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Abstract. The World Wide Web currently evolves into a Web of Linked Data
where content providers publish and link data as they have done with hypertext
for the last 20 years. While the declarative query language SPARQL is the de
facto for querying a-priory defined sets of data from the Web, no language exists
for querying the Web of Linked Data itself. However, it seems natural to ask
whether SPARQL is also suitable for such a purpose.

In this paper we formally investigate the applicability of SPARQL as a query
language for Linked Data on the Web. In particular, we study two query models:
1) a full-Web semantics where the scope of a query is the complete set of Linked
Data on the Web and 2) a family of reachability-based semantics which restrict
the scope to data that is reachable by traversing certain data links. For both models
we discuss properties such as monotonicity and computability as well as the im-
plications of querying a Web that is infinitely large due to data generating servers.

1 Introduction

The emergence of vast amounts of RDF data on the WWW has spawned research on
storing and querying large collections of such data efficiently. The prevalent query lan-
guage in this context is SPARQL [16] which defines queries as functions over an RDF
dataset, that is, a fixed, a-priory defined collection of sets of RDF triples. This definition
naturally fits the use case of querying a repository of RDF data copied from the Web.

However, most RDF data on the Web is published following the Linked Data prin-
ciples [5], contributing to the emerging Web of Linked Data [6]. This practice allows
for query approaches that access the most recent version of remote data on demand.
More importantly, query execution systems may automatically discover new data by
traversing data links. As a result, such a system answers queries based on data that is
not only up-to-date but may also include initially unknown data. These features are the
foundation for true serendipity, which we regard as the most distinguishing advantage
of querying the Web itself, instead of a predefined, bounded collection of data.

While several research groups work on systems that evaluate SPARQL basic graph
patterns over the Web of Linked Data (cf. [9], [10,12] and [13,14]), we notice a shortage
of work on theoretical foundations and properties of such queries. Furthermore, there is
a need to support queries that are more expressive than conjunctive (basic graph pattern
based) queries [17]. However, it seems natural to assume that SPARQL could be used
in this context because the Web of Linked Data is based on the RDF data model and
SPARQL is a query language for RDF data. In this paper we challenge this assumption.
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Contributions. In this paper we understand queries as functions over the Web of Linked
Data as a whole. To analyze the suitability of SPARQL as a language for such queries,
we have to adjust the semantics of SPARQL. More precisely, we have to redefine the
scope for evaluating SPARQL algebra expressions. In this paper we discuss two ap-
proaches for such an adjustment. The first approach uses a semantics where the scope
of a query is the complete set of Linked Data on the Web. We call this semantics full-
Web semantics. The second approach introduces a family of reachability-based seman-
tics which restrict the scope to data that is reachable by traversing certain data links.
We emphasize that both approaches allow for query results that are based on data from
initially unknown sources and, thus, enable applications to tap the full potential of the
Web. Nevertheless, both approaches precisely define the (expected) result for any query.

As a prerequisite for defining the aforementioned semantics and for studying theoret-
ical properties of queries under these semantics, we introduce a theoretical framework.
The basis of this framework is a data model that captures the idea of a Web of Linked
Data. We model such a Web as an infinite structure of documents that contain RDF
data and that are interlinked via this data. Our model allows for infiniteness because
the number of entities described in a Web of Linked Data may be infinite; so may the
number of documents. The following example illustrates such a case:

Example 1. Let ui denote an HTTP scheme based URI that identifies the natural num-
ber i. There is a countably infinite number of such URIs. The WWW server which
is responsible for these URIs may be set up to provide a document for each natural
number. These documents may be generated upon request and may contain RDF data
including the RDF triple (ui, http://.../next, ui+1). This triple associates the natural number
i with its successor i+1 and, thus, links to the data about i+1 [19]. An example for such
a server is provided by the Linked Open Numbers project1.

In addition to the data model our theoretical framework comprises a computation model.
This model is based on a particular type of Turing machine which formally captures the
limited data access capabilities of computations over the Web.

We summarize the main contributions of this paper as follows:

– We present a data model and a computation model that provide a theoretical frame-
work to define and to study query languages for the Web of Linked Data.

– We introduce a full-Web semantics and a family of reachability-based semantics
for a (hypothetical) use of SPARQL as a language for queries over Linked Data.

– We systematically analyze SPARQL queries under the semantics that we introduce.
This analysis includes a discussion of satisfiability, monotonicity, and computabil-
ity of queries under the different semantics, a comparison of the semantics, and a
study of the implications of querying a Web of Linked Data that is infinite.

Related Work. Since its emergence the WWW has attracted research on declarative
query languages for the Web. For an overview on early work in this area we refer to [8].
Most of this work understands the WWW as a hypertext Web. Nonetheless, some of the
foundational work can be adopted for research on Linked Data. The computation model
that we use in this paper is an adaptation of the ideas presented in [1] and [15].

1 http://km.aifb.kit.edu/projects/numbers/

http://km.aifb.kit.edu/projects/numbers/
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In addition to the early work on Web queries, query execution over Linked Data
on the WWW has attracted much attention recently [9,10,12,13,14]. However, existing
work primarily focuses on various aspects of (query-local) data management, query ex-
ecution, and optimization. The only work we are aware of that aims to formally capture
the concept of Linked Data and to provide a well-defined semantics for queries in this
context is Bouquet et al.’s [7]. They define three types of query methods for conjunctive
queries: a bounded method which only uses RDF data referred to in queries, a direct
access method which assumes an oracle that provides all RDF graphs which are “rel-
evant” for a given query, and a navigational method which corresponds to a particular
reachability-based semantics. For the latter Bouquet et al. define a notion of reachabil-
ity that allows a query execution system to follow all data links. As a consequence, the
semantics of queries using this navigational method is equivalent to, what we call, cAll-
semantics (cf. Section 5.1); it is the most general of our reachability-based semantics.
Bouquet et al.’s navigational query model does not support other, more restrictive no-
tions of reachability, as is possible with our model. Furthermore, Bouquet et al. do not
discuss full SPARQL, theoretical properties of queries, or the infiniteness of the WWW.

While we focus on the query language SPARQL in the context of Linked Data on the
Web, the theoretical properties of SPARQL as a query language for a fixed, predefined
collection of RDF data are well understood today [2,3,16,18]. Particularly interesting
in our context are semantical equivalences between SPARQL expressions [18] because
these equivalences may also be used for optimizing SPARQL queries over Linked Data.

Structure of the Paper. The remainder of this paper is organized as follows. Sec-
tion 2 introduces the preliminaries for our work. In Section 3 we present the data model
and the computation model. Sections 4 and 5 discuss the full-Web semantics and the
reachability-based semantics for SPARQL, respectively. We conclude the paper in Sec-
tion 6. For full technical proofs of all results in this paper we refer to [11].

2 Preliminaries

This section provides a brief introduction of RDF and the query language SPARQL.
We assume pairwise disjoint, countably infinite sets U (all HTTP scheme based

URIs2), B (blank nodes), L (literals), and V (variables, denoted by a leading ’?’ sym-
bol). An RDF triple t is a tuple (s, p, o) ∈ (U∪B)×U×(U∪B∪L). For any RDF triple
t = (s, p, o) we define terms(t) = {s, p, o} and uris(t) = terms(t) ∩ U . Overloading
function terms, we write terms(G) =

⋃
t∈G terms(t) for any (potentially infinite) set

G of RDF triples. In contrast to the usual formalization of RDF we allow for infinite
sets of RDF triples which we require to study infinite Webs of Linked Data.

In this paper we focus on the core fragment of SPARQL discussed by Pérez et al. [16]
and we adopt their formalization approach, that is, we use the algebraic syntax and
the compositional set semantics introduced in [16]. SPARQL expressions are defined
recursively: i) A triple pattern (s, p, o) ∈ (V ∪ U) × (V ∪ U) × (V ∪ U ∪ L) is a

2 For the sake of simplicity we assume in this paper that URIs are HTTP scheme based URIs.
However, our models and result may be extended easily for all possible types of URIs.
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SPARQL expression3. ii) If P1 and P2 are SPARQL expressions, then (P1 ANDP2),
(P1 UNION P2), (P1 OPT P2), and (P1 FILTERR) are SPARQL expressions where R is a
filter condition. For a formal definition of filter conditions we refer to [16]. To denote the
set of all variables in all triple patterns of a SPARQL expression P we write vars(P ).

To define the semantics of SPARQL we introduce valuations, that are, partial map-
pings μ : V → U ∪B∪L. The evaluation of a SPARQL expression P over a potentially
infinite set G of RDF triples, denoted by [[P ]]G, is a set of valuations. In contrast to the
usual case, this set may be infinite in our scenario. The evaluation function [[·]]· is de-
fined recursively over the structure of SPARQL expressions. Due to space limitations,
we do not reproduce the full formal definition of [[·]]· here. Instead, we refer the reader to
the definitions given by Pérez et al. [16]; even if Pérez et al. define [[·]]· for finite sets of
RDF triples, it is trivial to extend their formalism for infiniteness (cf. appendix in [11]).

A SPARQL expression P is monotonic if for any pair G1, G2 of (potentially infinite)
sets of RDF triples such that G1 ⊆ G2, it holds that [[P ]]G1 ⊆ [[P ]]G2 . A SPARQL ex-
pression P is satisfiable if there exists a (potentially infinite) set G of RDF triples such
that [[P ]]G �= ∅. It is trivial to show that any non-satisfiable expression is monotonic.

In addition to the traditional notion of satisfiability we shall need a more restrictive
notion for the discussion in this paper: A SPARQL expression P is nontrivially satisfi-
able if there exists a (potentially infinite) set G of RDF triples and a valuation μ such
that i) μ ∈ [[P ]]G and ii) μ provides a binding for at least one variable; i.e. dom(μ) �= ∅.

Example 2. Let PEx2 = tp be a SPARQL expression that consists of a single triple
pattern tp = (u1, u2, u3) where u1, u2, u3 ∈ U ; hence, tp actually is an RDF triple. For
any set G of RDF triples for which (u1, u2, u3) ∈ G it is easy to see that the evaluation
of PEx2 over G contains a single, empty valuation μ∅, that is, [[PEx2]]G = {μ∅} where
dom(μ∅) = ∅. In contrast, for any other set G of RDF triples it holds [[PEx2]]G = ∅.
Hence, PEx2 is not nontrivially satisfiable (although it is satisfiable).

3 Modeling a Web of Linked Data

In this section we introduce theoretical foundations which shall allow us to define and
to analyze query models for Linked Data. In particular, we propose a data model and
introduce a computation model. For these models we assume a static view of the Web;
that is, no changes are made to the data on the Web during the execution of a query.

3.1 Data Model

We model the Web of Linked Data as a potentially infinite structure of interlinked doc-
uments. Such documents, which we call Linked Data documents, or LD documents for
short, are accessed via URIs and contain data that is represented as a set of RDF triples.

Definition 1. Let T = (U ∪ B) × U × (U ∪ B ∪ L) be the infinite set of all possible
RDF triples. A Web of Linked Data is a tuple W = (D, data, adoc) where:

3 For the sake of a more straightforward formalization we do not permit blank nodes in triple
patterns. In practice, each blank node in a SPARQL query can be replaced by a new variable.
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– D is a (finite or countably infinite) set of symbols that represent LD documents.
– data is a total mapping data :D → 2T such that ∀ d ∈ D : data(d) is finite and
∀d1, d2 ∈ D : d1 �= d2 ⇒ terms

(
data(d1)

)
∩ B �= terms

(
data(d2)

)
∩ B.

– adoc is a partial, surjective mapping adoc : U → D.

While the three elements D, data, and adoc completely define a Web of Linked Data
in our model, we point out that these elements are abstract concepts and, thus, are not
available to a query execution system. However, by retrieving LD documents, such a
system may gradually obtain information about the Web. Based on this information the
system may (partially) materialize these three elements. In the following we discuss the
three elements and introduce additional concepts that we need to define queries.

We say a Web of Linked Data W = (D, data, adoc) is finite if and only if D is
finite; otherwise, W is infinite. Our model allows for infiniteness to cover cases where
Linked Data about an infinite number of identifiable entities is generated on the fly. The
Linked Open Numbers project (cf. Example 1) illustrates that such cases are possible in
practice. Another example is the LinkedGeoData project4 which provides Linked Data
about any circular and rectangular area on Earth [4]. Covering these cases enables us to
model queries over such data and analyze the effects of executing such queries.

Even if a Web of Linked Data W = (D, data, adoc) is infinite, Definition 1 requires
countability for D. We emphasize that this requirement does not restrict us in modeling
the WWW as a Web of Linked Data: In the WWW we use URIs to locate documents
that contain Linked Data. Even if URIs are not limited in length, they are words over a
finite alphabet. Thus, the infinite set of all possible URIs is countable, as is the set of all
documents that may be retrieved using URIs.

The mapping data associates each LD document d ∈ D in a Web of Linked Data
W = (D, data, adoc) with a finite set of RDF triples. In practice, these triples are ob-
tained by parsing d after d has been retrieved from the Web. The actual retrieval mech-
anism is not relevant for our model. However, as prescribed by the RDF data model,
Definition 1 requires that the data of each d ∈ D uses a unique set of blank nodes.

To denote the (potentially infinite but countable) set of all RDF triples in W we write
AllData(W ); i.e. it holds: AllData(W ) =

{
data(d) | d ∈ D

}
.

Since we use URIs as identifiers for entities, we say that an LD document d ∈ D
describes the entity identified by URI u ∈ U if there exists (s, p, o) ∈ data(d) such that
s = u or o = u. Notice, there might be multiple LD documents that describe an entity
identified by u. However, according to the Linked Data principles, each u ∈ U may also
serve as a reference to a specific LD document which is considered as an authoritative
source of data about the entity identified by u. We model the relationship between
URIs and authoritative LD documents by mapping adoc. Since some LD documents
may be authoritative for multiple entities, we do not require injectivity for adoc. The
“real world” mechanism for dereferencing URIs (i.e. learning about the location of the
authoritative LD document) is not relevant for our model. For each u ∈ U that cannot
be dereferenced (i.e. “broken links”) or that is not used in W it holds u /∈ dom(adoc).

A URI u∈U with u∈dom(adoc) that is used in the data of an LD document d1∈D
constitutes a data link to the LD document d2 = adoc(u) ∈ D. These data links form a

4 http://linkedgeodata.org

http://linkedgeodata.org
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graph structure which we call link graph. The vertices in such a graph represent the LD
documents of the corresponding Web of Linked Data; edges represent data links.

To study the monotonicity of queries over a Web of Linked Data we require a concept
of containment for such Webs. For this purpose, we introduce the notion of an induced
subweb which resembles the concept of induced subgraphs in graph theory.

Definition 2. Let W =(D, data, adoc) and W ′=(D′, data′, adoc′) be Webs of Linked
Data. W ′ is an induced subweb of W if i) D′ ⊆ D, ii) ∀ d ∈ D′ : data′(d) = data(d),
and iii) ∀u ∈ UD′ : adoc′(u) = adoc(u) where UD′ = {u ∈ U | adoc(u) ∈ D′}.

It can be easily seen from Definition 2 that specifying D′ is sufficient to unambiguously
define an induced subweb (D′, data′, adoc′) of a given Web of Linked Data. Further-
more, it is easy to verify that for an induced subweb W ′ of a Web of Linked Data W it
holds AllData(W ′) ⊆ AllData(W ).

In addition to the structural part, our data model introduces a general understanding
of queries over a Web of Linked Data:

Definition 3. Let W be the infinite set of all possible Webs of Linked Data (i.e. all
3-tuples that correspond to Definition 1) and let Ω be the infinite set of all possible
valuations. A Linked Data query q is a total function q : W → 2Ω .

The notions of satisfiability and monotonicity carry over naturally to Linked Data
queries: A Linked Data query q is satisfiable if there exists a Web of Linked Data
W such that q(W ) is not empty. A Linked Data query q is nontrivially satisfiable if
there exists a Web of Linked Data W and a valuation μ such that i) μ ∈ q(W ) and
ii) dom(μ) �= ∅. A Linked Data query q is monotonic if for every pair W1, W2 of Webs
of Linked Data it holds: If W1 is an induced subweb of W2, then q(W1) ⊆ q(W2).

3.2 Computation Model

Usually, functions are computed over structures that are assumed to be fully (and di-
rectly) accessible. In contrast, we focus on Webs of Linked Data in which accessibility
is limited: To discover LD documents and access their data we have to dereference
URIs, but the full set of those URIs for which we may retrieve documents is unknown.
Hence, to properly analyze a query model for Webs of Linked Data we must define a
model for computing functions on such a Web. This section introduces such a model.

In the context of queries over a hypertext-centric view of the WWW, Abiteboul and
Vianu introduce a specific Turing machine called Web machine [1]. Mendelzon and
Milo propose a similar machine model [15]. These machines formally capture the lim-
ited data access capabilities on the WWW and thus present an adequate abstraction for
computations over a structure such as the WWW. Based on these machines the authors
introduce particular notions of computability for queries over the WWW. These notions
are: (finitely) computable queries, which correspond to the traditional notion of com-
putability; and eventually computable queries whose computation may not terminate
but each element of the query result will eventually be reported during the computation.
We adopt the ideas of Abiteboul and Vianu and of Mendelzon and Milo for our work.
More precisely, we adapt the idea of a Web machine to our scenario of a Web of Linked
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Data. We call our machine a Linked Data machine (or LD machine, for short). Based on
this machine we shall define finite and eventual computability for Linked Data queries.

Encoding (fragments of) a Web of Linked Data W = (D, data, adoc) on the tapes
of such an LD machine is straightforward because all relevant structures, such as the
sets D or U , are countably infinite. In the remainder of this paper we write enc(x) to
denote the encoding of some element x (e.g. a single RDF triple, a set of triples, a full
Web of Linked Data, a valuation, etc.). For a detailed definition of the encodings we use
in this paper, we refer to the appendix in [11]. We now define LD machine:

Definition 4. An LD machine is a multi-tape Turing machine with five tapes and a
finite set of states, including a special state called expand. The five tapes include two,
read-only input tapes: i) an ordinary input tape and ii) a right-infinite Web tape which
can only be accessed in the expand state; two work tapes: iii) an ordinary, two-way
infinite work tape and iv) a right-infinite link traversal tape; and v) a right-infinite,
append-only output tape. Initially, the work tapes and the output tape are empty, the
Web tape contains a (potentially infinite) word that encodes a Web of Linked Data, and
the ordinary input tape contains an encoding of further input (if any). Any LD machine
operates like an ordinary multi-tape Turing machine except when it reaches the expand
state. In this case LD machines perform the following expand procedure: The machine
inspects the word currently stored on the link traversal tape. If the suffix of this word
is the encoding enc(u) of some URI u ∈ U and the word on the Web tape contains
� enc(u) enc(adoc(u)) � , then the machine appends enc(adoc(u)) � to the (right) end
of the word on the link traversal tape by copying from the Web tape; otherwise, the
machine appends � to the word on the link traversal tape.

Notice how any LD machine M is limited in the way it may access a Web of Linked
Data W =(D, data, adoc) that is encoded on its Web tape: M may use the data of any
particular d ∈D only after it performed the expand procedure using a URI u ∈ U for
which adoc(u)=d. Hence, the expand procedure simulates a URI based lookup which
conforms to the (typical) data access method on the WWW. We now use LD machines
to adapt the notion of finite and eventual computability [1] for Linked Data queries:

Definition 5. A Linked Data query q is finitely computable if there exists an LD ma-
chine which, for any Web of Linked Data W encoded on the Web tape, halts after a
finite number of steps and produces a possible encoding of q(W ) on its output tape.

Definition 6. A Linked Data q query is eventually computable if there exists an LD
machine whose computation on any Web of Linked Data W encoded on the Web tape
has the following two properties: 1.) the word on the output tape at each step of the
computation is a prefix of a possible encoding of q(W ) and 2.) the encoding enc(μ′)
of any μ′ ∈ q(W ) becomes part of the word on the output tape after a finite number of
computation steps.

Any machine for a non-satisfiable query may immediately report the empty result. Thus:

Fact 1. Non-satisfiable Linked Data queries are finitely computable.

In our analysis of SPARQL-based Linked Data queries we shall discuss decision prob-
lems that have a Web of Linked Data W as input. For such problems we assume the
computation may only be performed by an LD machine with enc(W ) on its Web tape:
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Definition 7. Let W ′ be a (potentially infinite) set of Webs of Linked Data (each of
which may be infinite itself); let X be an arbitrary (potentially infinite) set of finite
structures; and let DP ⊆W ′×X . The decision problem for DP , that is, decide for any
(W,X) ∈ W ′×X whether (W,X)∈DP , is LD machine decidable if there exist an LD
machine whose computation on any W ∈W ′ encoded on the Web tape and any X ∈X
encoded on the ordinary input tape, has the following property: The machine halts in
an accepting state if (W,X)∈DP ; otherwise the machine halts in a rejecting state.

Obviously, any (Turing) decidable problem that does not have a Web of Linked Data
as input, is also LD machine decidable because LD machines are Turing machines; for
these problems the corresponding set W ′ is empty .

4 Full-Web Semantics

Based on the concepts introduced in the previous section we now define and study
approaches that adapt SPARQL as a language for expressing Linked Data queries.

The first approach that we discuss is full-Web semantics where the scope of each
query is the complete set of Linked Data on the Web. Hereafter, we refer to SPARQL
queries under this full-Web semantics as SPARQLLD queries. The definition of these
queries is straightforward and makes use of SPARQL expressions and their semantics:

Definition 8. Let P be a SPARQL expression. The SPARQLLD query that uses P , de-
noted by QP, is a Linked Data query that, for any Web of Linked Data W , is defined as:
QP

(
W

)
= [[P ]]AllData(W ). Each valuation μ ∈ QP

(
W

)
is a solution for QP in W .

In the following we study satisfiability, monotonicity, and computability of SPARQLLD

queries and we discuss implications of querying Webs of Linked Data that are infinite.

4.1 Satisfiability, Nontrivial Satisfiability, Monotonicity, and Computability

For satisfiability and monotonicity we may show the following dependencies.

Proposition 1. Let QP be a SPARQLLD query that uses SPARQL expression P .
1. QP is satisfiable if and only if P is satisfiable.
2. QP is nontrivially satisfiable if and only if P is nontrivially satisfiable.
3. QP is monotonic if and only if P is monotonic.

We now discuss computability. Since all non-satisfiable SPARQLLD queries are finitely
computable (recall Fact 1), we focus on satisfiable SPARQLLD queries. Our first main
result shows that the computability of such queries depends on their monotonicity:

Theorem 1. If a satisfiable SPARQLLD query is monotonic, then it is eventually com-
putable (but not finitely computable); otherwise, it is not even eventually computable.

In addition to a direct dependency between monotonicity and computability, Theorem 1
shows that not any satisfiable SPARQLLD query is finitely computable; instead, such
queries are at best eventually computable. The reason for this limitation is the infinite-
ness of U : To (fully) compute a satisfiable SPARQLLD query, an LD machine requires
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access to the data of all LD documents in the queried Web of Linked Data. Recall that,
initially, the machine has no information about what URI to use for performing an ex-
pand procedure with which it may access any particular document. Hence, to ensure
that all documents have been accessed, the machine must expand all u ∈ U . This pro-
cess never terminates because U is infinite. Notice, a real query system for the WWW
would have a similar problem: To guarantee that such a system sees all documents, it
must enumerate and lookup all (HTTP scheme) URIs.

The computability of any Linked Data query is a general, input independent property
which covers the worst case (recall, the requirements given in Definitions 5 and 6 must
hold for any Web of Linked Data). As a consequence, in certain cases the computation
of some (eventually computable) SPARQLLD queries may still terminate:

Example 3. Let QPEx2 be a monotonic SPARQLLD query which uses the SPARQL ex-
pression PEx2 = (u1, u2, u3) that we introduce in Example 2. Recall, PEx2 is satisfiable
but not nontrivially satisfiable. The same holds for QPEx2 (cf. Proposition 1). An LD
machine for QPEx2 may take advantage of this fact: As soon as the machine discovers an
LD document which contains RDF triple (u1, u2, u3), the machine may halt (after re-
porting {μ∅} with dom(μ∅) = ∅ as the complete query result). In this particular case
the machine would satisfy the requirements for finite computability. However, QPEx2 is
still only eventually computable because there exist Webs of Linked Data that do not
contain any LD document with RDF triple (u1, u2, u3); any (complete) LD machine
based computation of QPEx2 over such a Web cannot halt (cf. proof of Theorem 1).

The example illustrates that the computation of an eventually computable query over a
particular Web of Linked Data may terminate. This observation leads us to a decision
problem which we denote as TERMINATION(SPARQLLD ). This problem takes a Web
of Linked Data W and a satisfiable SPARQLLD query QP as input and asks whether
an LD machine exists that computes QP

(
W

)
and halts. For discussing this problem we

note that the query in Example 3 represents a special case, that is, SPARQLLD queries
which are satisfiable but not nontrivially satisfiable. The reason why an LD machine
for such a query may halt, is the implicit knowledge that the query result is complete
once the machine identified the empty valuation μ∅ as a solution. Such a completeness
criterion does not exist for any nontrivially satisfiable SPARQLLD query:

Lemma 1. There is not any nontrivially satisfiable SPARQLLD query QP for which
exists an LD machine that, for any Web of Linked Data W encoded on the Web tape,
halts after a finite number of computation steps and outputs an encoding of QP

(
W

)
.

Lemma 1 shows that the answer to TERMINATION(SPARQLLD ) is negative in most
cases. However, the problem in general is undecidable (for LD machines) since the in-
put for the problem includes queries that correspond to the aforementioned special case.

Theorem 2. TERMINATION(SPARQLLD ) is not LD machine decidable.

4.2 Querying an Infinite Web of Linked Data

The limited computability of SPARQLLD queries that our results in the previous section
show, is a consequence of the infiniteness of U and not of a possible infiniteness of the
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queried Web. We now focus on the implications of potentially infinite Webs of Linked
Data for SPARQLLD queries. However, we assume a finite Web first:

Proposition 2. SPARQLLD queries over a finite Web of Linked Data have a finite result.

The following example illustrates that a similarly general statement does not exist when
the queried Web is infinite such as the WWW.

Example 4. Let Winf = (Dinf , datainf , adocinf) be an infinite Web of Linked Data that
contains LD documents for all natural numbers (similar to the documents in Exam-
ple 1). Hence, for each natural number5 k ∈ N

+, identified by uk ∈ U , exists an LD
document adocinf(uk) = dk ∈ Dinf such that datainf(dk) =

{
(uk, succ, uk+1)

}
where

succ ∈ U identifies the successor relation for N+. Furthermore, let P1 = (u1, succ, ?v)
and P2 = (?x, succ, ?y) be SPARQL expressions. It can be seen easily that the result
of SPARQLLD query QP1 over Winf is finite, whereas, QP2

(
Winf

)
is infinite.

The example demonstrates that some SPARQLLD queries have a finite result over some
infinite Web of Linked Data and some queries have an infinite result. Consequently,
we are interested in a decision problem FINITENESS(SPARQLLD ) which asks, given a
(potentially infinite) Web of Linked Data W and a satisfiable SPARQL expression P ,
whether QP

(
W

)
is finite. Unfortunately, we cannot answer the problem in general:

Theorem 3. FINITENESS(SPARQLLD ) is not LD machine decidable.

5 Reachability-Based Semantics

Our results in the previous section show that SPARQL queries under full-Web seman-
tics have a very limited computability. As a consequence, any SPARQL-based query ap-
proach for Linked Data that uses full-Web semantics requires some ad hoc mechanism
to abort query executions and, thus, has to accept incomplete query results. Depending
on the abort mechanism the query execution may even be nondeterministic. If we take
these issues as an obstacle, we are interested in an alternative, well-defined semantics
for SPARQL over Linked Data. In this section we discuss a family of such seman-
tics which we call reachability-based semantics. These semantics restrict the scope of
queries to data that is reachable by traversing certain data links using a given set of URIs
as starting points. Hereafter, we refer to queries under any reachability-based seman-
tics as SPARQLLD(R) queries. In the remainder of this section we formally introduce
reachability-based semantics, discuss theoretical properties of SPARQLLD(R) queries,
and compare SPARQLLD(R) to SPARQLLD.

5.1 Definition

The basis of any reachability-based semantics is a notion of reachability of LD docu-
ments. Informally, an LD document is reachable if there exists a (specific) path in the

5 In this paper we write N+ to denote the set of all natural numbers without zero.
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link graph of a Web of Linked Data to the document in question; the potential start-
ing points for such a path are LD documents that are authoritative for a given set of
entities. However, allowing for arbitrary paths might be questionable in practice be-
cause this approach would require following all data links (recursively) for answering a
query completely. Consequently, we introduce the notion of a reachability criterion that
supports an explicit specification of what data links should be followed.

Definition 9. Let T be the infinite set of all possible RDF triples and let P be the in-
finite set of all possible SPARQL expressions. A reachability criterion c is a (Turing)
computable function c : T × U × P → {true, false}.

An example for a reachability criterion is cAll which corresponds to the aforementioned
approach of allowing for arbitrary paths to reach LD documents; hence, for each tuple
(t, u,Q) ∈ T × U × Q it holds cAll(t, u,Q) = true. The complement of cAll is cNone

which always returns false. Another example is cMatch which specifies the notion of
reachability that we use for link traversal based query execution [10,12].

cMatch

(
t, u, P

)
=

{
true if there exists a triple pattern tp in P and t matches tp,

false else.

where an RDF triple t = (x1, x2, x3) matches a triple pattern tp = (x̃1, x̃2, x̃3) if for
all i ∈ {1, 2, 3} holds: If x̃i /∈ V , then x̃i = xi.

We call a reachability criterion c1 less restrictive than another criterion c2 if i) for
each (t, u, P ) ∈ T ×U×P for which c2(t, u, P ) = true, also holds c1(t, u, P ) = true
and ii) there exist a (t′, u′, P ′) ∈ T × U × P such that c1(t′, u′, P ′) = true but
c2(t

′, u′, P ′) = false. It can be seen that cAll is the least restrictive criterion, whereas
cNone is the most restrictive criterion. We now define reachability of LD documents:

Definition 10. Let S ⊂ U be a finite set of seed URIs; let c be a reachability criterion;
let P be a SPARQL expression; and let W = (D, data, adoc) be a Web of Linked Data.
An LD document d ∈ D is (c, P )-reachable from S in W if either

1. there exists a URI u ∈ S such that adoc(u) = d; or
2. there exist d′ ∈ D, t ∈ data(d′), and u ∈ uris(t) such that i) d′ is (c, P )-reachable

from S in W , ii) adoc(u) = d, and iii) c(t, u, P ) = true.

Based on reachability of LD documents we define reachable parts of a Web of Linked
Data. Such a part is an induced subweb covering all reachable LD documents. Formally:

Definition 11. Let S ⊂ U be a finite set of URIs; let c be a reachability criterion; let
P be a SPARQL expression; and let W = (D, data, adoc) be a Web of Linked Data.

The (S, c, P )-reachable part of W , denoted by W
(S,P )
c , is an induced subweb (DR,

dataR, adocR) of W such that DR =
{
d ∈ D | d is (c, P )-reachable from S in W

}
.

We now use the concept of reachable parts to define SPARQLLD(R) queries.

Definition 12. Let S ⊂ U be a finite set of URIs; let c be a reachability criterion; and
let P be a SPARQL expression. The SPARQLLD(R) query that uses P , S, and c, denoted
by QP,S

c , is a Linked Data query that, for any Web of Linked Data W , is defined as

QP,S
c (W ) = [[P ]]

AllData(W
(S,P )
c )

(where W
(S,P )
c is the (S, c, P )-reachable part of W ).
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As can be seen from Definition 12, our notion of SPARQLLD(R) consists of a family
of (reachability-based) query semantics, each of which is characterized by a certain
reachability criterion. Therefore, we refer to SPARQLLD(R) queries for which we use a
particular reachability criterion c as SPARQLLD(R) queries under c-semantics.

Definition 12 also shows that query results depend on the given set S ⊂ U of seed
URIs. It is easy to see that any SPARQLLD(R) query which uses an empty set of seed
URIs is not satisfiable and, thus, monotonic and finitely computable. We therefore con-
sider only nonempty sets of seed URIs in the remainder of this paper.

5.2 Completeness and Infiniteness

Definition 12 defines precisely what the sound and complete result of any SPARQLLD(R)

query QP,S
c over any Web of Linked Data W is. However, in contrast to SPARQLLD, it

is not guaranteed that such a (complete) SPARQLLD(R) result is complete w.r.t. all data
on W . This difference can be attributed to the fact that the corresponding (S, c, P )-
reachable part of W may not cover W as a whole. We emphasize that such an incom-
plete coverage is even possible for the reachability criterion cAll because the link graph
of W may not be connected; therefore, cAll-semantics differs from full-Web semantics.
The following result relates SPARQLLD(R) queries to their SPARQLLD counterparts.

Proposition 3. Let QP,S
c be a SPARQLLD(R) query; let QP be the SPARQLLD query that

uses the same SPARQL expression as QP,S
c ; let W be a Web of Linked Data. It holds:

1. If QP is monotonic, then QP,S
c

(
W

)
⊆ QP

(
W

)
.

2. QP,S
c

(
W

)
= QP

(
W

(S,P )
c

)
. (recall, W (S,P )

c is the (S, c, P )-reachable part of W )

Since any SPARQLLD query over a finite Web of Linked Data has a finite result (cf.
Proposition 2), we use Proposition 3, case 2, to show the same for SPARQLLD(R):

Proposition 4. The result of any SPARQLLD(R) query QP,S
c over a finite Web of Linked

Data W is finite; so is the (S, c, P )-reachable part of W .

For the case of an infinite Web of Linked Data the results of SPARQLLD(R) queries
may be either finite or infinite. In Example 4 we found the same heterogeneity for
SPARQLLD. However, for SPARQLLD(R) we may identify the following dependencies.

Proposition 5. Let S ⊂ U be a finite, nonempty set of URIs; let c and c′ be reachability
criteria; and let P be a SPARQL expression. Let W be an infinite Web of Linked Data.

1. W
(S,P )
cNone is always finite; so is QP,S

cNone

(
W

)
.

2. If W (S,P )
c is finite, then QP,S

c

(
W

)
is finite.

3. If QP,S
c

(
W

)
is infinite, then W

(S,P )
c is infinite.

4. If c is less restrictive than c′ and W
(S,P )
c is finite, then W

(S,P )
c′ is finite.

5. If c′ is less restrictive than c and W
(S,P )
c is infinite, then W

(S,P )
c′ is infinite.

Proposition 5 provides valuable insight into the dependencies between reachability cri-
teria, the (in)finiteness of reachable parts of an infinite Web, and the (in)finiteness
of query results. In practice, however, we are primarily interested in answering two
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decision problems: FINITENESSREACHABLEPART and FINITENESS(SPARQLLD(R) ).
While the latter problem is the SPARQLLD(R) equivalent to FINITENESS(SPARQLLD )
(cf. Section 4.2), the former has the same input as FINITENESS(SPARQLLD(R) ) (that is,
a Web of Linked Data and a SPARQLLD(R) query) and asks whether the corresponding
reachable part of the given Web is finite. Both problems are undecidable in our context:

Theorem 4. FINITENESSREACHABLEPART and FINITENESS(SPARQLLD(R) ) are
not LD machine decidable.

5.3 Satisfiability, Nontrivial Satisfiability, Monotonicity, and Computability

We now investigate satisfiability, nontrivial satisfiability, monotonicity, and computabil-
ity of SPARQLLD(R) queries. First, we identify the following dependencies.

Proposition 6. Let QP,S
c be a SPARQLLD(R) query that uses a nonempty S ⊂ U .

1. QP,S
c is satisfiable if and only if P is satisfiable.

2. QP,S
c is nontrivially satisfiable if and only if P is nontrivially satisfiable.

3. QP,S
c is monotonic if P is monotonic.

Proposition 6 reveals a first major difference between SPARQLLD(R) and SPARQLLD:
The statement about monotonicity in that proposition is only a material conditional,
whereas it is a biconditional in the case of SPARQLLD (cf. Proposition 1). The reason
for this disparity are SPARQLLD(R) queries for which monotonicity is independent of the
corresponding SPARQL expression. The following proposition identifies such a case.

Proposition 7. Any SPARQLLD(R) query QP,S
cNone is monotonic if |S| = 1.

Before we may come back to the aforementioned disparity, we focus on the computabil-
ity of SPARQLLD(R) queries. We first show the following, noteworthy result.

Lemma 2. Let QP,S
c be a SPARQLLD(R) query that is nontrivially satisfiable. There

exists an LD machine that computes QP,S
c over any (potentially infinite) Web of Linked

Data W and that halts after a finite number of computation steps with an encoding of
QP,S

c

(
W

)
on its output tape if and only if the (S, c, P )-reachable part of W is finite.

The importance of Lemma 2 lies in showing that some computations of nontrivially
satisfiable SPARQLLD(R) queries may terminate. This possibility presents another ma-
jor difference between SPARQLLD(R) and SPARQLLD (recall Lemma 1 which shows
that any possible computation of nontrivially satisfiable SPARQLLD queries never ter-
minates). Based on Lemma 2 we may even show that a particular class of satisfiable
SPARQLLD(R) queries are finitely computable. This class comprises all queries that use
a reachability criterion which ensures the finiteness of reachable parts of any queried
Web of Linked Data. We define this property of reachability criteria as follows:

Definition 13. A reachability criterion c ensures finiteness if for any Web of Linked
Data W , any (finite) set S ⊂ U of seed URIs, and any SPARQL expression P , the
(S, c, P )-reachable part of W is finite.
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We may now show the aforementioned result:

Proposition 8. Let c be a reachability criterion that ensures finiteness. SPARQLLD(R)

queries under c-semantics are finitely computable.

While it remains an open question whether the property to ensure finiteness is decidable
for all reachability criteria, it is easy to verify the property for criteria which always only
accept a given, constant set of data links. For a formal discussion of such criteria, which
we call constant reachability criteria, we refer to the appendix in [11]. cNone is a special
case of these criteria; Proposition 5, case 1, verifies that cNone ensures finiteness.

Notice, for any reachability criterion c that ensures finiteness, the computability of
SPARQLLD(R) queries under c-semantics does not depend on the monotonicity of these
queries. This independence is another difference to SPARQLLD queries (recall Theo-
rem 1). However, for any other reachability criterion (including cMatch and cAll), we
have a similar dependency between monotonicity and computability of (satisfiable)
SPARQLLD(R) queries, that we have for SPARQLLD queries (recall Theorem 1):

Theorem 5. Let cnf be a reachability criterion that does not ensure finiteness. If a
satisfiable SPARQLLD(R) query QP,S

cnf (under cnf -semantics) is monotonic, then QP,S
cnf is

either finitely computable or eventually computable; otherwise, QP,S
cnf may not even be

eventually computable.

By comparing Theorems 1 and 5 we notice that SPARQLLD queries and SPARQLLD(R)

queries (that use a reachability criterion which does not ensure finiteness) feature a
similarly limited computability. However, the reasons for both of these results differ
significantly: In the case of SPARQLLD the limitation follows from the infiniteness of
U , whereas, for SPARQLLD(R) the limitation is a consequence of the possibility to query
an infinitely large Web of Linked Data.

However, even if the computability of many SPARQLLD(R) queries is as limited
as that of their SPARQLLD counterparts, there is another major difference: Lemma 2
shows that for (nontrivially satisfiable) SPARQLLD(R) queries which are not finitely
computable, the computation over some Webs of Linked Data may still terminate; this
includes all finite Webs (cf. Proposition 4) but also some infinite Webs (cf. proof of
Lemma 2). Such a possibility does not exist for nontrivially satisfiable SPARQLLD

queries (cf. Lemma 1). Nonetheless, the termination problem for SPARQLLD(R) is un-
decidable in our context.

Theorem 6. TERMINATION(SPARQLLD(R) ) is not LD machine decidable.

We now come back to the impossibility for showing that SPARQLLD(R) queries (with a
nonempty set of seed URIs) are monotonic only if their SPARQL expression is mono-
tonic. Recall, for some SPARQLLD(R) queries monotonicity is irrelevant for identifying
the computability (cf. Proposition 8). We are primarily interested in the monotonicity
of all other (satisfiable) SPARQLLD(R) queries because for those queries computability
depends on monotonicity as we show in Theorem 5. Remarkably, for those queries it is
possible to show the required dependency that was missing from Proposition 6:

Proposition 9. Let QP,S
cnf

be a SPARQLLD(R) query that uses a finite, nonempty S ⊂ U
and a reachability criterion cnf which does not ensure finiteness. QP,S

cnf is monotonic
only if P is monotonic.
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6 Conclusions

Our investigation of SPARQL as a language for Linked Data queries reveals the fol-
lowing main results. Some special cases aside, the computability of queries under any
of the studied semantics is limited and no guarantee for termination can be given. For
reachability-based semantics it is at least possible that some of the (non-special case)
query computations terminate; although, in general it is undecidable which. As a conse-
quence, any SPARQL-based query system for Linked Data on the Web must be prepared
for query executions that discover an infinite amount of data and that do not terminate.

Our results also show that –for reachability-based semantics– the aforementioned
issues must be attributed to the possibility for infiniteness in the queried Web (which is
a result of data generating servers). Therefore, it seems worthwhile to study approaches
for detecting whether the execution of a SPARQLLD(R) query traverses an infinite path
in the queried Web. However, the mentioned issues may also be addressed by another,
alternative well-defined semantics that restricts the scope of queries even further (or
differently) than our reachability-based semantics. It remains an open question how
such an alternative may still allow for queries that tap the full potential of the Web.

We also show that computability depends on satisfiability and monotonicity and that
for (almost all) SPARQL-based Linked Data queries, these two properties directly cor-
respond to the same property for the used SPARQL expression. While Arenas and Pérez
show that the core fragment of SPARQL without OPT is monotonic [3], it requires fur-
ther work to identify (non-)satisfiable and (non-)monotonic fragments and, thus, enable
an explicit classification of SPARQL-based Linked Data queries w.r.t. computability.
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19. Vrandecić, D., Krötzsch, M., Rudolph, S., Lösch, U.: Leveraging non-lexical knowledge for

the linked open data web. In: RAFT (2010)

http://arxiv.org/abs/1203.1569

	SPARQL for aWeb of Linked Data: Semantics and Computability
	Introduction
	Preliminaries
	Modeling a Web of Linked Data
	Data Model
	Computation Model

	Full-Web Semantics
	Satisfiability, Nontrivial Satisfiability, Monotonicity, and Computability
	Querying an Infinite Web of Linked Data

	Reachability-Based Semantics
	Definition
	Completeness and Infiniteness
	Satisfiability, Nontrivial Satisfiability, Monotonicity, and Computability

	Conclusions
	References


