
 Open access Journal Article DOI:10.3233/SW-150208

Sparklis: An expressive query builder for SPARQL endpoints with guidance in
natural language — Source link

Sébastien Ferré, Sébastien Ferré

Institutions: University of Rennes, Institut de Recherche en Informatique et Systèmes Aléatoires

Published on: 06 Dec 2016 - Social Work (IOS Press)

Topics: SPARQL, Named graph, Semantic search, Faceted search and Database schema

Related papers:

 TR Discover: A Natural Language Interface for Querying and Analyzing Interlinked Datasets

 More Accurate Question Answering on Freebase

 Natural Language Question/Answering: Let Users Talk With The Knowledge Graph

 DBpedia - A Large-scale, Multilingual Knowledge Base Extracted from Wikipedia

 SODA: generating SQL for business users

Share this paper:

View more about this paper here: https://typeset.io/papers/sparklis-an-expressive-query-builder-for-sparql-endpoints-
2y2yt11nxl

https://typeset.io/
https://www.doi.org/10.3233/SW-150208
https://typeset.io/papers/sparklis-an-expressive-query-builder-for-sparql-endpoints-2y2yt11nxl
https://typeset.io/authors/sebastien-ferre-3gsqpnm6hu
https://typeset.io/authors/sebastien-ferre-3gsqpnm6hu
https://typeset.io/institutions/university-of-rennes-2sxbfr7v
https://typeset.io/institutions/institut-de-recherche-en-informatique-et-systemes-aleatoires-2kyezw5k
https://typeset.io/journals/social-work-2gqz9zrh
https://typeset.io/topics/sparql-37hc26ux
https://typeset.io/topics/named-graph-1tx05auk
https://typeset.io/topics/semantic-search-c8tmt11a
https://typeset.io/topics/faceted-search-zyo4nbrx
https://typeset.io/topics/database-schema-6xt813sz
https://typeset.io/papers/tr-discover-a-natural-language-interface-for-querying-and-11nopiiqv4
https://typeset.io/papers/more-accurate-question-answering-on-freebase-lsq2rwzdzj
https://typeset.io/papers/natural-language-question-answering-let-users-talk-with-the-4ob3nkz7gh
https://typeset.io/papers/dbpedia-a-large-scale-multilingual-knowledge-base-extracted-2yfl0whyxn
https://typeset.io/papers/soda-generating-sql-for-business-users-2z2hnssea3
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/sparklis-an-expressive-query-builder-for-sparql-endpoints-2y2yt11nxl
https://twitter.com/intent/tweet?text=Sparklis:%20An%20expressive%20query%20builder%20for%20SPARQL%20endpoints%20with%20guidance%20in%20natural%20language&url=https://typeset.io/papers/sparklis-an-expressive-query-builder-for-sparql-endpoints-2y2yt11nxl
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/sparklis-an-expressive-query-builder-for-sparql-endpoints-2y2yt11nxl
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/sparklis-an-expressive-query-builder-for-sparql-endpoints-2y2yt11nxl
https://typeset.io/papers/sparklis-an-expressive-query-builder-for-sparql-endpoints-2y2yt11nxl

HAL Id: hal-01485093
https://hal.inria.fr/hal-01485093

Submitted on 8 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SPARKLIS: An Expressive Query Builder for SPARQL
Endpoints with Guidance in Natural Language

Sébastien Ferré

To cite this version:
Sébastien Ferré. SPARKLIS: An Expressive Query Builder for SPARQL Endpoints with Guidance
in Natural Language. Open Journal Of Semantic Web, Research Online Publishing (RonPub), 2017.
hal-01485093

https://hal.inria.fr/hal-01485093
https://hal.archives-ouvertes.fr

Semantic Web 0 (0) 1 1
IOS Press

SPARKLIS: An Expressive Query Builder
for SPARQL Endpoints with Guidance in
Natural Language
Editor(s): Eero Hyvönen
Solicited review(s): Norbert E. Fuchs, Vanessa Lopez, and Eetu Mäkelä

Sébastien Ferré ∗,∗∗

IRISA, Université de Rennes 1, campus de Beaulieu, 35042 Rennes cedex, France

Abstract. SPARKLIS is a Semantic Web tool that helps users explore and query SPARQL endpoints by guiding them in the
interactive building of questions and answers, from simple ones to complex ones. It combines the fine-grained guidance of
faceted search, most of the expressivity of SPARQL, and the readability of (controlled) natural languages. No knowledge of the
vocabulary and schema are required for users. Many SPARQL features are covered: multidimensional queries, union, negation,
optional, filters, aggregations, ordering. Queries are verbalized in either English or French, so that no knowledge of SPARQL is
ever necessary. All of this is implemented in a portable Web application, SPARKLIS, and has been evaluated on many endpoints
and questions. No endpoint-specific configuration is necessary as the data schema is discovered on the fly by the tool. Online
since April 2014, thousands of queries have been formed by hundreds of users over more than a hundred endpoints.

Keywords: semantic search, SPARQL endpoint, query builder, faceted search, natural language

1. Introduction

A wealth of semantic data is accessible through
SPARQL endpoints. DBpedia alone contains several
billions of triples covering all sorts of topics (e.g., peo-
ple, places, buildings, species, films, books). Although
different endpoints may use different vocabularies and
ontologies, they all share a common interface to ac-
cess and retrieve semantic data: the SPARQL query
language [24]. In addition to being a widely-adopted
W3C standard, the advantages of SPARQL are its ex-

pressivity, especially since version 1.1, and its scala-

bility for large RDF stores thanks to highly optimized
SPARQL engines (e.g., Virtuoso, Jena TDB). Its main
drawback is that writing SPARQL queries is a tedious
and error-prone task, and is largely unaccessible to
most potential users of semantic data.

*Corresponding author. E-mail: ferre@irisa.fr.
**This work is supported by ANR project IDFRAud.

Our motivation in developing SPARKLIS1, shared
by many other developers of Semantic Web tools and
applications, is to unleash access to semantic data by
making it easier to define and send SPARQL queries
to endpoints. The novelty of SPARKLIS is to combine
in an integrated fashion different search paradigms:
Faceted Search (FS), Query Builders (QB), and Natu-
ral Language Interfaces (NLI). That integration is the
key to reconcile properties for which there is generally
a trade-off in existing systems: user guidance, expres-
sivity, readability of queries, scalability, and portabil-
ity to different endpoints.

Section 2 discusses related work on making seman-
tic search more usable. Section 3 presents the princi-
ples and architecture of SPARKLIS, and Section 4 illus-
trates them on a concrete navigation scenario on DB-
pedia. Section 5 precisely states the capabilities and

1Online at http://www.irisa.fr/LIS/ferre/sparklis/

1570-0844/0-1900/$27.50 c© 0 – IOS Press and the authors. All rights reserved

2 S. Ferré / SPARKLIS: An Expressive Query Builder with Guidance

limitations of SPARKLIS, and Section 6 reports exper-
imental evaluation and impact on real usage world-
wide. Finally, Section 7 concludes and draws perspec-
tives. This paper focuses on the functional and non-
functional properties of SPARKLIS, as perceived by
users. Technical details about its internal working can
be found in previous papers [6,5].

2. Related work

There are mainly two approaches to make seman-
tic search more usable: user interaction (UI) and
natural language (NL). UI-based systems reuse and
adapt UI paradigms to semantic data: hypertext brows-
ing (e.g., Fluidops Information Workbench2), query
builders (e.g., SemanticCrystal [15]), faceted search
(FS) [23], or OLAP [3]. Query builders generally of-
fer more expressivity, but lack readability because they
are based on formal languages. Moreover, their guid-
ance is mostly based on syntax, and sometimes on a
data schema, but not on actual data, like in FS. Most
FS-based systems do not claim for a contribution in
term of expressivity, and contribute either to the design
of better interfaces and visualizations, or to methods
for the rapid or user-centric configuration of faceted
views: e.g., Ontogator [18], mSpace3, Longwell4. Sim-
ilarly, OLAP-based systems emphasize visualization,
and require substantial amount of configuration to ex-
tract cubic views over RDF graphs: e.g., Cubix [21],
Linked Data Query Wizard [12]. Therefore, their con-
tributions are somewhat orthogonal to ours, and could
certainly complement them. A few FS-based sys-
tems extend faceted search expressivity: e.g., Slash-
Facet [11], BrowseRDF [22], gFacet [9], VisiNav [8],
SemFacet [1], OpenLink FS5, Vinge Query&Explore6.
While more expressive than classical FS, those sys-
tems are still much less expressive than SPARQL 1.1,
and approximately cover basic graph patterns. None
of them support union, negation, or aggregation. All
except Vinge Query&Explore present only lists of re-
sults, rather than tables. That expressivity is reflected
by the frequent choice to use trees and graphs to rep-
resent the query. Those representations have a good
match with SPARQL graph patterns, but do not scale

2http://iwb.fluidops.com/
3http://mspace.fm/
4http://simile.mit.edu/wiki/Longwell
5http://dbpedia.org/fct/facet.vsp
6http://www.vingefree.com/querybyexplore/

well to express union, negation, or aggregations, unlike
natural language.

Natural Language Interfaces (NLI) [16] use NL
in various forms, going from full natural language
(e.g., PowerAqua [17]) to mere keywords (e.g., NLP-
Reduce [15]). In between, there are also controlled nat-
ural languages (e.g., Ginseng [15], SQUALL [4]). Sys-
tems based on full NL or keywords devote most of
their effort to bridging the gap between lexical forms
and ontology triples (mapping and disambiguation),
and process only the simplest questions, i.e., they gen-
erate SPARQL queries with only one or two triples.
Most of them support none of aggregations (e.g.,
counting), comparatives, or superlatives, even though
those features are relatively frequent (see QALD-3
challenge [2]).

Some systems integrate the UI approach in NLIs to
alleviate the habitability problem [15], in which users
have not a precise knowledge about what can be un-
derstood by the NLI system, and therefore can be frus-
trated by syntax errors or empty results. Ginseng [15]
uses auto-completion based on the grammar and an on-
tology. Atomate [25] uses a Controlled Natural Lan-
guage (CNL) and dynamic forms to guide users in the
definition of reactive rules. Those systems can be seen
as query builders based on a controlled natural lan-
guage. They improve the former with readability, and
the latter with guidance, but they still lack the fine-
grained guidance of FS that is necessary to fully solve
the habitability problem.

In our objective to reconcile guidance and expres-
sivity, we wanted to avoid some unsatisfactory effects
that generally result from the loose integration of two
existing approaches. First, we wanted guidance from
the beginning, rather than asking users to start with
a category (e.g., BrowseRDF), an entity (e.g., Vinge
Query&Explore), or a keyword search (e.g., OpenLink
FS). Guidance from the beginning avoids the writer’s

block (blank field with no suggestion), and initial sug-
gestions provide an overview over the whole dataset to
users, which is especially valuable when the dataset is
unknown. Second, we wanted to directly explore RDF
graphs, rather than first extracting a dataset on which
standard techniques can then be applied, e.g. faceted
search on extracted facets over a selected collection
of items (e.g.. Ontogator), OLAP on an extracted data
cube (e.g., Linked Data Query Wizard, Cubix). The
latter approaches generally require an expert for the
extraction part, and strongly limit expressivity for end
users. Finally, we want to avoid the habitability prob-

lem [15], found in NLIs, in which users have not a pre-

S. Ferré / SPARKLIS: An Expressive Query Builder with Guidance 3

SPARQL endpoint

query transformation

results

suggestions

query+focusinit

N
L

 v
er

b
al

iz
at

io
n

u
se

r
se

le
ct

io
n

NL suggestions

NL results

NL query+focus

Fig. 1. The system architecture of SPARKLIS

cise knowledge about what can be understood and an-
swered by the system, and therefore can be frustrated
by syntax errors or empty results.

3. Principles and architecture

This section explains how SPARKLIS integrates the
principles of Faceted Search (FS), Query Builders
(QB), and Natural Language Interfaces (NLI). That in-
tegration is summarized by Figure 1, which shows the
system architecture of SPARKLIS. The state of the sys-
tem is determined by the query and focus, where the
focus refers to an entity in the query, and is used as an
insertion position for applying query transformations.
The SPARQL endpoint is used to compute results from
the query, and to compute a set of suggestions from the
query and results. Each suggestion is a query element
that can be inserted at the focus to refine the query: i.e.
an entity, a class, a property, or an operator (e.g., an
aggregation). The query, suggestions, and results are
verbalized in NL for rendering to the user in a read-
able form. The user can select a suggestion, or acti-
vate a control in the query or results, to trigger a query
transformation, and reach a new system state.

SPARKLIS re-uses and generalizes the interaction
model of FS [23], where users are guided step-by-

step in the selection of items. In FS, at each step, the
system gives a set of suggestions to refine the cur-
rent selection, and users only have to pick a sugges-
tion according to their preferences. The suggestions
are specific to the selection, and therefore support ex-
ploratory search [19] by providing overview and feed-
back during the search process. To overcome expres-

sivity limitations of FS, and of existing FS extensions
for the Semantic Web (e.g., gFacet [9], VisiNav [8],
SemFacet [1]), we have generalized it to Query-based

Faceted Search (QFS) [6], where the selection of items
is replaced by a structured query. The latter is built

step-by-step through the successive choices of the user.
This makes SPARKLIS a kind of Query Builder (QB),
like SemanticCrystal [15]. QBs have the advantage
to allow for a high expressivity while assisting users
about syntax by listing eligible constructs at each step.
In particular, this enables to completely avoid syntax
errors. However, the FS-based guidance of SPARKLIS

is more fine-grained than in QBs. In fact, SPARKLIS

only allows the building of queries that do return re-
sults, preventing users to fall on empty results. Note
that non-empty results necessarily imply no syntax er-
ror, and no vocabulary error as a consequence. That is
because system suggestions are computed for the in-
dividual results, not for their common class. In fact,
SPARKLIS is as much about building answers as about
building questions: e.g., adding columns to the table
of results by selecting a property, filtering out rows by
selecting a value.

To overcome the lack of readability of SPARQL
queries for most users, SPARKLIS queries, sugges-
tions, and results are verbalized in natural language
so that SPARQL queries and variables never need to
be shown to users (see [5] for more details). This
makes SPARKLIS a kind of Natural Language Inter-
face (NLI), like PowerAqua [17]. The important dif-
ference is that questions are built through successive
user choices in SPARKLIS instead of being freely input
in NLIs. SPARKLIS interaction makes question formu-
lation more constrained, slower, and less spontaneous,
but it provides guidance and safeness with intermedi-
ate answers and suggestions at each step. Moreover, it
avoids the hard problem of NL understanding: i.e., am-
biguities, out-of-scope questions. A few NLI systems,
like Ginseng [15], are based on a controlled NL and
auto-completion to suggest the next words in a ques-
tion. However, their suggestions are not fine-grained
like with FS, and less flexible because they only ap-
ply to the end of the question. In SPARKLIS, questions
form complete sentences at any step of the search;
and suggestions are not words but meaningful phrases
(e.g., that has a director), and can be inserted at any posi-
tion in the current question. That current insertion po-
sition is called focus, and suggestions are specific to
each insertion position.

In order to address scalability issues, only a lim-
ited number of results are retrieved from the query,
and only a limited number of suggestions are com-
puted from the partial results. No ranking is applied
to either results or suggestions because it would defeat
scalability. Indeed, ordering SPARQL results forces
the query engine to iterate over all solutions. How-

4 S. Ferré / SPARKLIS: An Expressive Query Builder with Guidance

Table 1

Navigation scenario in SPARKLIS over DBpedia

Step Query

1 Give me something

2 Give me a writer

3 Give me a writer that has a nationality

4 Give me a writer that has nationality Russians

5 Give me a writer that has nationality Russians and that has a birth date

6 Give me a writer that has nationality Russians and whose birth date is after 1800

7 Give me a writer that has nationality Russians and whose birth date is after 1800 and that is the author of something

8 Give me a writer that has nationality Russians and whose birth date is after 1800 and that is the author of a book

9 Give me a writer that has nationality Russians and whose birth date is after 1800 and that is the author of a number of book

10 Give me a writer that has nationality Russians and whose birth date is after 1800 and that is the author of the highest-to-lowest

number of book

11 Give me a writer that has nationality Russians or something and whose birth date is after 1800 and that is the author of the
highest-to-lowest number of book

12 Give me a writer that has nationality Russians or Russia and whose birth date is after 1800 and that is the author of the
highest-to-lowest number of book

ever, a SPARQL engine may exploit an internal rank-
ing to produce best-ranking solutions first. Now, even
without ranking, the most frequent classes and prop-
erties are more likely to belong to the selected sug-
gestions, and this generally produces good enough se-
lections. The negative consequence of partial results
and suggestions is that suggestions may be incom-
plete, making some queries unreachable. To restore
some form of completeness, we have designed an in-

telligent auto-completion. Auto-completion is a well-
known user interface mechanism that provides guid-
ance and feedback, and has already been adapted to se-
mantic contexts [14,7]. SPARKLIS auto-completion is
directly available at the top of each suggestion list, and
dynamically filters suggestion lists at each keystroke
for immediate feedback. It is intelligent in that it uses
a cascade of three stages to ensure completeness rela-
tive to user input. At stage 1, the partial list of sugges-
tions is filtered on the client side, which can be done
efficiently. At stage 2, if the filtered list gets empty,
the list of suggestions is re-computed by sending to the
SPARQL endpoint a new query that includes the user
filter. This means that the same partial query results
are used, but a constraint is put on the expected classes
and properties. At stage 3, when the filtered list is still
empty, new queries are again sent to the SPARQL end-
point, using the full SPARQL query instead of the par-
tial results, in addition to the user filter. This ensures
that all query results are used in the computation of
suggestions.

To promote portability, SPARKLIS is entirely based
on Web standards. It uses SPARQL endpoints for

RDF storage and querying, HTTP requests to query
them, JavaScript (JS) for the application code, and
HTML5/CSS3 for the user interface. SPARKLIS only
needs the URL of an endpoint to explore it, without
any further required configuration. Users can however
customize the number of results to be retrieved, or
the labelling properties to verbalize URIs. Queries to
SPARQL endpoints are sent directly from the client
browser, using AJAX requests. It makes SPARKLIS

independent from a server, hence trivial to deploy,
and efficient because all application code runs on the
client. When a SPARQL endpoint does not enable
cross-domain AJAX requests, another endpoint can be
used as a proxy, based on the SERVICE feature of
SPARQL. For code safety and development speed, the
JS code is compiled from a high-level strong-typed
language (OCaml using js_of_ocaml7). The source
code counts about 5000 lines of code, and the mini-
mized JS code weights about 250kB.

4. Navigation scenario on Core DBpedia

We detail in this section a navigation scenario us-
ing SPARKLIS on Core English DBpedia, the subset
of DBpedia limited to classes and properties of the
DBpedia ontology, and to English labels. The same
scenario can be played on the full DBpedia but with
more noisy suggestions because it includes all data
from Wikipedia infoboxes. When SPARKLIS is loaded,

7http://ocsigen.org/js_of_ocaml/

S. Ferré / SPARKLIS: An Expressive Query Builder with Guidance 5

Fig. 2. SPARKLIS screenshot at step 11 of scenario in Table 1

the Core English DBpedia is the default endpoint, and
users can switch to DBpedia, Live DBpedia, or a few
other predefined endpoints. Users can also enter the
URL of the endpoint of their choice (see at the top of
Figure 2).

Table 1 shows the successive queries, as verbalized
in SPARKLIS, of a navigation scenario that leads the
user in 12 steps to a list of “Russian writers born since
1800, and ordered by decreasing number of written
books”. That scenario is only one of several possible
scenarios leading to the same results: e.g., the birth
date could have been constrained before the national-
ity. At each step, the bold part represents the newly in-
serted query element, chosen by the user at the pre-
vious step among system suggestions, and the under-
lined part represents the query focus that is used for the
next query transformation. The query focus is moved
simply by clicking on different parts of the query. The
query elements that are suggested for insertion at query
focus can be entities (e.g., Russians), classes (e.g., a

book), properties in both directions (e.g., is the author of,

has birth date), filters (e.g., after 1800), and various mod-
ifiers (e.g., number of, or).

Figure 2 is a SPARKLIS screenshot at step 11, dur-
ing the specification of an alternative nationality for
the writer (Russia as a synonym nationality of Russians).
The user interface is made of three parts: top, mid-
dle, bottom. The top part shows the current query, and
highlights the current focus, here something. The first
branch of disjunction is transparent to reflect the fact
that it is ignored during the construction of the second
branch. The bottom part is the result table of the cur-
rent query, with a column for each entity/value in the
query (here: writer, nationality, birth date, and number
of books). The focus column, here the nationality, is
highlighted. The middle part contains relevant query
elements for insertion at the query focus. It is split in
three lists. The first list contains entities (URIs) and
values (literals) found in the focus column. It also en-
ables the construction of filters over values. The sec-
ond list contains concepts (classes and properties) that
apply to entities/values found in the focus column. The
third list contains modifiers that are applicable to the

6 S. Ferré / SPARKLIS: An Expressive Query Builder with Guidance

Fig. 3. SPARKLIS screenshot at final step 12, hidding suggestions

PREFIX n1: <http://dbpedia.org/ontology/>

PREFIX n2: <http://dbpedia.org/resource/>

SELECT DISTINCT ?Writer_1 ?birthDate_3

(COUNT(DISTINCT ?Book_4) AS ?number_of_Book_5)

WHERE {

?Writer_1 a n1:Writer .

{ ?Writer_1 n1:nationality n2:Russians . }

UNION { ?Writer_1 n1:nationality n2:Russia . }

?Writer_1 n1:birthDate ?birthDate_3 .

FILTER (str(?birthDate_3) >= "1800")

?Book_4 a n1:Book .

?Book_4 n1:author ?Writer_1 . }

GROUP BY ?Writer_1 ?birthDate_3

ORDER BY DESC(?number_of_Book_5)

LIMIT 1000

Fig. 4. The SPARQL translation of the query at step 12

query focus, such as Boolean connectors, aggregation
operators, and ordering. Each list provides filtering for
quickly locating a query element, and auto-completion
for retrieving more matching elements from the end-
point. In addition to selecting a query element to in-
sert it at query focus, the query part under focus can be
deleted by clicking the red cross in the query.

Figure 3 is another SPARKLIS screenshot at final
step 12. The current focus and suggestions have been
hidden by clicking on the query head “Give me”, in
order to emphasize the query results. Figure 4 shows
the SPARQL translation of the current query, which
is sent to the endpoint, and is displayed at all times
at the bottom of the page for the curious users or for
reuse in other Semantic Web tools. Note that the lay-
out, URI abbreviations, and variable names have been
designed so as to make those SPARQL queries more
human-readable. When users want to come back fre-
quently to the current query, they can get a permalink

to reach the current query and results in one click (see
button above the query in Figure 3). Entities and values
in the table of answers can be inserted in the query, at
the focus corresponding to their column. For example,
selecting the birth date 1968-04-11 in Figure 3 would re-
place the constraint after 1800 by the value 1968-04-11.

It also works for aggregated values, so that retrieving
all writers having written a given number of books is
possible.

5. Capabilities and limitations

We here detail the capabilities and limitations of
SPARKLIS w.r.t. five important properties for user ex-
perience: expressivity, guidance, readability, scalabil-
ity, and portability.

5.1. Expressivity: large subset of SPARQL 1.1

SPARKLIS is concerned with the SELECT and
ASK forms of SPARQL queries. It covers many
features of SPARQL: basic graph patterns, includ-
ing cycles; simple filters on strings, numbers, dates
and times, language tags, and datatypes; UNION

patterns; OPTIONAL patterns; NOT EXISTS con-
straints; ORDER BY clauses; multiple aggregations
with GROUP BY and HAVING clauses. Triple patterns
with a variable in predicate position are also covered
through the suggestions that has a relation to ... and that

has a relation from ..., where a relation stands for a prop-
erty placeholder. The focus can then be put on it, and
all kinds of constraints can be applied to it through
SPARKLIS navigation. Blank nodes are correclty han-
dled. They are shown in results, and suggestions are
given about them, but they cannot be inserted in the
query.

From a linguistic point of view, SPARKLIS ver-
balized queries include: noun phrases, verb phrases,
and relative clauses for graph patterns; coordina-
tions for relational algebra (UNION, NOT EXISTS,
OPTIONAL); superlatives for ordering; determiners
for aggregations; prepositions for some filters; and
anaphoras for cycles. All 100 training questions over
DBpedia of the QALD-3 challenge [2] fall in the ex-
pressivity scope of SPARKLIS. In practice, 9 questions
could not be built because they are “out of scope”, i.e.
have no answers in DBpedia.

SPARKLIS does not address SPARQL updates, nor
queries that return graphs (CONSTRUCT). We have
proposed a guidance for those, based on query re-
laxation [10], but it cannot be made scalable on top
of a SPARQL endpoint, unless some kind of RELAX
operator is added to the SPARQL language [13].
The SPARQL query features that are not yet covered
are: GRAPH patterns to select named graphs; nested
queries, and in particular nested aggregations; expres-

S. Ferré / SPARKLIS: An Expressive Query Builder with Guidance 7

sions to perform computations; and transitive closures
of property paths. Nested queries are useful for doing
analytics, i.e. to answer questions like “Give me the
average number of children per woman, in each coun-

try” or “Give me the number of countries per num-

ber of official languages”. They are difficult because,
to avoid ambiguity, one has to specify for each ag-
gregator its nesting level, and its grouping variables
(e.g., “per woman”, “for each country”). Expressions
are also useful for analytical queries, as well as for
spatio-temporal queries (e.g., computing distances and
durations). For alll uncovered features, it is difficult to
make their NL verbalization readable, especially tran-
sitivity. We think that transitivity may be best handled
by defining new properties with rules: e.g., “An ances-
tor of a person is a parent of the person or an ancestor
of a parent of the person”.

5.2. Guidance: safeness and completeness

There are two important properties for guidance
in query building: safeness and completeness. A safe

guidance avoids dead-ends (i.e., empty results) by pro-
viding only relevant suggestions, i.e. suggestions that
match actual data. A complete guidance fulfills the
expressivity potential by providing all relevant sug-
gestions. In a previous work [6], we formally proved
the theoretical safeness and completeness of Query-
based Faceted Search (QFS), on which SPARKLIS is
founded. For scalability reasons, only a subset of re-
sults and suggestions might be computed and dis-
played in SPARKLIS. Guidance completeness is re-
stored through the intelligent auto-completion mecha-
nism (see Section 3). The query focus plays a crucial
role in combining high expressivity (see Section 5.1)
and guidance completeness. It determines an insertion
position, and the suggestions that are relevant to it. It
also provides flexibility in the query construction pro-
cess, allowing query elements to be inserted in many
orderings. When the focus is in the scope of an opaque

operator (e.g., negation, aggregation), that operator is
temporarily ignored in the translation of the query in
SPARQL so that results and suggestions can be com-
puted.

The main limitation to guidance completeness lies at
the lexical level. If a suggestion (e.g., property spouse)
is out of the selected subset, and the user uses auto-
completion with a synonym (e.g., “married with”),
then the desired query becomes unreachable from the
point of view of the user. The schema can have a sim-
ilar impact when there are several possible representa-

tions: e.g., a class is a German vs a property and value
has nationality Germany. For best experience, we encour-
age data designers to limite the number of classes
and properties, e.g., by factorizing classes like Ameri-

canChristianScientists into descriptions like a person whose

occupation is Scientist and whose nationality is America and

whose religion is Christianism; and we encourage users to
start by freely exploring an unfamiliar dataset in order
to get accustomed to its schema and vocabulary.

Another limitation in guidance is that, for a given
query, it gives the same suggestions in the same order
to everybody, ignoring any user preferences or past us-
age. This can be a difficulty when the vocabulary is
large, like in DBpedia. One could imagine that sugges-
tions that have been selected by the user (or another
user of his community) in similar circumstances were
ranked higher in the list of suggestions.

5.3. Readability: verbalization in natural language

All content elements of the user interface of SPARK-
LIS are verbalized in natural language for readability
by users unaware of RDF and SPARQL: the query,
the suggestions, the column headers, and the enti-
ties in the table of answers. By default, URIs are
verbalized by uncamelizing their local name (e.g.,
dbo:birthDate birth date), or by replacing
underscores by spaces (e.g., dbr:Barack_Obama
 Barack Obama). Alternately, users can specify
in the configuration panel a property, typically
rdfs:label, and a language tag to retrieve URI ver-
balizations from the endpoint. Class and property lo-
cal names or labels are assumed to be nouns, but
a few common patterns are taken into account: e.g.,
hasParent parent, partOf (inverse of) part.

To verbalize queries, each query construct is first
verbalized locally using a fixed syntactic pattern, and
syntactic transformations are then applied globally to
make the verbalization look more natural. For exam-
ple, the first verbalization that has a birth date that is af-

ter 1800 is transformed into whose birth date is after 1800.
In case of cyclic graph patterns, it is necessary for one
part of the query to refer to another part of the query.
In order to completely avoid the use of unnatural vari-
ables, we verbalize variables as anaphoras. For exam-
ple, in the SPARKLIS query Give me a film whose director

is an actor of the film, the noun phrase the film is implicitly
the SPARQL variable used for a film. The same vari-
able verbalizations are used to label column headers.
SPARKLIS so far offers verbalization in both English
and French, and it should be relatively easy to extend

8 S. Ferré / SPARKLIS: An Expressive Query Builder with Guidance

it to other languages that have the same syntactic cate-
gories, and no declensions (e.g., Spanish, Italian).

It is certainly possible to improve verbalization at
the syntactic level, but the main room for improvement
lies at the lexical level. For a real improvement, it is
necessary to know for each URI all its possible lexical
forms, along with their syntactic category (e.g., noun,
verb), number (singular/plural), and gender when rel-
evant. The LEMON vocabulary [20] has been defined
to that purpose, but lexicons are rarely available. We
think that SPARQL endpoint should include their on-
tology and lexicon so that lexical information can be
retrieved along with data, and so that better readability
does not come at the price of lesser portability.

5.4. Scalability: billions of triples

SPARKLIS is responsive on the largest well-known
endpoint, DBpedia, which has a few billions of triples.
For a language as expressive as SPARQL, short re-
sponse times cannot be guaranteed, but from our ex-
perience, time-outs are rarely encountered. Among the
91 QALD-3 questions having answers, half can be an-
swered in less than 30s, and the worst one required
109s (wall-clock time including user interaction and
system computations but not user thinking). Only one
question could not be answered because of a time-out
when searching for a YAGO class by auto-completion.

In fact, the scalability of SPARKLIS is mostly limited
by the scalability of the endpoint, because SPARQL
requests account for most of the computation time.
In particular, the lack of a standard way to perform
state-of-the-art full-text search over resources, rather
than using FILTER, is an important limitation for ef-
ficient auto-completion. Note that it may also be pos-
sible to optimize SPARQL engines for the particular
kind of queries used by SPARKLIS, especially in the
case where many users use it on a same endpoint.
So far, federated search is not supported by SPARK-
LIS, i.e. a single endpoint can be queried at any given
time. Distributed evaluation of queries over several
endpoints, although supported by the SERVICE fea-
ture of SPARQL, raises the scalability issue one order
higher.

5.5. Portability: no required configuration

SPARKLIS conforms to the SPARQL standard, and
requires no preprocessing or configuration to explore
an endpoint. It entirely relies on the endpoint to dis-
cover data and its schema. However, a few settings

can be configured to adapt to differences between end-
points. When an endpoint does not allow cross-domain
requests from Web browsers (same-origin policy), a
default endpoint located at our institution IRISA is
used as a proxy. The use of a proxy can be deacti-
vated, and another proxy endpoint can be specified.
By default, results to SPARQL queries are cached
for improved performance, but caching can be deac-
tivated, for example in case of frequently changing
data. The default limit for query results is 200 and can
be changed to adapt to the responsiveness of the end-
point. Similarly for the number of suggested classes
and properties. The default language of the interface
and verbalization is English, and can be changed to
French. By default, URIs are verbalized from their lo-
cal names. For each of entities, classes, and properties,
a label property and language tag can be specified for
the verbalization of URIs. The latter is more demand-
ing on the endpoint, and requires it to support BIND
patterns.

The limits that we have encountered by trying
SPARKLIS on many endpoints come either from the
implementation of the endpoint, or from its contents.
Some endpoints do not support HTTP requests with
the POST method or do not support some essential
SPARQL features, such as UNION or BIND. A num-
ber of endpoints only contain terminological knowl-
edge, and no instances. We recall that SPARKLIS heav-
ily relies on instances for guidance. Another limitation
is when the endpoint does not apply RDFS or OWL in-
ference, so that some suggestions are missing. From its
client side, SPARKLIS has no easy way to compensate
for this lack of inference.

6. Evaluation and impact

In previous papers [6,5], we have presented con-
trolled experiments about the expressivity, scalabil-
ity, and portability of SPARKLIS, and the guidance of
query-based faceted search. The main results are re-
called in Section 5. A user study in [6] has shown
that students without any prior knowledge of seman-
tic technologies and data were able to answer ques-
tions involving several classes and properties, disjunc-
tion and negation, tree-shape patterns, and cycles in
patterns.

In this paper, we analyze real usage of SPARKLIS

worldwide. SPARKLIS has been developed since De-
cember 2013, and was put online and publicized since
April 2014. It continues to evolve – the last version

S. Ferré / SPARKLIS: An Expressive Query Builder with Guidance 9

was released in September 2015 – but its user interface
has remained very stable over time. Several people be-
came regular users, and provided valuable feedback
and suggestions. Important improvement came from
needs expressed by those people, e.g., support of blank
nodes in answers, use of labelling properties for ver-
balizing URIs. We collected an anonymous usage log8

from 19/06/2014 to 16/08/2015, where entries are nav-
igation steps. Each step is described by the timestamp,
the endpoint URL, the current query, and the user IP.
Because IPs are not reliable to identify users and ses-
sions, especially from wireless connection, we also in-
clude since 29/10/2014 a session ID that is randomly
generated when the application page is loaded. For pri-
vacy sake, the user can deactivate the logging (check-
box in the configuration panel), so that the following
analysis may underestimate real usage.

As an additional proof of the capabilities of SPARK-
LIS, we want to emphasize that SPARKLIS itself was
used to explore its own log, and to produce most results
below. The log was translated into RDF, and loaded in
a local SPARQL endpoint using the Fuseki server. The
most useful features were filters, ordering, and aggre-
gation. What we found missing sometimes are nested
aggregations (e.g., the average number of steps per ses-
sion), and the direct visualization of results by charts
rather than numeric tables.

6.1. Global statistics

Over the 424 days of the log period, SPARKLIS has
been loaded 7379 times, hence 17.4 times per day on
average. Over the 291 days with session IDs, there
have been 2970 sessions with at least one non-empty
query, hence about 10 effective sessions per day on
average. The total number of steps is 26739, hence
63 steps per day on average. Although only seven
endpoints are suggested in SPARKLIS, 176 endpoints9

have been explored with SPARKLIS. About 12000 dif-
ferent queries have been built overall, which means
that queries are visited about twice on average. Finally,
we have counted 950 different user IPs. This is a rough
estimate of unique users because several people may
hide behind a same IP (e.g., wireless networks), but it
is consistent with the number of views of the YouTube

8Available online without user IPs, and restricted to DBpedia and
bio2rdf endpoints at http://www.irisa.fr/LIS/ferre/-
pub/sparklis_querylog.dat.

9We only count endpoints that were responsive, and for which at
least one navigation step could be performed.

Table 2

Most popular endpoints (number of user IPs)

endpoint URL #user

http://lisfs2008.irisa.fr/dbpedia/sparql 544

http://dbpedia.org/sparql 370

http://live.dbpedia.org/sparql 88

http://data.nobelprize.org/sparql 86

http://lod.euscreen.eu/sparql 40

http://rdf.insee.fr/sparql 33

http://cu.drugbank.bio2rdf.org/sparql 32

http://datos.bcn.cl/sparql 30

http://drugbank.bio2rdf.org/sparql 22

http://cu.kegg.bio2rdf.org/sparql 18

demo (612 on 16/08/2015). It is noticeable that the lat-
ter was seen from 49 countries: France (175), United
States (82), Germany (45), Italy (37), UK (25), Russia
(23), etc. All those figures demonstrates that SPARK-
LIS is effectively usable and portable. Usage has been
relatively regular over the log period with spikes when
we gave presentation talks at various venues.

6.2. User statistics

In this section, we show and discuss the distribution
of users according to several criteria: explored end-
points, built queries (size and used features), and num-
ber of navigation steps.

Endpoints. Table 2 shows a shortlist of the 10 end-
points (out of 176) that attracted the most users, as
counted by the number of user IPs. The most pop-
ular endpoint is the default endpoint, the Core En-
glish DBpedia hosted at IRISA. It is closely followed
by the reference DBpedia endpoint and its live ver-
sion. Other popular endpoints cover various topics, in
particular bioinformatics with many bio2rdf datasets,
and are hosted in countries worldwide (e.g., Chile,
Japan, France). There are also 19 endpoints with URL
http://localhost..., demonstrating that peo-
ple are using SPARKLIS for their own local datasets.
The other way around, 312 users (33%) have explored
more than one endpoint, 181 users (19%) three or more
endpoints, and 2 users have explored 11 different end-
points. This demonstrates that SPARKLIS is used as a
general purpose tool by a significant number of people.
Those figures may be overestimated because of shared
IPs, but they are consistent with the fact that many ses-
sions (193, 6.5%), which are necessarily associated to
a single user, explore several endpoints (up to 6) one
after the other.

10 S. Ferré / SPARKLIS: An Expressive Query Builder with Guidance

Fig. 5. Percentage of users building queries up to some size (trun-
cated at size 13, maximum size is 29)

Fig. 6. Percentage of users building queries with some feature

Queries. Figure 5 shows for each query size the per-
centage of users who have managed to build a query
with a size greater of equal. The size of the query is
the number of query elements that must be selected to
build the query, and is therefore the minimal number
of navigation steps to reach it from the empty query
(size 0). The query size ranges from 0 to 29, and most
queries have a size under 10. The figure shows that
about 50% of users have built a query with size 4 or
higher, that still nearly 20% users have reached size 7,
and 5% (50 users) have reached size 10. Note that 37
queries out of the 50 QALD-4 challenge have a size
less or equal to 4, and the longest has size 8. Those
figures demonstrate that most users understood how to
interact with the tool, and managed to build non-trivial
queries (beyond 1 or 2 elements). Here is an example
of query with size 3 on DBpedia: Give me a celestial body

that is a galaxy and that has a ngc. It retrieves galaxies along
with their NGC number. Another more complex exam-
ple with size 9 built on the bio2rdf endpoint by 11 dif-
ferent users: Give me a drug that has a title and is the drug of

a target-relation that has action inhibitor and whose target has

a title and has a specific-function. It returns not onlys drugs,
but also the related targets and the specific-functions
of each target. The query elements that has a title were
not used to filter results but to get a readable label for
drugs and targets as additional columns in the result
table.

Figure 6 shows for each feature of SPARKLIS’ query
language the percentage of users that have used it
at least once. The SPARQL counterpart of most fea-
tures should be clear from their names. Copula (mod-
ifier that is) corresponds to starting a new constraint
(triple pattern or filter) with an already used variable.
Property variable (modifier has a relation to/from) corre-
sponds to adding a triple pattern with a new variable in
predicate position. Hidden column (modifier any) cor-
responds to omitting a variable in the SELECT clause.
Anaphora corresponds to picking an already used vari-
able. The 5 most popular features correspond to ba-
sic graph patterns in SPARQL, and make up the main
stuff of queries. Then, we observe that filtering, or-
dering, and optional come next, and are more popu-
lar than logical operators and aggregations, which are
used by less than 10% of users. Hidden column is
hardly used because it is most useful with aggregation
to specify groupings. Anaphora is also hardly used be-
cause anaphora suggestions can only occur when the
query contains two entities of same type (e.g., two per-
sons related to a film), and when those two entities can
be made equal. We think that expressive features are
hardly used because they rarely occur in search needs,
and because most SPARKLIS’ users have only tried a
few queries so far. However, we think those are essen-
tial, and we dare an analogy with the vocabulary of a
natural language: most words are rarely used (cf. Zipf
law), but without them a language would be badly em-
poverished.

Navigation steps. Figure 7 shows for each number
of step the percentage of users who have performed
at least that number of steps (over one or several ses-
sions). It therefore measures the capability of the tool
to retain users in the exploration experience, and to en-
courage them to come back later. We have not used the
number of sessions because a session can vary from
the mere loading of SPARKLIS to a long sequence of
complex queries. The number of steps is a more reli-
able measure of user activity. The proportion of steps
done by bots seems negligible as the number of steps
made by Google and MSN bots is only 39 (0.15%),
and only consists in loading SPARKLIS or following

S. Ferré / SPARKLIS: An Expressive Query Builder with Guidance 11

Fig. 7. Percentage of users having performed at least some number
of steps

permalinks. More than 50% of users make at least 7
steps, but 12% of users make no step at all. One ex-
planation for the latter is that half endpoints do not al-
low cross-domain requests from browsers, even though
they are public, and other explanations are that some
endpoints are not responsive enough or do not sup-
port essential SPARQL features or have no instances.
The cross-domain issue has been solved with a proxy
endpoint on mid-December 2014, and as a result the
proportion of no-step users has decreased from 15.3%
to 8.6%. At the other end of the spectrum, 10% of
users have performed 60 steps or more, and one user
has even reached 1400 steps. Those numerous steps are
generally partitioned in several sessions over different
days: 56 (6%) users have used the tool on 3 different
days or more, and one of them has used it on 57 differ-
ent days! Looking at the queries that they have built,
it appears that those active users are clearly human,
and pursuing sensible search goals. The above fig-
ures show that adoption by users is still relatively low,
and that most users have only “played” with the tool.
While a few users have adopted it for encyclopedic
searches on DBpedia, many adopters use it on domain-
specific datasets (e.g., bioinformatics, local datasets).
We therefore think that adoption is strongly linked to
the availability of endpoints interesting users.

6.3. Comparing user profiles

An interesting question is how different kinds of
users compare in their usage of the tool. Unfortunately,
the anonymous log provides no personal information
on users such as sex, age, or technical background. It
is also difficult to discriminate users according to their
competency because they used the tool with different
purposes: just trying the tool, reproducing the given
examples, answering simple information needs on en-

DBpedia bio2rdf

nb. of users 781 71

avg. maximum query size 3.8 4.6

avg. nb. of steps 21.2 22.5
Table 4

Statistics about two groups of users: DBpedia and bio2rdf

Fig. 9. Compared percentage of users building queries up to some
size

cyclopedic endpoints, or making professional use on
domain-specific endpoints. We have therefore decided
to compare two groups of users that differ on a clear
criteria: the target endpoint.

We compare users on any DBpedia-related endpoint
(hobby usage) with users on any bio2rdf-related end-
point (professional usage). Note that a same person
may belong to either group at different times. Table 4
gives a few statistics on the two groups. It shows that
users of the two groups made a similar number of steps
on average, but that bio2rdf-users built more complex
queries: on average, the most complex query each user
built had 4.6 elements, compared to 3.8 for DBpedia-
users. We also performed the same statistics as in
previous section for each group, and compared their
charts. For the area charts about query size and num-
ber of steps, the bio2rdf group is consistently above the
DBpedia group. Most notably, Figure 9 shows that the
proportion of users producing queries with size 7-9 is
double (e.g., from 15% to 31%). Similarly, the propor-
tion of users performing 15-20 steps is 1.5 times higher
(e.g., from 26% to 40%); and the proportion of users
having used the tool on several days jumps from 12%
to 24%. Looking at query features, bio2rdf-users used
slightly more properties (which can be explained by
the higher query sizes), more filters and disjunctions,
but less ordering and aggregation. Note that the fre-
quency of aggregation in the DBpedia group is raised

12 S. Ferré / SPARKLIS: An Expressive Query Builder with Guidance

Fig. 8. Query size as a function of elapsed time (min) for all search episodes

Table 3

An example search about cars on Core English DBpedia

Step Time Query

1 00:00 Give me something that matches car

2 00:09 Give me something

3 00:42 Give me an automobile

4 01:11 Give me an automobile that has a class

5 01:53 Give me an automobile whose class has a thumbnail

6 02:20 Give me an automobile that has a class

7 02:32 Give me an automobile whose class has a manufacturer

8 02:56 Give me an automobile that has a class

9 02:58 Give me an automobile

10 03:12 Give me an automobile that has a manufacturer

11 03:20 Give me an automobile whose manufacturer is Toyota

12 03:50 Give me an automobile whose manufacturer is Toyota and that has a transmission

13 04:25 Give me an automobile whose manufacturer is Toyota and whose transmission is Super ECT 4-Speed automatic

14 04:35 Give me an automobile whose manufacturer is Toyota and whose transmission is Super ECT 4-Speed automatic

and that has a thumbnail

by users reproducing example queries or testing the
different modifiers. In total, the differences in the use
of features are small, and not much can be concluded
from them.

6.4. Search profiles and examples

In this section, we analyze more in depth user
searches as sequences of queries over time. We de-

fine searches as normalized sessions. A search is a
maximal subsequence of a session starting with the
empty query, and having at least one step. This results
in 2353 searches. Some users make long breaks (e.g.,
lunch break) in their search, so, to ease comparison of
searches, we compress breaks to 1 minute. Figure 8
shows the query size as a function of elapsed time (in
minutes) for all searches. Most searches cannot be read

S. Ferré / SPARKLIS: An Expressive Query Builder with Guidance 13

individually, but the chart clarifies the correlation be-
tween user time, and query size, hence query complex-
ity:

– queries with size 10 can be generated in less than
a minute (short searches);

– queries with size 20 or more can be generated in
2-5 minutes (complex searches);

– a number of searches last up to 15 minutes, but
generate queries with size less than 10 (long
searches);

– most searches are less than 3 minutes, and gener-
ate queries with 5 elements at most.

The short searches can be interpreted as directed
searches, where the user has a clear information need
in mind. For example, one of the most frequent users
built a query with size 9 in only 9 steps and 17s.
The query is in bioinformatics, and searches for “stud-
ies where miRNAs show a decreased expression w.r.t.
transcripts”. The long searches can be interpreted as
exploratory searches, where the user either gets famil-
iarized with the dataset or the tool, or is answering a
row of related questions. For example, a 3min search
explores volcanos in DBpedia, finding their eruption
years, ordering them to get the most recent and most
ancient eruption years, then looking at places that have
a volcano as highest place, and finally retrieving their
elevation, and finding the highest ones. The complex

searches are directed search, like short searches, but,
because of their complexity, they require some explo-
ration, and hence more steps and more time. They only
concern domain-specific datasets, and correspond to
actual information needs. We contend that the queries
generated by those searches would have been very dif-
ficult or impossible to produce with other tools. For ex-
ample, a user has built a query with size 19 in 36 steps
and 4 minutes. It is applied to his/her own dataset about
real lecturers, students, and courses. The search starts
from a lecturer, retrieves the courses it teaches, and
then some students of a Semantic Web course, and fi-
nally finds PhD students among them along with their
thesis subject.

Searches less than 3 minutes and less than 5 ele-
ments can be either non-complex directed searches or
short exploratory searches. They can also be unsuc-
cessful searches with lots of trial-and-errors, and hes-
itations. Unfortunately, it is difficult to tell apart ex-
ploratory searches and unsuccessful searches because
they have similar profiles. By examining in detail a
number of searches, it appears that user mishandlings
are not so frequent during interaction, and that the

main obstacles are at start time. There are many void
sessions because of unresponsive endpoints, and many
very short sessions because users apparently test the
tool with only a few random steps. The most common
user mishandlings are:

– redundant steps, i.e. steps that does not make the
query wrong but unnecessarily complex (e.g., a

thing that is a thing that ..., a thing or a thing);
– bad logic, i.e. misinterpretation or wrong com-

binations of logical operators (e.g., not optionally,
optionally not, optionally used to represent uncer-
tainty);

– ordering/aggregation confusion, i.e. using the
minimum aggregator instead of the lowest-to-highest

ordering;
– overuse of string filters, i.e. inclination to use

the tool like a search engine or a natural language
interface.

Based on those observations, we have improved
SPARKLIS’ guidance with a tighter selection of sug-
gested modifiers based on the query syntax and cur-
rent focus, in order to eliminate most redundant steps
and bad logic. For example, when the focus is on the
phrase a thing, the disjunction modifier or is no more
suggested; and when the focus is on (or in the context
of) a negation or optional, the modifiers not and option-

ally are no more suggested either.
Table 3 details an example session about cars on

Core English DBpedia. It shows an untrained user first
learning by trial and error, and finally reaching a use-
ful query of size 6 after 14 steps and less than 5 min-
utes. At step 1, he tries to filter individual entities with
keyword “car”, which does not work as expected. At
step 3, he finds the class that interests him, an automo-

bile. After exploring tentatively from property class, he
seems to really get the trick at step 10, from which he
reaches the final query in a straight line. He gets the
cars he is looking for, along with a picture of them.

7. Conclusion and perspectives

SPARKLIS provides a stable and working answer to
a frequent question in the Semantic Web: “How to

explore and query a large unknown endpoint beyond

the most simple queries without reading or writing

any SPARQL, and without preprocessing or configura-

tion ?”. Because of a novel interaction paradigm com-
bining faceted search and query builders, user studies
have shown that users need to learn how to use it, but

14 S. Ferré / SPARKLIS: An Expressive Query Builder with Guidance

that after a short training, they can answer complex
queries. Complex queries such as analytical queries
involving multiple dimensions, aggregations, and fil-
ters, are only a few clicks away, under safe and com-
plete guidance. Moreover, guidance is entirely medi-
ated through natural language.

In the future, we will continue to maintain and
improve SPARKLIS, especially w.r.t. expressivity and
readability. For expressivity, we plan to cover almost
all of SPARQL 1.1, i.e. to add expressions for com-
putations, nested aggregations for rich analytics, and
graphs as results for CONSTRUCT queries and updates.
For readability, we plan to improve verbalization with
lexicons, to extend multi-lingual support, and to better
display results by generating full sentences enriched
with multimedia objects (e.g., pictures), and graphical
visualizations (e.g., charts, maps).

Acknowledgements. We thank the reviewers for their
insightful suggestions that helped to improve this pa-
per, in particular the evaluation section. We also thank
the users who contributed to improve the tool itself
with their feedback.

References

[1] M. Arenas, B.C. Grau, E. Kharlamov, Š. Marciuška,
D. Zheleznyakov, and E. Jimenez-Ruiz. SemFacet: Semantic
faceted search over YAGO. In World Wide Web Conf. Compan-

ion, pages 123–126. WWW Steering Committee, 2014.
[2] P. Cimiano, V. Lopez, C. Unger, E. Cabrio, A.-C. Ngonga

Ngomo, and S. Walter. Multilingual question answering over
linked data (QALD-3): Lab overview. In P. Forner, H. Müller,
R. Paredes, P. Rosso, and B. Stein, editors, Information Ac-

cess Evaluation. Multilinguality, Multimodality, and Visualiza-

tion - Int. Conf. CLEF Initiative, LNCS 8138, pages 321–332.
Springer, 2013.

[3] E.F. Codd, S.B. Codd, and C.T. Salley. Providing OLAP (On-

line Analytical Processing) to User-Analysts: An IT Mandate.
Codd & Date, Inc, San Jose, 1993.

[4] S. Ferré. SQUALL: a controlled natural language for querying
and updating RDF graphs. In T. Kuhn and N.E. Fuchs, edi-
tors, Controlled Natural Languages, LNCS 7427, pages 11–25.
Springer, 2012.

[5] S. Ferré. Expressive and scalable query-based faceted search
over SPARQL endpoints. In P. Mika and T. Tudorache, editors,
Int. Semantic Web Conf. Springer, 2014.

[6] S. Ferré and A. Hermann. Reconciling faceted search and
query languages for the Semantic Web. Int. J. Metadata, Se-

mantics and Ontologies, 7(1):37–54, 2012.
[7] H. Haller. QuiKey – an efficient semantic command line.

In Knowledge Engineering and Management by the Masses

(EKAW), pages 473–482. Springer, 2010.
[8] A. Harth. VisiNav: A system for visual search and navigation

on web data. J. Web Semantics, 8(4):348–354, 2010.

[9] P. Heim, T. Ertl, and J. Ziegler. Facet graphs: Complex se-
mantic querying made easy. In L. Aroyo et al., editor, Ex-

tended Semantic Web Conference, LNCS 6088, pages 288–
302. Springer, 2010.

[10] A. Hermann, S. Ferré, and M. Ducassé. An interactive guid-
ance process supporting consistent updates of RDFS graphs.
In A. ten Teije et al., editor, Int. Conf. Knowledge Engineer-

ing and Knowledge Management (EKAW), LNAI 7603, pages
185–199. Springer, 2012.

[11] M. Hildebrand, J. van Ossenbruggen, and L. Hardman. /facet:
A browser for heterogeneous semantic web repositories. In
I. Cruz et al, editor, Int. Semantic Web Conf., LNCS 4273,
pages 272–285. Springer, 2006.

[12] P. Hoefler, M. Granitzer, V. Sabol, and S. Lindstaedt. Linked
data query wizard: A tabular interface for the semantic web. In
The Semantic Web: ESWC 2013 Satellite Events, pages 173–
177. Springer, 2013.

[13] C.A. Hurtado, A. Poulovassilis, and P.T. Wood. Query relax-
ation in RDF. In S. Spaccapietra, editor, Journal on Data Se-

mantics X, LNCS 4900, pages 31–61. Springer, 2008.
[14] E. Hyvönen and E. Mäkelä. Semantic autocompletion. In The

Semantic Web (ASWC), pages 739–751. Springer, 2006.
[15] E. Kaufmann and A. Bernstein. Evaluating the usability of

natural language query languages and interfaces to semantic
web knowledge bases. J. Web Semantics, 8(4):377–393, 2010.

[16] V. Lopez, V. S. Uren, M. Sabou, and E. Motta. Is question
answering fit for the semantic web?: A survey. Semantic Web,
2(2):125–155, 2011.

[17] V. Lopez, M. Fernández, E. Motta, and N. Stieler. PowerAqua:
Supporting users in querying and exploring the semantic web.
Semantic Web, 3(3):249–265, 2012.

[18] E. Mäkelä, E. Hyvönen, and S. Saarela. Ontogator - a seman-
tic view-based search engine service for web applications. In
I. F. Cruz et al., editor, Int. Semantic Web Conf., LNCS 4273,
pages 847–860. Springer, 2006.

[19] G. Marchionini. Exploratory search: from finding to under-
standing. Communications of the ACM, 49(4):41–46, 2006.

[20] J. McCrae, D. Spohr, and P. Cimiano. Linking lexical resources
and ontologies on the semantic web with lemon. In Extended

Semantic Web Conference (ESWC), LNCS 6643, pages 245–
259. Springer, 2011.

[21] C. Melo, A. Mikheev, B. Le Grand, and M.-A. Aufaure. Cu-
bix: A visual analytics tool for conceptual and semantic data.
In Int. Conf. Data Mining Workshops, pages 894–897. IEEE
computer society, 2012.

[22] E. Oren, R. Delbru, and S. Decker. Extending faceted naviga-
tion to RDF data. In I. Cruz et al, editor, Int. Semantic Web

Conf., LNCS 4273, pages 559–572. Springer, 2006.
[23] G. M. Sacco and Y. Tzitzikas, editors. Dynamic taxonomies

and faceted search. The information retrieval series. Springer,
2009.

[24] SPARQL11. SPARQL 1.1 query language, 2012. URL
http://www.w3.org/TR/sparql11-query/. W3C
Recommendation.

[25] M. Van Kleek, B. Moore, D.R. Karger, P. André, and M.C.
Schraefel. Atomate it! end-user context-sensitive automation
using heterogeneous information sources on the web. In Int.

Conf. World Wide Web, pages 951–960. ACM, 2010.

S. Ferré / SPARKLIS: An Expressive Query Builder with Guidance 15

References

[1] M. Arenas, B.C. Grau, E. Kharlamov, Š. Marciuška,
D. Zheleznyakov, and E. Jimenez-Ruiz. SemFacet: Semantic
faceted search over YAGO. In World Wide Web Conf. Compan-

ion, pages 123–126. WWW Steering Committee, 2014.
[2] P. Cimiano, V. Lopez, C. Unger, E. Cabrio, A.-C. Ngonga

Ngomo, and S. Walter. Multilingual question answering over
linked data (QALD-3): Lab overview. In P. Forner, H. Müller,
R. Paredes, P. Rosso, and B. Stein, editors, Information Ac-

cess Evaluation. Multilinguality, Multimodality, and Visualiza-

tion - Int. Conf. CLEF Initiative, LNCS 8138, pages 321–332.
Springer, 2013.

[3] E.F. Codd, S.B. Codd, and C.T. Salley. Providing OLAP (On-

line Analytical Processing) to User-Analysts: An IT Mandate.
Codd & Date, Inc, San Jose, 1993.

[4] S. Ferré. SQUALL: a controlled natural language for querying
and updating RDF graphs. In T. Kuhn and N.E. Fuchs, edi-
tors, Controlled Natural Languages, LNCS 7427, pages 11–25.
Springer, 2012.

[5] S. Ferré. Expressive and scalable query-based faceted search
over SPARQL endpoints. In P. Mika and T. Tudorache, editors,
Int. Semantic Web Conf. Springer, 2014.

[6] S. Ferré and A. Hermann. Reconciling faceted search and
query languages for the Semantic Web. Int. J. Metadata, Se-

mantics and Ontologies, 7(1):37–54, 2012.
[7] H. Haller. QuiKey – an efficient semantic command line.

In Knowledge Engineering and Management by the Masses

(EKAW), pages 473–482. Springer, 2010.
[8] A. Harth. VisiNav: A system for visual search and navigation

on web data. J. Web Semantics, 8(4):348–354, 2010.
[9] P. Heim, T. Ertl, and J. Ziegler. Facet graphs: Complex se-

mantic querying made easy. In L. Aroyo et al., editor, Ex-

tended Semantic Web Conference, LNCS 6088, pages 288–
302. Springer, 2010.

[10] A. Hermann, S. Ferré, and M. Ducassé. An interactive guid-
ance process supporting consistent updates of RDFS graphs.
In A. ten Teije et al., editor, Int. Conf. Knowledge Engineer-

ing and Knowledge Management (EKAW), LNAI 7603, pages
185–199. Springer, 2012.

[11] M. Hildebrand, J. van Ossenbruggen, and L. Hardman. /facet:
A browser for heterogeneous semantic web repositories. In
I. Cruz et al, editor, Int. Semantic Web Conf., LNCS 4273,
pages 272–285. Springer, 2006.

[12] P. Hoefler, M. Granitzer, V. Sabol, and S. Lindstaedt. Linked
data query wizard: A tabular interface for the semantic web. In
The Semantic Web: ESWC 2013 Satellite Events, pages 173–
177. Springer, 2013.

[13] C.A. Hurtado, A. Poulovassilis, and P.T. Wood. Query relax-
ation in RDF. In S. Spaccapietra, editor, Journal on Data Se-

mantics X, LNCS 4900, pages 31–61. Springer, 2008.
[14] E. Hyvönen and E. Mäkelä. Semantic autocompletion. In The

Semantic Web (ASWC), pages 739–751. Springer, 2006.
[15] E. Kaufmann and A. Bernstein. Evaluating the usability of

natural language query languages and interfaces to semantic
web knowledge bases. J. Web Semantics, 8(4):377–393, 2010.

[16] V. Lopez, V. S. Uren, M. Sabou, and E. Motta. Is question
answering fit for the semantic web?: A survey. Semantic Web,
2(2):125–155, 2011.

[17] V. Lopez, M. Fernández, E. Motta, and N. Stieler. PowerAqua:
Supporting users in querying and exploring the semantic web.

Semantic Web, 3(3):249–265, 2012.
[18] E. Mäkelä, E. Hyvönen, and S. Saarela. Ontogator - a seman-

tic view-based search engine service for web applications. In
I. F. Cruz et al., editor, Int. Semantic Web Conf., LNCS 4273,
pages 847–860. Springer, 2006.

[19] G. Marchionini. Exploratory search: from finding to under-
standing. Communications of the ACM, 49(4):41–46, 2006.

[20] J. McCrae, D. Spohr, and P. Cimiano. Linking lexical resources
and ontologies on the semantic web with lemon. In Extended

Semantic Web Conference (ESWC), LNCS 6643, pages 245–
259. Springer, 2011.

[21] C. Melo, A. Mikheev, B. Le Grand, and M.-A. Aufaure. Cu-
bix: A visual analytics tool for conceptual and semantic data.
In Int. Conf. Data Mining Workshops, pages 894–897. IEEE
computer society, 2012.

[22] E. Oren, R. Delbru, and S. Decker. Extending faceted naviga-
tion to RDF data. In I. Cruz et al, editor, Int. Semantic Web

Conf., LNCS 4273, pages 559–572. Springer, 2006.
[23] G. M. Sacco and Y. Tzitzikas, editors. Dynamic taxonomies

and faceted search. The information retrieval series. Springer,
2009.

[24] SPARQL11. SPARQL 1.1 query language, 2012. URL
http://www.w3.org/TR/sparql11-query/. W3C
Recommendation.

[25] M. Van Kleek, B. Moore, D.R. Karger, P. André, and M.C.
Schraefel. Atomate it! end-user context-sensitive automation
using heterogeneous information sources on the web. In Int.

Conf. World Wide Web, pages 951–960. ACM, 2010.

