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SPARLS: The Sparse RLS Algorithm

Behtash Babadi, Nicholas Kalouptsidis and Vahid Tarokh

Abstract—We develop a Recursive £:-Regularized Least
Squares (SPARLS) algorithm for the estimation of a sparse
tap-weight vector in the adaptive filtering setting. The SPARLS
algorithm exploits noisy observations of the tap-weight vetor
output stream and produces its estimate using an Expectatio
Maximization type algorithm. We prove the convergence of tle
SPARLS algorithm to a near-optimal estimate in a stationary
environment and present analytical results for the steady tate
error. Simulation studies in the context of channel estimabn,
employing multi-path wireless channels, show that the SPARS
algorithm has significant improvement over the conventiona
widely-used Recursive Least Squares (RLS) algorithm in tens of
mean squared error (MSE). Moreover, these simulation studis
suggest that the SPARLS algorithm (with slight modificatiors)
can operate with lower computational requirements than the
RLS algorithm, when applied to tap-weight vectors with fixed
support.

I. INTRODUCTION

Adaptive filtering is an important part of statistical signa‘c

Recently, Bajwa et. al [6] used the Dantzig Selector (pre-
sented by Candes and Tao [10]) and Least Squares (LS)
estimates for the problem of sparse channel sensing. Adthou
the Dantzig Selector and the LS method produce sparse
estimates with improved MSE, they do not exploit the spgarsit
of the underlying signal in order to reduce the computationa
complexity. Moreover, they are not appropriate for theisgtt
of streaming data.

Chen et. al [11] have also presented a Sparse LMS al-
gorithm for system identification, which takes advantage of
the sparsity of the underlying signal in order to improve
the MSE performance of the LMS algorithm. This is done
by incorporating two different sparsity constraints inteet
guadratic cost function of the LMS algorithm. However, iedo
not make use of the sparseness in order to reduce the com-
putational complexity. Moreover, LMS type algorithms suff
rom slow convergence and hence poor tracking properties

processing, which is highly appealing in estimation proisde when used for estimation of time-varyir_lg signa_ls [17]. IﬂL_[3
based on streaming data in environments with unknown statiy’9€losante et al. introduced an algorithm which recufgive

tics [17]. In particular, it is widely used for echo cancabta

retrieves the weighted LASSO estimates using a system of

in speech processing systems and for equalization or charffgMal equations or via iterative sub-gradient methods.

estimation in wireless systems.

In this paper, we introduce a Recursiv®-Regularized

A wide range of signals of interest admit sparse represenfas, Squares (SPARLS) algorithm for adaptive filtering

tions. Furthermore various input output systems are desdri setup. The SPARLS algorithm is based on an Expectation-

by sparse models. For example, the multi-path WireleSS'Chffoaximization (EM) type algorithm presented in [15] and

nel has only a few significant components [6]. Other examplgg, 4 ces successive improved estimates based on streaming

include echo components of sound in indoor environments afich, “\ve present analytical results for the convergence and
natur_al images. However, the conventional adaptive filteri the steady state Mean Squared Error (MSE), which reveal
algorithms, such as Least Mean Squares (LMS) and Recurstlp{s significant MSE gain of the SPARLS algorithm. Simu-

Least. Squares (RLS), algorithms, \_NhiCh are Wide')’ used frion studies show that the SPARLS algorithm significantly
practice, do not exploit the underlying sparseness in dimer

improve the estimation process.

outperforms the RLS algorithm in terms of MSE, for both
static (with finite samples) and time-varying signals. Muer,

There has beeq alotof fOCL!S on the estimation of SParse Y¥lase simulation results suggest that the computatiomat co
nals based on noisy observations among the researchers 'np'igxity of the SPARLS algorithm (with slight modifications)

fields of signal processing and information theory (Please
[1], [9], [10], [14], [18], [28] and [30]). Although the abe
mentioned works contain fundamental theoretical resoitsst

of the proposed estimation algorithms are not tailoredreeti

Scan be less than that of the RLS algorithm, for tap-weight

vectors with fixed support. In particular, for estimating a
time-varying Rayleigh fading wireless channel with 5 nawze
coefficients, the SPARLS algorithm gains about 7dB over the

varying environments with real time requirements; theyesuf o o algorithm in MSE and has about®Qess computational
from high complexity and are not appropriate for impleme'?:'omplexity.

tation purposes.
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The outline of the paper is as follows: we will present
the mathematical preliminaries and problem statement in
Section II. We will formally define the SPARLS algorithm
in Section ll1, followed by analytical results regardingneo
vergence, steady state error, error performance compariso
between SPARLS and RLS, complexity and storage issues,
and parameter adjustments in Section IV. Simulation studie
are presented in Section V, followed by conclusion in Sectio
VI.



[l. MATHEMATICAL PRELIMINARIES AND PROBLEM whereD'/2(n) is a diagonal matrix with entrie@}/g(n) =
STATEMENT /Dii(n).
A. Adaptive Filtering Setup The canonical form of the problem typically assumes that
Consider the conventional adaptive filtering setup, cdmsiéhe input-output sequences are generated by a time varying

ing of a transversal filter followed by an adaptation blockeT sy?_tem %N ith pararr:etﬁrs tr_epreser;te_d:b@n). In Imost appli-
tap-input vector at time is defined by cations however, stochastic uncertainties are also preseums

a more pragmatic data generation process is described by the
x(i) := [z(i),x(i — 1),--- ,z(i — M 4+ 1)]T (1) noisy model

where z(k) is the input at timek, k = 1,--- ,n. The tap- d(i) = w*(n)x() + n(i) (11)

weight vector at time» is defined b . . .
g y wheren(i) is the observation noise. Note that(n) reflects

w(n) == [wo(n),wi(n), -, wa_1(n)]". (2) the true parameters which may or may not vary with time.
The noise will be assumed to be i.i.d. Gaussian, héi) ~
N(0,0?%). The estimator has only access to the streaming data
y(i) == w"(n)x(4). (3) z(i) andd(s).

where(-)* denotes the conjugate transpose operator.dl&t
be the desired output of the filter at timeWe can define the g Estimation of Sparse Vectors
instantaneous error of the filter by

The output of the filter at time is given by

. _ . _ . . Let x be a vector inCM. We define theC, quasi-norm of
e(i) == d(i) — y(i) = d(i) — w"(n)x(i). (4)  x as follows:

The operation of the adaptation block at timesan therefore Ixllo = {ailz: # 0}] (12)

be stated as the following optimization problem: . )
A vector x € CM is called sparse if |x|o0 < M. A

31(13 f(e(l),e(2), e 76(”))7 ®)  wide range of interesting estimation problems deal with the

) ) ] ) _estimation of sparse vectors. Many signals of interest can
where f > 0 is a certain cost function. In particular, if napyrally be modeled as sparse. For example, the wireless
d(i) is generated by an unknown tap-weigit(n), i.€. channel usually has a few significant multi-path components
d(i) = w(n)x(i), with an appropriate choice of, one can one needs to estimate such signals for various purposes.
possibly obtain a good approximation te(n) by solving Suppose that|lw(n)lly = L < M. Also, let T :=
the optimization problem given in (5). This is, in general, asupp(w(n)). Given a matrixA € CN*M and an index set
estimation problem and is the topic of interest in this péperj C {1,2,---, M}, we denote the sub-matrix oA with

As an example, one can define the cost function as fonov%lumns corresponding to the index sBtby A_;. Similarly,

it 2 we denote the sub-vector of € CM corresponding to the
fres(e(1),e(2),-+,e(m) ==Y _X"le(@)*.  (6) index set7 by x7.

=1 A sparse approximation t&(n) can be obtained by solving
with A a non-negative constant. The parametés commonly the following optimization problem:
referred to adorgetting factor The solution to the optimiza-
tion problem in Eq. (5) withfz1 s gives rise to the well-known min [w(n)llo s.t. f(e(1),e(2), - ,e(n)) <e (13)
Recursive Least Squares (RLS) algorithm (See, for example, ™"
[17]). The cost functionfrLs given in (6) corresponds to awhere ¢ is a positive constant controlling the cost error

least squares identification problem. Let in (5). The above optimization problem is computationally
D(n) := diag(\""1, \""2,... 1), @) intr_actab_le. A consider_ablg amount of recen_t _researchain _st
tistical signal processing is focused on efficient estiorati
d(n) := [d*(1),d*(2),- - ,d*(n)]" (8) methods for estimating an unknown sparse vector based on

noiseless/noisy observations (Please see [9], [10], [[14]

and [18]). In particular, convex relaxation techniquesviite

x*(1) a viable alternative, whereby th&, quasi-norm in (13) is
replaced by the conve®; norm so that (13) becomes

andX(n) be ann x M matrix whoseith row is x* (i), i.e,

X(n) = “ : N . (9)
X (n— . ~
min [|[W(n s.it. fle(l),e(2),---,e(n)) <e 14
() min ()1 st f(e(1), e(2), - e(n)) (14)
The RLS cost function can be written in the following form:a convex problem results whefi is convex, as in the RLS
fRLs(e(l) e(2),- - e(n)) case. Note that we employ the following definition of the

norm on the complex vector spa€g”:
= [P (m)d(n) - D> (m)X(m)w(n), (10)
M
10ur discussion will focus on single channel complex valuigghals. The w1 := Z (|§R{wz}| + |S{wl}|) (15)
extension to the multi-variable case presents no diffiesilti i1



The Lagrangian formulation shows that ff = frrs, sgu(x)(|lzl-0").
the optimum solution can be equivalently derived from the
following optimization problem
min %HD”Q(n)d(n)—Dl/Q(n)X(n)W(n)||§+7||€V(n)l\1- J’"’ .
w(n) 20 o x

(16)

The parametery represents a trade off between estimation
error and sparsity of the parameter coefficients. Sufficgent
well as necessary conditions for the existence and unigsengy 1.  soft thresholding function
of a global minimizer are derived in [28]. These conditions
require that the input signal must be properly chosen so that
the matrix D/2(n)X(n) is sufficiently incoherent (we will how to choose the parameterin practice in Section IV-E).
explicitly use some of these results later on in Section )V-BWe can therefore rewrite the model in Eq. (19) as
Suitable probing signals for exact recovery in a multi-path { v(n) = w(n) + ag, (n)

environment are analyzed in [6] and [7]. d(n) = X(n)v(n) + D~12(n)&, (n)

The Expectation Maximization (EM) algorithm can be used

C. Low-Complexity Expectation Maximization Algorithm  t0 solve the penalized ML problem of (20), with the help of

the following alternative penalized ML problem
The convex program in Eqg. (16) can be solved with the g P P

conventional convex programming methods. Here, we adopt max {Ing(d(n)’V(nﬂW(n)) - VHW(")Hl}a (23)
an efficient solution presented by Figueirado and Nowak [15] (™)

in the context of Wavelet-based image restoration, which wehich is easier to solve, employing(n) as the auxiliary
will modify to an online and adaptive setting. Consider theariable. The/th iteration of the EM algorithm is as follows:
noisy observation model:

(22)

E-step:Q(w|w(n)) := —ﬁﬂry) = wll3 —ylwll,
d(n) = X(n)w(n) + n(n). a7) wherer® (n) := (I N 2 X*(n)D(n)X(n)) W (n)
+%X*(n)D(n)d(n)

wheren(n) ~ N (0, o%I), with the following cost function

- w1 () := arg max w|w(n)) = ©
Fuw) = [ DYEm)d(n) — DY) X (w2 + 4]y MV ) = argmaxn Qwii() = S0

1 * whereS(-) : CM — CM is the element-wiseoft thresholding
T 202 (d(n) B X(n)w) D(n) (d(n) - X(n)w) function defined as
+ 18
Vvl 18 (sw)), = sen (R{wi}) (R{wi}| —10?)
If we consider the alternative observation model: + isgn (S{wi}) (I${wi}] —va?), (25)
d(n) = X(n)w(n) + &(n). (19) for all i = 1,2,---,M and the(-), operator is defined as

) _ . z)4 = max(z,0).

with £(n) ~ N(0,0"D~(n)), the convex program in Eq. ( ?\lote that t(he a)tbove algorithm belongs to a class of pursuit
(1_6) can be identified as the following penalized MaX|murg|goritth denoted by iterated shrinkage algorithms (8ge [
Likelihood (ML) problem: for a detailed discussion). It is known that the EM algorithm
max {logp(d(")|w(”)) —7||W(")||1} (20) converges to a local maximum (See for example, [13], [23]

and [29]). Moreover, under the hypothesis Xf;(n) being

maximal rank, the maximizer is unique and therefore the
M algorithm converges to the unique maximizer of the
st function [28]. The latter hypothesis can be satisfied by

w(n)

wherep(d(n)|w(n)) := N (X(n)w(n),s*D~*(n)). This ML
problem is in general hard to solve. The clever idea of [1%

is to decompose the noise vectfn) in order to divide the ; P ;
oo . A o ppropriately designing the input sequen¢e). For example,
optimization problem into a denoising and a filtering proble " . ssian iid. input sequeneén) (as well as the designs

We adopt the same method with appropriate modifications fo¢, . in 161 and [71) will quarantee this property with high
the cost function given in Eqg. (20). Consider the fOHOWingrobatI)ilit[y.] [71) will-gu 'S property wi '9

decomposition fog(n): The soft thresholding function is plotted in Fig. 1. Notettha

£(n) = aX ()€, (n) + D~ V2(n)é,(n) (21) the soft thresholding function tends to decrease the stippor
! ? of the estimatew(n), since it shrinks the support to those
where &,(n) ~ N(0,I) and &,(n) ~ N(0,0°T — elements whose absolute value is greater thah We can use

o?DV?(n)X(n)X*(n)D?(n)). We need to choose this observation to express the double iteration given in Eq
a? < o?/s;, where s; is the largest eigenvalue of(24)in a low complexity fashion. Note that the M-step applie

D'/2(n)X(n)X*(n)D?(n), in order for&,(n) to have a softthresholding independently on the real and imaginarysp
positive semi-definite covariance matrix (we will talk abouof the vectorr(®)(n). In order to simplify the notation in



what follows, we present the low complexity implementatiopigorithm 1 LCEM (B, u, w, I(K DyzE-D  K)
of the EM algorithm forr(® (n) € RM. Generalization to (K—1) (K-1)
r(n) € CM is straightforward, since the low complexity Inputs:B, u, g( I1+ U(I{*I , and K.
implementation can be applied to the real and imaginar)spaQUtPUtS'W A Jandz" Y.

of r® (n) independently. 1:r® =B (K- I)WI(K n + BI(K I)WI(K 1+ u.
(9) () i i I+
Let Z*) be the support of'*)(n) at the/th iteration. Let > T (0) — {i:r (0) > a2},
7 = {i: “)( ) > a2} C IO 26 30 = ={i:r <0> < —ya?}.
1(@ {i ( ) < —ya2} CTO 4: foré=1,2 K —1do
v TS = ¢ (¢-1) 2
5: r® = BIffl) (rI(efl) - Y« 11.5:371)) +
% +
B(n):=1- ;X (n)D(n)X(n), (27) - 1)( (é(/Z 13) —|—7a211(71571)) +u
and o2 6: ={i: r(g) > ya?}.
u(n) := gX*(n)D(”)d(”) (28) 7. ={i: r(g) < —ya?}.
. L . 8: end for
Note that the second iteration in Eqg. (24) can be written as
EI lont q(l) wi 9 fori=1,2,---,M do
" ()( ) —ya? iEIi) T§K71)—'yo¢2 ’LGI(K b
uA)Z( + )(n) = o )( )+ya? i€ I(f) (29) 100 wWw; = TZ(K_I) +7a% i€ I(K R .
0 i¢ 79 uz® 0 i¢g T Doz
fori=1,2,---, M. We then have 11: end for
~ (041 _ £) 2
B(n)w!"! (n) = B (n) (rzg> (n) —ya 1z<f>) SPARLS Scheme RLS Scheme
+ B (n)(rY, (n) + va21 30) o : T
. IS@)( )( Z(f)( ) ’Y Z(f)) ( ) w(n) — ..w) = w(n+l) w(n) Eéarl:tllaonn w(n+1)
which allows us to express the EM iteration as follows: =01, K1

D (n) = Bzf) (n) (r(?e)( n) — ’}/04211(4))

Fig. 2. Schematic realizations of SPARLS and RLS algorithms
+ BLw (n) (r(I(),_7>( )+ 7&211(0) +u(n)

Ifﬂ) = {i: r§é+1)(n) > va?} Algorithm 2 SPARLS
7D — (i (n) < —ya?) Inputs: B(1) = I — Zx(1)x*(1), u(l) = &x(1)d*(1) and
Bl) K.

This new set of iteration has a lower computational compexi Output: w(n).

since it restricts the matrix multiplications to the indtmeous . ¢, 4l Input :(n) do

support of the estimatel")(n), which is expected to be close B(n) = AB(n — 1) — ©x(n)x"
to the support ofw(n) [28]. We denote the iterations given B =X

in Eq. (31) by Low-Complexity Expectation Maximization u(n) = Au(n —1) + Z7d*(n)x(n )

(LCEM) algorithm. 4: Run LCEM (B(n), ( ) win— 1), V1)U
75 V(0 - 1), K).
[1l. THE SPARLS ALGORITHM 5. Updatew(n).
A. The Main Algorithm 6: end for

Upon the arrival of theuth input, B(n) and u(n) can be
obtained via the following rank-one update rules:

{ B(n) = AB(n — 1) - ?X(n)x (n) + (1 =M1 (32)  The update equation faB(n) can be implemented in a
u(n) = Au(n —1) + Zd*(n)x(n) low complexity fashion. This is due to the fact that the
Upon the arrival of thexth input,z(n), the LCEM algorithm LCEM algorithm only needs the columns Bf(n) correspond-
computes the estimaté (n) given B(n), u(n) ands(®(n). ing to the index setZ, U Z_. Thus, given the hypothesis

The LCEM algorithm is summarized in Algorithm 1. Note thathat the subsefZ(”)(n) does not vary much withn, i.e,
the input argumenk denotes the number of EM iterations. |2 (n)\Z®™ (n — 1)| < |Z(®(n)|, one can implement the

The SPARLS algorithm is formally defined in Algorithm 2.update step foB(n) in a low complexity fashion as follows.
Without loss of generality, we can set the time indexs 1 First, we consider the updating procedure ®¢n) when
such thatz(1) # 0, in order for the initialization to be well- the new input dataz(n) has arrived. ClearlyZ(®(n) =
defined. The schematic realizations of the SPARLS and RIZSK 1)( )UI(K 1)( —1), if we run the LCEM algorithm
algorithm are depicted in Fig. 2. Both algorithms perforrain a total of K times for each new input(n). The columns of
online fashion and update the estimatén) upon the arrival B(n) required for the LCEM algorithm clearly correspond
of the new data input(n). to Z(¥)(n). We also assign a variablg € {1,2,---,n — 1}

B. The Low Complexity Update Scheme



to each column oB(n), which denotes the last time indexSection IV-D for a detailed discussion). Nevertheless, care
when theith column of the matrixB was in the index set always resort to the original form of the SPARLS algorithm.
7). Upon the arrival ofz(n), we only update the columns

of B(n) corresponding to the index s&® (n) and denote IV. ANALYSIS OF THE SPARLS A GORITHM

the resulting matrix byB (n): In this section, we will study the convergence of SPARLS to

Bi(n) = AYB;(n—1) a fixed point in a stationary environment in Section IV-A, the
o2 Mtict steady state error of the SPARLS in Section IV-B, comparison
- = Z AT ((x(n —m)x*(n —m)); of the error performance of SPARLS and RLS in a stationary
Rp—— environment for finite sample size, i.ei, < oo in Section
+(1- )\)Ii) (33) IV-C, the complexity and storage issues of SPARLS (with

and without the LCU subroutine) in Section 1V-D, and finally,

for all i € Z()(n). For example, if theith column of B(n) @adjusting the parameters of SPARLS in Section IV-E.
has been last updated at time— 3, thent; = n — 3, hence

the update equation simply becomes: A. Convergence Analysis
Ei(n) — /\31~3i(n —1) In order to study the convergence of the SPARLS algorithm,
a? we need to make a number of additional assumptions. First
- ;(X(n)X*(”) + Ax(n —1)x"(n — 1) of all, we consider the case of constant unknown vector
9 y w(n), i.e, w(n) = wo for all n = 1,2,---. Moreover, we
+A%x(n = 2)x"(n — 2))1- analyze the convergence in a stationary environment: {hetin
+ =M1 +A+ A1 sequencegz(n)}22 ; and the output sequendd(n)}5 , are

realizations of a jointly stationary random process.
Before moving on to the convergence analysis of SPARLS,

Algorithm 3 LCU(B(n — 1), 7, {t: M) we briefly overview the convergence properties of the EM
Inputs:f’,(n— 1), J and {t;}M. algorithm. Th_e global and cor_nponentw_ise convergence of
Output: B and {#;} M. the EM algorithm has been widely studied in the statistics

literature (See, for example, [13] and [23]). According he t
original paper of Dempster et al. [13], the EM algorithm can
be represented by a mapping,, : C* — CM, defined as

1 for~aII 1inJ do~ ,
2. Bi(n) = /\{Bi(n 1) - %zgjg—lw((x(n -

m)x*(n —m)); + (1 — /\)IZ—) }

S (6H1) () - (0)
3t —n. w (n) = Mp (W (n)) (34)
4. end for _ where the mapping\,, is the composition of the E and M
5 By — By steps at timen. Moreover, if the minimizer of the objective

function

Subsequently, the time indiceswill be updated as; = n R STy Sy 2
for all i € Z(®(n) and remain unchanged otherwise. We fulw) = 202HD d(n) = DX w2+l (35)
can formally define the sub-routine Low Complexity Updatgs ynique, we have
(LCU) for updatingB(n) as in Algorithm 3. Note that if (£41) ®
IO (n) = {1,2,---, M} for all times, then the above update fa(WTH (n)) < fo(w (n)). (36)
equation forB(n) is eq”‘Va"?“F to the update equat_ion in Eq. From Lemma 3 of Tropp [28], we know that the minimizer
.(32)' But, due to the sparsifying nature of the estimatae, ty the objective function given in Eq. (35) is uniqueXfz(n)
index setZ(*) (n) is expected to be very close to the true indey, - i) oy el supp(wo). We denote this
setZ. In that case the number of column updates at each ti e imizer byv~v(n,) The hypothesis oX;(;z) being maximal
. O) - .- . - : .
is 7% (n). Moreover, these updates are usually very simp 8nk can be achieved if the input sequence is persistently

in the steady state, since most of the are equal to, for exciting (In other words, the input must be sufficiently rich

al(lo)i € Z®(n). This is due to t_he h_ypothe(gs that(gr)]e subsgj properly excite all modes of the system). For example,
Z%(n) does not vary much with, i.e., |Z(n)\I™(n — s yhe jnpyt sequence:(n) is drawn from an i.i.d. random

(0) i i :
D < |T%(n)|. This way, we can exploit the sparseness rocess, the columns &z (n) form an orthogonal set with

the estimate in order to reduce the complexity of the qu ?obability 1. Hence, we can assume throughout the analysis
process foB(n). Therefore, one can use the LCU subroutlnﬂ:Iat the minimizer of the objective function is unique
LCUBn —1), 75 Vn-1)uz™ Ym 1), {t}M,) on : .

X iy i - . P WViSi=1 . The SPARLS algorithm only performs the EM algorithm
line 2 of the SPARLS algorithm. Similarly, the LCU subrow@in 4 finite (K) number of times for each. Hence, it does not
can be used in the LCEM algorithm (right before lines 1,4y solve the minimization problem in (16). Furthermor
and 5), when the algorithm needs to access sub-matri¢rs cost function varies at each step (with Hence, it is not
such asB .« (n) or B« (n). Nevertheless, the hypothesis ofjyiq) that performing the EM algorithm a finite number of
IZO()\ZO (n —1)| < |2 (n)| may be violated, in which times (K < co) at each step, results in convergence to the
case using the LCU subroutine might result in drawbacks (Seeique minimizer off,, (x), asn — co. Indeed, the following



theorem establishes the convergence of the SPARLS algoritremain valid, we need to assume< 1, so that the estimate
under the above assumptions: w(n) remains in a small neighborhood of the targe(n).
If we further assume that the last three terms on the right
Theorem 4.1 (Convergence): Given a stationary envirohand side do not change rapidly with using the Cauchy-
ment and a constant target sparse vectos, the SPARLS Schwarz inequality and averaging ovin) (assuming inde-
algorithm (with K’ < oo) converges almost surely to the uniqgu@endence betweed(n) andn(n)), we get:

minimizer of the cost functioffi,(w), asn — oc.
| <U¢Tr (X3 (D (n)Xz(n))!) + a2

Idea of proof:The idea of proof is to relate the convergencg(r) S —
behavior of the EM algorithm along one specific function 1 —p(n) Smin(Xﬂ")D(”)XI(n))
fn(w) to the convergence of the SPARLS algorithm across T
different functionsf,,(w). The proof is formally given in + rV/Tr(A(n)) (40)
Appendix A.

wheres,i, (A) denotes the minimum eigenvalue of the matrix
Note that the case af — oo is not of particular interest A ¢ CM*M_ The first term on the right hand side demon-
in our analysis of the stationary scenario, since it defdats strates the trade-off between the denoising of the estiarade
purpose of compressive sampling. However, the convergenice additional cost due td,-regularization. The second term
proof guarantees that we can get to an arbitrarily smalbrresponds to the regeneration of the unknown vestor).
neighborhood of the fixed point (i.e., limit of the uniqueFinally, the factor ofl /(1 — p(n)¥) in the error bound is due
minimizer of f,,(w)) for finite n. This fact will be used later to the linear convergence of the EM algorithm.
in the performance comparison of SPARLS and RLS (See

SPARLS algorithm. In the time-invariant scenario, choosing< 1, will result
) in a persistent steady state MSE erromas> oo, unlike RLS
B. Steady State Error Analysis which converges to the true vector as the number of measure-
We define the average instantaneous error of the SPARKfents tend to infinity (with\ = 1). However, the steady state

algorithm as follows: MSE error of SPARLS can be sufficiently reduced by choose
) A close enough td in the low sparsity regime. In fact, in
e(n) = EH{HW(”) - W(”)”2}' (37) " the following theorem, we show that fdr/M small enough

and for large enough buinite number of measurements
A < 1 sufficiently close to 1, and an appropriate choice of
~, the MSE performance of SPARLS is superior to that of
en+1) < p(n)<e(n) RLS (with A = 1). This is indeed in line with the premises of
L E D2 ()X (n)) 1 (n compressive sampling, which guarantee superior perfocman
n{H( (n)Xz(n)) " n( )Hz} with significantly lower number of measurements:

As it is shown in Appendix Bg¢(n) obeys the following
recurrence relation:

—1
+ 7o H (Xﬂn)D(”)XZ(n)) H2 . Theorem 4.2: Consider a stationary environment, for which
+ wn+1) - wn)s (38) the RLS algonthm operates with = 1 and recovers the
_ _ true tap-weight vectow, asn — oco. Lete(n) and egrs(n)
where A* is the Moore-Penrose pseudo-inverse of matrgenote the average instantaneous errors of the SPARLS and

A and p(n) is defined asp(n) = 1 — g—ESM(n), with  RLS algorithms at theuth iteration, respectively. Then, for
sy (n) being the minimum eigenvalue &X*(n)D(n)X(n) a givenng large enough, there exist constariis< a < 1,
and the(2, co)-norm of a matrixA is defined agA|[2. := ) € (0, 1) sufficiently close to 1 angl, such that forx = \g
MAaXx:x£0 ””‘:"HQ. and~ = v, we have

The first tﬁf?m on the right hand side corresponds to the
linear convergence of the EM algorithm, the second term cor-
responds to the observation noise, the third term correipofor L/M < a.
to the error bias with respect to the genie-aided solution, _ . .
and the fourth term corresponds to the evolution of the truelde"’.I of propf:The_proofuses basic |de§s regarding the Basis
vector w(n). Note that we are allowing the target(n) to Pursuit algorlthms in _compressed sensing (See, for example
change with time in the steady state. A popular model {88] and [5]) and is given in Appendix C.
describe the evolution of the parameter vector in statibtic In fact, the MSE of SPARLS can be significantly lower
signal processing is the random walk model of the form: than that of RLS for finiten in the low sparsity regime, i.e.,
_ L < M. This is evident in the fact that only the components
w(n+1) =w(n) +rd(n) (39) of noise corresponding to the index sefappear in the error
whered(n) is a white Gaussian random vector with covarianaexpression of SPARLS in Eg. (38), whereas all the noise
matrix A(n) and x is a scaling constant (See, for example;oordinates contribute to the MSE of RLS. This can also be
[21]). The scaling constamnt represents the speed of the tim@bserved from Fig. 5. Here, we halle= 5 and M = 100. For
evolution ofw(n). In order for the error recurrence relation toyy ~ 120, SPARLS achieves its steady state error level, while

€(no) < errs(no), (41)



it takes a much longer time for RLS to achieve the same M3E Adjusting the Parameters of SPARLS

(in about500 iterations). Finally, as simulation studies reveal, parametera: As mentioned earlier in Section 1I-C, the
the SPARLS algorithm has significant MSE advantages OVirameter in the SPARLS algorithm must be chosen such
the RLS algorithm, especially in low SNR and low sparsityy5t 2 < o2/s1, where s; is the largest eigenvalue of

regimes. D'/2(n)X (n)X*(n)D'/2. This constraint clearly depends on
_ the underlying statistical characteristics of the inpujusnce
D. Complexity and Storage Issues x(n). Here, we investigate this constraint for a Gaussian i.i.d.

The SPARLS algorithm has a computational complexitpput sequncei.e., z(i) ~ N'(0,v?), fori = 1,2,--- ,n, for
of O(M?) multiplications per step, which coincides withsimplicity. Generalization to other stationary input segees
the order of complexity of the RLS algorithm [17]. In whats possible.
follows, we motivate the use of the LCU subroutine and its First, note that the maximum eigenvalue of the above
role in potentially decreasing the computational compjesf matrix is equal to the maximum eigenvalue @f(n) :=
the SPARLS algorithm under the hypothesis that the index &t (n)D(n)X(n). Recall that the rows of the matriX(n)

7 (n) does not vary much across differentin the steady are the tap inputs at timels 2, --- ,n. Hence, we have
state,i.e., [ZO(n)\ZO) (n — 1)| < |ZO) (n)]. n

If the LCU sub-routine is used in lines 1 and 5 of the LCEM C(n) = Z AR (k)x* (k) (42)
algorithm, it will be called a total ofK’ times for each new k=1

inputaz(n) and requires a total o, (17 (n)|+1Z” (n)])  \yhere x(k) is the tap input at timek. Hence, the(i, j)th

column updates overall. For eache Z{”(n) U Z"(n), element of the C(n) can be expressed ag;(n) =

the ith column of B(n) requires a total ofM(n —t;) +2 3" A"~Fz;(k)z* (k). Next, we invoke theindependence

multiplications. Hence, the total number of multiplicat® assumption(See, for example, [17], [22] and [32]). The

required for ' runs of the LCU sub-routine is given byindependence assumption implies that the tap input vectors
P Zig@(n)u@(n)(M(” —t;) +2). The hypothesis of x(1),x(2),---,x(n) form a sequence of statistically indepen-

12O (n)\Z© (n — 1)| < |29 (n)], implies that the indices; dent vectors. Moreover, the elements of each input vector ar

are very close ta. In other wordsp—t; ~ O(1), for all ¢; ¢  distributed i.i.d. and according t/(0,%). Hence, the set

Z()(n). Therefore, the total number of multiplications will bef=i(k)} for i =1,2,--- M andk = 1,2,--- ,n consists of
O(KMN), whereN := % 5(_61 (|Z§f)(n)| + |I(_L’) (”)D- i.i.d. zero mean Gaussian random variables with variarice

The exponentially weighted random mati@(n) formed
by the sef{x;(k)}, can be identified as the empirical estimate
of the covariance matrix through an exponentially weighted
moving average. Such random matrices often arise in partfol
optimization techniques (See, for example, [24]). In [2hk
eigen-distribution of such matrices is studied and congbare
to those of Wishart ensembles. Using the resolvent teckeniqu
(See, for example, [27]), it is shown in [24] that in the limit
of M — oo and A — 1, with Q := 1/M(1 — \) fixed,
%hdn — o, the eigenvalues of the matrix — \)C(n) are
distributed according to the density

Moreover, the LCEM algorithm requireM(|L(f)(n)| +

|I(f) (n)|) multiplications at the/th iteration in order to per-
form the E step. Thus, for a total df iterations, the number
of multiplications carried out by the LCEM algorithm will be
KMN. For a sparse signal(n), one expects to havdy ~
O(||lw(n)|lo) = O(L). Therefore, the overall complexity of
the LCEM algorithm is roughly of the ord&p(K LM ). Thus
under the hypothesis ¢I(©) (n)\Z(© (n—1)| < |2V (n)], the
SPARLS algorithm has a lower computational complexity th
the RLS algorithm, which require®(M?) multiplications for

each step.
Note that the assumption off()(n)\Z(V(n — 1)] < p(s) = Qu (43)
|Z(9 (n)| may be violated at some steps of the algorithm. This ™

can, for example, happen when the support of the true vecigtiere v is the solution to the non-algebraic equatighn —
changes over time. However, even when the support of the trﬁ%i—s) + log(vv?) — log sin(vs) — % = 0.

vector is constant over time, a new component,isayay arise Iéor example, by solving the above equation numerically for
in 7 (n) after a long time #; < n). Therefore, the LCU @ = 2 andv = 1, the minimum and maximum eigenvalues
routine needs to update the corresponding columBof) of (1 — \)C(n) are found to be).30 and2.37, respectively.
using all the previous regressors from timeo n. Moreover, As it is shown in [24], for finite but large values dif, the

the LCU subroutine requires storing all the regressaif) empirical eigen-distribution is very similar to the asywijt
from time j = min; ¢; to n. However, simulation studies revealcase. Therefore, it is possible to obtain an estimates;of
that such events are very rare (a component being inactivze faand chooser such thata? /o2 < 1/s; with high probability.
long time which suddenly arises #% (n)). Although this is a Moreover, the asymptotic value pfn) = 1—a?/o%sy(n) as
drawback compared to RLS (in terms of storage requirements)— oo, can be estimated using the minimum eigenvalue of
the cost of storing a finite number of regressors is tradet{(,). Note that the above concentration result can be extended
off with potential computational complexity reductionnglly, to the case of correlated input sequences, which is studied i
note that in any case the cumulative computational comiglexj27].

of SPARLS using the LCU subroutine (from time 1 will

always be lower or equal to that of RLS. Parametery: The parametery is an additional degree of

freedom which controls the trade-off between sparseness of



the output (computational complexity) and the MSE. For very We consider two different input sequencés(i)}$2, for
small values ofy, the SPARLS algorithm coincides with thesimulations: Gaussian i.i.d. input sequence, where edch
RLS algorithm. For very large values of, the output will is distributed according to\V(0,1/M), and i.i.d. random

be the zero vector. Thus, there are intermediate values foRademacher input sequence, where ea@h takes the val-
which result in low MSE and sparsity level which is desirecues +1/v/M with equal probability. The SNR is defined
The parametery can be fine-tuned according to the applias E{||w|%}/o2, whereo? is the variance of the Gaussian
cation we are interested in. For example, for estimating tzero-mean observation noise. The locations of the nonzero
wireless multi-path channel, can be optimized with respectelements of the tap-weight vector are randomly chosen in
to the number of channel taps (sparsity), temporal stedistihe set{1,2,---, M} and the SPARLS algorithm has no
of the channel and noise level via exhaustive simulations kmowledge of these locations. Also, all the simulations are
experiments. Note that can be fine-tuned offline for a certaindone with K = 1, i.e, a single LCEM iteration per new
application. Theoretical bounds onfor near-oracle recovery data and the column updates are performed using the LCU
are discussed in [5] and [28]. There are also some heuristigbroutine. Finally, a choice of = /2 has been used (Please
methods for choosingy which are discussed in [15]. Thesee Section IV-E).

noise variances? can be estimated in various ways, which We compare the performance of the SPARLS and RLS with
are discussed in [15] and [20]. respect to two performance measures. The first measure is the

ParameterA: The parameteA can be fine-tuned based on'vISE defined as

the time-variation rate of the true vector, as it is done for MSE :— E{|w - w]3} (45)
the RLS algorithm. However, for the SPARLS algorithm we E{|lwl3}

assume that € (0,1), in the cost function given in Eg. where the averaging is carried out by 50000 Monte Carlo
(16), even when the true vector is constant over time. Thigmplings. The number of samples has been chosen large
is due to the fact that witth = 1, which is used for RLS enough to ensure that the uncertainty in the measurements
algorithm when the true vector is constant over time, fogdar js less than1%. The second measure is the computational
values ofn, the quadratic term in Eq. (16) grows unboundedlyomplexity ratio (CCR) which is defined by
and dominates the;-penalty term. Hence, the minimizer
of the cost function, for large values of, coincides with CCR:=
that obtained by the RLS algorithm, which is not necessarily
sparse. Restricting to lie in the open interval0, 1) maintains
a proper scaling between the quadratic dngbenalty terms, . ) )
since the quadratic term will remain bounded over time. THe Time-invariant Scenariofs = 0
lack of scalability of the Laplacian prior induced by tlg In this case, the best choice aof for the RLS algorithm
penalty term, has led some researchers to employ the Gausitar = 1. As mentioned earlier in Section IV-E, in order
Scale Mixture (GSM) densities, which are known to be scale maintain the scaling between the quadratic ngenalty
invariant (See [2] and [25]). However, there are a number tgrms of the cost function, we choose< 1 for SPARLS.
well-established performance results that show potengial- A value of A = 0.999 has been chosen for the SPARLS
oracle performance when the Laplacian prior is used (See fgorithm. The corresponding values of are obtained by
and [28]). In this regard, we have chosen to use the Laplaciexhaustive simulations and are listed in Tables | and Il
prior. Nevertheless, generalization of the SPARLS alparit Moreover, we havel. = 5 and M = 100, and both RLS
equipped with other penalization schemes (such as the G8Wd SPARLS algorithms are run for Gaussian and Rademacher
prior) is possible. i.i.d. input sequences of length 500.
Figures 3 and 4 show the mean squared error and computa-
tional complexity ratio of the SPARLS and RLS algorithm for
V. SIMULATION STUDIES Gaussian and Rademacher i.i.d. sequences, respectivey. T

We consider the estimation of a sparse multi-path wireleS§ARLS algorithm gains about 5 dB in MSE and about 75%
channel generated by the Jake’s model [19]. In the Jaké$S computational complexity. .
model, each component of the tap-weight vector is a sam-Figure 5 shows the time-domain behvior of the SPARLS and
ple path of a Rayleigh random process with autocorrelatiGH-S algorithms for three different SNR levels 1if dB, 20 dB
function given by and30 dB, with Gaussian i.i.d. input (the case of Rademacher
i.i.d. input is very similar, and thus omitted for brevitys it
R(n) = Jo(2mnfaTs) (44) is clear from the figure, for low number of measurements,
the SPARLS algorithm significantly outperforms the RLS
algorithm in terms of MSE.

average number of multiplications for SPARLS
average number of multiplications for RL?

where Jo(-) is the zeroth order Bessel functioffy is the
Doppler frequency shift andly; is the channel sampling
interval. The dimensionless paramefgfls gives a measure ) ) )
of how fast each tap is changing over time. Note that the ca@e Time-varying Scenariofy # 0

fals = 0 corresponds to a constant tap-weight vector. Thus,In order to compare the performance of the SPARLS and
the Jake’s model covers constant tap-weight vectors as wWELS algorithms, we first need to optimize the RLS algorithm
For the purpose of simulation%} is normalized to 1. for the given time-varying channel. By exhaustive simalas,



SPARLS
— — —RLS

15 20

T T
0.28

x 0.26

]

© 0.24

0.22

15 20

Fig. 3. MSE of RLS and SPARLS vs. SNR fggTs = 0, for i.i.d. Gaussian

input sequence.

25 30 35
SNR (dB)

MSE (dB)
AN
o

SPARLS
— — —RLS

15 20

0.35

CCR

0.2

Fig. 4. MSE of RLS and SPARLS vs. SNR fgf;7s = 0, for i.i.d.

Rademacher input sequence.

SNR (dB)

SNR =30dB

40

MSE (dB)
7/
]

- —'RLS

e m e X mm

SPARLS

i i
50 100 150

200 250 300 350 400 450
SNR =20dB

500

MSE (dB)

0 50 100 150

200 250 300 350 400 450
SNR =10dB

50 100 150

Fig. 5. MSE of RLS and SPARLS vs. time for SNR 10, 20 and30 dB and
i.i.d. Gaussian input sequence. The time scale is nornthlizehe signaling

interval of the input sequence.

200 250 300 350 400 450
Time (normalized)

TABLE |
OPTIMAL VALUES OF A FOR THERLS ALGORITHM AND THE
CORRESPONDING VALUES OFy FOR THE SPARLSALGORITHM VS. o2
AND f4Ts, FOR I.1.D. GAUSSIAN INPUT.

faTs

> 0 0.0001 0.0005 0.001 0.005
-
0,0001 (0.999, 100) | (0.97, 100) | (0.96, 100) | (0.97, 100) | (0.99, 200)
0.0005 0.999, 50) 0.97,50) | (097, 50) 0.98,40) | (0.99, 100)
0,001 0.999, 35) 0.98,35) | (0.98, 30) 0.99,25) | (0.9, 60)
0.005 0.999, 15) 0.99,15) | (0.9, 15) 0.99,10) | (0.9, 30)
0.01 0.999, 13) 0.99, 10) (0.99, 8) (0.99, 8) (0.99, 15)
0.05 (0.999, 3) (0.99, 3) (0.99, 3) (0.99, 3) (0.99, 5)

TABLE 1l

OPTIMAL VALUES OF A FOR THERLS ALGORITHM AND THE
CORRESPONDING VALUES OFy FOR THE SPARLSALGORITHM VS. 52
AND f4Ts, FOR I.I.D. RADEMACHER INPUT.

faTs

o2 0 0.0001 0.0005 0.001 0.005
0.0001 {0.999, 100) | (0.97,90) | (0.96,90) | (0.97,90) | (0.99, 250)
0.0005 (0.999,50) | (0.97,50) | (0.97,45) | (0.98,45) | (0.99, 100)
0.001 (0.999,35) | (0.98,35) | (0.98,35) | (0.99,20) | (099, 70)
0.005 (0,999, 70) | (0.99, 10) | (0.99,10) | (0.99, 10) | (0.99, 30)
0.01 (0.999, 8 (099,5) | (099,5) | (099,5) 0.99, 10)
0.05 (0.999, 5) (0.99,4) | (099,4) | (099,4) 0.99,7)

the optimum forgetting factor,, of the RLS algorithm can be
obtained for various choices of SNR aifigl’.

As for the SPARLS algorithm, we perform a partial op-
timization as follows: we use the values of Table 1 for
and optimize overy with exhaustive simulations. Note that
with such choices of parameteksand~, we are comparing
a near-optimal parametrization of SPARLS with the optimal
parametrization of RLS. The performance of the SPARLS can
be further enhanced by simultaneous optimization over both
A and~. The pairs of(\,v) corresponding to the optimal
values ofy and A vs. o2 and f;T, are summarized in Tables
1 and 2, for i.i.d. Gaussian and Rademacher input sequences,
respectively.

Figures 6 and 7 show the mean squared error and compu-
tational complexity ratio of the RLS and SPARLS algorithms
for f4T, = 0.0001,0.0005,0.001 and0.005, with L = 5 and
M = 100 and i.i.d. Gaussian input, respectively. Similarly,
Figures 8 and 9 show the corresponding curves for i.i.d.
Rademacher inputs. In both cases, the SPARLS algorithm
outperforms the RLS algorithm with about 7 dB gain in the
MSE performance. Moreover, the computational complexity
of the SPARLS (using the LCU subroutine) is abou¥8l@ss
than that of RLS on average.

VI. CONCLUSION

We have developed a Recursiv&,-Regularized Least
Squares (SPARLS) algorithm for the estimation of a sparse
tap-weight vector in the adaptive filtering setting. The 8BS
algorithm estimates the tap-weight vector based on noisy
observations of the output stream, using an Expectation-
Maximization type algorithm. We have presented analytical
results regarding the convergence, steady state error and p
rameter adjustments of the SPARLS algorithm. Simulation
studies, in the context of multi-path wireless channel es-
timation, show that the SPARLS algorithm has significant
improvement over the conventional widely-used Recursive
Least Squares (RLS) algorithm in terms of mean squared error
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(MSE). Moreover, these simulation results suggest that the
SPARLS algorithm (using the LCU subroutine) has a lower
computational complexity than the RLS algorithm, when the
underlying tap-weight vector has a fixed support.

APPENDIXA
PROOF OFTHEOREM4.1

Suppose that we perform the LCEM algorithm a totaFof
times in each step. The estimate at time- 1 can be written
as

W(n+1) = My oM, o0 M,(W(n)) = My (w(n)).

K times

(47)
Now, consider the objective functiofy,(w):

fa(w) = const+ T;{W*X*(n)D(n)X(n)W

—2Re {w{X*(n)D(n)X(n)w}

—2Re {n*(n)D(n)X(n)w} }

+ 7wl (48)

Using the stationarity hypothesis, we assume that the input
vectorx(¢) at timei is a random vector with zero mean entries
and covarianceR,. For n large enough, the entries of the
matrix X*(n)D(n)X(n) can be written as

(Rm)ij 3

(49)
where we have invoked the strong law of large numbers for
weighted sums [12]. If we take the expectation of the obyecti
function with respect to(n), we get:

flw) =

n—1
(X (D)X )iy = 3 Mok () — 1
k=0

w*R,w — 2Re {wame}}
(50)

asn — oo. Note thatf(w) is independent of.. From the
continuity of the minimizer off,, (w) in n(n), we conclude
that

const.+4

1
202(1 = \) {
+ lwlh

Ey{w(n)} — wo (51)

asn — oo almost surely. The above limit process implies
the existence of a limit genie-aided estimate as the number o
observations: tends to infinity.

We want to show that the SPARLS algorithm converges to
wq almost surely. Throughout the rest of the proof, we drop
the expectation with respect fpfor notational simplicity and
assume it implicitly in our derivations.

ConsiderK'ng successive iterations of the EM algorithm on
a single cost functiorf,,(w) at timen, resulting in the set of
estimates{ M’ (w(n))} 5", It is possible to choose, large
enough such that

| fo (M0 (W(n))) = fu(W(n))] <¢/3

due to the guaranteed convergence of the EM algorithm
applied to a single cost functiofy,(w) [13]. In other words,
due to the continuity off,,(w), we can reach an arbitrarily

(52)
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small neighborhood of¥(n) in finite time by successively of the EM algorithm has been widely studied in the statistics

applying the EM iteration across the curyg(w). literature (See, for example, [13] and [23]). Suppose, far t
Now, consider applying the SPARLS iterations from timenoment, that the mapping,, is differentiable atw(n),

n to n + ny — 1, resulting in the estimate$w(n + 4)};°,, the maximizer of the objective function in Eq. (18). We can

wherew(n+1) := M,ff+i_1(vv(n+i —1)). By the continuity therefore write the Taylor expansion as follows:

of the mappingM,, in the linear and quadratic coefficients of (

{+1) .- _ ~ ~ (£) -
w, and by the continuity of the functiofi,(w) in w, we can ¥ () =w(n) = DMu(w(n)) (% (n) - w(n))
choosen large enough such that + O([W9(n) —w(n)|?), (57)
| frtno (W(n +n0)) = frgno (ME™ (W(n)))| whereDM,, is the Jacobian of the mappinigl,, and we have

. used the fact tha# (n) is a fixed point for the mapping,,.
frtno (Mrlz:wmfl O Miiing 2070 Mfz((w(n))) Hence, in a sufficie(n'zly small neighborhoodw{n), the EM
— Frtno (Mfl("o (w(n))) algorithm is simply a linear mapping. However, in our case th
mappingM,, is not differentiable, since the soft thresholding
<¢/3 (33)  function is not differentiable at pointsya? and ya2. We
Since the coefficients of the linear and quadratic terms @0 therefore use the sub-differential of the mapphag in
f.(w) are independent of in the limit of n — oo, fn(w) ordetho stud%//ts behawor_ in a n_elghborhoodmfn). Let
tends tof(w) in a point-wise fashion. Let €:C¥ — C" be a mapping defined as:

M - o? a?
W = B, (0) := {w € C : [|wl|2 < 2||Woll2}  (54) E(w) = (I- 5 X*DX)w+ —X*Dd.  (58)
g g

SinceCM is a separable metric space, by the Egorov’s theorqRie that we have dropped the dependenceofor nota-
[31], the point-wise convergence of the continuous boundgdn4| convenience. The mappiny! is then simply given
fuqctions fn(w) to f(w) in the compact sef?, implies by M(w) = S o &(w), where S(-) is the elementwise
uniform convergence everywhere except on some subsetgg thresholding function, defined in Eq. (25). Althougle th
arl_altrarlly _small measure. Hence, for any positive 0, there mapping€ is differentiable, the mapping is not. However,
exists an integefV such that for alln > N we have as we will see later on, the restriction on the convergence
max | (W) — f(w)| < €/12. (55) prop_erties_ of the EM algorithm does not arise from the M step
wew and is mainly due to the E step. Here, we take the approach of
By Egs. (52) and (53), it is implied that fersmall enough, working with sub-differentials to avoid introducing smhbitg
Ww(n+mng) and MXEno(w(n)) are in a small neighborhood of parameters to our setting. In order to simplify the notaion
w(n) (due to the continuity off,,(-) and f,4n,(-)). Hence, presentation, we assume that € R*. Due to the trivial
by choosingn large enough, the pointsv(n + ng) and isomorphism of the vector spac€s’ andR?** over the field

MEmo(%(n)) lie inside the setV. We thus have of real numbers, generalizationto € C is straightforward.
. Ko o We can define the sub-differential of the mappgs follows
| fr(W(n +n0)) = fo(M "0 (W(n)))| (See, for example, [26]):
< fntno(W(n +n0)) — fr(W(n +no))|
. o/~ oS (w) = diag(hy, ho, -+ ,h 59
oy (M (1)) = Fo(ME™ ()| (W) = diag(hn,ha, oo ) 9
H foetng (ME™ (W(n))) = frno (W(n + 1)) Where | > a2
<4¢/12+€¢/3 = 2¢/3 (56) wil = e
hi==<0<h; <1 |w|=~ya? (60)
Hence, aftem, iterations of the SPARLS algorithm, we have 0 lw;| < ya?
| fn(W(n +n0)) — fr(W(n))] In addition, from the chain rule for sub-differentials [26fe
< |fa(W(n+no)) = fa(M™ (W(n)))l have

H (M0 (W () = fu(W(n))]

<2/3+¢/3="¢. IM(w) = 0(S 0 E(w)) = (0S(£(w)))" (I - —X"DX)

(61)
Therefore, aften, iterations, we can reach an arbitrarily smalllherefore, by an appropriate choice of the sub-differ¢tia
neighborhood of#w(n) for all n, due to the continuity of S atw(n), we can locally approximate the EM iteration by
fn(w). Sincew(n) — wo, we can reach an arbitrarily small - (6+1) -

neighborhood ofw, in finite time for all n. Therefore, the W () —w(n)

2
. ~ ~ * a *
SPARLS algorithm converges @, almost surely. ~ (8S(E(w(n))))" (I - FX (n)D(n)X(n))
APPENDIX B x (w9 (n) = W(n)) (62)
STEADY STATE ERRORANALYSIS: DERIVATIONS From the convergence results of [13] and [23], it is known

First, we briefly overview the convergence properties of thbat the linear convergence rate of the EM algorithm is
EM algorithm. The global and componentwise convergengeverned by the maximum eigenvalue of the Jacotivai.



12

In our case, we need to consider the maximum eigenvalue APPENDIXC
of 9(S o £(W(n))). Clearly, the maximum eigenvalue of the PROOF OFTHEOREM 4.2
diagonal matrixdS(£(w(n)) is bounded above by, since

- . For the RLS algorithm (with\ = 1), the error expression
all its diagonal element®; are bounded a9 < h; < 1. gor (wi ) *P !

In fact, the maximum eigenvalue @S(E(w(n)) is equal 's given by

to 1, unless all the elements ok(n) are in the range n+1) = E{|lw n+1)—wn+1

—va? < w; < ya?, which is very unlikely to happen. This s ) n{” nes ) ( )HQ}
account for the earlier claim that the maximum eigenvalue = En{||X+(n)n(n)||2}. (68)

of S does not play a significant role in the convergence _ _ _
rate, since it most likely is equal to. Therefore, the rate According to Eq. (38) the corresponding error expression fo
of convergence is governed by the maximum eigenvalue 6 SPARLS algorithm in a stationary environment is upper

the matrixI — & X*(n)D(n)X(n), which is given by bounded as
2 K 1/2(
o) =1 - sar(n). 63 D < e +E {2 m)Xz(m)  nz(n)]],}
g 2 * —1
wheres;(n) is the minimum eigenvalue &*(n)D(n)X (n) + na H (X7 (n)D(n)Xz(n)) H2700- (69)

(there is more to say about the asymptotic behaviop(af),
asn — oo, in Section IV-E). If we perform the EM iteration
a total of K times, we can write:

Let u(n) be the coherence of the matd*(n)D(n)X(n).
ow, we claim that forny < oo and L < 1/(3u(ng)), one

H( )KH can choosey, and )\ < 1 such that
[W(n+1)=w(n): < |[(IM(W(n)) o .
2 E, < [[(DY*(no)Xz(n n
X[[9(n) = ¥ () {20 Xz sl
) -

p(n) [¥e(n) = w(n)l2 + 707 | (X3 0m0) D (o)X (mo) [,

for w(n) in a small neighborhood of(n). <E {||X+ no)n(no)||, } (70)

Recall that from Lemma 3 of [28], we know that th
maximizer of the objective function given in Eq. (18) is umég
if Xz(n) is maximal rank, wher& = supp(w(n)). Moreover,
Lemma 6 of Tropp in [28] establishes thatifsatisfies

IN

eFlrst note that the claim is obviously true for = 1,
for an appropriate choice of and a sufficiently incoherent
measurement matriXX(n), thanks to the results of Tropp
[28] and Ben-Haim et al. [5] on the near-oracle performance
S X5 (n) )D/2(n)(DY%(n)Xz(n))*D2(n)nz(n)ll«  of Subspace Pursuit. Next, by the continuity of the pseudo-
- 1 — max | X7 (n)D(n)X(n)g(n)| ' inverse operator in the argumeBt'/2(n), the continuity of
I (64) the coherencg(n) in A, and finally the continuity of the lower
bound onvy in A\ (See Eq. (64) or Lemma 6 of [28]), there
_ exist \g < 1 and~, such that the above inequality holds.
Wy(n) — w(n) = vo? (X;(H)D(H)XI(H)) g(n) (65)  Note that with the appropriate choice of as in [28] and
[6], |Z]| < L with high probability. Hence, forl < M
(low sparsity regime), the left hand side of Eq. (70) can be
Wy(n) = (D1/2(n)XI(n))+D1/2(n)dz(n) significantly smaller than the right hand side. Now, giveatth
+ the SPARLS algorithm converges to a fixed point (Theorem
= w(n)+ (D'*(n)Xz(n)) "nz(n) (66) 4.1), for ny large enough, the average instantaneous error of
andg(n) is in the sub-gradient set df(n)|;. The genie- SPARLS, ¢(no), is a factor of1/(1 — p(ng)¥X) away from
aided estimate corresponds to the least square solution whige left hand side of Eq. (70). By choositdg appropriately,
a genie has provided the supportw(n) to the estimator and one can guarantee thatng)® < 1. Hence, there exists
is considered to be a theoretical performance benchmark fox a < min{m, 1} such that forL/M < a, we have
the estimation of sparse vectors. Using the relations iwe:(ng) < errs(ng). This establishes the statement of the
wy(n), w(n) andw(n) and triangle inequality we can write: theorem.

we have

wherew,(n) is the genie-aidedestimate ofw(n) given by

n+1) = En{uvv(n +1) = W(n) + W(n) — w(n)
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