
Sparse Approximations for High Fidelity
Compression of Network Traffic Data

William Aiello †

University of British Columbia
aiello@cs.ubc.ca

Anna Gilbert§

University of Michigan
annacg@umich.edu

Brian Rexroad
AT & T Labs

brexroad@att.com

Vyas Sekar ‡

Carnegie Mellon University
vyass@cs.cmu.edu

Abstract
An important component of traffic analysis and network
monitoring is the ability to correlate events across multi-
ple data streams, from different sources and from different
time periods. Storing such a large amount of data for vi-
sualizing traffic trends and for building prediction models
of “normal” network traffic represents a great challenge be-
cause the data sets are enormous. In this paper we present
the application and analysis of signal processing techniques
for effective practical compression of network traffic data.
We propose to use a sparse approximation of the network
traffic data over a rich collection of natural building blocks,
with several natural dictionaries drawn from the network-
ing community’s experience with traffic data. We observe
that with such natural dictionaries, high fidelity compres-
sion of the original traffic data can be achieved such that
even with a compression ratio of around 1:6, the compres-
sion error, in terms of the energy of the original signal lost,
is less than 1%. We also observe that the sparse represen-
tations are stable over time, and that the stable components
correspond to well-defined periodicities in network traffic.

1 Introduction

Traffic monitoring is not a simple task. Network opera-
tors have to deal with large volumes of data, and need to
identify and respond to network incidents in real-time. The
task is complicated even further by the fact that monitoring
needs to be done on multiple dimensions and timescales.
It is evident that network operators wish to observe traffic
at finer granularities across different dimensions for a mul-
titude of reasons that include: 1. real-time detection and
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response to network failures and isolating errant network
segments, 2. real-time detection of network attacks such as
DDoS and worms, and installation of filters to protect net-
work entities, and 3. finer resolution root-cause analysis of
the incidents and automated/semi-automated drill down of
the incident.
To meet these requirements, we must be able to gen-
erate and store traffic data on multiple resolution scales
in space (network prefixes and physical network entities
such as links, routers), and in time (storing the traffic ag-
gregates at multiple time resolutions). Such requirements
naturally translate into increased operational costs due to
the increased storage requirement. We often transport large
portions of the historical data across a network to individ-
ual operators, import pieces of data into statistical analy-
sis and visualization software for modeling purposes, and
index and run queries against various historical databases
for data drill down. Thus the management overhead in-
volved in handling such large data sets, and the computa-
tional overhead in accessing and processing the large vol-
umes of historical data also increases. We must reduce the
storage size of the data, not only for efficient management
of historical traffic data, but also to accommodate fine data
resolution across space and time.
The compression techniques we investigate are “lossy”
compression methods. For most network monitoring appli-
cations that utilize historical traffic data, it often suffices to
capture salient features of the underlying traffic. We can
thus afford some error by ignoring the low-energy stochas-
tic components of the signal, and gain better compression
using lossy compression techniques (as opposed to lossless
compression methods such as gzip [11] which reduce the
storage size of the data only and do not reduce the size of
the input to monitoring applications). The overall goal of
such compression techniques is to obtain high fidelity (i.e.
low error) representations with as little storage as possible.
In particular, we use a compression method called sparse
representation over redundant dictionaries. A visual in-
spection of aggregated network traffic for many high vol-

Internet Measurement Conference 2005  USENIX Association 253



ume ports reveals three components. First, there is a natural
diurnal variation for many ports and/or other periodic vari-
ations as well. Second, there are spikes, dips, and other
components of the traffic that appear to be the result of
non-periodic events or processes. Finally, the traffic ap-
pears to be stochastic over small time scales with variance
much smaller than the periodic variations for high volume
ports. Representing a signal with all three components us-
ing a single orthonormal basis, such as a Fourier basis or a
wavelet representation is not likely to yield good compres-
sion: a basis that represents periodic signals well will not
represent non-periodic signals efficiently and vice versa.
The methods presented in this paper allow us to use two
or more orthonormal bases simultaneously. A set of two or
more orthonormal bases is called a redundant dictionary.
Hence, with an appropriate set of orthonormal bases as the
redundant dictionary, the periodic and the significant non-
periodic portions of the traffic time series can both be rep-
resented efficiently within the same framework.
Sparse representation or approximation over redundant
dictionaries does not make assumptions about the under-
lying distributions in the traffic time series. As a result,
sparse approximation can guarantee high fidelity regard-
less of changes in the underlying distributions. In addition,
there are highly efficient, provably correct algorithms for
solving sparse approximation problems. These algorithms
scale with the data and can be easily adapted to multiple
sources of data. They are greedy algorithms, known as
matching or orthogonal matching pursuit.
The primary contribution of this paper is a rigorous in-
vestigation of the method of sparse representation over re-
dundant dictionaries for the compression of network time
series data. We propose and evaluate several redundant dic-
tionaries that are naturally suited for traffic time series data.
We conclude that these methods achieve significant com-
pression with very high fidelity across a wide spectrum of
traffic data. In addition, we also observe that the sparse
representations are stable, not only in terms of their selec-
tion in the sparse representation over time but also in terms
of the individual amplitudes in the representation. These
stable components correspond to well-defined periodicities
in network traffic, and capture the natural structure of traf-
fic time series data. To the best of our knowledge, this is
the first thorough application of sparse representations for
compressing network traffic data.
We discuss related work in Section 2, and present a
overall motivation for compression in Section 3. In Sec-
tion 4 we describe in more detail the framework of match-
ing (greedy) pursuit over redundant dictionaries. Section 5
describes our traffic data set, derived from a large Internet
provider. We evaluate the efficacy of our compression tech-
niques in Section 6. Section 7 presents some network traf-
fic monitoring applications that demonstrate the utility of
the compression methods we used. Section 8 discusses the

scope for improving the compression, before we conclude
in Section 9.

2 Related Work

Statisticians concern themselveswith subset selection in re-
gression [13] and electrical engineers use sparse represen-
tations for the compression and analysis of audio, image,
and video signals (see [4, 6, 12] for several example refer-
ences).
Lakhina, et al. [9, 10] examine the structure of network
traffic using Principal Component Analysis (PCA). The
observations in our work provide similar insight into the
structure of network traffic. There are two compelling rea-
sons for using sparse approximations over redundant dic-
tionaries, as opposed to PCA alone, for obtaining similar
fidelity-compression tradeoffs. First, the description length
for sparse approximation is much shorter than for PCA,
since the principal vectors require substantially more space
to represent than simple indices into a dictionary. Second,
PCA like techniques may capture and identify the (predom-
inant) structure across all measurements, but may not be
adequate for representing subtle characteristics on individ-
ual traffic aggregates.
Barford, et al. [1] use pseudo-spline wavelets as the ba-
sis wavelet to analyze the time localized normalized vari-
ance of the high frequency component to identify signal
anomalies. The primary difference is our application of sig-
nal processing techniques for compressing network traffic
data, as opposed to using signal decomposition techniques
for isolating anomalies in time series data.
There are several methods for data reduction for gener-
ating compact traffic summaries for specific real-time ap-
plications. Sketch based methods [8] have been used for
anomaly detection on traffic data, while Estan et al. [3] dis-
cuss methods for performing multi-dimensional analysis of
network traffic data. While such approaches are appealing
for real-time traffic analysis with low CPU and memory re-
quirements, they do not address the problems of dealing
with large volumes of historical data that arise in network
operations. A third, important method of reducing data is
sampling [2] the raw data before storing historical infor-
mation. However, in order for the sampled data to be an
accurate reflection of the raw data, one must make assump-
tions regarding the underlying traffic distributions.

3 Compression

It is easy to (falsely) argue that compression techniques
have considerably less relevance when the current cost of
(secondary) storage is less than $1 per GB. Large opera-
tional networks indeed have the unenviable task of man-
aging many terabytes of measurement data on an ongoing
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basis, with multiple data streams coming from different
routers, customer links, and measurement probes. While
it may indeed be feasible to collect, store, and manage such
a large volume of data for small periods of time (e.g. for
the last few days), the real problem is in managing large
volumes of historical data. Having access to historical data
is a crucial part of a network operator’s diagnostic toolkit.
The historical datasets are typically used for building pre-
diction models for anomaly detection, and also for building
visual diagnostic aids for network operators. The storage
requirement increases not only because of the need for ac-
cess to large volumes of historical traffic data, but also the
pressing need for storing such historical data across differ-
ent spatial and temporal resolutions, as reference models
for fine-grained online analysis.
It may be possible to specify compression and summa-
rization methods for reducing the storage requirement for
specific traffic monitoring applications that use historical
data. However, there is a definite need for historical ref-
erence data to be stored at fine spatial and temporal res-
olutions for a wide variety of applications, and it is often
difficult to ascertain the set of applications and diagnostic
techniques that would use these datasets ahead of time. The
compression techniques discussed in this paper have the de-
sirable property that they operate in an application-agnostic
setting, without making significant assumptions regarding
the underlying traffic distributions. Since many trafficmon-
itoring applications can tolerate a small amount of error in
the stored values, lossy compression techniques that can
guarantee a high fidelity representation with small storage
overhead are ideally suited for our requirements. We find
that our techniques provide very accurate compressed rep-
resentations so that there is only a negligible loss of accu-
racy across a wide spectrum of traffic monitoring applica-
tions.
The basic idea behind the compression techniques used
in this paper is to obtain a sparse representation of the given
time series signal using different orthonormal and redun-
dant bases. While a perfect lossless representation can be
obtained by keeping all the coefficients of the representa-
tion (e.g. using all Fourier or wavelet coefficients), we can
obtain a compressed (albeit lossy) representation by only
storing the high energy coefficients, that capture a substan-
tial part of the original time series signal.
Suppose we have a given time series signal of length N .
For example, in our data set consisting of hourly aggregates
of traffic volumes, N=168 over a week, for a single traffic
metric of interest. We can obtain a lossless representation
by using up a total storage ofN×k bits, where k represents
the cost of storing each data point. Alternatively, we can
obtain a sparse representation usingm coefficients using a
total storage space ofm×k′+ |D| bits, where the term |D|
represents the length of the dictionary used for compres-
sion, and k′ represents the cost of storing the amplitude

associated with each coefficient. The |D| term represents
the cost of storing the list of selected indices as a bit-vector
of length equal to the size of the dictionary. The length
of the dictionary |D| is equal to αN , with the value α be-
ing one for an orthonormal basis (e.g., Fourier, Wavelet,
Spike) or equal to two in the case of a redundant dictionary
consisting of Fourier and Spike waveforms. The effective
compression ratio is thus (mk′ + αN)/(Nk). Assuming
k ≈ k′ (the cost of storing the raw and compressed coeffi-
cients are similar) and α � k (the values in consideration
are large integers or floats), the effective compression (even
with this naive encoding) is approximately equal to m/N
1. The primary focus of this paper is not to come up with an
optimal encoding scheme for storing the m coefficients to
extract the greatest per-bit compression. Rather we wish to
explore the spectrum of signal compression techniques, us-
ing different natural waveforms as dictionaries for achiev-
ing a reasonable error-compression tradeoff.
A natural error metric for lossy compression techniques
in signal processing is the energy of the residual, which
is the vector difference between the original signal and the
compressed representation. Let S be the original signal and
Cs represent the compressed representation of S. The sig-
nal R = S − Cs represents the residual signal. We use the
following relative error metric ‖R‖2

‖S‖2 where ‖ · ‖ represents
the L2 (Euclidean) norm of a vector. The error metric rep-
resents the fraction of the energy in the original signal that
is not captured in the compressed model. For example, a
relative error of 0.01 implies that the energy of the residual
signal (not captured by the compressed representation) is
only 1% of the energy of the original signal. Our results
indicate that we can achieve high fidelity compression for
more than 90% of all traffic aggregates, with a relative er-
ror of less than 0.01 using only m = 30 coefficients, for
the hourly aggregates withN = 168. Since a m-coefficient
representation of the signal implies a compression ratio of
roughly m/N , with N = 168, a 30-coefficient representa-
tion corresponds to a compression ratio of roughly 1:6.
Consider the following scenario. An operator wishes to
have access to finer resolution historical reference data col-
lected on a per application port basis (refer Section 5 for
a detailed description of the datasets used in this paper).
Suppose the operator wants to improve the temporal gran-
ularity by going from hourly aggregates to 10 minute ag-
gregates. The new storage requirement is a non-negligible
60/10 × X = 6X , where X represents the current stor-
age requirement (roughly 1GB of raw data per router per
week). Using the compression techniques presented in this
paper, by finding small number of dictionary components
to represent the time series data, the operator can easily off-
set this increased storage cost.
Further, we observe (refer Section 8.2) that moving to
finer temporal granularities does not actually incur substan-
tially higher storage cost. For example we find that the
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same fidelity of compression (at most 1% error) can be ob-
tained for time-series data at fine time granularity (aggre-
gated over five minute intervals) by using a similar number
of coefficients as those used for data at coarser time gran-
ularities (hourly aggregates). Thus by using our compres-
sion techniques operators may in fact be able to substan-
tially cut down storage costs, or alternatively use the stor-
age “gained” for improving spatial granularities (collecting
data from more routers, customers, prefixes, etc).
In the next section, we present a brief overview on the
use of redundant dictionaries for compression, and present
a greedy algorithm for finding a sparse representation over
a redundant dictionary.

4 Sparse Representations over Redundant
Dictionaries

One mathematically rigorous method of compression is
that of sparse approximation. Sparse approximation prob-
lems arise in a host of scientific, mathematical, and engi-
neering settings and find greatest practical application in
image, audio, and video compression [4, 6, 12], to name
a few. While each application calls for a slightly differ-
ent problem formulation, the overall goal is to identify a
good approximation involving a few elementary signals—
a sparse approximation. Sparse approximation problems
have two characteristics. First, the signal vector is approx-
imated with a linear model of elementary signals (drawn
from a fixed collection of several orthonormal bases). Sec-
ond, there is a compromise between approximation error
(usually measured with Euclidean norm) and the number
of elementary signals in the linear combination.
One example of a redundant dictionary for signals of
length N is the union

D =

{
cos

(πk(t + 1
2 )

N

)}⋃{
δk(t)

}
,

where k = 0, . . . , N − 1, of the cosines and the spikes on
N points. The “spike” function δk(t) is zero if t 6= k and is
one if t = k. Either basis of vectors is complete enough to
represent a time series of length N but it might take more
vectors in one basis than the other to represent the signal.
To be concrete, let us take the signal

X(t) = 3 cos
(π8(t + 1

2 )
100

)
− 5δ10(t) + 15δ20(t)

plotted in Figure 1(a). The spectrum of the discrete cosine
transform (DCT) of X is plotted in Figure 1(b). For this
example, all the coefficients are nonzero. That is, if we
write

X(t) =
1

100

99∑

k=0

X̂(k) cos
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(a) An example signal X
which has a short repre-
sentation over the redun-
dant dictionaryD.
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(b) The discrete cosine
transform (DCT) of the
example signalX.

Figure 1: The example signal X and its discrete cosine
transform (DCT).

as a linear combination of vectors from the cosine basis,
then all 100 of the coefficients X̂(k) are nonzero. Also, if
we write X(t) as a linear combination of spikes, then we
must use almost all 100 coefficients as the signal X(t) is
nonzero in almost all 100 places. Contrast these two ex-
pansions for X(t) with the expansion over the redundant
dictionary D

X(t) = 3 cos
(π8(t + 1

2 )
100

)
− 5δ10(t) + 15δ20(t).

In this expansion there are only three nonzero coefficients,
the coefficient 3 attached to the cosine term and the two co-
efficients associated with the two spikes present in the sig-
nal. Clearly, it is more efficient to store three coefficients
than all 100. With three coefficients, we can reconstruct or
decompress the signal exactly. For more complicated sig-
nals, we can keep a few coefficients only and obtain a good
approximation to the signal with little storage. We obtain a
high fidelity (albeit lossy) compressed version of the signal.
Observe that because we used a dictionary which consists
of simple, natural building blocks (cosines and spikes), we
need not store 100 values to represent each vector in the
dictionary. We do not have to write out each cosine or spike
waveform explicitly.
Finding the optimal dictionary for a given application is
a difficult problem and good approximations require do-
main specific heuristics. Our contribution is the identifica-
tion of a set of dictionaries that are well-suited for com-
pressing traffic time-series data, and in empirically justi-
fying the choice of such dictionaries. Prior work on un-
derstanding the dimensionality of network traffic data us-
ing principal component analysis [10] identifies three types
of eigenflows: periodic, spikes, and noise. With this intu-
ition, we try different dictionaries drawn from three basic
waveforms: periodic functions (or complex exponentials),
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spikes, and wavelets. Dictionaries that are comprised of
these constituent signals are descriptive enough to capture
the main types of behavior but not so large that the algo-
rithms are unwieldy.

4.1 Greedy Pursuit Algorithms
A greedy pursuit algorithm at each iteration makes the best
local improvement to the current approximation in hope of
obtaining a good overall solution. The primary algorithm
is referred to as Orthogonal Matching Pursuit (OMP), de-
scribed in Algorithm 4.1. In each step of the algorithm,
the current best waveform is chosen from the dictionary
to approximate the residual signal. That waveform is then
subtracted from the residual and added to the approxima-
tion. The algorithm then iterates on the residual. At the
end of the pursuit stage, the approximation consists of a
linear combination of a small number of basic waveforms.
We fix some notation before describing the algorithm. The
dictionary D consists of d vectors ϕj of length N each.
We write these vectors ϕj as the rows in a matrix Φ and
refer to this matrix as the dictionary matrix. OMP is one of
the fastest2 provably correct algorithm for sparse represen-
tation over redundant dictionaries, assuming that the dic-
tionary satisfies certain geometric constraints [5] (roughly,
the vectors in the dictionary must be almost orthogonal to
one another). The algorithm is provably correct in that if
the input signal consists of a linear combination of exactly
m vectors from the dictionary, the algorithm finds thosem
vectors exactly. In addition, if the signal is not an exact
combination of m vectors but it does have an optimal ap-
proximation usingm vectors, then the algorithm returns an
m-term linear combination whose approximation error to
the input signal is within a constant factor of the optimal
approximation error. If we seekm vectors in our represen-
tation, the running time of OMP is O(mdN). Dictionaries
which are unions of orthonormal bases (which meet the ge-
ometric condition for the correctness of OMP), are of size
d = kN , so the running time for OMP with such dictionar-
ies is O(mkN2).

Algorithm 4.1 (OMP)
INPUT:
• A d × N matrixΦ
• A vector v of measurements of length N
• The desired number of termsm in the compressed sig-
nal

OUTPUT:
• A set ofm indices λ1, . . . , λm

• An N -dimensional residual rm

PROCEDURE:
1. Initialize the residual r0 = v and the iteration counter

t = 1.

2. Find the index λt of the vector with the largest dot
product with the current residual

λt = argmaxj |〈rt−1, ϕj〉| .

3. Let Pt be the orthogonal projection onto the span of
the current vectors span {ϕλ : λ1, . . . , λt}. Calculate
the new residual:

rt = v − Pt v.

4. Increment t, and return to Step 2 if t < m.

Note that if we had a single orthonormal basis as the dic-
tionary D, the representation obtained using Algorithm 4.1
is exactly the same as the projection onto the orthonormal
basis. For example, if we just had a Fourier basis, the co-
efficients obtained from a regular Fourier transform would
exactly match the coefficients obtained from the matching
pursuit procedure.

5 Data Description

The primary data set we have used for evaluating our meth-
ods consists of traffic aggregates collected over a 20 week
period (between January and June 2004) at a large Tier-1
Internet provider’s IP backbone network. The dataset con-
sists of traffic aggregates in terms of flow, packet, and byte
counts. The dimensions of interest over which the aggre-
gates are collected are:

• TCP Ports: Traffic to and from each of the 65535 TCP
ports.

• UDP Ports: Traffic to and from each of the 65535
UDP ports.

• AggregatedNetwork Prefixes: Traffic to and from net-
work prefixes aggregated at a set of predefined net-
work prefixes.

The traffic aggregates were generated from flow records
using traffic collection tools similar to Netflow [14], aggre-
gated over multiple links in the provider’s Internet back-
bone. In this particular data set, the traffic volume counts
are reported on an hourly basis. For example, for each TCP
port the data set contains the total number of flows, packets,
and bytes on that port. The data set aggregates each met-
ric (i.e., flows, packets, and bytes) for both incoming (i.e.,
traffic with this port was the destination port) and outgoing
traffic (i.e., traffic with this port as the source port). Such
per-port and per-prefix aggregates are routinely collected
at many large ISPs and large enterprises for various traffic
engineering and traffic analysis applications.
It is useful to note that such data sets permit interest-
ing traffic analysis including observing trends in the traffic
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data, and detecting and diagnosing anomalies in the net-
work data. For many types of network incidents of interest
(outages, DoS and DDoS attacks, worms, viruses, etc.) the
dataset has sufficient spatial granularity to diagnose anoma-
lies. For example, the number of incoming flows into spe-
cific ports can be an indication of malicious scanning activ-
ity or worm activity, while the number of incoming flows
into specific prefixes may be indicative of flash-crowds or
DoS attacks targeted at that prefix.
For the following discussions, we consider the data in
week long chunks, partly because a week appears to be the
smallest unit within which constituent components of the
signal manifest themselves, and also because a week is a
convenient time unit from an operational viewpoint.

6 Results

In this section, we demonstrate how we can use sparse ap-
proximations to compress traffic time series data. We look
at the unidimensional aggregates along each port/protocol
pair and prefix as an independent univariate signal. In
the following sections, unless otherwise stated, we work
with the total number of incoming flows into a particular
port. We observe similar results with other traffic aggre-
gates such as the number of packets and the number of in-
coming bytes incoming on each port, and for aggregated
counts for the number of outgoing flows, packets, bytes on
each port—we do not present these results for brevity. We
present the results only for the TCP and UDP ports and note
that the compression results for aggregated address prefixes
were similar.
Since an exhaustive discussion of each individual port
would be tedious, we identify 4 categories of ports, pre-
dominantly characterized based on the applications that use
these ports. For each of the categories the following discus-
sion presents results for a few canonical examples.

1. High volume, popular application ports (e.g., HTTP,
SMTP, DNS).

2. P2P ports (e.g., Kazaa, Gnutella, E-Donkey).

3. Scan target ports (e.g., Port 135, Port 139) .

4. Random low volume ports.

6.1 Fourier Dictionary
Our first attempt at selecting a suitable dictionary for com-
pression was to exploit the periodic structure of traffic time
series data. A well known fact, confirmed by several mea-
surements [9, 10, 15], is the fact that network traffic when
viewed at sufficient levels of aggregation exhibits remark-
ably periodic properties, the strongest among them being
the distinct diurnal component. It is of interest to identify

these using frequency spectrum decomposition techniques
(Fourier analysis). It is conceivable that the data can be
compressed using a few fundamental frequencies, and the
traffic is essentially a linear combination of these harmon-
ics with some noisy stochastic component.
To understand the intuition behind using the frequency
spectrum as a source of compression we show in Figure 2
the power spectrum of two specific ports for a single week.
In each case the power spectrum amplitudes are normal-
ized with respect to the maximum amplitude frequency for
that signal (usually the mean or 0th frequency component),
and the y-axis is shown on a log-scale after normalization.
We observe that the power spectrum exhibits only a few
very high energy components. For example the central
peak and the high energy band around it corresponds to the
mean (0th) frequency in the Fourier decomposition, while
the slightly lesser peaks symmetric around zero, and close
to it correspond to the high energy frequencies that have a
wavelength corresponding to the duration of a day.
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Figure 2: Frequency power spectrum of time-series of in-
coming flows on specific ports over a single week

We also show the how the normalized amplitude de-
creases when we sort the frequency components in de-
scending order of their amplitudes in Figure 3. We observe
that there is indeed a sharp drop (the figures are in log-scale
on y-axis) in the energy of the frequency components after
20-30 components for the different signals considered.
We observe that a small number of components do cap-
ture a significant portion of the energy, which suggests a
rather obvious compression scheme. For each week-long
time series, pick the k frequencies that have the highest
energies in the power spectrum. Figure 4 indicates that us-
ing 40 coefficients per week (around 40/168 = 25% of the
original signal size) coefficients yields a relative error of
less than 0.05 for more than 90% of all ports3. A relative
error of 0.05 using our relative error metric indicates that
around 95% of the original signal energy was captured in
the compressed form. We observe in Figure 5 that the cor-
responding compressibility of UDP ports is slightly worse.
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Figure 3: Energy of the frequencies sorted in descending
order for specific ports

The reason is that the traffic volumes on UDP ports tend to
exhibit far lesser aggregation, in terms of absolute volumes
and popularity of usage of particular ports. Intuitively one
expects that with higher volumes and aggregation levels,
the traffic would exhibit more periodic structure, which ex-
plains the better compression for TCP ports as opposed to
UDP ports.
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Figure 4: CDFs of relative error for TCP ports (incoming
flows) with Fourier dictionary

The Fourier basis is one simple orthonormal basis. There
are a host of other orthonormal bases which have been
employed for compressing different datasets. Wavelets
have traditionally been used for de-noising and compres-
sion in image and audio applications. The effectiveness
of a wavelet basis depends on the choice of the “mother
wavelet” function. However, identifying the best basis for
representing either a given signal or a class of signals is
a hard problem, for which only approximate answers ex-
ist using information-theoretic measures [17]. For our ex-
periments we tried a variety of wavelet families including
the well studied Daubechies family of wavelets, and other
derivatives such as Symlets and Coiflets. Our observation
is that the families of wavelets we tested had poorer perfor-
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Figure 5: CDFs of relative error for UDP ports (incoming
flows) with Fourier dictionary

mance when compared with the Fourier basis. Although an
exhaustive discussion of choosing the ideal wavelet family
is beyond the scope of this paper, our experiments with a
host of wavelet families indicate that the traffic time-series
cannot be efficiently compressed using wavelets (as an or-
thonormal basis) alone.

6.2 Using Redundant Dictionaries
Our choice of the Fourier dictionary was motivated by the
observation that the traffic time-series when viewed at a
reasonable level of aggregation possesses a significant pe-
riodic component. Therefore, using Fourier basis functions
as part of the redundant dictionary seems a reasonable start-
ing point. There are however, other interesting incidents we
wish to capture in the compressed representation. Experi-
ence with traffic data indicates that interesting events with
high volume (and hence high signal energy) include possi-
bly anomalous spikes, traffic dips, and slightly prolonged
high traffic incidents. Such isolated incidents, localized in
time, cannot be succinctly captured using only a Fourier
basis. Fortunately, these events can be modeled either us-
ing spike functions appropriately placed at different time
indices, or using Haar wavelets (square waveforms) of dif-
ferent scales and all translations. The fully-translational
Haar wavelets at all scales and all translations form a rich
redundant dictionary of size N log N . By contrast, the or-
thonormal basis of Haar wavelets is of size N and consists
of the Haar wavelets at all scales and only those translations
which match the scale of the wavelet.
Table 1 compares a host of possible dictionaries on se-
lected ports. Over the entire spectrum of port types, we ob-
serve that specific bases are indeed better suited than oth-
ers for specific ports. For example, we observe that for
some high volume and P2P ports using a Fourier dictio-
nary gives better compression than using a wavelet or full-
translation Haar dictionary, while for some of the random
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and scan ports, the wavelet or full-translation Haar dictio-
nary give better compression. In some cases (e.g. port 114)
we also find that using spikes in the dictionary gives the
lowest compression error.
Rather than try to optimize the basis selection for each
specific port, we wish to use redundant dictionaries that can
best capture the different components that can be observed
across the entire spectrum of ports. Hence we use redun-
dant dictionaries composed of Fourier, fully-translational
Haar, and Spike waveforms and observe that we can ex-
tract the best compression (in terms of number of coeffi-
cients selected), across an entire family of traffic time se-
ries data. We compare three possible redundant dictionar-
ies: Fourier+ Haar wavelets (referred to asDF+H), Fourier
+ Spikes (referred to as DF+S), and Fourier + Spikes +
Haar wavelets (referred to as DF+H+S). Within each dic-
tionary the error-compression tradeoff is determined by the
number of coefficients chosen (Recall that a m-coefficient
representation roughly corresponds to a compression ratio
of m/N ). A fundamental property of the greedy pursuit
approach is that with every iteration the residual energy de-
creases, and hence the error is a monotonically decreas-
ing function of the number of modes chosen. We evaluate
the error-compression tradeoffs for these different dictio-
naries in Figures 6 and 7, where we assume that we are
constrained to use 30 coefficients (roughly corresponding
to using only one-sixth of the data points for each week).
We observe two main properties of using the redundant dic-
tionary approach. First, the compressibility is substantially
enhanced by expanding the dictionary to include either
spikes or Haar wavelets, in addition to the periodic Fourier
components, i.e., using redundant dictionaries yields bet-
ter fidelity for the same storage cost as compared to a sin-
gle orthonormal basis. The second property we observe
with the particular choice of basis functions on the traffic
data is a monotonicity property – adding a richer basis set
to the dictionary helps the compressibility. For example
the error-compression tradeoff that results with DF+H+S

is never worse than either DF+H or DF+S . The compres-
sion does come at a slightly higher computation cost, since
the time to compress the time series depends on the size
of the dictionary used, as the compression time scales in
linearly with the number of vectors in the dictionary (refer
Section 4).
In Figures 8 and 9 we show how the 95th percentile of
the relative error across all the ports decreases as a function
of the number of coefficients used for representing the traf-
fic data for each port for TCP and UDP ports respectively.
We find that after 30-35 coefficients we gain little by adding
additional coefficients, i.e., the marginal improvement in
the fidelity of the representation becomes less significant.
We will address this issue again in Section 8, by consid-
ering the rate of decrease of the residual as a function of
the number of modes selected for specific ports, to derive
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flows) with 30 coefficients for different dictionaries

0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Relative Error

F
ra

ct
io

n 
of

 p
or

ts

F+H
F+S
F+H+S
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flows) with 30 coefficients for different dictionaries

stopping criteria for obtaining compressed representations.

6.3 Analysis of Selected Modes

We proceed to analyze the set of dictionary components
that are chosen in the compressed representation using the
redundant dictionaries for different ports, along different
spatial and temporal dimensions. First, we are interested
to see if there is substantial similarity in the set of dictio-
nary components selected in the compressed representation
across different ports. Second, we want to observe the tem-
poral properties of compression; i.e., for a fixed traffic di-
mension, how does one week differ from another in terms
of the components selected from the redundant dictionary?
Third, we want to identify possible sources of correlation
across the different traffic aggregates (flows, packets, bytes,
both to and from) on a particular port of interest. Such anal-
ysis not only helps us to understand the nature of the un-
derlying constituent components that make up each traffic
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Table 1: Compression error with 30 coefficient representation for selected TCP ports (Legend: F = Fourier, W = Ortho-
normal db4 wavelets, H = Fully-translational Haar wavelets, S = Spikes)

Port Type Port Number Relative error with different dictionaries
DF DW DS DH DF+S DF+H DF+H+S DH+S

High Volume 25 0.0005 0.0026 0.8446 0.0007 0.0004 0.0004 0.0004 0.0007
80 0.0052 0.0256 0.7704 0.0074 0.0052 0.0018 0.0018 0.0073

P2P 1214 0.0003 0.0036 0.0007 0.8410 0.0003 0.0001 0.0001 0.0007
6346 0.0009 0.0056 0.8193 0.0013 0.0009 0.0005 0.0005 0.0013

Scan 135 0.0016 0.0216 0.7746 0.0049 0.0015 0.0008 0.0008 0.0049
9898 0.0066 0.0143 0.7800 0.0036 0.0063 0.0032 0.0032 0.0036

Random 5190 0.0023 0.0280 0.7916 0.0040 0.0023 0.0010 0.0010 0.0039
114 0.5517 0.1704 0.0428 0.0218 0.0097 0.0218 0.0068 0.0068
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Figure 8: 95th percentile of relative error vs. number of
coefficients selected for TCP ports (incoming flows)

time series but also enables us to identify possible sources
of joint compression, to further reduce the storage require-
ments. For the discussion presented in this section, we use
the dictionary DF+S (Fourier + Spike) as the redundant
dictionary for our analysis.

6.3.1 Spatial Analysis Across Ports

We observe that the majority of selected dictionary com-
ponents are restricted to a small number of ports—this
is expected as these modes capture the minor variations
across different ports, and also represent traffic spikes that
may be isolated incidents specific to each port. We also
observe that there are a few components that are consis-
tently selected across almost all the ports. These compo-
nents that are present across all the ports under consider-
ation include the mean (zero-th Fourier component), the
diurnal/off-diurnal periodic components, and a few other
periodic components which were found to be the high-
est energy components in the Fourier analysis presented in
Section 6.1.
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Figure 9: 95th percentile of relative error vs. number of
coefficients selected for UDP ports (incoming flows)

6.3.2 Temporal Analysis Across Multiple Weeks

We also analyze, for specific instances of ports as defined
by our four categories, the temporal stability of the set of
components that are selected across different weeks over
the 20 week data set, using 30 modes per week. As before,
we use DF+S as the redundant dictionary for compres-
sion. For each dictionary component (periodic component
or spike) that is selected in the compressed representation
over the 20 week period, we count the number of weeks in
which it is selected. We show in Figure 10 the number of
components that have an occurrence count more than x, as
a function of x. We observe that the majority of the compo-
nents are selected only for 1-2 weeks, which indicates that
these captured subtle traffic variations from week to week.
To further understand the stability of the components, we
divide them into 3 categories: components that occur every
week, components that occurred greater than 50% of the
time (i.e, were selected 10-20 times over the 20 week pe-
riod), and components that occurred fewer than 50% of the
time (i.e., fewer than 10 times). Table 2 presents the break-
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Figure 10: Occurrence counts using a 30 coefficient representation withDF+S :Fourier+Spike over a 20 week period

down for the above classification for different ports in each
category, and also shows the type of components that occur
within each count-class. We find that across all the ports,
the dictionary components that are always selected in the
compressed representation correspond to periodic compo-
nents such as the diurnal and off-diurnal frequencies.
The stability of a component depends not only on the
fact that it was selected in the compressed representation,
but also on the amplitude of the component in the com-
pressed representation. Hence, we also analyze the ampli-
tudes of the frequently occurring components (that occur
greater than 50% of the time) across the 20 week dataset.
Figures 11 and 12 show the mean and deviation of the am-
plitudes returned by the greedy pursuit procedure for these
frequently occurring components. For clarity, we show the
amplitudes of the real and imaginary part of the Fourier
(periodic) components separately. For each port, we first
sort the components according to the average magnitude
(i.e, the energy represented by both the real and imaginary
parts put together) over the 20 week period. We normal-
ize the values of the average amplitude in both real and
imaginary parts, and the deviations by the magnitude of the
mean (or zero-th Fourier) component. We observe that the
amplitudes are fairly stable for many Fourier components
across the different port types. These results suggest that
these stable (Fourier) frequencies may indeed form funda-
mental components of the particular traffic time series. The
relative stability of amplitudes in the compressed represen-
tation also indicates that it may be feasible to build traffic
models, that capture the fundamental variations in traffic,
using the compressed representations.

6.3.3 Spatial Analysis Across Traffic Metrics

The last component of our analysis explores the similar-
ity in the traffic data across different aggregates for a given
port, within each week. One naturally expects a strong cor-
relation between the number of flows, the number of pack-
ets, and the number of bytes for the same port, and also
reasonable correlation between the total incoming volume
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Figure 11: Stability of amplitudes of dictionary compo-
nents selected – High volume: Port 80

and the total outgoing volume of traffic on the same port 4.
Figure 13 confirms this natural intuition about the nature of
the traffic aggregates. We observe that for the high volume
and P2P application ports, more than two-thirds of the dic-
tionary components are commonly selected across all the
different traffic aggregates and we also find that more than
30 components are selected across at least 4 of the traf-
fic aggregates (bytes, packets, flows both to and from the
port). We found that such similarity in the selected compo-
nents across the different aggregates is less pronounced for
the scan target ports and the random ports under consider-
ation. Our hypothesis is that the distribution of packets per
flow and bytes per packet are far more regular for the high
volume applications (for example most HTTP, P2P packets
use the maximum packet size to get maximum throughput)
than on the lesser known ports (which may be primarily
used as source ports in small sized requests).

7 Applications

7.1 Visualization

One of the primary objectives of compression is to present
to the network operator a high fidelity approximation that
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Table 2: Analyzing stable dictionary components for different classes of ports

Port Type Port Number All 20 weeks 10-20 weeks 0-10 weeks
Periodic Spike Periodic Spike Periodic Spike

High Volume 25 5 0 18 0 23 102
80 11 0 19 0 15 33

P2P 1214 5 0 21 0 20 104
6346 7 0 17 0 23 94

Scan 135 5 0 24 0 15 63
9898 3 0 20 0 35 67

Random 5190 11 0 10 0 27 73
65506 1 0 15 0 31 147
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Figure 12: Stability of amplitudes of dictionary compo-
nents selected – P2P Port: 1214

captures salient features of the original traffic metric of in-
terest. Visualizing historical traffic patterns is a crucial as-
pect of traffic monitoring that expedites anomaly detection
and anomaly diagnosis involving a network operator, who
can use historical data as visual aids. It is therefore impera-
tive to capture not only the periodic trends in the traffic, but
also the isolated incidents of interest (for example, a post-
lunch peak in Port 80 traffic, the odd spike in file sharing
applications, etc).
Figure 14 shows some canonical examples from each of
the four categories of ports we described earlier. In each
case we show the original traffic time series over a week
and the time series reconstructed from the compressed rep-
resentation using 1:6 compression with DF+H+S(Fourier
+ Haar + Spike). We also show the residual signal, which
is the point-wise difference between the original signal and
the compressed reconstruction. The traffic values are nor-
malized with respect to the maximum traffic on that port
observed for the week. We find that the compressed repre-
sentations provide a high fidelity visualization of the orig-
inal traffic data. Not surprisingly, the ports which exhibit
the greatest amount of regularity in the traffic appear to be
most easily compressible and the difference between the
actual and compressed representation is almost negligible
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Figure 13: Occurrence counts using 30 coefficient repre-
sentation with DF+S :Fourier+Spike over different traffic
aggregates for a single week

for these cases. It is also interesting to observe in each
case that the compressed representation captures not only
the periodic component of the signal, but also traffic spikes
and other traffic variations.

7.2 Traffic Trend Analysis

Analyzing trends in traffic is a routine aspect in network op-
erations. Operators would like to understand changes and
trends in the application mix that is flowing through the
network (e.g. detecting a a new popular file sharing proto-
col). Understanding traffic trends is also crucial for traffic
engineering, provisioning, and accounting applications. It
is therefore desirable that such trend analysis performed on
the compressed data yields accurate results when compared
to similar trend analysis on the raw (uncompressed) data. A
simple method to extract trends over long timescales is to
take the weekly average, and find a linear fit (using simple
linear regression to find the slope of the line of best fit) to
the weekly averages over multiple weeks of data. In Fig-
ure 15, we plot the relative error in estimating such a linear
trend. We estimate the trend using 20 weeks of data for dif-
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Figure 14: Miscellaneous Ports usingDF+H+S : Fourier + Haar Wavelets + Spikes
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Figure 15: Relative error in estimating traffic trends

ferent ports, and in each case we estimate the slope of the
best linear fit on the raw data and on the compressed data
(using a 30 coefficient representation usingDF+H+S ). We
observe that across the different ports, the relative error in
estimating the trend is less than 0.5%, which reaffirms the
high fidelity of the compression techniques.

7.3 Modeling and Anomaly Detection

We observed in Section 6.3 that the underlying fundamen-
tal components are stable (both in terms of occurrence and
their amplitudes) over time. It is conceivable that traffic
models for anomaly detection can be learned on the com-
pressed data alone. Our initial results suggest that traf-
fic models [15] learned from compressed data have al-
most identical performance to models learned from un-
compressed data, and hence compression does not affect
the fidelity of traffic modeling techniques. Ongoing work
includes evaluating different models for building predic-
tion models for real-time anomaly detection using accurate
yet parsimonious prediction models generated from the in-
sights gained from the compression procedures.

8 Discussion

8.1 Stopping Criteria

In our experiments, we fixed the number of coefficients
across all ports. One can imagine a host of stopping cri-
teria to apply. One particularly interesting observation is
that in many of the cases, a few of which are depicted in
Figure 16, we find that the residual energy has a distinct
knee beyond which the rate of drop in the residual energy
is significantly lower. Intuitively one can imagine as the
knee corresponding to the stochastic noise component of
the original signal, which cannot be efficiently represented
using any fundamental component. Note that the anoma-
lous incidents such as spikes or glitches are usually cap-
tured before we hit the knee of the curve, as observed in
Section 7.1. This raises the possibility that we have a ro-
bust representation of the original signal—one that does
not change with the addition of noise as there are dimin-
ishing returns for any added effort aimed at modeling the
noise component, which are not necessarily of interest ei-
ther from a visualization or modeling perspective. We have
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Figure 16: Evaluating Stopping Criteria: Relative Error vs.
number of coefficients

performed independent experiments with synthetic time se-
ries signals, similar to traffic time series (sinusoidal signals,

Internet Measurement Conference 2005 USENIX Association264



with spikes and different noise patterns thrown in). We ob-
serve that in almost all the cases we observe a distinct knee
in the redundant dictionary decomposition, once the fun-
damental high energy components get picked. We also find
that the asymptotic slope of the curve of the residual energy
beyond the knee has a unique signature that is characterized
by the nature of the noise component (Gaussian or “White”
vs. Power-law or “Colored”), and the redundant dictionary
used.

8.2 Smaller Scales
At an appropriate aggregation level, network traffic will ex-
hibit some periodicities. Traffic time series data from a
variety of settings (enterprise and university) also confirm
this hypothesis. These data typically represent the aggre-
gate traffic at the border of a reasonably large network with
fairly high aggregation levels. We believe that the methods
for time-series compression using matching pursuit with
redundant dictionaries are still applicable to data even at
slightly lower scales of aggregation.
One of the objectives of compressing the time series is
to enable different scales of time resolution for anomaly
detection. It is imperative that the time scale for detecting
traffic anomalies be less than the minimum time required
for a large network attack to saturate. When the compres-
sion is applied to traffic aggregates at finer time granulari-
ties (e.g. for each week if we had volume counts for each
five minute bin instead of hourly time bins), one expects
that the effective compression would be better. The ratio-
nale behind the intuition arises from the fact that the high
energy fundamental components correspond to relatively
low frequency components, and such pronounced period-
icities are unlikely to occur at finer time-scales. As a pre-
liminary confirmation of this intuition, we performed the
same compression procedures on a different data set, con-
sisting of 5 minute traffic rates collected from SNMP data
from a single link. Note that with 5-minute time intervals,
we have 168 × 12 = 2016 data points per week. Figure 17
the relative error as a function of the number of coefficients
used in the compressed representation (using DF+S). We
observe that with less than 40 ( = 2% of the original space
requirement) coefficients we are able to adequately com-
press the original time-series (with a relative error of less
than 0.005), which represents significantly greater possi-
ble compression than those observed with the hourly ag-
gregates.

8.3 Encoding Techniques
We observed that with larger dictionaries that include full-
translation wavelets, we can achieve better compression.
There is, however, a hidden cost in the effective compres-
sion with larger dictionaries as the indices of a larger dic-
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Figure 17: Compressing SNMP data collected at five
minute intervals from a single link

tionary potentially require more bits to represent than the
indices of a smaller dictionary. One can imagine better
ways of encoding the dictionary indices (e.g., using Huff-
man coding) to reduce the amount of space used up for
storing the dictionary indices in addition to the component
amplitudes. Our work explored the potential benefit of us-
ing signal processing methods for lossy compression and
we observed that there is a substantial reduction in the stor-
age requirement using just the methods presented in this pa-
per. Many compression algorithms use lossy compression
techniques along with efficient encoding techniques (loss-
less compression) to get the maximum compression gain,
and such combinations of lossy and lossless compression
methods can be explored further.

8.4 Joint Compression
We observe that there are multiple sources of correlation
across the different traffic dimensions that may be addition-
ally utilized to achieve better compression. The temporal
stability of the compressed representations (Section 6.3.2)
suggests there is scope for exploiting the similarity across
different weeks for the same traffic aggregate. For exam-
ple, we could build a stable model over k weeks of data for
each port/prefix and only apply the sparse approximation
to the difference of each particular week from the model.
Alternately one could imagine applying the simultaneous
compression algorithms [16] across the different weeks for
the same port. The simultaneous compression algorithms
approximate all these signals at once using different linear
combinations of the same elementary signals, while bal-
ancing the error in approximating the data against the to-
tal number of elementary signals that are used. We also
observed that there is reasonable correlation in spatial di-
mensions, since the compressed representation of different
traffic aggregates such as flows, packets, and bytes show
significant similarity (Section 6.3.3).
The observations of the low dimensionality of network
traffic data across different links also raises the possibil-
ity of using Principal Component Analysis (PCA) [10] for
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extracting better spatial compression, both across different
traffic aggregates (e.g. different ports, across time) and
across different measurements (e.g. across per-link, per-
router counts). PCA like methods can be used to extract the
sources of correlation before one applies redundant dictio-
nary approaches to compress the traffic data. For example
we can collapse the 20 week data set for a single port into a
single matrix of traffic data, on which PCA like techniques
can be applied to extract the first few common components,
and the redundant dictionary can be applied on the residual
(the projection on the non-principal subspace) to obtain a
higher fidelity representation.

9 Conclusions

There is a pressing need for fine-grained traffic analysis at
different scales and resolutions across space and time for
network monitoring applications. Enabling such analysis
requires the ability to store large volumes of historical data
across different links, routers, and customers, for generat-
ing visual and diagnostic aids for network operators. In
this paper, we presented a greedy pursuit approach over
redundant dictionaries for compressing traffic time series
data, and evaluated them using measurements from a large
ISP. Our observations indicate that the compression models
present a high fidelity representation for a wide variety of
traffic monitoring applications, using less than 20% of the
original space requirement. We also observe that most traf-
fic signals can be compressed and characterized in terms of
a few stable frequency components. Our results augur well
for the visualization and modeling requirements for large
scale traffic monitoring. Ongoing work includes evaluating
and extracting sources of compression across other spatial
and temporal dimensions, and evaluating the goodness of
traffic models generated from compressed representations.
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Notes
1Typically, k′ is less than k, i.e. the magnitudes of the amplitudes of

the dictionary components are less than the original time series.
2The slowest step in OMP is choosing the waveform which maximizes

the dot product with the residual at each step. We can speed up this step
with a Nearest Neighbors data structure [7] and reduce the time complex-
ity for each iteration toN + polylog(d).
3Note that for each Fourier coefficient, we need to store both the real

part and the imaginary part. It appears that we may actually need twice
the space. However, the amplitudes for frequency f and frequency −f
are the same (except that they are complex conjugates of one another),
we can treat them as contributing only two coefficients to the compressed
representation together in total as opposed to four coefficients.
4We however note that there may be certain exceptional situations

(e.g., worm or DDoS attacks that use substantially different packet and
byte types) where such stable correlations between the flow, packet, and
byte counts may not always hold.
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