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Abstract. Computing, processing, visualizing statistics on shapes like
curves or surfaces is a real challenge with many applications ranging
from medical image analysis to computational geometry. Modelling such
geometrical primitives with currents avoids feature-based approach as
well as point-correspondence method. This framework has been proved
to be powerful to register brain surfaces or to measure geometrical invari-
ants. However, if the state-of-the-art methods perform efficiently pairwise
registrations, new numerical schemes are required to process groupwise
statistics due to an increasing complexity when the size of the database is
growing. Statistics such as mean and principal modes of a set of shapes
often have a heavy and highly redundant representation. We propose
therefore to find an adapted basis on which mean and principal modes
have a sparse decomposition. Besides the computational improvement,
this sparse representation offers a way to visualize and interpret statistics
on currents. Experiments show the relevance of the approach on 34 sets
of 70 sulcal lines and on 50 sets of 10 meshes of deep brain structures.

1 Introduction

There is a substantial need for shape statistics in many communities ranging
from medical imaging to computer vision or computational geometry, for exam-
ple to incorporate shape priors in image segmentation, to analyze geometrical or
anatomical differences between groups, to classify new observations according to
some characteristics, to shape recognition purpose, etc. The method we propose
here precisely enables to learn a statistical shape model (mean and principal
modes) from a database of curves or surfaces. Over the last years, many meth-
ods have been proposed for encoding statistical priors on curves, quite less were
proposed for surfaces. Among them, level-sets for instance [1], use geometrical
constraints (length, area, volume, curvature, etc.) as priors. However, it is diffi-
cult to figure out how to automatically learn such priors from typical datasets.
Modelling based on Point Distribution Model [2] assumes exact or at least fuzzy
correspondences between point sets. Medial axis representations [3] requires to
completely specify the topology of shapes.

To define a mean shape, a “covariance” matrix and the principal modes via
principal component analysis (PCA), one usually requires some metric properties



on the shape space itself. Currents were precisely introduced as an interesting al-
ternative to do that for shape registrations [4–6]. This modelling enables to define
an inner product and hence an easy to compute distance between shapes with-

out assuming any point correspondences between discrete structures and without
selecting arbitrary features. Since the space of currents is linear, one could the-

oretically compute directly standard statistics on shapes such as mean or PCA.
However, there is a drawback to this mathematically well grounded method: the
polynomial computational complexity in the number of points in shapes (which
was not critical for pairwise registration) becomes a clear bottleneck for group-
wise statistics. We propose in this paper an efficient computational framework
that overcomes these limitations by providing a sparse representation of currents
at any desired accuracy. Our algorithm builds on ideas from the approximation
theory previously developed to decompose images in wavelet bases [7, 8]. To the
very best of our knowledge, this is the first time that these signal processing
techniques are used in geometric shape analysis. Experimental results clearly
demonstrate the interest of our method: the deformation of a mean obtained
from 3 shape instances such as in Fig.3, each with 15 000 points, which was pre-
viously taking 10 hours, is now taking about 5 minutes (using the same code as
in [4, 6]). For a set of 50 instances, representing the mean requires 1.2 Kb in our
framework, versus 8 Mb originally. Deforming the former still requires 5 minutes
while it is not feasible to deform the later without high performance comput-
ing. This offers a way to the automated learning of shape priors from typical
databases, which can be used, for instance, to adapt the generic model to each
particular observation for image segmentation. This also gives a way to visualize
and interpret mean and principal modes of a set of anatomical structures.

In the first section, we present how shapes like curves and surfaces may be
modeled geometrically as currents. We then introduce a sparse deconvolution
scheme to approximate currents. In the last section we show on real anatomical
data how this tool may compress shapes and may help to visualize and interpret
statistics on shapes.

2 Non-parametric Representation of Shapes as Currents

In the framework of currents, a curve or a surface is characterized by the way it
integrates vector fields. Their construction is based therefore on a space of square
integrable vector fields W . The space of currents W ∗ is the set of continuous
mappings from W to R (see [5, 9, 10] for details). A piecewise smooth surface S
in R

3 like a set of smooth surfaces or meshes defines a current based on:

S : ω −→

∫

S

〈ω(x), ux × vx〉R3 dσ(x) (1)

where (ux, vx) is an orthogonal basis of the tangent plane of the surface at the
point x and nx = ux × vx the normal of the surface defined almost everywhere.
This measures the flux of the vector field through the surface. Similarly, a piece-
wise smooth curve L in R

3 such as a set of smooth curves or polygonal lines



is a current based on L(ω) =
∫

L
〈ω(x), τ(x)〉

R3 dx for all ω ∈ W , where τ(x)
is the tangent vector at point x defined almost everywhere. This is the integral
of the vector field along the path defined by L. To ensure that these mappings
are continuous (and hence S, L ∈ W ∗) we need to assume that any ω ∈ W is
bounded and that for a fixed constant C:‖ω‖∞ ≤ C ‖ω‖W . This technical con-
dition guarantees in particular that small errors measured in W are numerically
small. As a consequence, W is reproducing kernel Hilbert space (r.k.h.s.) with
kernel K[10]: for every ω ∈ W and α ∈ R

3:

〈ω(x), α〉
R3 = 〈ω, K(., x)α〉W (2)

We choose here W as the r.k.h.s. whose kernel is Gaussian: K(x, y) = exp(−‖x − y‖
2
/λ2

W )Id.
In this setting, any current in W ∗ decomposes into an infinite sum of Dirac

currents: δα
x that may be seen as a tangent (or normal) α entirely concentrated

at point x:
δα
x (ω) = 〈ω(x), α〉

R3 (3)

for any ω ∈ W . A curve (resp. a surface) is decomposed into its infinite set of
tangents (resp. normals). Combining Eq.3 and 2 leads to: δα

x (ω) = 〈ω, K(x, .)α〉W
for any ω. This shows that we can associate to every basis element δα

x a dual

representation in terms of vector field: K(x, .)α which is simply the Gaussian
convolution of the vector α. Thanks to the theory [5, 9], we can extend this
result: there is a one-to-one mapping LW : W −→ W ∗ that maps any vector
field ω to a current T such that T (ω) =

〈

L−1

W (T ), ω
〉

W
. With this notation,

LW (K(., x)α) = δα
x showing that K is the Green function of the operator LW .

δα
x is called the momentum associated to the vector field K(., x)α. LW enables

also to provide W ∗ with an inner product:

〈T, T ′〉W∗ =
〈

L−1

W (T ),L−1

W (T ′)
〉

W
(4)

On basis elements, this gives:
〈

δα
x , δβ

y

〉

W∗
= αtK(x, y)β.

Suppose that we have a set of N discretized shapes (polygonal lines or
meshes). These shapes may be approximated in W ∗ by the finite set of their
tangents (resp. normals) at the center of the segments (resp. the center of mass
of the mesh cell). Their mean and principal modes are linear combinations of

the input shapes: T =
∑N

i=1
λiTi =

∑NT

k=1
δαk

xk
where NT (the total number of

segments or mesh cells in the database) may be very large. This representation,
if exact, is far from being optimal: it may be highly redundant at the scale λW .
The Gaussian convolution of the N momenta: γ = L−1

W (T ) precisely integrates
this redundancy (See Fig.1-a). The two representations (T and γ = L−1

W (T ))
are equivalent: theoretically, the deconvolution of γ would retrieve exactly T .
However, the deconvolution is an ill-posed problem and requires specific numer-
ical schemes as the matching pursuit algorithm. This method finds iteratively
adapted Dirac currents δ

α
k′

x
k′

such that the series
∑

k′ δ
α

k′

x
k′

approximates the true
solution T but with faster decreasing terms than the initial decomposition. The
first terms of this series provide therefore an approximation of T with an in-
creasing precision (see Fig.1-b,c).



a-Initial Configuration b-iteration 1 c-iteration 3

Fig. 1. A sparse deconvolution scheme: Gaussian convolution of the mean of the two
blue lines with λW = 15 (a). First (b) and third (c) iterations: estimated momenta on
the right, residual vector field on the left. σ is the standard deviation ‖L − L′‖

∞
/
√

2.
The momenta converge to the true solution while the residue tends to zero.

3 A Sparse Deconvolution Scheme

Matching Pursuit Algorithms were proposed in [11, 8] to find adapted wavelets
bases for image decomposition. We adapt here the idea of how to find a basis
adapted to a particular signal to our framework based on currents. Given a vector
field γ ∈ W , we want to find an approximation of T that solves L−1

W (T ) = γ.
The goal is to find N points (xi) and vectors (αi) such that the current Π(T ) =
∑N

i=1
δαi

xi
is the closest possible to T . If one knows the optimal points, Π(T )

is the orthogonal projection of T onto Span
(

δǫk

xi
; k = 1, 2, 3, i = 1 . . . N

)

where
(ǫk)k=1,2,3 is the canonical basis of R

3. In the following the index k always takes
values k = 1, 2, 3. The orthogonality conditions are

〈

T, δǫk

xi

〉

W∗
=

〈

Π(T ), δǫk

xi

〉

W∗
,

which gives (applying L−1

W and Eq.4) the linear set of 3N equations:

N
∑

p=1

(K(xi, xp)αp)k
= γ(xi)k (5)

The search for the optimal points (xi) has been proved to be NP-hard in
general [7]. The orthogonal matching pursuit algorithm is a suboptimal greedy
approach to this problem: the first point x1 is the one for which the projection
of T on δεk

x is maximal. Since 〈LW (γ), δεk

x 〉W∗ = 〈γ, K(., x)εk〉W = γ(x)k (Eq.2),
x1 is a point where γ is maximal. Solving Eq.5 gives: α1

1 = K(x1, x1)
−1γ(x1).

We then remove from γ its orthogonal projection on L−1

W (δεk

x1
) and we iterate

this residue: γ1 = γ −K(., x1)α
1
1. Finally, the algorithm can be then written as:

– Input: a vector field γ, a threshold η > 0
– Initialization: γ0 = γ, N = 0
– While ‖γN‖∞ ≥ η do:

1. xN+1 = argmaxx∈R3 ‖γN (x)‖
R3

2. Find (αN+1
i )1≤i≤N+1 by solving

∑N+1

p=1

(

K(xi, xp)α
N+1
p

)

k
= γ(xi)k

3. γN+1 = γ −
∑N+1

i=1
K(., xi)α

N+1
i (Gaussian convolution), N = N + 1



After Nmom steps, the algorithm gives an approximation of T = LW (γ)

with Nmom momenta: ΠNmom
(T ) =

∑Nmom

i=1
δ
(α

Nmom

i )
xi

. It has been proved [12]
that this algorithm converges to the true solution, and more precisely that both
‖T − ΠN‖W∗ and

∥

∥γ − L−1

W (ΠN (T ))
∥

∥

∞
converges to 0 as Nmom tends toward

infinity. This means, in particular, that the norm of the residue is smaller than
any positive threshold in finite time, thus proving that the algorithm finishes.

From a computational point of view, we suppose that the input vector field
γ is sampled is therefore stored as an image of 3D vectors. At step 1, we re-
strict ourselves to find the maximum of ‖γ(x)‖

R3 on the grid’s points, such that
the estimated position xi always belong to the grid. At step 3, one computes
the vector field: L−1

W (ΠN )(x) =
∑N

i=1
K(x, xi)α

N
i at grid’s points. Since K is

translation-invariant, this Gaussian convolution can be efficiently computed by
FFT’s. γN is also stored as an image of vectors. The output ΠN (T ) is stored as
a list of (position,vector).

One wants to use this algorithm to find a sparse representation of an input
current T =

∑NT

s=1
δβs

ys
where NT is a priori very large. For this purpose, we

computes γ(x) = L−1

W (T )(x) =
∑n

s=1
K(x, xs)βs. Since γ is band-limited, we

sample it on a linearly spaced grid Λ with a step ∆ such that ∆/λW is small
(typically less than 1/5). We fix the grid such that the data are further than λW

of the grid’s borders (so that we can assume periodic boundary conditions and
compute Gaussian convolution by FFT’s). This sampling leads to an image of
vectors used as input of the algorithm. The threshold η has to be specified for
every applications. If T is a linear combination of Nobs currents T1, . . . , TN (such
as the mean current, a principal mode, the difference between two currents, etc.),
we can choose η as a fixed ratio of the standard deviation of the set of currents:

η = τσ where σ2 = 1

N−1

∑N

i=1

∥

∥Ti − T̄
∥

∥

2
and T̄ = 1

N

∑N

i=1
Ti. This means that

the algorithm finishes when the approximation’s error is smaller than τ% of the
variance.

Finally, for a given current T we have 3 distinct representations: the initial
one with NT momenta (the total number of segments or mesh’s cells in the set of
currents), the projection of T onto the grid with a priori Ngrid momenta (which
depends on both the spreading of the input data and the step ∆) and our sparse
representation with Nmom momenta. Depending on the number of input points,
their spreading and redundancy at the scale λW , these 3 representations can
vary dramatically in size.

4 Numerical Experiments

Curves in 3D We use a set of 70 sulci delineated in Nobs = 34 subjects. The
sulci are the fissures on the brain surface and they are often used to measure
anatomical differences between subjects [13]. For each sulcal line, we approximate

the mean current L̄ = 1

Nobs

∑Nobs

i=1
Li for λW = 12mm and τ = 5%. Results are

shown in Fig.2-a for the Sylvian Fissure of the right hemisphere and 2-b for all
70 sulci. The initial number of momenta for the mean fissure was NT = 899 (i.e.



a- Sylvian Fissure b- All 70 sulci (top view of the brain)

Fig. 2. Statistics for 70 sulci in 34 subjects (λW = 12mm, τ = 5%). Left: all set of lines
(black), their mean (red) and first eigenmode at σ (green) showing the spreading of
the lines set. Right: Mean currents (red) compared to the mean lines (blue) computed
from B-spline parametrization of curves [14]. Results are in good agreement.

the number of segments of all lines) whereas the final approximation needs only
Nmom = 54 momenta. In this case, the compression ratio is of 94%. Considering
all sulci, the compression rate is on average: 94.8%± 0.02. Each lines’ grid have
a step ∆ = 2mm and typically Ngrid = 105 points. Our mean is visually in good
agreement with other mean curves computing from B-spline representation [14].

We then compute the eigenmodes of the lines sets by PCA. We find the
eigenvectors (Vk) of the Nobs×Nobs matrix Σ =

(〈

Li − L̄, Lj − L̄
〉

W∗

)

i,j=1...Nobs

.

The kth eigenmode is given by the linear combination of input currents: mk =
∑

i(Vk)i(Li − L̄). We approximate the first eigenmode of the Sylvian Fissure of
the right hemisphere (Fig.2-a): this mode captures the spreading of the lines set.

Surfaces We compute the mean current of 10 meshes of deep brain struc-
tures (Caudate, Putamen, Globus Pallidus, Amygdala and Hippocampus for
each hemisphere) for Nobs = 50 subjects [15]. For surfaces, we represent the es-
timated momenta (normal of an infinitesimal mesh cell) as equilateral triangles
whose normals is the momenta. Results are shown in Fig.3. The compression ra-
tio between NT and Nmom for the 10 structures is on average of 99.96%± 10−4.
Each structures’ grid has a step ∆ = 1mm and for one structure we have the
following typical values: NT = 50× 3000 = 1.5e5, Ngrid = 3e5 and Nmom = 100.
Fig.3-c shows that the quality of approximation remains good until very high
compression ratio. Similarly, we compute mean from meshes of 7 controls. The
difference between both means is a current that we approximate: the arrows of
Fig.4-b are the 10 first estimated momenta of this difference, suggesting that the
autistic mean is more curved at the Hippocampus’ extremity and thicker in the
middle. Such results still need to be confirmed by rigorous statistical tests.

5 Discussion and Conclusion

The method presented here enables to approximate, at any desired accuracy, the
mean and principal modes of a set of curves or surfaces. On the one hand, this



a- structures of 2 autistics b- Mean of 50 autistics c-approx. vs. compression

Fig. 3. Approximation of the mean current for 10 structures segmented in 50 subjects
(b) (λW = 5mm, τ = 5% with data of diameter 60mm). Good approximation’s quality
can be achieved until very high compression ratio (c). Red points correspond to the
approximation shown in b, for which the error equals τ = 5% of the variance.

a- Mean of 7 controls b- Difference between both means on Hippocampus

Fig. 4. a-Mean of 7 controls. b-Difference between mean of autistics and mean of
controls (arrows) superimposed with the Hippocampus of a control. Mean from autistics
is more curved at hippocampus’ extremity (area 1) and thicker in area 2.

approximation gives a way to visualize and hence to interpret such statistics on
shapes as emphasized by our results on real anatomical datasets. On the other
hand, the very high compression ratio we achieve on real data offers a way to in-
clude such statistics on registration scheme for example. A registration algorithm
can indeed deforms an input shape with a spatial and temporal complexity of
f(NT ) [4] (f is between linear and quadratic function) or solve evolution differ-
ential equations on a grid [16] with a complexity f(Ngrid). In the first case our
representation with Nmom momenta improves greatly both spatial and temporal
complexity of the method while guaranteeing a fixed approximation error. This
makes now possible to fit statistical surfaces to image data for segmentation pur-
pose (deformable models). This would also be useful to adapt the atlas building
scheme set up in [17] in case of images and small deformations to estimate shape
prototypes. Our method could have also a significant impact in several other
fields including surface rendering in computer graphics, surface reconstruction
and re-meshing in computational geometry, statistics on the cortex surfaces for
detecting activations from fMRI in neuroscience.

For pure visualization purposes, however, the method presented here need
further improvements for a better rendering of the approximated currents. For



this purpose, we investigate how to bridge the gap with standard computer
graphics methods like splats for instance.
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