMRI, simple geometrical curves have dominated the landscape of sampling trajectories. In this

work, we demonstrated that gradient performance allows the successful use of more complex and efficient variable-

density sampling patterns which are near-optimal for compressed sensing [62]. Using the non-Cartesian SPARKLING

framework, it is hence possible to generate optimized sampling trajectories fulfilling the aforementioned key criteria of

truly controlled sampling density, locally uniform coverage and controlled k-space path between consecutive samples.

Given anyMR protocol characterized by its echo time (TE) and readout duration (Tobs), the presented optimization-

drivenmethod should thus be able to enhanceMR sampling performance and reduce the number of shots in segmented

acquisitions.

In this study, prospective accelerated acquisitions using SPARKLING trajectories were performed on a 7 Tesla

scanner for aT ∗
2
contrast. The quality of these images was well maintained at high in-plane resolutions of 390 µmand

780 µmboth ex vivo and in vivo, although our reconstructions did not involve any correction for imaging imperfections.

The reproducibility of the approach was tested in vivo on four different subjects for both axial and coronal orientations.

Moreover, the stability of this method was established even for very high acceleration factors of up to AF=20 (26 shots),

at which the image quality was fairly preserved except for some of the smallest vessels that appeared blurry. However,

we wish to emphasize that the evaluation of image quality is based on a non-blinded qualitative assessment by the

authors and amore thorough comparison should be performed by clinicians. The versatility of the SPARKLINGapproach

in terms of initialization and density inputs was corroborated in practice with the implementation of both uniform

and variable-density sampling initialized either with Cartesian lines or radial spokes. The quality of the SPARKLING

trajectory depends on the initialization of the algorithm. For instance, a spiral initialization is expected to be more

sensitive to imaging imperfections (e.g., inter-shot inconsistency, off-resonance effects etc.) compared to a radial

initialization. This hypothesis is supported by simulated experiments shown in the Supporting Information Figure S4.

Furthermore, our sampling strategy was shown to be 5 to 7 times faster than the standard acceleration techniques

available on the scanner (iPAT) to achieve acceptable image quality forT ∗
2
-weighting. Compared to 2D radial trajectories,

the optimized variable-density SPARKLING sampling also yielded perceptually higher image quality. Although the

comparison with radial sampling has some limitations insofar as this strategy is usually more efficiently used with

shorter readouts (like Cartesian sampling), this result highlights the benefits of our optimized trajectories compared

to their radial initialization which was given as input of the algorithm. Furthermore, compared to variable-density

in-out spiral which is adapted to long readout scenarios, the optimized variable-density SPARKLING sampling also

presented a perceptually higher image quality deprived of artifacts. Let usmention that EPI-based trajectories were

not considered in this workwhich focuses on variable-density sampling patterns. The similar results of ex vivo and in
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vivo experiments prove that motion was not a discriminating element in these cases. Despite the long readout duration

for theT ∗
2
-weighted acquisition (30.72ms), our methodwas relatively less sensitive to system imperfections such as

magnetic field inhomogeneity or trajectory errors, while spiral acquisitions presented important artifacts, as often

reported in the literature [63, 64, 65, 31]. A comparison of the simulated off-resonance PSFs suggests that SPARKLING

trajectories aremore robust to off-resonance effects compared to spiral patterns for which themain lobe of the PSF

wasmore widened. However, these preliminary simulations should be validated by further experiments. In spite of its

sinuous appearance, SPARKLING patterns did not seem to suffer much from trajectory distortions which usually lead

to severe image artifacts especially in non-Cartesian scanning due to inter-shot inconsistency in spiral sampling for

instance. Ourmethod thus offers an interesting alternative to spiral imaging, although the instantaneous linear speed of

the presented trajectories may not be as high. Indeed, the presence of sharp turns in the SPARKLING trajectory tends

to saturate the slew rate while themaximum gradient amplitude is not necessarily reached.

There may be two obstacles to the enhanced performance of the proposed strategy for 2D imaging. First, the

modest SNR associated with 2D acquisitions may reduce the effectiveness of our method, as for any other subsampled

trajectory. Although our experiments benefited from relatively good SNR conditions owing to a strongmagnetic field

and the use of a multiple receiver coil, SNR limitations appeared beyond the highest presented in-plane resolution

of 390 µm. The second potential limitation is the hardware capacity, namely, the maximum gradient amplitude, the

maximum slew rate and the gradient and readout bandwidths, which together control the flexibility and thus, the

efficiency of the k-space trajectory. In particular, the gradient raster time plays a critical role and should be as short

as possible. Assuming a readout bandwidth larger or equal to the gradient bandwidth, the following practical rule for

best SPARKLING use should be observed: the ratio of the number of gradient steps per shot to the image size should

be as high as possible. As regards high resolution, long-readout scenarios will maximize this ratio and thus optimize

SPARKLING performance, while short-readout acquisitions allow for less departure from simple geometric trajectories.

When considering lower resolutions however, our method remains applicable and promising. Moreover, in view of

the considerable efforts that are currently being invested to push the hardware limits of gradient systems [66], it is

reasonable to expect further improvement of SPARKLING performance.

The SNR limitation should be considerably mitigated by the use of 3D SPARKLING acquisitions, which benefit from

improved SNR conditions. Although our demonstration focused on 2D sampling as a proof of concept, the presented

method can be extended to 3D imaging, for which further gains in terms of acceleration factors are anticipated. Besides

significant concerns about computational efficiency, the 3D extension of the SPARKLING algorithm is straightforward.

In this 3D setup, our framework would allow to generate sampling patterns with fully 3D variable density taking

advantage of the undersampling potential in all three directions, in contrast to Poisson disk methods which sample

along lines in the third direction [67]. Additional improvements may be achieved by incorporating corrections for field

inhomogeneities and trajectory deviations into the reconstruction algorithms [68]; these possibilities have yet to be

investigated. Most interestingly, in contrast to radial or spiral samplingmethods, our technique is able to handle any

arbitrary density (e.g., not necessarily radial) and therefore permits the implementation of anisotropic trajectories

adapted to organs such as the spinal cord, which may lead to improved image reconstructions [44, 43]. It is worth

mentioning that the existing spiral designs are restricted to simple parameterized densities with elliptical level lines [69],

which are usually not explicit. SPARKLING can approximate near arbitrary densities.

Our findingsmay be of value in numerousMRI applications includingT ∗
2
[70, 71], proton-density [72], susceptibility-

weighted imaging (SWI) [73] and quantitative susceptibility mapping [74], as our method paves the way to increases in

spatial and temporal resolution under conditions compatible with clinical time constraints. Although our application

focuses onT ∗
2
imaging, the SPARKLING trajectories may be used for other contrast such asT2 orT1 or for dynamic

imaging, by adapting the acquisition parameters. Our framework can also allow to design optimizedmulti-echo acquisi-
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tions, whichmay be of interest forT ∗
2
-mapping [75, 76]. By properly adjusting the initialization and target density of

the proposed algorithm, any arbitrary sampling trajectorymight be improved and potentially replaced. Furthermore,

since each segment can be constrained to pass through the origin of the k-space at a given time, our SPARKLING

trajectories possess valuable properties such as robustness tomotion and potential for self-navigation (e.g., respiratory

self-navigation), while remaining efficient. Most interestingly, our method can be readily used for lowermagnetic field

imaging available in the clinic (3-Tesla) just by adapting the imaging protocol.
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| Supporting Information Video S1

Video showing the iterations of the SPARKLING algorithm for a uniform target density and an initialization with 32

Cartesian lines as in (Fig. 1a). Themulti-scale algorithmwas run for 9 decimation levels, during which the number of

samples is successively multiplied by two until the final number of samples is reached (3072 samples per shot). Each

level comprised 150 iterations. The color of consecutive shots alternates between yellow and blue.

| Supporting Information Video S2

Video showing the iterations of the SPARKLINGalgorithm for a radially decaying target density and an initializationwith

34 symmetric radial segments as in (Fig. 1b). Themulti-scale algorithmwas run for 6 decimation levels, during which the

number of samples is successively multiplied by two until the final number of samples is reached (3072 samples per

shot). Each level comprised 150 iterations. The color of consecutive shots alternates between yellow and blue.

| Supporting Information Figure S1

Design of the target density. (Left), The most rapidly vanishing density in the center of the k-space corresponds to

the radial trajectories at themaximal speed. (Right), A representative density generated by our algorithm for N=512,

nc = 34, d = 2, τ = 0.5,∆t = 10 µs, α =
γ
2πGmax andGmax = 40mT/m.
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| Supporting Information Figure S2

Simulated off-resonance PSF of spiral-initialized and radial-initialized SPARKLING trajectories. Original (left) and

simulated off-resonance (right) PSFs of 34-shot SPARKLING trajectories for a spiral initialization (top) or a radial

initialization (bottom).
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