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SPARLS: The Sparse RLS Algorithm
Behtash Babadi, Nicholas Kalouptsidis and Vahid Tarokh

Abstract—We develop a Recursive L1-Regularized Least
Squares (SPARLS) algorithm for the estimation of a sparse
tap-weight vector in the adaptive filtering setting. The SPARLS
algorithm exploits noisy observations of the tap-weight vector
output stream and produces its estimate using an Expectation-
Maximization type algorithm. We prove the convergence of the
SPARLS algorithm to a near-optimal estimate in a stationary
environment and present analytical results for the steady state
error. Simulation studies in the context of channel estimation,
employing multi-path wireless channels, show that the SPARLS
algorithm has significant improvement over the conventional
widely-used Recursive Least Squares (RLS) algorithm in terms of
mean squared error (MSE). Moreover, these simulation studies
suggest that the SPARLS algorithm (with slight modifications)
can operate with lower computational requirements than the
RLS algorithm, when applied to tap-weight vectors with fixed
support.

I. I NTRODUCTION

Adaptive filtering is an important part of statistical signal
processing, which is highly appealing in estimation problems
based on streaming data in environments with unknown statis-
tics [17]. In particular, it is widely used for echo cancellation
in speech processing systems and for equalization or channel
estimation in wireless systems.

A wide range of signals of interest admit sparse representa-
tions. Furthermore various input output systems are described
by sparse models. For example, the multi-path wireless chan-
nel has only a few significant components [6]. Other examples
include echo components of sound in indoor environments and
natural images. However, the conventional adaptive filtering
algorithms, such as Least Mean Squares (LMS) and Recursive
Least Squares (RLS) algorithms, which are widely used in
practice, do not exploit the underlying sparseness in orderto
improve the estimation process.

There has been a lot of focus on the estimation of sparse sig-
nals based on noisy observations among the researchers in the
fields of signal processing and information theory (Please see
[1], [9], [10], [14], [18], [28] and [30]). Although the above-
mentioned works contain fundamental theoretical results,most
of the proposed estimation algorithms are not tailored to time
varying environments with real time requirements; they suffer
from high complexity and are not appropriate for implemen-
tation purposes.
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Recently, Bajwa et. al [6] used the Dantzig Selector (pre-
sented by Candes and Tao [10]) and Least Squares (LS)
estimates for the problem of sparse channel sensing. Although
the Dantzig Selector and the LS method produce sparse
estimates with improved MSE, they do not exploit the sparsity
of the underlying signal in order to reduce the computational
complexity. Moreover, they are not appropriate for the setting
of streaming data.

Chen et. al [11] have also presented a Sparse LMS al-
gorithm for system identification, which takes advantage of
the sparsity of the underlying signal in order to improve
the MSE performance of the LMS algorithm. This is done
by incorporating two different sparsity constraints into the
quadratic cost function of the LMS algorithm. However, it does
not make use of the sparseness in order to reduce the com-
putational complexity. Moreover, LMS type algorithms suffer
from slow convergence and hence poor tracking properties
when used for estimation of time-varying signals [17]. In [3],
Angelosante et al. introduced an algorithm which recursively
retrieves the weighted LASSO estimates using a system of
normal equations or via iterative sub-gradient methods.

In this paper, we introduce a RecursiveL1-Regularized
Least Squares (SPARLS) algorithm for adaptive filtering
setup. The SPARLS algorithm is based on an Expectation-
Maximization (EM) type algorithm presented in [15] and
produces successive improved estimates based on streaming
data. We present analytical results for the convergence and
the steady state Mean Squared Error (MSE), which reveal
the significant MSE gain of the SPARLS algorithm. Simu-
lation studies show that the SPARLS algorithm significantly
outperforms the RLS algorithm in terms of MSE, for both
static (with finite samples) and time-varying signals. Moreover,
these simulation results suggest that the computational com-
plexity of the SPARLS algorithm (with slight modifications)
can be less than that of the RLS algorithm, for tap-weight
vectors with fixed support. In particular, for estimating a
time-varying Rayleigh fading wireless channel with 5 nonzero
coefficients, the SPARLS algorithm gains about 7dB over the
RLS algorithm in MSE and has about 80% less computational
complexity.

The outline of the paper is as follows: we will present
the mathematical preliminaries and problem statement in
Section II. We will formally define the SPARLS algorithm
in Section III, followed by analytical results regarding con-
vergence, steady state error, error performance comparison
between SPARLS and RLS, complexity and storage issues,
and parameter adjustments in Section IV. Simulation studies
are presented in Section V, followed by conclusion in Section
VI.
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II. M ATHEMATICAL PRELIMINARIES AND PROBLEM

STATEMENT

A. Adaptive Filtering Setup

Consider the conventional adaptive filtering setup, consist-
ing of a transversal filter followed by an adaptation block. The
tap-input vector at timei is defined by

x(i) := [x(i), x(i − 1), · · · , x(i−M + 1)]T (1)

where x(k) is the input at timek, k = 1, · · · , n. The tap-
weight vector at timen is defined by

ŵ(n) := [ŵ0(n), ŵ1(n), · · · , ŵM−1(n)]T . (2)

The output of the filter at timei is given by

y(i) := ŵ∗(n)x(i). (3)

where(·)∗ denotes the conjugate transpose operator. Letd(i)
be the desired output of the filter at timei. We can define the
instantaneous error of the filter by

e(i) := d(i)− y(i) = d(i)− ŵ∗(n)x(i). (4)

The operation of the adaptation block at timen can therefore
be stated as the following optimization problem:

min
ŵ(n)

f
(
e(1), e(2), · · · , e(n)

)
, (5)

where f ≥ 0 is a certain cost function. In particular, if
d(i) is generated by an unknown tap-weightw(n), i.e.,
d(i) = w∗(n)x(i), with an appropriate choice off , one can
possibly obtain a good approximation tow(n) by solving
the optimization problem given in (5). This is, in general, an
estimation problem and is the topic of interest in this paper1.

As an example, one can define the cost function as follows:

fRLS

(
e(1), e(2), · · · , e(n)

)
:=

n∑

i=1

λn−i|e(i)|2. (6)

with λ a non-negative constant. The parameterλ is commonly
referred to asforgetting factor. The solution to the optimiza-
tion problem in Eq. (5) withfRLS gives rise to the well-known
Recursive Least Squares (RLS) algorithm (See, for example,
[17]). The cost functionfRLS given in (6) corresponds to a
least squares identification problem. Let

D(n) := diag(λn−1, λn−2, · · · , 1), (7)

d(n) := [d∗(1), d∗(2), · · · , d∗(n)]T (8)

andX(n) be ann×M matrix whoseith row is x∗(i), i.e.,

X(n) :=








x∗(1)
...

x∗(n− 1)
x∗(n)








. (9)

The RLS cost function can be written in the following form:

fRLS

(
e(1), e(2), · · · , e(n)

)

=
∥
∥D1/2(n)d(n)−D1/2(n)X(n)ŵ(n)

∥
∥

2

2
(10)

1Our discussion will focus on single channel complex valued signals. The
extension to the multi-variable case presents no difficulties.

whereD1/2(n) is a diagonal matrix with entriesD1/2
ii (n) :=

√

Dii(n).
The canonical form of the problem typically assumes that

the input-output sequences are generated by a time varying
system with parameters represented byw(n). In most appli-
cations however, stochastic uncertainties are also present. Thus
a more pragmatic data generation process is described by the
noisy model

d(i) = w∗(n)x(i) + η(i) (11)

whereη(i) is the observation noise. Note thatw(n) reflects
the true parameters which may or may not vary with time.
The noise will be assumed to be i.i.d. Gaussian, i.e.,η(i) ∼

N (0, σ2). The estimator has only access to the streaming data
x(i) andd(i).

B. Estimation of Sparse Vectors

Let x be a vector inCM . We define theL0 quasi-norm of
x as follows:

‖x‖0 = |{xi|xi 6= 0}| (12)

A vector x ∈ CM is called sparse, if ‖x‖0 ≪ M . A
wide range of interesting estimation problems deal with the
estimation of sparse vectors. Many signals of interest can
naturally be modeled as sparse. For example, the wireless
channel usually has a few significant multi-path components.
One needs to estimate such signals for various purposes.

Suppose that‖w(n)‖0 = L ≪ M . Also, let I :=
supp(w(n)). Given a matrixA ∈ CN×M and an index set
J ⊆ {1, 2, · · · , M}, we denote the sub-matrix ofA with
columns corresponding to the index setJ by AJ . Similarly,
we denote the sub-vector ofx ∈ CM corresponding to the
index setJ by xJ .

A sparse approximation tow(n) can be obtained by solving
the following optimization problem:

min
ŵ(n)
‖ŵ(n)‖0 s.t. f

(
e(1), e(2), · · · , e(n)

)
≤ ǫ (13)

where ǫ is a positive constant controlling the cost error
in (5). The above optimization problem is computationally
intractable. A considerable amount of recent research in sta-
tistical signal processing is focused on efficient estimation
methods for estimating an unknown sparse vector based on
noiseless/noisy observations (Please see [9], [10], [14],[16]
and [18]). In particular, convex relaxation techniques provide
a viable alternative, whereby theL0 quasi-norm in (13) is
replaced by the convexL1 norm so that (13) becomes

min
ŵ(n)
‖ŵ(n)‖1 s.t. f

(
e(1), e(2), · · · , e(n)

)
≤ ǫ (14)

A convex problem results whenf is convex, as in the RLS
case. Note that we employ the following definition of theL1

norm on the complex vector spaceCM :

‖w‖1 :=

M∑

i=1

(
|ℜ{wi}| + |ℑ{wi}|

)
(15)
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The Lagrangian formulation shows that iff = fRLS,
the optimum solution can be equivalently derived from the
following optimization problem

min
ŵ(n)

1

2σ2

∥
∥D1/2(n)d(n)−D1/2(n)X(n)ŵ(n)

∥
∥

2

2
+γ‖ŵ(n)‖1.

(16)
The parameterγ represents a trade off between estimation
error and sparsity of the parameter coefficients. Sufficientas
well as necessary conditions for the existence and uniqueness
of a global minimizer are derived in [28]. These conditions
require that the input signal must be properly chosen so that
the matrix D1/2(n)X(n) is sufficiently incoherent (we will
explicitly use some of these results later on in Section IV-B).
Suitable probing signals for exact recovery in a multi-path
environment are analyzed in [6] and [7].

C. Low-Complexity Expectation Maximization Algorithm

The convex program in Eq. (16) can be solved with the
conventional convex programming methods. Here, we adopt
an efficient solution presented by Figueirado and Nowak [15]
in the context of Wavelet-based image restoration, which we
will modify to an online and adaptive setting. Consider the
noisy observation model:

d(n) = X(n)w(n) + η(n). (17)

whereη(n) ∼ N (0, σ2I), with the following cost function

fn(w) =
1

2σ2

∥
∥D1/2(n)d(n)−D1/2(n)X(n)w

∥
∥

2

2
+ γ‖w‖1

=
1

2σ2

(

d(n)−X(n)w
)∗

D(n)
(

d(n)−X(n)w
)

+ γ‖w‖1 (18)

If we consider the alternative observation model:

d(n) = X(n)w(n) + ξ(n). (19)

with ξ(n) ∼ N (0, σ2D−1(n)), the convex program in Eq.
(16) can be identified as the following penalized Maximum
Likelihood (ML) problem:

max
w(n)

{

log p(d(n)|w(n)) − γ‖w(n)‖1
}

(20)

wherep(d(n)|w(n)) := N (X(n)w(n), σ2D−1(n)). This ML
problem is in general hard to solve. The clever idea of [15]
is to decompose the noise vectorξ(n) in order to divide the
optimization problem into a denoising and a filtering problem.
We adopt the same method with appropriate modifications for
the cost function given in Eq. (20). Consider the following
decomposition forξ(n):

ξ(n) = αX(n)ξ1(n) + D−1/2(n)ξ2(n) (21)

where ξ1(n) ∼ N (0, I) and ξ2(n) ∼ N (0, σ2I −
α2D1/2(n)X(n)X∗(n)D1/2(n)). We need to choose
α2 ≤ σ2/s1, where s1 is the largest eigenvalue of
D1/2(n)X(n)X∗(n)D1/2(n), in order for ξ2(n) to have a
positive semi-definite covariance matrix (we will talk about

Fig. 1. Soft thresholding function

how to choose the parameterα in practice in Section IV-E).
We can therefore rewrite the model in Eq. (19) as

{
v(n) = w(n) + αξ1(n)

d(n) = X(n)v(n) + D−1/2(n)ξ2(n)
(22)

The Expectation Maximization (EM) algorithm can be used
to solve the penalized ML problem of (20), with the help of
the following alternative penalized ML problem

max
w(n)

{

log p(d(n),v(n)|w(n)) − γ‖w(n)‖1
}

, (23)

which is easier to solve, employingv(n) as the auxiliary
variable. Theℓth iteration of the EM algorithm is as follows:






E-step:Q(w|ŵ(n)) := − 1
2α2 ‖r(ℓ) −w‖22 − γ‖w‖1,

wherer(ℓ)(n) :=
(
I− α2

σ2 X∗(n)D(n)X(n)
)
ŵ(ℓ)(n)

+α2

σ2 X
∗(n)D(n)d(n)

M-step:ŵ(ℓ+1)(n) := argmaxwQ(w|ŵ(n)) = S(r(ℓ))
(24)

whereS(·) : CM 7→ CM is the element-wisesoft thresholding
function defined as

(
S(w)

)

i
:= sgn

(
ℜ{wi}

)(
|ℜ{wi}| − γα2

)

+

+ i sgn
(
ℑ{wi}

)(
|ℑ{wi}| − γα2

)

+
(25)

for all i = 1, 2, · · · , M and the(·)+ operator is defined as
(x)+ := max(x, 0).

Note that the above algorithm belongs to a class of pursuit
algorithms denoted by iterated shrinkage algorithms (See [8]
for a detailed discussion). It is known that the EM algorithm
converges to a local maximum (See for example, [13], [23]
and [29]). Moreover, under the hypothesis ofXI(n) being
maximal rank, the maximizer is unique and therefore the
EM algorithm converges to the unique maximizer of the
cost function [28]. The latter hypothesis can be satisfied by
appropriately designing the input sequencex(n). For example,
a Gaussian i.i.d. input sequencex(n) (as well as the designs
given in [6] and [7]) will guarantee this property with high
probability.

The soft thresholding function is plotted in Fig. 1. Note that
the soft thresholding function tends to decrease the support
of the estimateŵ(n), since it shrinks the support to those
elements whose absolute value is greater thanγα2. We can use
this observation to express the double iteration given in Eq.
(24) in a low complexity fashion. Note that the M-step applies
soft thresholding independently on the real and imaginary parts
of the vectorr(ℓ)(n). In order to simplify the notation in
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what follows, we present the low complexity implementation
of the EM algorithm forr(ℓ)(n) ∈ RM . Generalization to
r(ℓ)(n) ∈ CM is straightforward, since the low complexity
implementation can be applied to the real and imaginary parts
of r(ℓ)(n) independently.

Let I(ℓ) be the support ofr(ℓ)(n) at theℓth iteration. Let
{

I(ℓ)
+ := {i : r

(ℓ)
i (n) > γα2} ⊆ I(ℓ)

I(ℓ)
− := {i : r

(ℓ)
i (n) < −γα2} ⊆ I(ℓ)

, (26)

B(n) := I− α2

σ2
X∗(n)D(n)X(n), (27)

and

u(n) :=
α2

σ2
X∗(n)D(n)d(n). (28)

Note that the second iteration in Eq. (24) can be written as

ŵ
(ℓ+1)
i (n) =







r
(ℓ)
i (n)− γα2 i ∈ I(ℓ)

+

r
(ℓ)
i (n) + γα2 i ∈ I(ℓ)

−

0 i /∈ I(ℓ)
+ ∪ I(ℓ)

−

(29)

for i = 1, 2, · · · , M . We then have

B(n)ŵ(ℓ+1)(n) = B
I

(ℓ)
+

(n)
(
r
(ℓ)

I
(ℓ)
+

(n)− γα21
I

(ℓ)
+

)

+ B
I

(ℓ)
−

(n)
(
r
(ℓ)

I
(ℓ)
−

(n) + γα21
I

(ℓ)
−

)
(30)

which allows us to express the EM iteration as follows:






r(ℓ+1)(n) = B
I

(ℓ)
+

(n)
(
r
(ℓ)

I
(ℓ)
+

(n)− γα21
I

(ℓ)
+

)

+ B
I

(ℓ)
−

(n)
(
r
(ℓ)

I
(ℓ)
−

(n) + γα21
I

(ℓ)
−

)
+ u(n)

I(ℓ+1)
+ = {i : r

(ℓ+1)
i (n) > γα2}

I(ℓ+1)
− = {i : r

(ℓ+1)
i (n) < −γα2}

(31)
This new set of iteration has a lower computational complexity,
since it restricts the matrix multiplications to the instantaneous
support of the estimater(ℓ)(n), which is expected to be close
to the support ofw(n) [28]. We denote the iterations given
in Eq. (31) by Low-Complexity Expectation Maximization
(LCEM) algorithm.

III. T HE SPARLS ALGORITHM

A. The Main Algorithm

Upon the arrival of thenth input, B(n) and u(n) can be
obtained via the following rank-one update rules:

{

B(n) = λB(n− 1)− α2

σ2 x(n)x∗(n) + (1− λ)I

u(n) = λu(n− 1) + α2

σ2 d∗(n)x(n)
(32)

Upon the arrival of thenth input,x(n), the LCEM algorithm
computes the estimatêw(n) given B(n), u(n) and s(0)(n).
The LCEM algorithm is summarized in Algorithm 1. Note that
the input argumentK denotes the number of EM iterations.

The SPARLS algorithm is formally defined in Algorithm 2.
Without loss of generality, we can set the time indexn = 1
such thatx(1) 6= 0, in order for the initialization to be well-
defined. The schematic realizations of the SPARLS and RLS
algorithm are depicted in Fig. 2. Both algorithms perform inan
online fashion and update the estimateŵ(n) upon the arrival
of the new data inputx(n).

Algorithm 1 LCEM
(
B,u, ŵ, I(K−1)

+ ∪ I(K−1)
− , K

)

Inputs:B, u, ŵ, I(K−1)
+ ∪ I(K−1)

− , andK.
Outputs:ŵ, I(K−1)

+ andI(K−1)
− .

1: r(0) = B
I

(K−1)
+

ŵ
I

(K−1)
+

+ B
I

(K−1)
−

ŵ
I

(K−1)
−

+ u.

2: I(0)
+ = {i : r

(0)
i > γα2}.

3: I(0)
− = {i : r

(0)
i < −γα2}.

4: for ℓ = 1, 2, · · · , K − 1 do
5: r(ℓ) = B

I
(ℓ−1)
+

(
r
(ℓ−1)

I
(ℓ−1)
+

− γα21
I

(ℓ−1)
+

)
+

B
I

(ℓ−1)
−

(
r
(ℓ−1)

I
(ℓ−1)
−

+ γα21
I

(ℓ−1)
−

)
+ u.

6: I(ℓ)
+ = {i : r

(ℓ)
i > γα2}.

7: I(ℓ)
− = {i : r

(ℓ)
i < −γα2}.

8: end for
9: for i = 1, 2, · · · , M do

10: ŵi =







r
(K−1)
i − γα2 i ∈ I(K−1)

+

r
(K−1)
i + γα2 i ∈ I(K−1)

−

0 i /∈ I(K−1)
+ ∪ I(K−1)

−

.

11: end for

 ! !    ! "#"

SPARLS Scheme

 (n))w LCEM(
!   (n)w 

!"# $# $

 (n)w 
(n+1)w (n)w 

(n)x

RLS Scheme

(n)x

(n)w Kalman
Iteration

(n+1)w 

Fig. 2. Schematic realizations of SPARLS and RLS algorithms.

Algorithm 2 SPARLS

Inputs:B(1) = I − α2

σ2 x(1)x∗(1), u(1) = α2

σ2 x(1)d∗(1) and
K.
Output:ŵ(n).

1: for all Input x(n) do
2: B(n) = λB(n− 1)− α2

σ2 x(n)x∗(n) + (1− λ)I.
3: u(n) = λu(n− 1) + α2

σ2 d∗(n)x(n).
4: Run LCEM

(
B(n),u(n), ŵ(n − 1), I(K−1)

+ (n − 1) ∪
I(K−1)
− (n− 1), K

)
.

5: Updateŵ(n).
6: end for

B. The Low Complexity Update Scheme

The update equation forB(n) can be implemented in a
low complexity fashion. This is due to the fact that the
LCEM algorithm only needs the columns ofB(n) correspond-
ing to the index setI+ ∪ I−. Thus, given the hypothesis
that the subsetI(0)(n) does not vary much withn, i.e.,
|I(0)(n)\I(0)(n − 1)| ≪ |I(0)(n)|, one can implement the
update step forB(n) in a low complexity fashion as follows.

First, we consider the updating procedure forB(n) when
the new input datax(n) has arrived. Clearly,I(0)(n) =

I(K−1)
+ (n−1)∪I(K−1)

− (n−1), if we run the LCEM algorithm
a total ofK times for each new inputx(n). The columns of
B(n) required for the LCEM algorithm clearly correspond
to I(0)(n). We also assign a variableti ∈ {1, 2, · · · , n − 1}
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to each column ofB(n), which denotes the last time index
when theith column of the matrixB was in the index set
I(0). Upon the arrival ofx(n), we only update the columns
of B(n) corresponding to the index setI(0)(n) and denote
the resulting matrix bỹB(n):

B̃i(n) = λn−tiB̃i(n− 1)

− α2

σ2

n−ti−1∑

m=0

λm
(

(x(n −m)x∗(n−m))i

+(1− λ)Ii

)

(33)

for all i ∈ I(0)(n). For example, if theith column ofB̃(n)
has been last updated at timen − 3, then ti = n − 3, hence
the update equation simply becomes:

B̃i(n) = λ3B̃i(n− 1)

− α2

σ2

(

x(n)x∗(n) + λx(n− 1)x∗(n− 1)

+ λ2x(n− 2)x∗(n− 2)
)

i

+ (1 − λ)(1 + λ + λ2)Ii

Algorithm 3 LCU(B̃(n− 1),J , {ti}Mi=1)

Inputs:B̃(n− 1), J and{ti}Mi=1.
Output:BJ and{ti}Mi=1.

1: for all i in J do
2: B̃i(n) = λ

{

B̃i(n − 1) − α2

σ2

∑n−ti−1
m=0 λm

(

(x(n −
m)x∗(n−m))i + (1− λ)Ii

)}

.
3: ti ← n.
4: end for
5: BJ ← B̃J

Subsequently, the time indicesti will be updated asti = n
for all i ∈ I(0)(n) and remain unchanged otherwise. We
can formally define the sub-routine Low Complexity Update
(LCU) for updatingB(n) as in Algorithm 3. Note that if
I(0)(n) = {1, 2, · · · , M} for all times, then the above update
equation forB̂(n) is equivalent to the update equation in Eq.
(32). But, due to the sparsifying nature of the estimator, the
index setI(0)(n) is expected to be very close to the true index
setI. In that case the number of column updates at each time
is I(0)(n). Moreover, these updates are usually very simple
in the steady state, since most of thetis are equal ton, for
all i ∈ I(0)(n). This is due to the hypothesis that the subset
I(0)(n) does not vary much withn, i.e., |I(0)(n)\I(0)(n −
1)| ≪ |I(0)(n)|. This way, we can exploit the sparseness of
the estimate in order to reduce the complexity of the update
process forB(n). Therefore, one can use the LCU subroutine
LCU(B(n− 1), I(K−1)

+ (n− 1)∪ I(K−1)
− (n− 1), {ti}Mi=1) on

line 2 of the SPARLS algorithm. Similarly, the LCU subroutine
can be used in the LCEM algorithm (right before lines 1
and 5), when the algorithm needs to access sub-matrices
such asB

I
(ℓ)
+

(n) or B
I

(ℓ)
−

(n). Nevertheless, the hypothesis of

|I(0)(n)\I(0)(n− 1)| ≪ |I(0)(n)| may be violated, in which
case using the LCU subroutine might result in drawbacks (See

Section IV-D for a detailed discussion). Nevertheless, onecan
always resort to the original form of the SPARLS algorithm.

IV. A NALYSIS OF THE SPARLS ALGORITHM

In this section, we will study the convergence of SPARLS to
a fixed point in a stationary environment in Section IV-A, the
steady state error of the SPARLS in Section IV-B, comparison
of the error performance of SPARLS and RLS in a stationary
environment for finite sample size, i.e.,n < ∞ in Section
IV-C, the complexity and storage issues of SPARLS (with
and without the LCU subroutine) in Section IV-D, and finally,
adjusting the parameters of SPARLS in Section IV-E.

A. Convergence Analysis

In order to study the convergence of the SPARLS algorithm,
we need to make a number of additional assumptions. First
of all, we consider the case of constant unknown vector
w(n), i.e., w(n) = w0 for all n = 1, 2, · · · . Moreover, we
analyze the convergence in a stationary environment: the input
sequence{x(n)}∞n=1 and the output sequence{d(n)}∞n=1 are
realizations of a jointly stationary random process.

Before moving on to the convergence analysis of SPARLS,
we briefly overview the convergence properties of the EM
algorithm. The global and componentwise convergence of
the EM algorithm has been widely studied in the statistics
literature (See, for example, [13] and [23]). According to the
original paper of Dempster et al. [13], the EM algorithm can
be represented by a mappingMn : CM 7−→ CM , defined as

ŵ(ℓ+1)(n) =Mn(ŵ(ℓ)(n)) (34)

where the mappingMn is the composition of the E and M
steps at timen. Moreover, if the minimizer of the objective
function

fn(w) :=
1

2σ2
‖D1/2d(n)−D1/2X(n)w‖22 + γ‖w‖1 (35)

is unique, we have

fn(w(ℓ+1)(n)) < fn(w(ℓ)(n)). (36)

From Lemma 3 of Tropp [28], we know that the minimizer
of the objective function given in Eq. (35) is unique ifXI(n)
is maximal rank, whereI = supp(w0). We denote this
minimizer byw̃(n). The hypothesis ofXI(n) being maximal
rank can be achieved if the input sequence is persistently
exciting (In other words, the input must be sufficiently rich
to properly excite all modes of the system). For example,
if the input sequencex(n) is drawn from an i.i.d. random
process, the columns ofXI(n) form an orthogonal set with
probability 1. Hence, we can assume throughout the analysis
that the minimizer of the objective function is unique.

The SPARLS algorithm only performs the EM algorithm
a finite (K) number of times for eachn. Hence, it does not
exactly solve the minimization problem in (16). Furthermore,
the cost function varies at each step (withn). Hence, it is not
trivial that performing the EM algorithm a finite number of
times (K < ∞) at each step, results in convergence to the
unique minimizer offn(x), asn→∞. Indeed, the following
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theorem establishes the convergence of the SPARLS algorithm
under the above assumptions:

Theorem 4.1 (Convergence): Given a stationary environ-
ment and a constant target sparse vectorw0, the SPARLS
algorithm (withK <∞) converges almost surely to the unique
minimizer of the cost functionfn(w), asn→∞.

Idea of proof:The idea of proof is to relate the convergence
behavior of the EM algorithm along one specific function
fn(w) to the convergence of the SPARLS algorithm across
different functionsfn(w). The proof is formally given in
Appendix A.

Note that the case ofn → ∞ is not of particular interest
in our analysis of the stationary scenario, since it defeatsthe
purpose of compressive sampling. However, the convergence
proof guarantees that we can get to an arbitrarily small
neighborhood of the fixed point (i.e., limit of the unique
minimizer of fn(w)) for finite n. This fact will be used later
in the performance comparison of SPARLS and RLS (See
Theorem 4.2). Next, we study the steady state error of the
SPARLS algorithm.

B. Steady State Error Analysis

We define the average instantaneous error of the SPARLS
algorithm as follows:

ǫ(n) := Eη

{

‖ŵ(n)−w(n)‖2
}

. (37)

As it is shown in Appendix B,ǫ(n) obeys the following
recurrence relation:

ǫ(n + 1) ≤ ρ(n)Kǫ(n)

+ Eη

{∥
∥(D1/2(n)XI(n))+ηI(n)

∥
∥

2

}

+ γσ2
∥
∥
∥

(

X∗
I(n)D(n)XI(n)

)−1∥
∥
∥

2,∞

+ ‖w(n + 1)−w(n)‖2 (38)

where A+ is the Moore-Penrose pseudo-inverse of matrix
A and ρ(n) is defined asρ(n) := 1 − α2

σ2 sM (n), with
sM (n) being the minimum eigenvalue ofX∗(n)D(n)X(n)
and the(2,∞)-norm of a matrixA is defined as‖A‖2,∞ :=

maxx:x 6=0

‖Ax‖2

‖x‖∞

.
The first term on the right hand side corresponds to the

linear convergence of the EM algorithm, the second term cor-
responds to the observation noise, the third term corresponds
to the error bias with respect to the genie-aided solution,
and the fourth term corresponds to the evolution of the true
vector w(n). Note that we are allowing the targetw(n) to
change with time in the steady state. A popular model to
describe the evolution of the parameter vector in statistical
signal processing is the random walk model of the form:

w(n + 1) = w(n) + κδ(n) (39)

whereδ(n) is a white Gaussian random vector with covariance
matrix ∆(n) and κ is a scaling constant (See, for example,
[21]). The scaling constantκ represents the speed of the time
evolution ofw(n). In order for the error recurrence relation to

remain valid, we need to assumeκ≪ 1, so that the estimate
ŵ(n) remains in a small neighborhood of the targetw̃(n).

If we further assume that the last three terms on the right
hand side do not change rapidly withn, using the Cauchy-
Schwarz inequality and averaging overδ(n) (assuming inde-
pendence betweenδ(n) andη(n)), we get:

ǫ(n) /
1

1− ρ(n)K

(σ
√

Tr
(
(X∗

I(n)D(n)XI(n))−1
)

+ γα2

smin

(
X∗

I(n)D(n)XI(n)
)

+ κ
√

Tr(∆(n))

)

(40)

wheresmin(A) denotes the minimum eigenvalue of the matrix
A ∈ CM×M . The first term on the right hand side demon-
strates the trade-off between the denoising of the estimateand
the additional cost due toL1-regularization. The second term
corresponds to the regeneration of the unknown vectorw(n).
Finally, the factor of1/(1− ρ(n)K) in the error bound is due
to the linear convergence of the EM algorithm.

C. Error Performance Comparison of SPARLS and RLS

In the time-invariant scenario, choosingλ < 1, will result
in a persistent steady state MSE error asn→∞, unlike RLS
which converges to the true vector as the number of measure-
ments tend to infinity (withλ = 1). However, the steady state
MSE error of SPARLS can be sufficiently reduced by choose
λ close enough to1 in the low sparsity regime. In fact, in
the following theorem, we show that forL/M small enough
and for large enough butfinite number of measurementsn,
λ < 1 sufficiently close to 1, and an appropriate choice of
γ, the MSE performance of SPARLS is superior to that of
RLS (with λ = 1). This is indeed in line with the premises of
compressive sampling, which guarantee superior performance
with significantly lower number of measurements:

Theorem 4.2: Consider a stationary environment, for which
the RLS algorithm operates withλ = 1 and recovers the
true tap-weight vectorw0 as n→∞. Let ǫ(n) and ǫRLS(n)
denote the average instantaneous errors of the SPARLS and
RLS algorithms at thenth iteration, respectively. Then, for
a givenn0 large enough, there exist constants0 < a < 1,
λ0 ∈ (0, 1) sufficiently close to 1 andγ0 such that forλ = λ0

and γ = γ0 we have

ǫ(n0) < ǫRLS(n0), (41)

for L/M < a.

Idea of proof:The proof uses basic ideas regarding the Basis
Pursuit algorithms in compressed sensing (See, for example,
[28] and [5]) and is given in Appendix C.

In fact, the MSE of SPARLS can be significantly lower
than that of RLS for finiten in the low sparsity regime, i.e.,
L≪M . This is evident in the fact that only the components
of noise corresponding to the index setI appear in the error
expression of SPARLS in Eq. (38), whereas all the noise
coordinates contribute to the MSE of RLS. This can also be
observed from Fig. 5. Here, we haveL = 5 andM = 100. For
n0 ≈ 120, SPARLS achieves its steady state error level, while
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it takes a much longer time for RLS to achieve the same MSE
(in about500 iterations). Finally, as simulation studies reveal,
the SPARLS algorithm has significant MSE advantages over
the RLS algorithm, especially in low SNR and low sparsity
regimes.

D. Complexity and Storage Issues

The SPARLS algorithm has a computational complexity
of O(M2) multiplications per step, which coincides with
the order of complexity of the RLS algorithm [17]. In what
follows, we motivate the use of the LCU subroutine and its
role in potentially decreasing the computational complexity of
the SPARLS algorithm under the hypothesis that the index set
I(0)(n) does not vary much across differentn in the steady
state,i.e., |I(0)(n)\I(0)(n− 1)| ≪ |I(0)(n)|.

If the LCU sub-routine is used in lines 1 and 5 of the LCEM
algorithm, it will be called a total ofK times for each new
inputx(n) and requires a total of

∑K−1
ℓ=0

(
|I(ℓ)

+ (n)|+|I(ℓ)
− (n)|

)

column updates overall. For eachi ∈ I(ℓ)
+ (n) ∪ I(ℓ)

− (n),
the ith column of B̃(n) requires a total ofM(n − ti) + 2
multiplications. Hence, the total number of multiplications
required for K runs of the LCU sub-routine is given by
∑K−1

ℓ=0

∑

i∈I
(ℓ)
+ (n)∪I

(ℓ)
−

(n)
(M(n− ti) + 2). The hypothesis of

|I(0)(n)\I(0)(n− 1)| ≪ |I(0)(n)|, implies that the indicesti
are very close ton. In other words,n− ti ≈ O(1), for all ti ∈
I(0)(n). Therefore, the total number of multiplications will be
O(KMN), whereN := 1

K

∑K−1
ℓ=0

(
|I(ℓ)

+ (n)|+ |I(ℓ)
− (n)|

)
.

Moreover, the LCEM algorithm requiresM
(
|I(ℓ)

+ (n)| +
|I(ℓ)

− (n)|
)

multiplications at theℓth iteration in order to per-
form the E step. Thus, for a total ofK iterations, the number
of multiplications carried out by the LCEM algorithm will be
KMN . For a sparse signalw(n), one expects to haveN ≈
O(‖w(n)‖0) = O(L). Therefore, the overall complexity of
the LCEM algorithm is roughly of the orderO(KLM). Thus
under the hypothesis of|I(0)(n)\I(0)(n−1)| ≪ |I(0)(n)|, the
SPARLS algorithm has a lower computational complexity than
the RLS algorithm, which requiresO(M2) multiplications for
each step.

Note that the assumption of|I(0)(n)\I(0)(n − 1)| ≪
|I(0)(n)| may be violated at some steps of the algorithm. This
can, for example, happen when the support of the true vector
changes over time. However, even when the support of the true
vector is constant over time, a new component, sayi, may arise
in I(0)(n) after a long time (ti ≪ n). Therefore, the LCU
routine needs to update the corresponding column ofB̃(n)
using all the previous regressors from timeti to n. Moreover,
the LCU subroutine requires storing all the regressorsx(j)
from timej = mini ti to n. However, simulation studies reveal
that such events are very rare (a component being inactive for a
long time which suddenly arises inI(0)(n)). Although this is a
drawback compared to RLS (in terms of storage requirements),
the cost of storing a finite number of regressors is traded
off with potential computational complexity reduction. Finally,
note that in any case the cumulative computational complexity
of SPARLS using the LCU subroutine (from time 1 ton) will
always be lower or equal to that of RLS.

E. Adjusting the Parameters of SPARLS

Parameterα: As mentioned earlier in Section II-C, the
parameterα in the SPARLS algorithm must be chosen such
that α2 ≤ σ2/s1, where s1 is the largest eigenvalue of
D1/2(n)X(n)X∗(n)D1/2. This constraint clearly depends on
the underlying statistical characteristics of the input sequence
x(n). Here, we investigate this constraint for a Gaussian i.i.d.
input sequnce,i.e., x(i) ∼ N (0, ν2), for i = 1, 2, · · · , n, for
simplicity. Generalization to other stationary input sequences
is possible.

First, note that the maximum eigenvalue of the above
matrix is equal to the maximum eigenvalue ofC(n) :=
X∗(n)D(n)X(n). Recall that the rows of the matrixX(n)
are the tap inputs at times1, 2, · · · , n. Hence, we have

C(n) =

n∑

k=1

λn−kx(k)x∗(k) (42)

where x(k) is the tap input at timek. Hence, the(i, j)th
element of the C(n) can be expressed asCij(n) =
∑n

k=1 λn−kxi(k)x∗
j (k). Next, we invoke theindependence

assumption(See, for example, [17], [22] and [32]). The
independence assumption implies that the tap input vectors
x(1),x(2), · · · ,x(n) form a sequence of statistically indepen-
dent vectors. Moreover, the elements of each input vector are
distributed i.i.d. and according toN (0, ν2). Hence, the set
{xi(k)} for i = 1, 2, · · · , M andk = 1, 2, · · · , n consists of
i.i.d. zero mean Gaussian random variables with varianceν2.

The exponentially weighted random matrixC(n) formed
by the set{xi(k)}, can be identified as the empirical estimate
of the covariance matrix through an exponentially weighted
moving average. Such random matrices often arise in portfolio
optimization techniques (See, for example, [24]). In [24],the
eigen-distribution of such matrices is studied and compared
to those of Wishart ensembles. Using the resolvent technique
(See, for example, [27]), it is shown in [24] that in the limit
of M → ∞ and λ → 1, with Q := 1/M(1 − λ) fixed,
and n → ∞, the eigenvalues of the matrix(1 − λ)C(n) are
distributed according to the density

ρ(s) =
Qv

π
(43)

where v is the solution to the non-algebraic equationsν2 −
vs

tan(vs) + log(vν2)− log sin(vs) − 1
Q = 0.

For example, by solving the above equation numerically for
Q = 2 and ν = 1, the minimum and maximum eigenvalues
of (1 − λ)C(n) are found to be0.30 and 2.37, respectively.
As it is shown in [24], for finite but large values ofM , the
empirical eigen-distribution is very similar to the asymptotic
case. Therefore, it is possible to obtain an estimate ofs1,
and chooseα such thatα2/σ2 ≤ 1/s1 with high probability.
Moreover, the asymptotic value ofρ(n) = 1−α2/σ2sM (n) as
n → ∞, can be estimated using the minimum eigenvalue of
C(n). Note that the above concentration result can be extended
to the case of correlated input sequences, which is studied in
[27].

Parameterγ: The parameterγ is an additional degree of
freedom which controls the trade-off between sparseness of
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the output (computational complexity) and the MSE. For very
small values ofγ, the SPARLS algorithm coincides with the
RLS algorithm. For very large values ofγ, the output will
be the zero vector. Thus, there are intermediate values forγ
which result in low MSE and sparsity level which is desired.
The parameterγ can be fine-tuned according to the appli-
cation we are interested in. For example, for estimating the
wireless multi-path channel,γ can be optimized with respect
to the number of channel taps (sparsity), temporal statistics
of the channel and noise level via exhaustive simulations or
experiments. Note thatγ can be fine-tuned offline for a certain
application. Theoretical bounds onγ for near-oracle recovery
are discussed in [5] and [28]. There are also some heuristic
methods for choosingγ which are discussed in [15]. The
noise varianceσ2 can be estimated in various ways, which
are discussed in [15] and [20].

Parameterλ: The parameterλ can be fine-tuned based on
the time-variation rate of the true vector, as it is done for
the RLS algorithm. However, for the SPARLS algorithm we
assume thatλ ∈ (0, 1), in the cost function given in Eq.
(16), even when the true vector is constant over time. This
is due to the fact that withλ = 1, which is used for RLS
algorithm when the true vector is constant over time, for large
values ofn, the quadratic term in Eq. (16) grows unboundedly
and dominates theℓ1-penalty term. Hence, the minimizer
of the cost function, for large values ofn, coincides with
that obtained by the RLS algorithm, which is not necessarily
sparse. Restrictingλ to lie in the open interval(0, 1) maintains
a proper scaling between the quadratic andℓ1-penalty terms,
since the quadratic term will remain bounded over time. The
lack of scalability of the Laplacian prior induced by theℓ1-
penalty term, has led some researchers to employ the Gaussian
Scale Mixture (GSM) densities, which are known to be scale
invariant (See [2] and [25]). However, there are a number of
well-established performance results that show potentialnear-
oracle performance when the Laplacian prior is used (See [5]
and [28]). In this regard, we have chosen to use the Laplacian
prior. Nevertheless, generalization of the SPARLS algorithm
equipped with other penalization schemes (such as the GSM
prior) is possible.

V. SIMULATION STUDIES

We consider the estimation of a sparse multi-path wireless
channel generated by the Jake’s model [19]. In the Jake’s
model, each component of the tap-weight vector is a sam-
ple path of a Rayleigh random process with autocorrelation
function given by

R(n) = J0(2πnfdTs) (44)

where J0(·) is the zeroth order Bessel function,fd is the
Doppler frequency shift andTs is the channel sampling
interval. The dimensionless parameterfdTs gives a measure
of how fast each tap is changing over time. Note that the case
fdTs = 0 corresponds to a constant tap-weight vector. Thus,
the Jake’s model covers constant tap-weight vectors as well.
For the purpose of simulations,Ts is normalized to 1.

We consider two different input sequences{x(i)}∞i=1 for
simulations: Gaussian i.i.d. input sequence, where eachx(i)
is distributed according toN (0, 1/M), and i.i.d. random
Rademacher input sequence, where eachx(i) takes the val-
ues ±1/

√
M with equal probability. The SNR is defined

as E{‖w‖22}/σ2, whereσ2 is the variance of the Gaussian
zero-mean observation noise. The locations of the nonzero
elements of the tap-weight vector are randomly chosen in
the set {1, 2, · · · , M} and the SPARLS algorithm has no
knowledge of these locations. Also, all the simulations are
done with K = 1, i.e., a single LCEM iteration per new
data and the column updates are performed using the LCU
subroutine. Finally, a choice ofα = σ/2 has been used (Please
see Section IV-E).

We compare the performance of the SPARLS and RLS with
respect to two performance measures. The first measure is the
MSE defined as

MSE :=
E{‖ŵ−w‖22}

E{‖w‖22}
(45)

where the averaging is carried out by 50000 Monte Carlo
samplings. The number of samples has been chosen large
enough to ensure that the uncertainty in the measurements
is less than1%. The second measure is the computational
complexity ratio (CCR) which is defined by

CCR :=
average number of multiplications for SPARLS

average number of multiplications for RLS
(46)

A. Time-invariant Scenario:fd = 0

In this case, the best choice ofλ for the RLS algorithm
is λ = 1. As mentioned earlier in Section IV-E, in order
to maintain the scaling between the quadratic andℓ1-penalty
terms of the cost function, we chooseλ < 1 for SPARLS.
A value of λ = 0.999 has been chosen for the SPARLS
algorithm. The corresponding values ofγ are obtained by
exhaustive simulations and are listed in Tables I and II.
Moreover, we haveL = 5 and M = 100, and both RLS
and SPARLS algorithms are run for Gaussian and Rademacher
i.i.d. input sequences of length 500.

Figures 3 and 4 show the mean squared error and computa-
tional complexity ratio of the SPARLS and RLS algorithm for
Gaussian and Rademacher i.i.d. sequences, respectively. The
SPARLS algorithm gains about 5 dB in MSE and about 75%
less computational complexity.

Figure 5 shows the time-domain behvior of the SPARLS and
RLS algorithms for three different SNR levels of10 dB, 20 dB
and30 dB, with Gaussian i.i.d. input (the case of Rademacher
i.i.d. input is very similar, and thus omitted for brevity).As it
is clear from the figure, for low number of measurements,
the SPARLS algorithm significantly outperforms the RLS
algorithm in terms of MSE.

B. Time-varying Scenario:fd 6= 0

In order to compare the performance of the SPARLS and
RLS algorithms, we first need to optimize the RLS algorithm
for the given time-varying channel. By exhaustive simulations,
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Fig. 3. MSE of RLS and SPARLS vs. SNR forfdTs = 0, for i.i.d. Gaussian
input sequence.
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Fig. 5. MSE of RLS and SPARLS vs. time for SNR= 10, 20 and30 dB and
i.i.d. Gaussian input sequence. The time scale is normalized to the signaling
interval of the input sequence.

TABLE I
OPTIMAL VALUES OF λ FOR THERLS ALGORITHM AND THE

CORRESPONDING VALUES OFγ FOR THESPARLSALGORITHM VS. σ2

AND fdTs , FOR I.I .D. GAUSSIAN INPUT.

X
X

X
X

XX
σ2

fdTs 0 0.0001 0.0005 0.001 0.005

0.0001 (0.999, 100) (0.97, 100) (0.96, 100) (0.97, 100) (0.99, 200)
0.0005 (0.999, 50) (0.97, 50) (0.97, 50) (0.98, 40) (0.99, 100)
0.001 (0.999, 35) (0.98, 35) (0.98, 30) (0.99, 25) (0.99, 60)
0.005 (0.999, 15) (0.99, 15) (0.99, 15) (0.99, 10) (0.99, 30)
0.01 (0.999, 13) (0.99, 10) (0.99, 8) (0.99, 8) (0.99, 15)
0.05 (0.999, 3) (0.99, 3) (0.99, 3) (0.99, 3) (0.99, 5)

TABLE II
OPTIMAL VALUES OF λ FOR THERLS ALGORITHM AND THE

CORRESPONDING VALUES OFγ FOR THESPARLSALGORITHM VS. σ2

AND fdTs , FOR I.I .D. RADEMACHER INPUT.

X
X

X
X

XX
σ2

fdTs 0 0.0001 0.0005 0.001 0.005

0.0001 (0.999, 100) (0.97, 90) (0.96, 90) (0.97, 90) (0.99, 250)
0.0005 (0.999, 50) (0.97, 50) (0.97, 45) (0.98, 45) (0.99, 100)
0.001 (0.999, 35) (0.98, 35) (0.98, 35) (0.99, 20) (0.99, 70)
0.005 (0.999, 10) (0.99, 10) (0.99, 10) (0.99, 10) (0.99, 30)
0.01 (0.999, 8) (0.99, 5) (0.99, 5) (0.99, 5) (0.99, 10)
0.05 (0.999, 5) (0.99, 4) (0.99, 4) (0.99, 4) (0.99, 7)

the optimum forgetting factor,λ, of the RLS algorithm can be
obtained for various choices of SNR andfdTs.

As for the SPARLS algorithm, we perform a partial op-
timization as follows: we use the values of Table 1 forλ
and optimize overγ with exhaustive simulations. Note that
with such choices of parametersλ and γ, we are comparing
a near-optimal parametrization of SPARLS with the optimal
parametrization of RLS. The performance of the SPARLS can
be further enhanced by simultaneous optimization over both
λ and γ. The pairs of(λ, γ) corresponding to the optimal
values ofγ andλ vs. σ2 andfdTs are summarized in Tables
1 and 2, for i.i.d. Gaussian and Rademacher input sequences,
respectively.

Figures 6 and 7 show the mean squared error and compu-
tational complexity ratio of the RLS and SPARLS algorithms
for fdTs = 0.0001, 0.0005, 0.001 and0.005, with L = 5 and
M = 100 and i.i.d. Gaussian input, respectively. Similarly,
Figures 8 and 9 show the corresponding curves for i.i.d.
Rademacher inputs. In both cases, the SPARLS algorithm
outperforms the RLS algorithm with about 7 dB gain in the
MSE performance. Moreover, the computational complexity
of the SPARLS (using the LCU subroutine) is about 80% less
than that of RLS on average.

VI. CONCLUSION

We have developed a RecursiveL1-Regularized Least
Squares (SPARLS) algorithm for the estimation of a sparse
tap-weight vector in the adaptive filtering setting. The SPARLS
algorithm estimates the tap-weight vector based on noisy
observations of the output stream, using an Expectation-
Maximization type algorithm. We have presented analytical
results regarding the convergence, steady state error and pa-
rameter adjustments of the SPARLS algorithm. Simulation
studies, in the context of multi-path wireless channel es-
timation, show that the SPARLS algorithm has significant
improvement over the conventional widely-used Recursive
Least Squares (RLS) algorithm in terms of mean squared error
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Fig. 6. MSE of RLS and SPARLS vs. SNR forfdTs =

0.0001, 0.0005, 0.001 and0.005, for i.i.d. Gaussian input sequence.
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Fig. 7. CCR vs. SNR forfdTs = 0.0001, 0.0005, 0.001 and 0.005, for
i.i.d. Gaussian input sequence.
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Fig. 8. MSE of RLS and SPARLS vs. SNR forfdTs =

0.0001, 0.0005, 0.001 and0.005, for i.i.d. Rademacher input sequence.
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Fig. 9. CCR vs. SNR forfdTs = 0.0001, 0.0005, 0.001 and 0.005, for
i.i.d. Rademacher input sequence.

(MSE). Moreover, these simulation results suggest that the
SPARLS algorithm (using the LCU subroutine) has a lower
computational complexity than the RLS algorithm, when the
underlying tap-weight vector has a fixed support.

APPENDIX A
PROOF OFTHEOREM 4.1

Suppose that we perform the LCEM algorithm a total ofK
times in each step. The estimate at timen + 1 can be written
as

ŵ(n + 1) =Mn ◦Mn ◦ · · · ◦Mn
︸ ︷︷ ︸

K times

(ŵ(n)) =MK
n (ŵ(n)).

(47)
Now, consider the objective functionfn(w):

fn(w) = const.+
1

2σ2

{

w∗X∗(n)D(n)X(n)w

−2 Re
{
w∗

0X
∗(n)D(n)X(n)w

}

−2 Re
{
η∗(n)D(n)X(n)w

}
}

+ γ‖w‖1 (48)

Using the stationarity hypothesis, we assume that the input
vectorx(i) at timei is a random vector with zero mean entries
and covarianceRx. For n large enough, the entries of the
matrix X∗(n)D(n)X(n) can be written as

(X∗(n)D(n)X(n))ij =

n−1∑

k=0

λkxi(k)x∗
j (k)→ 1

1− λ
(Rx)ij ,

(49)
where we have invoked the strong law of large numbers for
weighted sums [12]. If we take the expectation of the objective
function with respect toη(n), we get:

f(w) := const.+
1

2σ2(1− λ)

{

w∗Rxw− 2 Re
{
w∗

0Rxw
}}

+ γ‖w‖1 (50)

as n → ∞. Note thatf(w) is independent ofn. From the
continuity of the minimizer offn(w) in η(n), we conclude
that

Eη{w̃(n)} → w̃0 (51)

as n → ∞ almost surely. The above limit process implies
the existence of a limit genie-aided estimate as the number of
observationsn tends to infinity.

We want to show that the SPARLS algorithm converges to
w̃0 almost surely. Throughout the rest of the proof, we drop
the expectation with respect toη for notational simplicity and
assume it implicitly in our derivations.

ConsiderKn0 successive iterations of the EM algorithm on
a single cost functionfn(w) at timen, resulting in the set of
estimates{Mi

n(ŵ(n))}Kn0

i=1 . It is possible to choosen0 large
enough such that

∣
∣fn

(
MKn0

n (ŵ(n))
)
− fn(w̃(n))| < ǫ/3 (52)

due to the guaranteed convergence of the EM algorithm
applied to a single cost functionfn(w) [13]. In other words,
due to the continuity offn(w), we can reach an arbitrarily
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small neighborhood of̃w(n) in finite time by successively
applying the EM iteration across the curvefn(w).

Now, consider applying the SPARLS iterations from time
n to n + n0 − 1, resulting in the estimates{ŵ(n + i)}n0

i=1,
whereŵ(n+ i) :=MK

n+i−1(ŵ(n+ i−1)). By the continuity
of the mappingMn in the linear and quadratic coefficients of
w, and by the continuity of the functionfn(w) in w, we can
choosen large enough such that

∣
∣fn+n0(ŵ(n + n0))− fn+n0(MKn0

n (ŵ(n)))
∣
∣

=
∣
∣
∣fn+n0

(

MK
n+n0−1 ◦MK

n+n0−2 ◦ · · · ◦MK
n (ŵ(n))

)

− fn+n0

(
MKn0

n (ŵ(n))
)
∣
∣
∣

≤ ǫ/3 (53)

Since the coefficients of the linear and quadratic terms in
fn(w) are independent ofn in the limit of n → ∞, fn(w)
tends tof(w) in a point-wise fashion. Let

W := B2‖w̃0‖2
(0) :=

{
w ∈ C

M : ‖w‖2 ≤ 2‖w̃0‖2
}

(54)

SinceCM is a separable metric space, by the Egorov’s theorem
[31], the point-wise convergence of the continuous bounded
functions fn(w) to f(w) in the compact setW , implies
uniform convergence everywhere except on some subset of
arbitrarily small measure. Hence, for any positiveǫ > 0, there
exists an integerN such that for alln > N we have

max
w∈W

|fn(w)− f(w)| < ǫ/12. (55)

By Eqs. (52) and (53), it is implied that forǫ small enough,
ŵ(n+n0) andMKn0

n (ŵ(n)) are in a small neighborhood of
w̃(n) (due to the continuity offn(·) and fn+n0(·)). Hence,
by choosingn large enough, the pointŝw(n + n0) and
MKn0

n (ŵ(n)) lie inside the setW . We thus have

|fn(ŵ(n + n0))− fn(MKn0
n (ŵ(n)))|

≤ |fn+n0(ŵ(n + n0))− fn(ŵ(n + n0))|
+|fn+n0(MKn0

n (ŵ(n)))− fn(MKn0
n (ŵ(n)))|

+|fn+n0(MKn0
n (ŵ(n)))− fn+n0(ŵ(n + n0))|

≤ 4ǫ/12 + ǫ/3 = 2ǫ/3 (56)

Hence, aftern0 iterations of the SPARLS algorithm, we have

|fn(ŵ(n + n0))− fn(w̃(n))|
≤ |fn(ŵ(n + n0))− fn(MKn0

n (ŵ(n)))|
+|fn(MKn0

n (ŵ(n)))− fn(w̃(n))|
< 2ǫ/3 + ǫ/3 = ǫ.

Therefore, aftern0 iterations, we can reach an arbitrarily small
neighborhood ofw̃(n) for all n, due to the continuity of
fn(w). Sincew̃(n)→ w̃0, we can reach an arbitrarily small
neighborhood ofw̃0 in finite time for all n. Therefore, the
SPARLS algorithm converges tõw0 almost surely.

APPENDIX B
STEADY STATE ERROR ANALYSIS: DERIVATIONS

First, we briefly overview the convergence properties of the
EM algorithm. The global and componentwise convergence

of the EM algorithm has been widely studied in the statistics
literature (See, for example, [13] and [23]). Suppose, for the
moment, that the mappingMn is differentiable atw̃(n),
the maximizer of the objective function in Eq. (18). We can
therefore write the Taylor expansion as follows:

ŵ(ℓ+1)(n)− w̃(n) = DMn(w̃(n))
(
ŵ(ℓ)(n)− w̃(n)

)

+ O
(
‖ŵ(ℓ)(n)− w̃(n)‖2

)
, (57)

whereDMn is the Jacobian of the mappingMn and we have
used the fact that̃w(n) is a fixed point for the mappingMn.
Hence, in a sufficiently small neighborhood ofw̃(n), the EM
algorithm is simply a linear mapping. However, in our case the
mappingMn is not differentiable, since the soft thresholding
function is not differentiable at points−γα2 and γα2. We
can therefore use the sub-differential of the mappingMn in
order to study its behavior in a neighborhood ofw̃(n). Let
E : CM 7−→ CM be a mapping defined as:

E(w) :=
(
I− α2

σ2
X∗DX

)
w +

α2

σ2
X∗Dd. (58)

Note that we have dropped the dependence onn for nota-
tional convenience. The mappingM is then simply given
by M(w) = S ◦ E(w), where S(·) is the elementwise
soft thresholding function, defined in Eq. (25). Although the
mappingE is differentiable, the mappingS is not. However,
as we will see later on, the restriction on the convergence
properties of the EM algorithm does not arise from the M step
and is mainly due to the E step. Here, we take the approach of
working with sub-differentials to avoid introducing smoothing
parameters to our setting. In order to simplify the notational
presentation, we assume thatw ∈ RM . Due to the trivial
isomorphism of the vector spacesCM andR2M over the field
of real numbers, generalization tow ∈ CM is straightforward.
We can define the sub-differential of the mappingS as follows
(See, for example, [26]):

∂S(w) = diag(h1, h2, · · · , hM ) (59)

where

hi :=







1 |wi| > γα2

0 ≤ hi ≤ 1 |wi| = γα2

0 |wi| < γα2

(60)

In addition, from the chain rule for sub-differentials [26], we
have

∂M(w) = ∂(S ◦ E(w)) =
(
∂S(E(w))

)∗(
I− α2

σ2
X∗DX

)

(61)
Therefore, by an appropriate choice of the sub-differential of
S at w̃(n), we can locally approximate the EM iteration by

ŵ(ℓ+1)(n)− w̃(n)

≈
(
∂S(E(w̃(n)))

)∗(
I− α2

σ2
X∗(n)D(n)X(n)

)

×
(
ŵ(ℓ)(n)− w̃(n)

)
(62)

From the convergence results of [13] and [23], it is known
that the linear convergence rate of the EM algorithm is
governed by the maximum eigenvalue of the JacobianDM.
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In our case, we need to consider the maximum eigenvalue
of ∂(S ◦ E(w̃(n))). Clearly, the maximum eigenvalue of the
diagonal matrix∂S(E(w̃(n)) is bounded above by1, since
all its diagonal elementshi are bounded as0 ≤ hi ≤ 1.
In fact, the maximum eigenvalue of∂S(E(w̃(n)) is equal
to 1, unless all the elements of̃w(n) are in the range
−γα2 ≤ wi ≤ γα2, which is very unlikely to happen. This
account for the earlier claim that the maximum eigenvalue
of ∂S does not play a significant role in the convergence
rate, since it most likely is equal to1. Therefore, the rate
of convergence is governed by the maximum eigenvalue of
the matrixI− α2

σ2 X
∗(n)D(n)X(n), which is given by

ρ(n) := 1− α2

σ2
sM (n), (63)

wheresM (n) is the minimum eigenvalue ofX∗(n)D(n)X(n)
(there is more to say about the asymptotic behavior ofρ(n),
asn→∞, in Section IV-E). If we perform the EM iteration
a total ofK times, we can write:

‖ŵ(n + 1)− w̃(n)‖2 ≤
∥
∥
∥

(

∂M(w̃(n))
)K∥

∥
∥

2

×‖ŵ(n)− w̃(n)‖2
≤ ρ(n)K‖ŵ(n)− w̃(n)‖2

for ŵ(n) in a small neighborhood of̃w(n).

Recall that from Lemma 3 of [28], we know that the
maximizer of the objective function given in Eq. (18) is unique
if XI(n) is maximal rank, whereI = supp(w(n)). Moreover,
Lemma 6 of Tropp in [28] establishes that ifγ satisfies

γ ≥ ‖X
∗(n)D1/2(n)(D1/2(n)XI(n))+D1/2(n)ηI(n)‖∞

1−max
i/∈I
|X∗

i (n)D(n)X(n)g(n)| ,

(64)
we have

ŵg(n)− w̃(n) = γσ2
(

X∗
I(n)D(n)XI(n)

)−1

g(n) (65)

whereŵg(n) is thegenie-aidedestimate ofw(n) given by

ŵg(n) :=
(
D1/2(n)XI(n)

)+
D1/2(n)dI(n)

= w(n) +
(
D1/2(n)XI(n)

)+
ηI(n) (66)

and g(n) is in the sub-gradient set of‖w̃(n)‖1. The genie-
aided estimate corresponds to the least square solution when
a genie has provided the support ofw(n) to the estimator and
is considered to be a theoretical performance benchmark for
the estimation of sparse vectors. Using the relations between
ŵg(n), w̃(n) andw(n) and triangle inequality we can write:

ǫ(n + 1) = Eη

{

‖ŵ(n + 1)− w̃(n) + w̃(n)−w(n)

+w(n)−w(n + 1)‖2
}

≤ ρ(n)Kǫ(n) + Eη

{∥
∥(D1/2(n)XI(n))+ηI(n)

∥
∥

2

}

+ γσ2
∥
∥
∥

(

X∗
I(n)D(n)XI(n)

)−1∥
∥
∥

2,∞

+ ‖w(n + 1)−w(n)‖2 (67)

where the(2,∞)-norm of a matrixA is defined as‖A‖2,∞ :=

maxx:x 6=0
‖Ax‖2

‖x‖∞

.

APPENDIX C
PROOF OFTHEOREM 4.2

For the RLS algorithm (withλ = 1), the error expression
is given by

ǫRLS(n + 1) := Eη

{∥
∥ŵRLS(n + 1)−w(n + 1)

∥
∥

2

}

= Eη

{∥
∥X+(n)η(n)

∥
∥

2

}

. (68)

According to Eq. (38) the corresponding error expression for
the SPARLS algorithm in a stationary environment is upper
bounded as

ǫ(n + 1) ≤ ρK(n)ǫ(n) + Eη

{∥
∥(D1/2(n)XI(n))+ηI(n)

∥
∥

2

}

+ γα2
∥
∥
∥

(
X∗

I(n)D(n)XI(n)
)−1

∥
∥
∥

2,∞
. (69)

Let µ(n) be the coherence of the matrixX∗(n)D(n)X(n).
Now, we claim that forn0 < ∞ and L < 1/(3µ(n0)), one
can chooseγ0 andλ0 < 1 such that

Eη

{∥
∥(D1/2(n0)XI(n0))

+ηI(n0)
∥
∥

2

}

+ γα2
∥
∥
∥

(
X∗

I(n0)D(n0)XI(n0)
)−1

∥
∥
∥

2,∞

< Eη

{∥
∥X+(n0)η(n0)

∥
∥

2

}

. (70)

First, note that the claim is obviously true forλ = 1,
for an appropriate choice ofγ and a sufficiently incoherent
measurement matrixX(n), thanks to the results of Tropp
[28] and Ben-Haim et al. [5] on the near-oracle performance
of Subspace Pursuit. Next, by the continuity of the pseudo-
inverse operator in the argumentD1/2(n), the continuity of
the coherenceµ(n) in λ, and finally the continuity of the lower
bound onγ in λ (See Eq. (64) or Lemma 6 of [28]), there
exist λ0 < 1 andγ0 such that the above inequality holds.

Note that with the appropriate choice ofγ0 as in [28] and
[5], |I| ≤ L with high probability. Hence, forL ≪ M
(low sparsity regime), the left hand side of Eq. (70) can be
significantly smaller than the right hand side. Now, given that
the SPARLS algorithm converges to a fixed point (Theorem
4.1), for n0 large enough, the average instantaneous error of
SPARLS, ǫ(n0), is a factor of1/(1 − ρ(n0)

K) away from
the left hand side of Eq. (70). By choosingK appropriately,
one can guarantee thatρ(n0)

K ≪ 1. Hence, there exists
0 < a < min{ 1

3µ0M , 1} such that forL/M < a, we have
ǫ(n0) < ǫRLS(n0). This establishes the statement of the
theorem.
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