
SPARQL Query Containment Under SH I Axioms

Melisachew Wudage
Chekol

INRIA & LIG
melisachew.chekol@inria.fr

Jérôme Euzenat
INRIA & LIG

jerome.euzenat@inria.fr

Pierre Genevès
CNRS

pierre.geneves@inria.fr

Nabil Layaı̈da
INRIA & LIG

nabil.layaida@inria.fr

Abstract
SPARQL query containment under schema axioms is
the problem of determining whether, for any RDF graph
satisfying a given set of schema axioms, the answers to
a query are contained in the answers of another query.
This problem has major applications for verification and
optimization of queries. In order to solve it, we rely
on the µ-calculus. Firstly, we provide a mapping from
RDF graphs into transition systems. Secondly, SPARQL
queries and RDFS and SH I axioms are encoded into
µ-calculus formulas. This allows us to reduce query
containment and equivalence to satisfiability in the µ-
calculus. Finally, we prove a double exponential upper
bound for containment under SH I schema axioms.

Introduction
Access to semantic web data expressed in RDF (Resource
Description Framework) may be achieved through query-
ing. Currently, querying RDF graphs is done mainly with
the SPARQL query language. It has been a source of re-
search from various perspectives, in particular for extending
the language and optimizing queries. Querying RDF graphs
with SPARQL proceeds by matching graph patterns, i.e.,
triple patterns connected to form graphs by means of joins
expressed using several occurrences of the same variable.
Since queries in the semantic web are evaluated over huge
RDF graphs, optimizations are necessary in order to find
minimal queries to reduce the computational cost of query
evaluation.

Query optimization aims at improving the runtime per-
formance of query evaluation. Studies have contributed to
query optimization using rewriting rules in particular in the
relational algebra for databases (Ioannidis 1996; Chandra
and Merlin 1977). Similar approaches have also been ap-
plied to SPARQL (Schmidt, Meier, and Lausen 2010). These
works, however, need at some point to prove the correctness
of query optimization, i.e., the semantics of the optimized
query is the same as the original one. In other words, the re-
sults of a given query are exactly the same as the optimized
one regardless of the considered database. This can be re-
duced to query containment. Thus, query containment plays
a vital role in optimization. It can be defined as determining

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

if the result of one query is included in the result of another
one for any RDF graph. In addition, query containment can
be of independent interest for performing other optimiza-
tions. For example, if a query q is contained in q′, then q
can be evaluated on the materialized view of q′ rather than
on the whole data graph. To the best of our knowledge, the
problem of SPARQL query containment (under a schema)
has not been covered in the literature.

The aim of this paper is to address SPARQL query con-
tainment under a DL schema (the schema is formulated
within the fragments of SH I Q). We apply an approach
which has already been successfully applied for XPath
(Genevès, Layaı̈da, and Schmitt 2007). SPARQL is inter-
preted over graphs, hence we encode it in a graph logic,
specifically the alternation-free fragment of the µ-calculus
(Kozen 1983) with converse and nominals (Tanabe, Taka-
hashi, and Hagiya 2008) interpreted over labeled transition
systems. We show that this logic is powerful enough to deal
with query containment for the fragment of SPARQL con-
sidered here in the presence of RDFS and SH I (schema)
axioms. Furthermore, this logic admits exponential time de-
cision procedures that is implemented in practice (Tanabe,
Takahashi, and Hagiya 2008). Hence, our approach opens a
way to use this implementation.

We introduce a translation of RDF graphs into transition
systems and SPARQL queries and schema axioms into µ-
calculus formulae. Then, we show how query containment in
SPARQL can be reduced to unsatisfiability in the µ-calculus.
We prove a double exponential upper bound for the prob-
lem. An additional benefit of using a µ-calculus encoding
is to take advantage of fixpoints and modalities for encod-
ing recursion. They allow to deal with natural extensions of
SPARQL such as path queries (Alkhateeb, Baget, and Eu-
zenat 2009) or queries modulo RDF Schema.

Preliminaries
RDF is a language used to express structured information
on the Web as graphs. We present a compact formalization
of RDF (Hayes 2004). Let U, B, and L be three disjoint in-
finite sets denoting the set of URIs (identifying a resource),
blank nodes (denoting an unidentified resource) and literals
(a character string or some other type of data) respectively.
We abbreviate any union of these sets as for instance, UBL=
U ∪B∪L. A triple of the form (s, p,o) ∈ UB×U ×UBL is

10

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

called an RDF triple. s is the subject, p is the predicate, and
o is the object of the triple. Each triple can be thought of as
an edge between the subject and the object labelled by the
predicate, hence a set of RDF triples is often referred to as
an RDF graph. RDF has a model theoretic semantics (Hayes
2004).

Example 1 (RDF Graph). Consider 8 triples of an
RDF graph about writers and their works (all iden-
tifiers correspond to URIs, :b is a blank node):
{(Poe,wrote,thegoldbug), (Baudelaire,translated,thegoldbug),
(Poe, wrote, theraven), (Mallarmé, translated, theraven),
(theraven, type, Poem), (Mallarmé, wrote, :b),
(:b, type, Poem), (thegoldbug, type, Novel) }

RDFS (RDF Schema) may be considered as a simple on-
tology language expressing subsumption relations between
classes or properties (Hayes 2004). Technically, this is an
RDF vocabulary used for expressing axioms constraining
the interpretation of graphs. The RDFS vocabulary and its
semantics are given in (Hayes 2004).

For our purpose, we consider four RDFS axioms: sub-
class, subproperty, domain and range. The DL fragment of
RDFS is a subset of SH I . Hence RDFS axioms can be
translated into SH I axioms.

SH I Description logics are fragments of first-order logic
that model a domain of interest in terms of concepts and
roles (Baader et al. 2007). For this study, we consider the
description logic SH I which is a fragment of SH I Q (Hor-
rocks, Sattler, and Tobies 1999). The satisfiability of SH I Q
logic is proved to be EXPTIME. We assume standard notation
for the syntax and semantics of SH I knowledge bases. We
refer the reader to (Horrocks, Sattler, and Tobies 1999) for
the semantics of SH I .

Syntax In SH I , concepts and roles are formed according
to the following syntax:

C ::= ⊥ | > | A | ¬C |C1uC2 |C1tC2 | ∃r.C | ∀r.C
r ::= p | p−

p denotes an atomic role, ⊥ represents an empty concept,
A denotes an atomic concept, C denotes a complex concept,
and r denotes a complex role which is an atomic role or its
inverse.

SH I Axioms: The TBox is a finite set of axioms consist-
ing of concept inclusions (C1 vC2), role inclusion (r1 v r2),
and transitivity trans(r) axioms.

SPARQL is a W3C recommended query language for
RDF (Prud’hommeaux and Seaborne 2008). It is based on
the notion of query patterns defined inductively from triple
patterns: a tuple t ∈ UBV×UV×UBLV, with V a set of
variables disjoint from UBL, is called a triple pattern. Triple
patterns grouped together using SPARQL operators AND and

UNION form query patterns (or graph patterns)1. We use an ab-
stract syntax that can be easily translated into the µ-calculus.
Definition 1 (Query Pattern). A query pattern q is induc-
tively defined as follows :

q ::= t ∈ UBV×UV×UBLV | q1 AND q2 | q1 UNION q2

We focus on SELECT queries which are the core of
SPARQL queries.
Definition 2. A SPARQL SELECT query is a query of the
form q(→w) where→w is a tuple of variables in V which are
called distinguished variables, and q is a query pattern.
Example 2 (SPARQL queries). Consider the following
queries q1(?x) and q2(?x) on the graph of Example 1:
SELECT ?x

WHERE {{ ?x translated ?l} UNION {?x wrote ?l }
?l type Poem . }

SELECT ?x

WHERE {{ ?x translated ?l . ?l type Poem }
UNION {?x wrote ?l }}

SPARQL has multiset (or bag) semantics, however, when
dealing with containment, we consider set semantics. This
is due to the undecidability of union of conjunctive queries
under bag semantics (Ioannidis and Ramakrishnan 1995).

The semantics of SPARQL queries is given by a par-
tial mapping function ρ from V to UBL. The domain of ρ,
dom(ρ), is the subset of V on which ρ is defined. Two map-
pings ρ1 and ρ2 are said to be compatible if ∀x ∈ dom(ρ1)∩
dom(ρ2), ρ1(x) = ρ2(x). Further, if ρ1 and ρ2 are compati-
ble, then ρ1∪ρ2 is also a mapping. The evaluation of query
patterns over an RDF graph G is inductively defined as fol-
lows:

JtKG = {ρ | dom(ρ) = var(t) and ρ(t) ∈ G}
where var(t) is the set of variables occurring in t.

Jq1 AND q2KG = Jq1KG 1 Jq2KG

Jq1 UNION q2KG = Jq1KG∪ Jq2KG Jq{→w }KG = π→w (JqKG)

Where the projection operator π→w selects only those part of
the mappings relevant to variables in→w .
Example 3. The answers to queries q1 and q2, of Example 2,
on graph G of Example 1 are respectively {Poe,Mallarme}
and {Baudelaire,Poe,Mallarme}. Thus, Jq1KG ⊆ Jq2KG.

Beyond this particular example, the goal of query contain-
ment is to determine whether this holds for any graph.
Definition 3 (Containment). Given a set of axioms C and
two queries q and q′ with the same arity, q1 is contained in
q2 with respect to C , denoted q vC q′, iff JqKG ⊆ Jq′KG for
every graph G satisfying C .
Definition 4 (Equivalence). Two queries q and q′ under a
set of axioms C are equivalent, i.e., q ≡C q′ iff q vC q′ and
q′ vC q.

The evaluation of SPARQL queries is proved to be
PSPACE-complete. However, the evaluation problem is NP-
complete for the fragment containing only AND and UNION

query patterns (Pérez, Arenas, and Gutierrez 2009).
1We do not consider OPTIONAL and FILTER query patterns

because containment over the full SPARQL is undecidable.

11

RDF Graphs as Transition Systems
Before presenting the encoding of RDF graphs as transition
systems over which the µ-calculus is interpreted, we intro-
duce the syntax and semantics of the µ-calculus.

µ-calculus
The modal µ-calculus (Kozen 1983) is an expressive logic
which adds recursive features to modal logic using fix-
point operators. The syntax of the µ-calculus is composed
of countable sets of atomic propositions AP, a set of nomi-
nals Nom, a set of variables Var, and a set of programs Prog
for navigating in graphs. A µ-calculus formula, ϕ, can be
defined inductively as follows:

ϕ ::= > | ⊥ | p | X | ¬ϕ | ϕ∨ψ | ϕ∧ψ | 〈a〉ϕ | [a]ϕ |
µXϕ | νXϕ

where p ∈ AP,X ∈ Var and a ∈ Prog is either an atomic
program or its converse ā. The greatest and least fixpoint
operators (ν and µ) respectively introduce general and fi-
nite recursion in graphs (Kozen 1983). The semantics of the
µ-calculus is given over a transition system, K = (S,R,L)
where S is a non-empty set of nodes, R : Prog→ 2S×S is the
transition function, and L : AP→ 2S assigns a set of nodes
to each atomic proposition or nominal where it holds, such
that L(p) is a singleton for each nominal p. For converse pro-
grams, R can be extended as R(ā) = {(s′,s) | (s,s′) ∈ R(a)}.
In addition, a valuation function V : Var→ 2S is used to as-
sign a set of nodes to each variable. For a valuation V , vari-
able X , and a set of nodes S′ ⊆ S, V [X/S′] is the valuation
that is obtained from V by assigning S′ to X . The seman-
tics of a formula, in terms of a transition system K (a.k.a.
Kripke structure) and a valuation function, is represented by
JϕKK

V . The semantics of basic µ-calculus formulae is defined
as follows:

J>KK
V = S JpKK

V = L(p), p ∈ AP∪Nom,

L(p) is singleton for p ∈ Nom

JXKK
V = V (X),X ∈ Var J¬ϕKK

V = S\JϕKK
V

Jϕ∧ψKK
V = JϕKK

V ∩ JψKK
V , Jϕ∨ψKK

V = JϕKK
V ∪ JψKK

V

J〈a〉ϕKK
V = {s ∈ S | ∃s′ ∈ S.(s,s′) ∈ R(a) ∧ s′ ∈ JϕKK

V }
J[a]ϕKK

V = {s ∈ S | ∀s′ ∈ S.(s,s′) ∈ R(a)⇒ s′ ∈ JϕKK
V }

JµXϕKK
V =

⋂
{S′ ⊆ S | JϕKK

V [X/S′] ⊆ S′}

JνXϕKK
V =

⋃
{S′ ⊆ S | S′ ⊆ JϕKK

V [X/S′]}

The next sections introduce a representation of RDF graphs
as transition systems and queries as µ-calculus formulas.

Encoding of RDF graphs
An RDF graph is encoded as a transition system in which
nodes correspond to RDF entities and RDF triples. Edges
relate entities to the triples they occur in. Different edges are
used for distinguishing the functions (subject, object, predi-
cate). Expressing predicates as nodes, instead of atomic pro-
grams, makes it possible to deal with full RDF expressive-
ness in which a predicate may also be the subject or object
of a statement.

Definition 5 (Transition system associated to an RDF
graph). Given an RDF graph, G ⊆ UB×U ×UBL, the
transition system associated to G, σ(G) = (S,R,L) over
AP = UBL∪{s′,s′′}, is such that:

• S = S′∪S′′ with S′ and S′′ the smallest sets such that ∀u ∈
UG,∃nu ∈ S′, ∀b ∈ BG,∃nb ∈ S′, and ∀l ∈ LG,∃nl ∈ S′′,
• ∀t = (s, p,o) ∈ G, 〈ns,nt〉 ∈ R(s), 〈nt ,np〉 ∈ R(p), and
〈nt ,no〉 ∈ R(o),
• L : AP→ 2S; ∀u ∈UG,L(u) = {nu}, ∀b ∈ BG,L(b) = S′,

L(s′) = S′, ∀l ∈ LG,L(l) = {nl} and L(s′′) = S′′,

• ∀nt ,nt ′ ∈ S′′, 〈nt ,nt ′〉 ∈ R(d).

The program d is introduced to render each triple accessi-
ble to the others and thus facilitate the encoding of queries.
The function σ associates what we call a restricted transition
system to any RDF graph. Formally, we say that a transition
system K is a restricted transition system iff there exists an
RDF graph G such that K = σ(G).

A restricted transition system is thus a bipartite graph
composed of two sets of nodes: S′, those corresponding to
RDF entities, and S′′, those corresponding to RDF triples.
For example, Figure 1 shows the restricted transition system
associated with the graph of Example 1.

Mallarmé

Poe

Baudelaire

:b

the raven

the gold bug

Poem

Novel

rdf:type

wrote

translated

s

p

o

s
p

o

s

p

o

s
p

o
s

p

os

p

o
s p

o

s

p

o

Figure 1: Transition system encoding the RDF graph of Ex-
ample 1. Nodes in S′′ are black anonymous nodes; nodes in
S′ are the other nodes (d-transitions are not displayed).

When checking for query containment, we consider two
constraints: (i) the set of programs is fixed: Prog =
{s, p,o,d, s̄, p̄, ō, d̄}, and (ii) a model must be a restricted
transition system. The last constraint can be expressed in the
µ-calculus as follows:

Proposition 1 (RDF restriction on transition systems). A
formula ϕ is satisfied by some restricted transition system if
and only if ϕ∧ϕr is satisfiable by some transition system,
i.e. ∃KrJϕKKr 6= /0 ⇐⇒ ∃KJϕ∧ϕrKK 6= /0, where:

ϕr = νX .θ∧κ ∧ (¬〈d〉>∨〈d〉X)

in which θ = 〈s̄〉s′∧〈p〉s′∧〈o〉s′∧¬〈s〉>∧¬〈p̄〉>∧¬〈ō〉>
and κ = [s̄]ξ∧ [p]ξ∧ [o]ξ with

ξ = (¬〈s̄〉>∧¬〈o〉>∧¬〈p〉>∧¬〈d〉>∧¬〈d̄〉>
∧¬〈s〉s′∧¬〈ō〉s′∧¬〈p̄〉s).

12

The formula ϕr ensures that θ and κ hold in every node
reachable by a d edge, i.e. in every triple node. The formula
θ forces each s′′ node to have one and only one subject, pred-
icate and object. The formula κ navigates from a s′′ node to
every reachable s′ node, and forces the latter not to be di-
rectly connected to other subject, predicate or object nodes.

If a µ-calculus formula ψ appears under the scope of a
least µ or greatest ν fixed point operator over all the pro-
grams {s, p,o,d, s̄, p̄, ō, d̄} as, µX .ψ∨ 〈s〉X ∨ 〈p〉X ∨ ·· · or
νX .ψ∧〈s〉X ∧〈p〉X ∧·· · , then, for the sake of legibility, we
denote the recursion components of the respective formulae
as mu(X) for the µ recursion part and nu(X) for the ν re-
cursion part. Thus, the formulae become µX .ψ∨mu(X) and
νX .ψ∧nu(X).

SPARQL Query Containment
In this section, we encode queries and schema axioms as µ-
calculus formulas. Then, we reduce query containment un-
der schemas to µ-calculus unsatisfiability and prove the cor-
rectness of this reduction.

Encoding Queries as µ-calculus Formulae
Queries are translated into µ-calculus formulas. The princi-
ple of the translation is that each triple pattern is associated
with a sub-formula stating the existence of the triple some-
where in the graph. Hence, they are quantified by µ so as
to put them out of the context of a state. In this translation,
variables are replaced by nominals or some formula that are
satisfied when they are at the corresponding position in such
triple relations. A function called A is used to encode queries
inductively on the structure of query patterns. AND and UNION

are translated into boolean connectives ∧ and ∨ respectively.
When encoding qv q′, we call q left-hand side query and q′
right-hand side query.

Encoding left-hand side query: the encoding of a left-
hand side query q is done such that every term (distinguished
and non-distinguished variables and constants) in the query
becomes a nominal in the µ-calculus. Hence, the encoding
of q is A(q) such that:

A((x,y,z)) = µX .
(
〈s̄〉x∧〈p〉y∧〈o〉z

)
∨mu(X)

A(q1 AND q2) = A(q1)∧A(q2)

A(q1 UNION q2) = A(q1)∨A(q2)

In order to encode the right-hand side query, we need the
notion of cyclic queries.

Definition 6 (Cyclic Query). A SPARQL query is referred
to as cyclic if a transition graph induced from the query pat-
terns is cyclic. The transition graph 2 is constructed in the
same way as done in Definition 5.

Example 4. q is cyclic, as shown graphically, q(x) =
(x,a,y),(y,b,z),(z,c,r),(r,d,y)

2The transition graph is similar to the tuple-graph used in (Cal-
vanese, De Giacomo, and Lenzerini 2008) to detect the dependency
among variables.

x y

a

z

b

r

cd

Encoding right-hand side query: the encoding of the
right-hand side query q′ is different from that of the left due
to the non-distinguished variables that appear in cycles in
the query. The distinguished variables and constants are en-
coded as nominals whereas the non-distinguished variables
ndvar(q′) are encoded as follows:
• First, for each triple ti ∈ q′, introduce a fresh nominal ni,

i.e., t(ti) = ni. This nominal is satisfied in a triple node S′′
in a restricted transition system.

• Second, we use a function that assigns a formula for each
x ∈ ndvar(q′) as follows:
– If x occurs only once in q′, x is encoded as >.
– If x appears multiple times in q′ and x ∈ ti ∈ q′, then

mi ={x 7→ ϕ |

ϕ = 〈s〉t(ti) if sub ject(x) or
ϕ = 〈p̄〉t(ti) if predicate(x) or
ϕ = 〈ō〉t(ti) if ob ject(x) }

Note that there is an exponential number of mi’s
in terms of the number of non-distinguished vari-
ables. More precisely, there are at most O(nk) map-
pings, where n is the number of triples where non-
distinguished variables appear, and k is the number of
non-distinguished variables.

• Finally, the function A uses t and m to encode the query
inductively:

A(q,m) =

|m|∨
i=1

A(q,mi)

A((x,y,z),m) = µX .
(
t((x,y,z))∧〈s̄〉d(m,x)

∧〈p〉d(m,y)∧〈o〉d(m,z)
)

∨mu(X)

A(q1 AND q2,m) = A(q1,m)∧A(q2,m)

A(q1 UNION q2,m) = A(q1,m)∨A(q2,m)

d(m,x) =

ϕ if (x 7→ ϕ) ∈ m
> if unique(x)
x otherwise

Example 5. Consider the encoding of q1v q2 of Example 2.
To encode q1, freeze the variables and constants and proceed
with A such that A(q1) =(

(µX .(〈s̄〉x∧〈p〉translated∧〈o〉l)∨mu(X))

∨ (µX .(〈s̄〉x∧〈p〉wrote∧〈o〉l)∨mu(X))
)
∧

(µX .(〈s̄〉l∧〈p〉type∧〈o〉Poem)∨mu(X))

To encode q2, one first computes t and m. Hence,
t((x, translated, l)) = n1, t((l, type,Poem)) = n2,
t((x,wrote, l)) = n3 and m = {m1,m2,m3} where m1 =

13

{y 7→ 〈ō〉n1}, m2 = {y 7→ 〈s〉n2}, and m3 = {y 7→ 〈ō〉n3}.

Finally, A(q2,m) =

|m|∨
i=1

A(q,mi) =

(
(µX .(n1∧〈s̄〉x∧〈p〉translated∧〈o〉〈ō〉n1)∨mu(X)

∧µX .(n2∧〈s̄〉〈ō〉n1∧〈p〉type∧〈o〉Poem)∨mu(X))

∨µX .(n3∧〈s̄〉x∧〈p〉wrote∧〈o〉〈ō〉n1)∨mu(X)
)
∨(

(µX .(n1∧〈s̄〉x∧〈p〉translated∧〈o〉〈s〉n2)∨mu(X)

∧
(
µX .(n2∧〈s̄〉〈s〉n2∧〈p〉type∧〈o〉Poem)∨mu(X))

∨µX .(n3∧〈s̄〉x∧〈p〉wrote∧〈o〉〈s〉n2)∨mu(X)
)
∨(

(µX .(n1∧〈s̄〉x∧〈p〉translated∧〈o〉〈ō〉n3)∨mu(X)

∧µX .(n2∧〈s̄〉〈ō〉n3∧〈p〉type∧〈o〉Poem)∨mu(X))

∨µX .(n3∧〈s̄〉x∧〈p〉wrote∧〈o〉〈ō〉n3)∨mu(X)
)

Encoding Axioms
Besides the encoding of the queries, we introduce the encod-
ing of SH I schema axioms as below.

Definition 7. Given a set of axioms c1,c2, ...,cn of a schema
C , the µ-calculus encoding of C is:

η(C) = η(c1)∧η(c2)∧ ...∧η(cn).

Where η translates each axiom into an equivalent for-
mula using ω which in turn recursively encodes concepts
and roles:

η(r1 v r2) = νX .
(
r1⇒ r2

)
∧nu(X)

η(C1 vC2) = νX .
(
ω(C1)⇒ ω(C2)

)
∧nu(X)

ω(A) = A ω(¬C) = ¬ω(C) ω(⊥) = ⊥
ω(C1uC2) = ω(C1)∧ω(C2)

ω(∃r.C) = 〈s〉
(
〈p〉r∧〈o〉(〈s〉〈o〉ω(C))

)
ω(∀r.C) = [s]

(
[p]r⇒ [o]([s][o]ω(C))

)
ω(∃r−.C) = 〈ō〉

(
〈p〉r∧〈s̄〉(〈s〉〈o〉ω(C))

)
ω(∀r−.C) = [ō]

(
[p]r⇒ [s̄]([s][o]ω(C))

)
η(trans(r)) = νX .〈s〉

(
〈p〉r∧〈o〉(y∧〈s〉(〈p〉r∧〈o〉z))

⇒ (〈p〉r∧〈o〉z)
)
∧nu(X)

So far we proposed various functions to produce formulas
corresponding to the encodings of queries and schema ax-
ioms. Hence, the problem of containment under a schema
can be reduced to formula unsatisfiability in µ-calculus as:

qvC q′⇔ η(C)∧A(q)∧¬A(q′,m)∧ϕr is unsatisfiable.

For the sake of legibility in writing, we use Φ(C ,q,q′) to
denote η(C)∧A(q)∧¬A(q′,m)∧ϕr.

Reducing Containment to Unsatisfiability
We prove the correctness of reducing query containment to
unsatisfiability test.

Lemma 1. Given a set of schema axioms C = {c1, · · · ,cn},
C has a model iff η(C) is satisfiable.

Lemma 2. For any SPARQL query q, q is satisfiable iff A(q)
and A(q,m) are satisfiable.

Proof. (sketch) We prove for A(q,m), the proof for A(q) is
immediate.
(⇒) a canonical instance of q can be converted into a transi-
tion system that satisfies A(q,m).
(⇐) any formula corresponding to a query encoding is sat-
isfiable. However, each satisfying model may not be a re-
stricted transition system. Thus, we use A(q,m)∧ϕr (Propo-
sition 1), to guarantee that satisfying models are restricted
transition systems. As such, it can be shown that a model of
the formula A(q,m)∧ϕr can be turned into a graph G that
satisfies q.

Theorem 1 (Soundness). Given queries q and q′, and a set
of axioms C , if Φ(C ,q,q′) is unsatisfiable, then qvC q′.

Proof. (sketch) We show the contrapositive. If q 6vC q′, then
Φ(C ,q,q′) is satisfiable. It can be verified that every model
of C in which there is at least one tuple satisfying q but not
q′ can be a satisfying model for Φ(C ,q,q′).

Theorem 2 (Completeness). Given queries q and q′, and a
set of axioms C , if Φ(C ,q,q′) is satisfiable, then q 6vC q′.

Proof. Φ(C ,q,q′) is satisfiable ⇒ ∃K.JΦ(C ,q,q′)KK 6= /0.
Consequently, K is a restricted transition system due to
JϕrKK 6= /0 (cf. Proposition 1). Using K = (S′ ∪ S′′,R,L) we
construct a model I = (∆I , ·I) of C such that q 6v q′ holds:

• ∆I = S′, AI = JAKK for each atomic concept A,
• >I = J>KK , for a top concept,
• rI = {(s,s′) | ∀t ∈ JrKK ∧ t ′ ∈ S′′∧ (s, t ′) ∈ R(s)∧ (t ′, t) ∈

R(p)∧ (t ′,s′) ∈ R(o)} for each atomic role r,
• for each constant c in q and q′, cI = JcKK ,
• for each distinguished and non-distinguished variable v in

q, vI = JvKK , and
• for each distinguished variable v in q′, vI = JvKK .

One can utilize Lemma 1, to verify that indeed I is a model
of C . Thus, it remains to show that JqKI 6⊆ Jq′KI . From our
assumption, one anticipates the following:

JA(q)∧¬A(q′)KK 6= /0

⇒ JA(q)KK 6= /0 and J¬A(q′,m)KK 6= /0

⇒ JA(q)KK 6= /0 and JA(q′,m)KK = /0

Note here that, if a formula ϕ is satisfiable in a restricted
transition system Kr, then JϕKKr = S. We use a function f to
construct an RDF graph G from the interpretation I . f uses
assertions in I to form triples:

f (a ∈ AI) = (a,type,A) ∈ G

f ((a,b) ∈ rI) = (a,r,b) ∈ G

f ((a,b) ∈ (r−)I) = (b,r,a) ∈ G
f ((x,y,z)) = (x,y,z) ∈ G, ∀(x,y,z) ∈ q

As a consequence, JqKG 6= /0 and Jq′KG = /0 because G con-
tains all those triples that satisfy q and not q′. Therefore,

14

we get JqKG 6⊆ Jq′KG. Fundamentally, there are two issues
to be addressed (i) when q′ contains a cycle and (ii) when
q′ is not cyclic. (i) can be dealt with nominals, i.e., since
cycles can be expressed by a formula in a µ-calculus ex-
tended with nominals and inverse, cyclic queries can be en-
coded by such a formula. Hence, the constraints expressed
by ¬A(q′,m) are satisfied in a transition system containing
cycles. On the other hand, (ii) if there are no cycles in q′,
then replacing non-distinguished variables with > suffices
(cf. Lemma 2).

Complexity In the following, we establish the complex-
ity of the containment problem under schema axioms. The
schema axioms can be formed using the fragments of
SH I Q . More specifically, the fragments without number
restrictions. The expressiveness of the schema language is
limited as such due to the expressive power of the logic used
for the encoding: µ-calculus with nominals and converse be-
comes undecidable when extended with graded modalities
(Bonatti et al. 2006).

Proposition 2. SPARQL query containment under SH I
schema axioms can be determined in a time of 2O(n2log n)

where n = O(|η(C)|+ |A(q)|+ |A(q′)|) is the size of the
formula, and η(C), A(q) and A(q′) denote the encodings of
schema axioms C , and queries q and q′.

Note that due to duplication in the encoding of q2, the size
of |A(q2)| is exponential in terms of the non-distinguished
variables that appear in cycles in the query. Hence, we obtain
a 2EXPTIME upper bound for containment. As pointed out in
(Calvanese, De Giacomo, and Lenzerini 2008), the problem
is solvable in EXPTIME if there is no cycle on the right hand
side query. This complexity is a lower bound due to the com-
plexity of satisfiability in µ-calculus which is 2O(n2log n) (Sat-
tler and Vardi 2001; Tanabe, Takahashi, and Hagiya 2008).

Related Works
In the following we briefly review works that previously
established closely related results for related query lan-
guages. We took a similar approach as (Genevès, Layaı̈da,
and Schmitt 2007) that established the optimal complexity
for XPath query containment and provided an effective im-
plementation.

Studies on the translation of SPARQL into relational alge-
bra and SQL (Cyganiak 2005; Chebotko et al. 2006) indicate
a close connection between SPARQL and relational algebra
in terms of expressiveness. In (Polleres 2007), a translation
of SPARQL queries into a datalog fragment (non-recursive
datalog with negation) that is known to be equally expres-
sive as relational algebra (RA) was presented. This trans-
lation makes the close connection between SPARQL and
rule-based languages explicit and shows that RA is at least
as expressive as SPARQL. Tackling the opposite direction,
it was recently shown in (Angles and Gutierrez 2008) that
SPARQL is relationally complete, by providing a translation
of the above-mentioned datalog fragment into SPARQL. As
argued in (Angles and Gutierrez 2008), the results from

(Polleres 2007) and (Angles and Gutierrez 2008) taken to-
gether imply that SPARQL has the same expressive power as
relational algebra. From early results on query containment
in relational algebra and first-order logic, one can infer that
containment in relational algebra is undecidable (contrary to
the results in (Chekol et al. 2011)). Therefore, containment
of SPARQL queries is also undecidable. Hence, in this pa-
per, we considered a fragment of SPARQL containing only
conjunction and disjunction for this study.

The most closely related work is (Calvanese, De Gia-
como, and Lenzerini 2008) in which query containment
under description logic constraints is studied based on
an encoding in propositional dynamic logic with converse
(CPDL). They establish 2EXPTIME upper bound complexity
for containment of queries consisting of union of conjunc-
tive queries under DLR schema axioms. Our work is sim-
ilar in spirit, in the sense that the µ-calculus is a logic that
subsumes CPDL, and may open the way for extensions of
the query languages and ontologies (for instance OWL-DL).
Besides, the two languages are different since SPARQL al-
lows for predicates to be used as subject or object of other
triple patterns and can be in the scope of a variable. This is
not directly allowed in DLR (union) of conjunctive queries.
Our encoding of RDF graphs and SPARQL queries pre-
serves this capability.

Other related results come from the study of query en-
tailment and query answering. Query entailment (and hence
containment) in DLs ranging from ALCI to SH I Q is
shown to be 2EXPTIME-hard in (Lutz 2008; Glimm et al.
2008; Eiter et al. 2009). In this paper we do not deal with the
same query language than the one dealt with in (Glimm et
al. 2008). In fact, the supported SPARQL fragment is strictly
larger than the one studied in (Glimm et al. 2008). Specifi-
cally, UCQs in (Glimm et al. 2008) are made of C(x),R(x,y)
for an atom C, a role R, and variables x and y, whereas we
do also support queries capable of querying concept and
role names at the same time, such as q(x) = (x,y,z). Fur-
ther, the purpose of reducing the problem to µ-calculus is
exactly about extending query containment to even more
features (such as SPARQL 1.1 paths with recursion, entail-
ment regimes, and negation). For instance, it is known that
recursive paths can be easily supported in µ-calculus (us-
ing fixpoints) whereas it is known that extending previous
approaches with this feature is notoriously difficult. Beyond
this, the novelty of the study is the reduction of the SPARQL
containment problem to µ-calculus satisfiability, and the ad-
vantages of using such a logic: great expressivity, good com-
putational properties, extensibility. The main focus of the
contribution is not the complexity bound by itself but rather
a new approach with a broader logic, paving the way for fu-
ture extensions as it was never done before.

Here, we would like to emphasize that, in addition to the
complexity bound we provide, no implementation has been
reported in previous works, whereas in our case our work
opens the way to use an implementation like the one in (Tan-
abe, Takahashi, and Hagiya 2008) or (Genevès, Layaı̈da, and
Schmitt 2007).

Finally, the evaluation of SPARQL query under schema
constraints is considered by W3C under the entailment

15

regime principle in which SPARQL queries are evaluated
by taking into account the semantics of a schema language
(Kollia, Glimm, and Horrocks 2011). It is possible to de-
fine query containment under such entailment regimes (cf.
(Chekol et al. 2012) for instance). However, because the
schema is not made explicit in entailment regimes, this
would not allow to consider containment under a particular
schema as we did here. And this could be very useful partic-
ularly because (1) schema are very often separated from the
data and (2) this allows for compiling the schema.

Conclusion
We have introduced a mapping from RDF graphs into tran-
sition systems and the encodings of queries and schema ax-
ioms in the µ-calculus. We proved that this encoding is cor-
rect and can be used for checking query containment. We
have provided implementable algorithms, as a consequence,
this work opens a way to use available implementations of µ-
calculus satisfiability solvers from (Tanabe, Takahashi, and
Hagiya 2008) and (Genevès, Layaı̈da, and Schmitt 2007).
Beyond this, we have established a double exponential up-
per bound for containment test under SH I axioms.

As a future work, we plan to extend the schema language
with nominals (becomes SH OI) and analyse the optimality
of the complexity. Because nominals are part of the logic,
the complexity of containment under SH OI axioms has al-
ready a 2EXPTIME upper bound. Furthermore, what would be
interesting is, to identify the fragments of SPARQL queries
and DLs that can be encoded in the fragments of µ-calculus
with nominals and converse, graded modalities and con-
verse, and nominals and graded modalities (Bonatti et al.
2006; Tanabe, Takahashi, and Hagiya 2008).

References
Alkhateeb, F.; Baget, J.-F.; and Euzenat, J. 2009. Extend-
ing SPARQL with regular expression patterns (for querying
RDF). J. Web Semantics 7(2):57–73.
Angles, R., and Gutierrez, C. 2008. The Expressive Power
of SPARQL. The Semantic Web-ISWC 2008 114–129.
Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.;
and Patel-Schneider, P. F., eds. 2007. The Description
Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press. ISBN 9780511717383.
Bonatti, P. A.; Lutz, C.; Murano, A.; and Vardi, M. Y. 2006.
The Complexity of Enriched µ-calculi. Automata, Lan-
guages and Programming 540–551.
Calvanese, D.; De Giacomo, G.; and Lenzerini, M. 2008.
Conjunctive Query Containment and Answering under De-
scription Logics Constraints. ACM Trans. on Computational
Logic 9(3):22.1–22.31.
Chandra, A. K., and Merlin, P. M. 1977. Optimal Implemen-
tation of Conjunctive Queries in Relational Data Bases. In
Proceedings of the ninth annual ACM symposium on Theory
of computing, 77–90. ACM.
Chebotko, A.; Lu, S.; Jamil, H.; and Fotouhi, F. 2006. Se-
mantics preserving sparql-to-sql query translation for op-

tional graph patterns. Technical report, Technical Report
TR-DB-052006-CLJF.
Chekol, M. W.; Euzenat, J.; Genevès, P.; and Layaı̈da, N.
2011. PSPARQL query containment. In DBPL’11.
Chekol, M. W.; Euzenat, J.; Genevès, P.; and Layaı̈da, N.
2012. SPARQL Query Containment under RDFS Entail-
ment Regime. In IJCAR’12. to appear.
Cyganiak, R. 2005. A relational algebra for SPARQL.
Digital Media Systems Laboratory HP Laboratories Bristol.
HPL-2005-170.
Eiter, T.; Lutz, C.; Ortiz, M.; and Šimkus, M. 2009. Query
answering in description logics with transitive roles. In Proc.
of IJCAI, 759–764.
Genevès, P.; Layaı̈da, N.; and Schmitt, A. 2007. Efficient
Static Analysis of XML Paths and Types. In PLDI ’07, 342–
351. New York, NY, USA: ACM.
Glimm, B.; Horrocks, I.; Lutz, C.; and Sattler, U. 2008. Con-
junctive query answering for the description logic shiq. J
Artif Intell Res 31:157–204.
Hayes, P. 2004. RDF Semantics. W3C Recommendation.
Horrocks, I.; Sattler, U.; and Tobies, S. 1999. Practical rea-
soning for expressive description logics. In Logic for Pro-
gramming and Automated Reasoning, 161–180. Springer.
Ioannidis, Y., and Ramakrishnan, R. 1995. Containment of
conjunctive queries: Beyond relations as sets. ACM Trans-
actions on Database Systems (TODS) 20(3):288–324.
Ioannidis, Y. E. 1996. Query Optimization. ACM Comput.
Surv. 28(1):121–123.
Kollia, I.; Glimm, B.; and Horrocks, I. 2011. SPARQL
Query Answering over OWL Ontologies. In Proc. 8th
ESWC, Heraklion (GR), volume 6643 of LNCS, 382–396.
Kozen, D. 1983. Results on the propositional µ-calculus.
Theor. Comp. Sci. 27:333–354.
Lutz, C. 2008. The complexity of conjunctive query answer-
ing in expressive description logics. Automated Reasoning
179–193.
Pérez, J.; Arenas, M.; and Gutierrez, C. 2009. Semantics and
complexity of SPARQL. ACM Transactions on Database
Systems (TODS) 34(3):16.
Polleres, A. 2007. From SPARQL to rules (and back). In
WWW ’07, 787–796.
Prud’hommeaux, E., and Seaborne, A. 2008. SPARQL
Query Language for RDF. W3C Rec.
Sattler, U., and Vardi, M. Y. 2001. The Hybrid µ-Calculus.
In IJCAR, 76–91.
Schmidt, M.; Meier, M.; and Lausen, G. 2010. Foundations
of SPARQL Query Optimization. In ICDT ’10, 4–33. New
York, NY, USA: ACM.
Tanabe, Y.; Takahashi, K.; and Hagiya, M. 2008. A De-
cision Procedure for Alternation-Free Modal µ-calculi. In
Advances in Modal Logic, 341–362.

16

