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Sparse Array Beamformer Design via ADMM
Huiping Huang, Student Member, IEEE, Hing Cheung So, Fellow, IEEE, and Abdelhak M. Zoubir, Fellow, IEEE

Abstract—In this paper, we devise a sparse array design algo-
rithm for adaptive beamforming. Our strategy is based on finding
a sparse beamformer weight to maximize the output signal-
to-interference-plus-noise ratio (SINR). The proposed method
utilizes the alternating direction method of multipliers (ADMM),
and admits closed-form solutions at each ADMM iteration. The
algorithm convergence properties are analyzed by showing the
monotonicity and boundedness of the augmented Lagrangian
function. In addition, we prove that the proposed algorithm
converges to the set of Karush-Kuhn-Tucker stationary points.
Numerical results exhibit its excellent performance, which is
comparable to that of the exhaustive search approach, slightly
better than those of the state-of-the-art solvers, including the
semidefinite relaxation (SDR), its variant (SDR-V), and the
successive convex approximation (SCA) approaches, and signifi-
cantly outperforms several other sparse array design strategies, in
terms of output SINR. Moreover, the proposed ADMM algorithm
outperforms the SDR, SDR-V, and SCA methods, in terms of
computational complexity.

Index Terms—Adaptive beamforming, ADMM, semidefinite
relaxation, sparse array design, successive convex approximation,
output SINR.

I. INTRODUCTION

A
DAPTIVE arrays have been widely applied in diverse

practical applications, such as radar, sonar, wireless com-

munications, to name just a few [2]. One of their important

functions is beamforming, which is to extract the signal-of-

interest (SOI) while suppressing interference and noise [3].

It has been reported that the performance of beamforming is

affected by not only the beamformer weight, but also the array

configuration [4]. In this sense, conventional uniform arrays

may not be the optimal choices for adaptive beamformer de-

sign. On the other hand, since sparse arrays achieve increased

array aperture and degrees of freedom while reducing the

hardware complexity, as compared to conventional uniform

arrays. Thus, sparse arrays could be a better option for adaptive

beamformer design.

On the other hand, many research works have considered

beamformer design for the communication systems of hybrid

structures [5]–[8]. Hybrid architectures are one approach for

providing enhanced benefits of multiple-input multiple-output

(MIMO) communication at millimeter-wave (mmWave) fre-

quencies. In such a hybrid system, there are smaller num-

ber of radio-frequency (RF) chains than antennas. Note that

RF chains are much more expensive than antennas. Hybrid
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structure offers a compromise between system performance

and hardware complexity. For such a configuration, it raises

a question on how to adaptively switch the available RF

chains to the corresponding subset of antennas, which can be

interpreted as sparse array beamformer design.

A. Related Works

In recent years, several strategies for designing sparse array

beamformers have been proposed, see for example [9]–[18]

and references therein. [9] investigates sparse array design

problem in the presence of steering vector mismatch. [10]

focuses on a specific sparse array, i.e., coprime array, for

adaptive beamforming. A constrained normalized least-mean-

square approach is developed in [11]. However, there is no

theoretical analyses of the convergence of the algorithm. The

authors in [12] consider the problem of resource allocation

and interference management, and propose a group sparse

beamforming method. A reconfigurable adaptive antenna array

strategy is proposed to minimize the spatial correlation coef-

ficient between the desired signal and the interference [13].

[14] studies the sparse array beamforming design problem by

firstly dividing the whole array into several non-overloped sub-

groups, and then selecting one antenna per sub-group. By us-

ing the regularized switching network, [15] proposes a cogni-

tive sparse beamformer, which is adaptive to the environmental

dynamics. In [16], the authors investigate joint beamforming

and antenna selection problem under imperfect channel state

information, and develop an efficient branch and bound (B&B)

approach and a machine learning based scheme. [17] and [18]

consider sparse array design for achieving maximum signal-

to-interference-plus-noise ratio (SINR) for different scenarios

of single point source, multiple point sources, and wideband

sources. Different from most of the existing works, our goal is

to maximize the output SINR by using a smaller number of RF

chains (compared to the number of antennas), and our main

contributions include developing an efficient algorithm to solve

the resulting problem and providing theoretical guarantee of

the convergence property of the proposed algorithm.

From the perspective of algorithm, existing methods can

be roughly divided into three categories: Greedy based [12],

[13], [19], machine learning based [16], [20]–[23], and opti-

mization based [16]–[18], [24]–[39] approaches. The greedy

procedure in [12], [13], [19] largely reduces the combinatorial

exploration space, but could result in a highly suboptimal

solution. Machine learning techniques [16], [20]–[23] require

prior data for their training step, which might be unavailable

in some practical scenarios. On the other hand, optimization

based methods include B&B [16], mixed-integer programming

(MIP) [24]–[26], semidefinite relaxation (SDR) [17], [18],

[28], [29], [33], [39], and successive convex approximation

http://arxiv.org/abs/2208.12313v2
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(SCA) [34]–[36]. B&B and MIP are capable of finding the

global optimum at the cost of a large computational burden.

SDR and SCA based methods are computationally expensive

when the dimension of the resulting matrix is high [40],

[41]. Besides, the relaxation nature of SDR usually leads to a

solution with a rank not being one, in which case extra post-

processing based on randomization is needed [42]. Moreover,

note that the SDR methods in [17], [18], [28], [29] utilize the

ℓ1-norm square instead of the ℓ1-norm for sparsity promotion.

Although the simulation results in these papers and also in

Section VI-C of the present paper demonstrate the usefulness

of the SDR-type methods, no theoretical support is available

due to the convexity of the Pareto boundary that is not

guaranteed (which has also been mentioned in [28] and [29]).

On the other hand, another downside of the SCA approach

lies in the fact that it requires a feasible starting point, which

could be a difficult task on its own [40].

B. Contributions

In this paper, a sparse array design algorithm based on the

alternating direction method of multipliers (ADMM) is devised

for adaptive beamforming. The proposed technique admits

closed-form solutions at each ADMM iteration. Convergence

analyses of the proposed algorithm are provided by showing

the monotonicity and boundedness of the augmented La-

grangian function. Additionally, it is proved that the proposed

algorithm converges to the set of Karush-Kuhn-Tucker (KKT)

stationary points. Simulation results demonstrate excellent

behavior of our scheme, as it outperforms several existing

methods, and is comparable to the exhaustive search approach.

Note that parts of this paper were presented in its conference

precursor, i.e., [1]. Compared to [1], the advancements and

supplementary contributions made in the present article are

listed as follows.

• In [1], we only provide an illustrative example for

Proposition 1 without a proof. Differently, in the present

article, besides an illustrative example we also provide a

mathematical proof in a rigorous manner.

• The convergence property of the proposed ADMM has

not been analysed in [1]. While in the present article,

we provide such convergence analyses in theory, and

extensive numerical simulations are provided to validate

the theoretical development, see Sections IV and VI in

the present article, respectively.

• In the present article we consider the computational

complexity of the algorithms, see Section VI-B, which

is not mentioned in [1].

• Moreover, more existing sparse array design strategies

(such as enumeration method, random sparse array, com-

pact uniform linear array, nested array, co-prime array,

semidefinite relaxation approach, and successive convex

approximation method) are taken into account in the

present article.

On the other hand, our algorithms and theoretical results

are developed primarily on the basis of the ideas presented in

[41] and [43]. Several differences are highlighted as follows.

• Different from [41] which used ADMM to solve gen-

eral quadratically constrained quadratic programming

(QCQP) problems, we focus on a specific QCQP prob-

lem that arises in sparse array beamformer design. Our

problem involves an ℓ1-norm regularization and thus our

solution is sparse, which is not the case in [41].

• Another important difference between our work and [41]

lies in the fact that the latter only provides a weaker

convergence result, i.e., if ADMM converges for their

problem, then it converges to a KKT stationary point, see

Theorem 1 in [41]. On the other hand, we show stronger

convergence results for our algorithm. That is, we first

prove the convergence of the proposed algorithm under

a mild condition, and then we prove that it converges to

a KKT stationary point.

• Note that [43] needed extra assumptions on the Lipschitz

gradient continuity as well as the boundedness of their

objective function. In our work, we require neither such

assumptions nor any other assumptions.

• Since [43] considered general non-convex problems, no

explicit expressions for their parameters were derived. On

the contrary, as we consider a specific non-convex prob-

lem of sparse array beamformer design, the properties of

our objective function have been investigated and thus

several parameters are given in an explicit manner. See

for example the augmented Lagrangian parameter ρ and

the strongly convex parameter γv in Lemma 1.

• The results in [43] were based on the augmented La-

grangian function, while we exploit the scaled-form aug-

mented Lagrangian function. This results in significant

differences in the following three aspects: i) the proof of

the monotonicity of the augmented Lagrangian function,

ii) the proof of the property of the point sequence, and iii)

the proof that the algorithm converges to the set of KKT

stationary points; see the proofs of Lemma 1, Theorem

1, and Theorem 2, respectively.

C. Paper Structure

The rest of the paper is organized as follows. The signal

model is established in Section II. The proposed approach

is presented in Section III and the convergence analyses

are given in Section IV. ADMM with re-weighted ℓ1-norm

regularization is proposed in Section V. Section VI shows the

simulation results, and Section VII concludes the paper and

provides possible future works.

D. Notation

The notation used throughout the paper is summarised in

Table I.

II. SIGNAL MODEL

Consider a compact uniform linear array (ULA) consisting

of M antenna sensors, where the terminology compact means

that the element-spacing of two adjacent antennas is equal to

half-wavelength of the incident signals. We refer the ULA with

element-spacing larger than half-wavelength to as sparse ULA.
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TABLE I: Summary of Notation

Notation Meaning Notation Meaning

regular letter scalar ‖ · ‖0 ℓ0-quasi-norm of a vector
bold-faced lower-case letter vector ‖ · ‖1 ℓ1-norm of a vector
bold-faced upper-case letter matrix ‖ · ‖2 ℓ2-norm of a vector

I identity matrix | · | absolute value

1M M×M all-one matrix (·)+ (x)+ , max{x, 0}
1 all-one vector max{a, b} maximum value of a and b

0 all-zero vector 〈x,y〉 inner product, 〈x,y〉 = xHy

·T transpose Tr{·} matrix trace

·H Hermitian transpose E{·} mathematical expectation

·−1 matrix inverse X � 0 X is positive semidefinite
λmax(·) largest eigenvalue X � Y X−Y is positive semidefinite
λmin(·) smallest eigenvalue ≥ element-wise larger than or equal to

C set of complex numbers ⊙ element-wise multiplication
ℜ{·} real part ⊘ element-wise division

 imaginary unit,  =
√
−1 sign(·) sign(x) =

{

0, if x = 0,
x

|x|
, otherwise

Denote x(t) ∈ CM as the observation vector of the compact

ULA, which can be modeled as:

x(t) = a(θ0)s0(t) +

K∑

k=1

a(θk)sk(t) + n(t), (1)

where t = 1, 2, · · · , T denotes the time index, with T being

the total number of available snapshots, θ0 and s0(t) are

the direction-of-arrival (DOA) and waveform of the SOI,

respectively, while θk and sk(t) denote those of the k-th

interference signal. We consider one SOI and K unknown

interferers in the data model, and the SOI and interferers are

assumed to be narrow-band, far-field, and uncorrelated signals.

In addition, n(t) ∈ CM is a zero-mean Gaussian noise vector,

and the array steering vector a(θ) ∈ CM takes the form as

a(θ) = [1, e−π sin(θ), · · · , e−π(M−1) sin(θ)]T. (2)

For the simplicity of notation, we denote a(θk) as ak, for all

k = 0, 1, · · · ,K , here and subsequently.

The beamformer output is calculated as

y(t) = wHx(t), (3)

in which w ∈ CM is the beamformer weight vector to be

designed. The beamformer output SINR is defined as [3]

SINR =
σ2
s |wHa0|2

wHRi+nw
, (4)

where σ2
s = E{|s0(t)|2} is the power of the SOI, and Ri+n

is the interference-plus-noise covariance matrix, which can be

written as

Ri+n =

K∑

k=1

σ2
kaka

H
k + σ2

nI, (5)

assuming that the interference signals are uncorrelated with

the noise. In (5), σ2
k = E{|sk(t)|2} is the power of the k-th

interference signal, and σ2
n is the noise power.

One of the most prevailing strategies for beamformer design

is to maximize the SINR, which leads to the minimum variance

distortionless response (MVDR) beamformer design [44]:

min
w

wHRi+nw subject to |wHa0|2 = 1. (6)

The above problem can be reformulated equivalently by re-

placing the realistically unattainable Ri+n with the received

data covariance matrix Rx = σ2
sa0a

H
0 +Ri+n [45], as:

min
w

wHRxw subject to |wHa0|2 ≥ 1. (7)

It is worth noting that the equality constraint is formulated

as an inequality one, since the output power of the SOI is

included as part of the objective function in (7) [17], [18].

The above problems have a closed-form solution as wopt =
R

−1
i+n

a0

aH
0R

−1
i+n

a0
. Substituting wopt into (4) yields the corresponding

optimum output SINR as

SINRopt = σ2
sa

H
0R

−1
i+na0. (8)

III. SPARSE ARRAY BEAMFORMER DESIGN

A. Sparse Beamforming Problem

Consider the situation where only L ≤ M RF chains are

available [28], and thus only L antennas can be simultane-

ously utilized for beamformer design. The problem can be

formulated as [17], [18], [28], [29]:

min
w

wHRxw subject to |wHa0|2 ≥ 1 and ‖w‖0 = L. (9)

This is a combinatorial problem, and there are
(
M
L

)
possible

options. It could be an extremely huge number when M is

large and L is moderate. For instance, if M = 100 and L = 20,

there are totally
(
100
20

)
> 5 × 1020 subproblems [21]. Even if

a modern machine (as fast as 10−10 seconds per subproblem)

is adopted, it still needs more than 1.5 thousand years in total.

This is evidently unacceptable, and thus more computationally

efficient approaches are required.

One widespread method is to replace the non-convex con-

straint ‖w‖0 = L with its convex surrogates, such as the ℓ1-

norm. By doing so and writing the ℓ1-norm in the objective

function as a penalty, we relax Problem (9) as [17], [28], [33]

min
w

wHRxw + λ‖w‖1 subject to |wHa0|2 ≥ 1, (10)

where λ > 0 is a tuning parameter controlling the sparsity of

the solution (i.e., the number of selected sensors). The above

problem is QCQP [46] with ℓ1-regularization, and it is still
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non-convex because of its constraint. State-of-the-art solvers

include SDR, SCA, ADMM, and their variants, see [40], [41],

[46]–[50] for general QCQP problems and [17], [18], [28],

[29], [33], [34], [39], [51]–[55] for specific QCQP problems

with applications in MIMO radar, wireless communications,

and so on. In the following subsection, we develop a method

based on ADMM for solving Problem (10), which shall be

shown to have closed-form solutions at each iteration.

B. ADMM for Problem (10)

To solve Problem (10) using ADMM, we first introduce an

auxiliary variable v ∈ CM and reformulate (10) into

min
w,v

vHRxv + λ‖w‖1 (11a)

subject to

{
|wHa0|2 ≥ 1
w = v.

(11b)

Then we can write down the scaled-form ADMM iterations

for Problem (10) as [49]

w ←
{

argmin
w

λ‖w‖1 +
ρ

2
‖w− v + u‖22

subject to |wHa0|2 ≥ 1
(12a)

v ← argmin
v

vHRxv +
ρ

2
‖w− v + u‖22 (12b)

u ← u+w − v (12c)

where the original variable w and the auxiliary variable v are

separately treated in (12a) and (12b), respectively, u is the

scaled dual variable corresponding to the equality constraint

in (11b), i.e., w = v, and ρ > 0 is the augmented Lagrangian

parameter.

In what follows, we show that (12) has closed-form solu-

tions at each ADMM iteration, by deducing w and v from

(12a) and (12b), respectively. First of all, from (12b), it is

simple to arrive at the closed-form solution of w in a least-

squares form, as

v = ρ(2Rx + ρI)−1(w + u). (13)

Now we turn to (12a). We solve (12a) in two steps: i) We

consider the unconstrained minimization problem by directly

removing its constraint; ii) We check whether the solution

obtained from Step i) satisfies the constraint, and update the

final solution accordingly. Details are provided as follows.

Step i): We consider the following unconstrained minimiza-

tion problem

min
w

λ‖w‖1 +
ρ

2
‖w− v + u‖22. (14)

By calculating the subgradient of the objective function in (14)

with respect to (w.r.t.) w, and setting the resultant expression

equal to zero, we obtain its solution, denoted by w̄, as

w̄ = sign(v − u)⊙
(
|v − u| − λ

ρ

)

+

. (15)

The detailed derivation of (15) from Problem (14) is omitted

here, and the interested readers are referred to the similar result

in Lemma 1 in [56].

Step ii): We check whether or not w̄ obtained from (15)

statisfies |w̄Ha0|2 ≥ 1. If it is, then the solution to (12a),

referred to as ŵ, is ŵ = w̄. If it is not, then ŵ can be found

via the following theorem.

Proposition 1. Denote ŵ and w̄ as the solutions to Problems

(12a) and (14), respectively. If w̄ does not satisfy |w̄Ha0|2≥1,

then as long as ρ≫ λ, ŵ equals the one in {w : |wHa0|2≥1},
such that it is closest (in an ℓ2-norm sense) to w̄.

Proof. Define f(w) , λ‖w‖1 + ρ
2‖w − v + u‖22, and define

w̃ such that

‖w̃− w̄‖2 ≤ ‖w− w̄‖2 (16)

holds for any w ∈ {w : |wHa0|2 ≥ 1}. The Lagrangian

parameter is chosen as ρ = Cλ, where C is a constant. As

shall be shown later, the augmented Lagrangian parameter ρ
is set to be large in order to make our algorithm converge.

When C →∞ (i.e., ρ≫ λ), the objective function

f(w) =
ρ

2
‖w − v + u‖22 =

ρ

2
‖w− w̄‖22, (17)

where, in the second equality, we used w̄ = v−u as C →∞.

Suppose that there exists a point w′ ∈ {w : |wHa0|2 ≥ 1},
such that f(w′) < f(w̃). Thus, by using (17), we obtain that
ρ
2‖w′ − w̄‖22 < ρ

2‖w̃ − w̄‖22, which contradicts (16). This

implies that f(w̃) ≤ f(w) holds for all feasible w, that is, w̃

is the solution to Problem (12a).

Remark 1. Besides the above mathematical proof, we give

an illustrative example for Proposition 1, by showing the

near-symmetric structure of the objective function around its

stationary point1. For simplicity, the variable is set to be real-

valued and the dimension M = 1. The parameters are λ = 1,

ρ = 4, a0 = 1/2, and −v+u = −1. Problem (12a) becomes

min
w

f(w) , |w|+ 2(w − 1)2 subject to |w| ≥ 2, (18)

with its stationary point w0 falling outside its feasible region

|w| ≥ 2, as in Fig. 1. Thanks to the convexity and near-

symmetric structure of the objective function f(w), finding

its minimum is equivalent to determining the point (inside the

feasible region) closest to its stationary point w0. In Fig. 1, it

is easy to see that w = 2 is such a point, and thus it is the

solution to Problem (18).

Consequently, if w̄ obtained from (15) does not satisfy

|w̄Ha0|2 ≥ 1, then according to Proposition 1, ŵ can be found

by solving the following minimization problem

ŵ ← argmin
w
‖w− w̄‖22 subject to |wHa0|2 ≥ 1, (19)

which is equivalent to

ŵ ← argmin
w
‖w− w̄‖22 subject to |wHa0|2 = 1. (20)

The equivalence between Problems (19) and (20) is shown in

Appendix A, and it indicates that the solutions to Problem (19)

always fall on the boundary of its feasible region. Problem (20)

has the following closed-form solution as [41]

ŵ = w̄ +
1− |w̄Ha0|
‖a0‖22|w̄Ha0|

a0w̄
Ha0. (21)

1We say a function f(x) has a near-symmetric structure around a point x0

if and only if f(x0 + x) ≈ f(x0 − x) holds for any x.
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Fig. 1: Illustration of near-symmetric structure of f(w).

Eventually, by considering Steps i) and ii) simultaneously

and making use of the plus function, the solution to (12a) can

be written in a single formula as

ŵ = w̄ +

(
1− |w̄Ha0|

)
+

‖a0‖22|w̄Ha0|
a0w̄

Ha0, (22)

where w̄ is given in (15).

So far, we have derived closed-form solutions for w and v

at each ADMM iteration. The complete ADMM for solving

Problem (10) is summarized in Algorithm 1, where kmax

denotes a large scalar and η a small one, used to terminate

the iteration, and subscript ·(k) denotes the variable at the k-

th iteration. The convergence property of the proposed ADMM

algorithm will be discussed in Section IV.

Remark 2. Note that we can attain any level of sparsity (i.e.,

any number L out of M sensors in sparse array design), by

carefully tuning the value of λ. This shall be verified in the

simulation section, see Fig. 3 in Section VI.

Remark 3. To ensure selection of L sensors, an appropriate

value of λ is typically found by carrying out a binary search

over a probable interval of λ, say [λL, λU ]. To be precise, we

begin by solving ŵ using Algorithm 1, with λ = (λL+λU )/2.

Denote L̂ the number of entries of ŵ larger than (in modulus)

α times the maximum (in modulus) entry of ŵ. If L̂ > L
(resp. L̂ < L), then we update λL = λ (resp. λU = λ), and

solve another ŵ with λ = (λL + λU )/2. We repeat the above

steps until L̂ = L, and the sensors corresponding to the L
largest entries (in modulus) are selected. We set α = 0.1 in

our simulations.

Remark 4. Note that the solution of (10) is not exactly equal

to the one of (9). Therefore, after the solution of desired

sparsity of (10) is obtained, one should solve a reduced-size

minimization problem similar to (7) as a last step, using only

the selected sensors.

IV. CONVERGENCE ANALYSIS

The convergence properties of Algorithm 1 are presented

in this section. We start with two lemmata, which show the

Algorithm 1 ADMM for solving Problem (10)

Input : Rx ∈ CM×M , a0 ∈ CM , λ, ρ, kmax, η
Output : ŵ ∈ CM

Initialize: v(0) ← vinit, u(0) ← uinit, k← 0

1: while not converged do

2: w̄(k+1) ← sign(v(k) − u(k))⊙
(
|v(k)−u(k)|− λ

ρ

)
+

3: w(k+1) ← w̄(k+1) +
(1−|w̄H

(k+1)a0|)
+

‖a0‖2
2|w̄

H
(k+1)

a0|
a0w̄

H
(k+1)a0

4: v(k+1) ← ρ(2Rx + ρI)−1(w(k+1) + u(k))
5: u(k+1) ← u(k) +w(k+1) − v(k+1)

6: converged ← k+1 ≥ kmax or ‖w(k+1)−v(k+1)‖2 ≤ η
7: k ← k + 1

8: end while

9: ŵ← w(k)

monotonicity and boundedness of the augmented Lagrangian

function of Problem (11). Two theorems are then given to show

that the proposed algorithm converges and that it converges to

a stationary point.

The augmented Lagrangian function regarding Problem

(11) can be written as L(w,v,u) , λ‖w‖1 + vHRxv +
ρ
2

(
‖w− v + u‖22 − ‖u‖22

)
. As stated in Section III-B, w, v,

and u are the original, auxiliary, and dual variables, respec-

tively, and ρ > 0 is the augmented Lagrangian parameter.

In what follows, Lemma 1 shows that the function value of

L(w,v,u) is non-increasing, and Lemma 2 shows that the

function value L(w,v,u) is bounded from below, on the

condition that ρ is larger than or equal to a certain value.

Lemma 1. As long as the parameter ρ ≥ 2
√
2λmax(Rx),

the point sequence produces a monotonically non-increasing

objective function value sequence {L(w(k),v(k),u(k))}. That

is, L(w(k+1),v(k+1),u(k+1)) ≤ L(w(k),v(k),u(k)) holds for

all k = 0, 1, 2, · · · .
Proof. See Appendix B.

Lemma 2. The function value of L(w,v,u) is bounded from

below by 0, as long as2

ρ ≥ 2λ2
max(Rx)

λmin(Rx)
. (23)

Proof. See Appendix C.

With Lemmata 1 and 2, we have the following theorem.

Theorem 1. As long as the augmented Lagrangian parameter

ρ ≥ max

{
2
√
2λmax(Rx),

2λ2
max(Rx)

λmin(Rx)

}
, (24)

the objective function value sequence {L(w(k),v(k),u(k))}
generated by Algorithm 1 converges. Furthermore, as k →∞,

we have w(k+1) = w(k), v(k+1) = v(k), u(k+1) = u(k), and

w(k) = v(k).

Proof. See Appendix D.

2It is worth noting that the lower bound here is not tight, see Appendix C.
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Moreover, the following theorem shows that the limit point

of Algorithm 1 is a stationary point.

Theorem 2. Denote the limit point obtained by using Algo-

rithm 1 as (w(k+1),v(k+1),u(k+1)). Then, it satisfies the KKT

conditions of Problem (11), as

0 = 2Rxv(k+1) − y(k+1), (25a)

w(k+1) ∈ argmin
w

{
λ‖w‖1 + µ⋆(|wHa0|2 − 1)
+ℜ{〈y(k+1),w−v(k+1)〉}

}
, (25b)

w(k+1) = v(k+1), (25c)

where y(k+1) = ρu(k+1) is the dual variable corresponding to

the equality constraint in (11b), and µ⋆ denotes the optimal

dual variable corresponding to the inequality constraint in

(11b). In words, any limit point of Algorithm 1 is a stationary

solution to Problem (11).

Proof. See Appendix E.

Lemma 3. The limit point obtained by using Algorithm 1 is

a stationary solution to Problem (9), provided that the tuning

parameter λ is chosen such that the solution of Problem (11)

is the same as that of Problem (9).

Proof. See Appendix F.

V. ADMM WITH RE-WEIGHTED ℓ1-NORM

As has been well-documented in the literature, see e.g. [57],

the iteratively re-weighted ℓ1-norm penalty has remarkable

advantages over the conventional ℓ1-norm. Therefore, in this

section, we propose an improved approach on the basis of Al-

gorithm 1, by replacing the ℓ1-norm regularization in (10) with

the re-weighted ℓ1-norm. That is, Problem (10) is modified as

min
w

wHRxw+ λ‖1⊘ (|g|+ ǫ)⊙w‖1 (26a)

subject to |wHa0|2 ≥ 1, (26b)

where g equals w obtained from the previous iteration, and

ǫ > 0 is a small scalar providing stability and ensuring that a

zero-valued component in w does not strictly prohibit a non-

zero estimate at the next iteration. Note that once the non-zero

entries of the solution of Problem (26) are identified, their

influence is down-weighted in order to allow more sensitivity

for identifying the remaining small but non-zero entries [57].

This results in a better behavior of (26) than (10), which will

be corroborated in Section VI-A.

The ADMM iteration for Problem (26) is the same as (12)

except for (12a) which should be replaced by

w←
{
argmin

w
λ‖1⊘(|g|+ǫ)⊙w‖1 +

ρ

2
‖w−v+u‖22

subject to |wHa0|2 ≥ 1.
(27)

Accordingly, the result of w̄ in (15) now becomes

w̄ = sign(v − u)⊙ (|v − u| − (λ1)⊘ [ρ(|g|+ ǫ)])+ , (28)

and the complete ADMM for solving Problem (26) is summa-

rized in Algorithm 2. The convergence property of Algorithm

2, and the comparison between Algorithms 1 and 2, will be

presented using simulations in Section VI-A.

Algorithm 2 ADMM for solving Problem (26)

Input : Rx ∈ CM×M , a0 ∈ CM , λ, ρ, ǫ, kmax, η
Output : ŵ ∈ CM

Initialize: v(0) ← vinit, u(0) ← uinit, k← 0

1: while not converged do

2: w̄(k+1) ← sign(v(k) − u(k)) ⊙
3:

(
|v(k) − u(k)| − (λ1)⊘[ρ(|v(k)|+ ǫ)]

)
+

4: w(k+1) ← w̄(k+1) +
(1−|w̄H

(k+1)a0|)
+

‖a0‖2
2|w̄

H
(k+1)

a0|
a0w̄

H
(k+1)a0

5: v(k+1) ← ρ(2Rx + ρI)−1(w(k+1) + u(k))
6: u(k+1) ← u(k) +w(k+1) − v(k+1)

7: converged ← k+1 ≥ kmax or ‖w(k+1)−v(k+1)‖2 ≤ η
8: k ← k + 1

9: end while

10: ŵ← w(k)

VI. SIMULATION RESULTS

In this section, numerical examples are conducted to demon-

strate the effectiveness of the proposed algorithms, i.e., Algo-

rithms 1 and 2. We first examine the behaviors of the algo-

rithms in Section VI-A, in terms of convergence property and

beamformer weight sparsity control. Then, in Section VI-B,

we compare the computational complexity of the proposed

algorithms with those of the other state-of-the-art approaches,

including SDR, an SDR variant, and SCA, presented in [28],

[17], and [46], respectively. In Section VI-C, we finally test the

performance of sparse array beamformers designed by using

different strategies, in terms of array beampattern and output

SINR.

A. Convergence and Sparsity Control

First example: A compact ULA consisting of M = 12
antenna sensors is utilized, while T = 100 snapshots, one SOI

from θ0 = 0◦ and K = 2 interference signals from θ1 = −10◦
and θ2 = 10◦, respectively, are considered. The signal-to-

noise ratio (SNR) and interference-to-noise ratio (INR) are

SNR = 10 dB and INR = 20 dB, respectively. The two

proposed algorithms, i.e., Algorithms 1 and 2 are examined,

where the parameters are ǫ = 10−10, kmax = 103, η = 10−12,

uinit = 0, and vinit is drawn from the complex standard

normal distribution. Three scenarios with different values

of the tuning parameter λ and the augmented Lagrangian

parameter ρ are considered. The results of L(w(k),v(k),u(k))
versus the ADMM iteration index k are given in Fig. 2. It

is seen that the function value sequence {L(w(k),v(k),u(k))}
of Algorithm 1 is monotonically non-increasing and bounded

from below, which is consistent with the theoretical analyses

in Section IV. Additionally, we also observe that although the

function value sequence {L(w(k),v(k),u(k))} of Algorithm 2

is not monotonically non-increasing, it converges eventually.

Moreover, Algorithm 2 converges faster than Algorithm 1.

Second example: A compact ULA of M = 12 antenna

sensors is used, and we wish to select L sensors out of them

in the beamformer. We consider 8 situations with different

SNR, decreasing from 20 dB to −15 dB with a stepsize

of 5 dB. The interference-to-noise ratio is INR = 10 dB
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Fig. 2: Function value of L(w(k),v(k),u(k)) versus iteration

index k. (1st example)

or INR = 20 dB, the augmented Lagrangian parameter is

ρ = 2 × 104, and the other parameters are the same as those

in the first example. We test the sparsity of the beamformer

weight obtained via Algorithms 1 and 2 w.r.t. the tuning

parameter λ. The curves are averaged over 1000 Monte Carlo

runs, and they are displayed in Fig. 3. It can be seen that, for

all 8 situations, any level of sparsity (from 1 to 11) could be

attained by both algorithms, and that a larger λ produces a

smaller sparsity of ŵ, as expected. When SNR increases, the

curve becomes more gentle. In addition, the curves by using

Algorithm 1 decrease far more rapidly than those by using

Algorithm 2, which implies that it is much easier to tune λ
for a specific level of sparsity when Algorithm 2 is employed.

Because of the better behavior of Algorithm 2, rather than

both Algorithms 1 and 2, we solely consider Algorithm 2 in

the remaining simulations, and it will be labelled as “ADMM”.

B. Computational Complexity

We start by rewriting the state-of-the-art methods to suit our

problem, i.e., Problem (26), using our notations, as [28]

min
W

Tr{RxW}+ λTr{B|W|} (29a)

subject to

{
Tr{a0aH0 W} ≥ 1,
W � 0,

(29b)

and [17]

min
W,W̃

Tr{RxW}+ λTr{BW̃} (30a)

subject to





Tr{a0aH0 W} ≥ 1,
W � 0,

W̃ ≥ |W|,
(30b)

where B = 1M⊘(|G|+ǫ), with G being equal to W obtained

from the previous iteration. Problems (29) and (30) are referred

to as SDR and SDR-V (short for “SDR Variant”), respectively,

in the remaining simulations. If the solution W to Problems

(29) and (30) is of rank one, their beamformer weight can be

calculated as the principal eigenvector of W; otherwise, extra

post-processing based on randomization is required [42].
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Fig. 3: Sparsity of beamformer weight versus tuning parameter

λ with (a) INR = 10 dB and (b) INR = 20 dB. (2nd example)

On the other hand, Problem (26) can be recast as [46]

min
w

wHRxw+ λ‖b⊙w‖1 (31a)

subject to 2ℜ{gHa0a
H
0 w} − |gHa0|2 ≥ 1, (31b)

where b = 1⊘(|g|+ǫ) with g being equal to w obtained from

the previous iteration, the same as what has been introduced in

Section V. Problem (31) is denoted as SCA in the remaining

simulations. The key of the success of SCA method lies in

the fact that |wHa0|2 is a convex function w.r.t. w and thus

|wHa0|2 ≥ 2ℜ{gHa0a
H
0 w}−|gHa0|2 holds for all w and any

given (known) g.

If a general-purpose SDR solver, such as the interior point

method, is adopted to solve Problems (29) and (30), the worst

case complexity can be as high as O(M6.5) per iteration [41].

The cost of solving Problem (31) could be smaller, if further

effort is made, for instance, by taking care of the structure of

the problem. However, since this is out of the scope of this

paper, in our simulations, we simply utilize the CVX toolbox

[58] to solve the aforementioned three problems.
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The computational costs of the proposed Algorithm 1 and

Algorithm 2 are the same in terms of big O notation. In what

follows, we analyse the cost of Algorithm 2 in detail. The

cost of computing w̄(k+1) (Lines 2 and 3 in Algorithm 2) is

O(M). The cost of computing w(k+1) (Line 4 in Algorithm 2)

is O(M). The cost of computing v(k+1) (Line 5 in Algorithm

2) is O(M3) + O(M2), where O(M3) corresponds to the

inversion operation, i.e., (2Rx + ρI)−1, and O(M2) is from

the matrix multiplication. Note that we can cache the result

of (2Rx + ρI)−1, to save computations in the subsequent

iterations. Finally, the cost of computing u(k+1) (Line 6 in

Algorithm 2) is O(M). Therefore, the total computational

cost of Algorithm 2 is O(M3)+O(KadmmM
2), where Kadmm

denotes the number of iterations required by the proposed

ADMM. Note that the above analyses are based on a fixed

λ. We may adjust λ to ensure L sensors are selected, as

mentioned in Remark 3. Let Kλ be the number of λ values that

are considered, then the total complexity cost of the proposed

ADMM is O(KλM
3) +O(KλKadmmM

2).
It is worth noting that when B in (29) and (30) and b in (31)

are fixed as B = 1M and b = 1, Problems (29), (30), and (31)

reduce to three approaches for solving Problem (10), which

correspond to Algorithm 1. As has been confirmed by the

numerical results in Section VI-A, algorithms with re-weighted

ℓ1-norm regularization are more efficient in the sense that they

converge faster and are much easier to control the sparsity

of solution, compared to their counterparts with conventional

ℓ1-norm regularization. Therefore, only the former group of

approaches, i.e., the above-mentioned SDR (29), SDR-V (30),

SCA (31), and Algorithm 2, are considered in the following

simulations.

Third example: We wish to choose L = 4 out of M = 12
antenna sensors from a compact ULA. One SOI from θ0 =
0◦ and K = 2 interferers from θ1 = −10◦ and θ2 = 10◦,

respectively, are considered, while SNR = 0 dB and INR =
20 dB. The number of snapshots T varies uniformly from 10 to

150 with a stepsize of 10. The other parameters for Algorithm

2 are the same as those of the first example, except for ρ
which is set to ρ = 103 in this example. The CPU times of

the examined approaches are averaged over 100 Monte Carlo

runs, and they are plotted in Fig. 4. It is seen that their CPU

times are almost unchanged when T varies, and that of the

ADMM method is around 10−1 seconds which is about 103

times less than those of the SDR, SDR-V, and SCA methods

(which take around 102 seconds).

Fourth example: We wish to select L = 4 out of M sensors

from a compact ULA. The number of snapshots is fixed as

T = 100, and the number of sensors M changes from 10 to 20.

The other parameters remain unchanged as those of the third

example. The CPU times of the examined methods are shown

in Fig. 5, from which it is seen that the CPU times of the SDR,

SDR-V, and ADMM methods increase as M increases, while

the CPU time of the SCA method keeps almost unchanged

when M varies. In addition, the CPU time of the proposed

algorithm is much smaller than those of the other three tested

approaches. Note that there is a sharp change of the ADMM

curve at M = 15. This is caused by the increased number of

iterations when M ≥ 16.
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Fig. 4: Averaged CPU time versus T . (3rd example)
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Fig. 5: Averaged CPU time versus M . (4th example)

Fifth example: We wish to select L out of M = 12 sensors

from a compact ULA. The number of snapshots is fixed as

T = 100, and the number of selected sensors L changes from

3 to 12. The other parameters remain unchanged as those of

the third example. The CPU times of the examined methods

are drawn in Fig. 6, from which it is seen that the CPU times

of all the four methods increase as L increases. Besides, the

CPU time of the proposed algorithm is shown again much less

than those of the other three tested methods.

C. Beamforming Performance

In the following simulations, we examine the beamforming

performance of the proposed algorithm compared with several

other sparse array design strategies, in terms of beampattern

and output SINR.

Sixth example: We choose L = 4 out of M = 12
sensors. One SOI from θ0 = 0◦ and K = 2 interferers from

θ1 = −40◦ and θ2 = 30◦, are considered, while SNR = 0 dB

and INR = 20 dB. Different sparse array design strategies

are examined, including enumeration (i.e., exhaustive search),

compact ULA, sparse ULA, random array, nested array [59],
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TABLE II: Output SINR of sixth example.

Method SINR (dB) Method SINR (dB)

Whole ULA 7.6160 Coprime 4.2298
Best via Enum. 5.3874 SDR 4.1792

ADMM 5.0253 Nested 4.0458
Compact ULA 4.9967 SCA 3.9229

SDR-V 4.9670 Sparse ULA −7.4871
Random 4.9320 Worst via Enum. −7.5373

coprime array [60], [61], SDR [28], SDR-V [17], SCA [46],

and the proposed ADMM. The enumeration method tests all

possible (i.e.,
(
12
4

)
= 495) combinations, and finds out the

best and worst cases. The compact ULA includes the first

L = 4 sensors, the sparse ULA contains the 1st, 3rd, 5th,

and 7th sensors, while the random array choose L = 4 out

of M = 12 sensors in a random manner. Besides, the nested

array contains the 1st, 2nd, 3rd, and 6th sensors, and coprime

array includes the 1st, 3rd, 4th and 5th sensors. SDR, SDR-V,

and SCA refer to Problems (29), (30), and (31), respectively.

The result of using the whole ULA is also included. Their

beampatterns are depicted in Fig. 7, where we separate them

into two subfigures and the ADMM is drawn in both, for a

better comparison. From Fig. 7 we observe that the proposed

ADMM method provides lower sidelobe and deeper nulls

towards the interferences, compared to the others. Their output

SINRs in this example are given in TABLE II.

Seventh example: We consider the scenario with one SOI

whose DOA θ0 changes from −60◦ to 60◦, and K = 2
interferers from θ1 = θ0−10◦ and θ2 = θ0+10◦, respectively.

The remaining parameters are unchanged as those in the third

example. The output SINR versus DOA of the SOI is plotted

in Fig. 8. Note that the result of MVDR with whole ULA using

the true covariance is termed as “Optimal with Whole ULA”.

It is seen that the proposed method has excellent performance,

whose output SINR is less than 0.4 dB lower than that of the

best case via enumeration, very close (within 0.6 dB) to the

optimal SINR, slightly larger than those of the SDR, SDR-V,

and SCA methods, and at least about 2 dB larger than those of

the other approaches. Two exceptions occur at θ0 = −55◦ and

θ0 = 55◦, in which cases the output SINR of ADMM is about

2.5 dB lower than those of the best case via enumeration, SDR,
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Fig. 7: Beampattern comparison with 1 SOI and 2 interferers.

(6th example)

SDR-V, and SCA methods, and is still significantly higher

than those of the other approaches. Another interesting result

is that the performance of the nested array and the coprime

array is even worse than that of the random array. This is

because the goal of nested array and coprime array is to make

sure more continuous virtual sensors exist in their difference

coarray, such that they can estimate more sources than physical

sensors. In other words, nested array and coprime array are

designed to obtain better performance in DOA estimation, but

not necessary to have good performance in beamforming in

terms of SINR.

Eighth example: The SNR varies from −20 dB to 12 dB

with a stepsize of 2 dB. The DOA of the SOI is θ0 = 0◦

and K = 2 interference signals come from θ1 = −10◦
and 10◦. The other parameters are unchanged compared with

those of the previous example. The output SINR versus SNR

is depicted in Fig. 9(a). To provide a clearer vision of the

results, we calculate the SINR departure of the corresponding

methods from the optimal SINR, and draw them in Fig. 9(b).

The figures demonstrate better performance of the proposed
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scheme than the other sparse array design techniques (except

for the best case via enumeration) in terms of output SINR. It

is also observed that in the large SNR region, the SINR of the

whole array is even smaller than those of sparse arrays. This

verifies the statement that the performance of beamforming is

affected by not only the beamformer weight, but also the array

configuration [4]. The reason comes from two aspects: On one

hand, the performance of MVDR beamformer degrades when

SNR is high, since the SOI presents in the training data [3].

On the other hand, the calculation of SINR for the whole

array is different from that for the sparse arrays, that is, the

length of the beamformer weight and the size of Ri+n, used

for calculating SINR, are different.

Ninth example: We examine the output SINR versus the

number of snapshots. The simulation setup is the same as

that of the third example. The results are shown in Fig. 10,

from which we observe that the output SINR of the proposed

ADMM is close to that of the best case via enumeration,

slightly larger than those of the SDR, SDR-V, and SCA

approaches, and significantly larger than those of the others.

Tenth example: We examine the output SINR versus the

number of sensors. The simulation setup is unchanged as that

of the fourth example. The results are plotted in Fig. 11, from

which we again observe that the output SINR of the ADMM

is close to that of the best case via enumeration, slightly

larger than those of the SDR, SDR-V, and SCA methods, and

significantly larger than those of the others.

Eleventh example: We examine the output SINR versus the

number of selected sensors. The simulation setup is the same

as that of the fifth example. Note that, some previous methods

are not included in this example since they do not apply to

the entire range of L. The results are displayed in Fig. 12. It

is seen that when L approaches M = 12, the output SINR

of all the tested methods converge to one point, because in

this case (L = M ) all the methods select the same sensors,

i.e., the whole ULA. On the other hand, when L < 12, the

proposed ADMM has higher output SINR than the other tested

approaches (except for the best case via enumeration).
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Fig. 9: Output SINR versus input SNR. (8th example)

VII. CONCLUSION AND FUTURE WORKS

An algorithm based on alternating direction method of

multipliers (ADMM) for sparse array beamformer design was

proposed. Our approach provides closed-form solutions at

each ADMM iteration. Theoretical analyses and numerical

simulations were provided to show the convergence of the

proposed algorithm. In addition, the algorithm was proved

to converge to the set of stationary points. The ADMM

algorithm was shown comparable to the exhaustive search

method, and slightly better than the state-of-the-art solvers,

including the semidefinite relaxation (SDR), an SDR variant

(SDR-V), and the successive convex approximation (SCA)

methods, and significantly better than several other sparse ar-

ray design strategies in terms of output signal-to-interference-

plus-noise ratio. Moreover, the proposed ADMM algorithm

outperformed the SDR, SDR-V, and SCA approaches in terms

of computational cost.

Possible future extensions of this work are given as follows.

• In this work, we consider narrow-band sources. We might

extend it to wide-band sources, as investigated in [18].
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Fig. 10: Output SINR versus T . (9th example)

• We might also consider the situation when the steering

vector of SOI is subject to uncertainties.

• We can also extend this work to multiple SOIs. In such a

scenario, the problem should be formulated as one with

multiple constraints. We can extend the proposed ADMM

method to consensus-ADMM method. The results in our

previous work [47] can be applied to this situation.

APPENDIX A

PROOF OF EQUIVALENCE OF PROBLEMS (19) AND (20)

The Lagrangian function of Problem (19) is given as

L(w, µ) = ‖w− w̄‖22 + µ
(
1− |wHa0|2

)
, (32)

where µ ≥ 0 is the Lagrangian dual variable. The optimal

solution w⋆ and the optimal dual variable µ⋆ satisfy the
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Fig. 11: Output SINR versus M . (10th example)

following identities:

∂L(w, µ)

∂w

∣∣∣∣
w=w⋆,µ=µ⋆

= 2(w⋆ − w̄)− 2µ⋆a0a
H
0w

⋆ = 0,

(33a)

∂L(w, µ)

∂µ

∣∣∣∣
w=w⋆,µ=µ⋆

= 1− |w⋆Ha0|2 = 0. (33b)

From (33a), we have w⋆ = (I−µ⋆a0a
H
0 )

−1w̄. Substituting it

into (33b) yields

1− |w̄H(I− µ⋆a0a
H
0 )

−1a0|2 = 0. (34)

If µ⋆ = 0, the above equation becomes 1−|w̄Ha0|2 = 0, which

contradicts the fact that w̄ does not satisfy |w̄Ha0|2 ≥ 1.

Therefore, the optimal dual variable can only be positive, i.e.,

µ⋆ > 0.

The complementary slackness condition [62] for Problem

(19) is

µ⋆ ≥ 0 and µ⋆
(
1− |w⋆Ha0|2

)
= 0. (35)
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Fig. 12: Output SINR versus L. (11th example)

As mentioned earlier, we have µ⋆ > 0, which together with

µ⋆
(
1− |w⋆Ha0|2

)
= 0, yields |w⋆Ha0|2 = 1. This indicates

that the optimal solution to Problem (19) should meet the

equality constraint. In other words, Problem (19) is equivalent

to Problem (20).

APPENDIX B

PROOF OF LEMMA 1

In order to show that L(w(k+1),v(k+1),u(k+1)) ≤
L(w(k),v(k),u(k)) holds ∀k = 0, 1, 2, · · · , where the objec-

tive function is defined as L(w,v,u) , λ‖w‖1 + vHRxv +
ρ
2

(
‖w − v + u‖22 − ‖u‖22

)
, we formulate their difference as

L(w(k+1),v(k+1),u(k+1))− L(w(k),v(k),u(k))

= [L(w(k+1),v(k+1),u(k+1))−L(w(k+1),v(k+1),u(k))] (36a)

+ [L(w(k+1),v(k+1),u(k))− L(w(k),v(k),u(k))]. (36b)

In what follows, we separately deal with (36a) and (36b).

For (36a), it is calculated as

L(w(k+1),v(k+1),u(k+1))− L(w(k+1),v(k+1),u(k))

(a)
=

ρ

2

(
‖w(k+1) − v(k+1) + u(k+1)‖22 − ‖u(k+1)‖22
− ‖w(k+1) − v(k+1) + u(k)‖22 + ‖u(k)‖22

)

(b)
=

ρ

2

(
‖2u(k+1) − u(k)‖22 − 2‖u(k+1)‖22 + ‖u(k)‖22

)

=
ρ

2

(
2‖u(k+1) − u(k)‖22

)

(c)
= ρ

∥∥∥∥
2

ρ
Rxv(k+1) −

2

ρ
Rxv(k)

∥∥∥∥
2

2

(d)

≤ 4

ρ
λ2
max(Rx)‖v(k+1)−v(k)‖22,

where the definition of L(w,v,u) is used in (a); w(k+1) −
v(k+1) = u(k+1)−u(k) (which is from Line 5 in Algorithm 1)

has been utilized in (b); u(k+1) = 2
ρ
Rxv(k+1) (which is the

result by combining Lines 4 and 5 in Algorithm 1) has been

employed in (c); and inequality ‖Rxv‖22 = vHRH
xRxv ≤

vH[λ2
max(Rx)I]v = λ2

max(Rx)‖v‖22 has been used in (d).

Now we focus on (36b), which can be written as

L(w(k+1),v(k+1),u(k))− L(w(k),v(k),u(k))

=[L(w(k+1),v(k+1),u(k))− L(w(k+1),v(k),u(k))]

+ [L(w(k+1),v(k),u(k))− L(w(k),v(k),u(k))]
(a)

≤
[
ℜ{〈∇vL(w(k+1),v(k+1),u(k)),v(k+1)−v(k)〉}−

γv
2
‖v(k+1)

−v(k)‖22
]
+ 0

(b)
= − γv

2
‖v(k+1)−v(k)‖22

(c)
= −

[
λmin(Rx)+

ρ

2

]
‖v(k+1)−v(k)‖22,

where in (a) we used the following two facts: i) L(w,v,u)
is strongly convex w.r.t. v with parameter γv > 0 [63],

and ii) L(w(k+1),v(k),u(k)) − L(w(k),v(k),u(k)) ≤ 0 since

w(k+1) is optimal to Problem (12a); in (b) we have used

the optimality condition of Problem (12b); in (c) we have

used γv = 2λmin(Rx) + ρ, which is due to the facts

that the objective function L(w,v,u) is twice continuously

differentiable w.r.t. v, and thus its strong convexity parameter

γv satisfies ∇2
v
L(w,v,u) � γvI for all v [63].

By substituting the above two inequalities back to (36),

and denoting λmax(Rx) and λmin(Rx) as λmax and λmin for

brevity, respectively, we have

L(w(k+1),v(k+1),u(k+1))− L(w(k),v(k),u(k))

≤
[
4

ρ
λ2
max−λmin−

ρ

2

]
‖v(k+1)−v(k)‖22

︸ ︷︷ ︸
(i)

.

We observe that if ρ < −
√
λ2
min + 8λ2

max − λmin, which

should be deleted as ρ > 0, or ρ >
√
λ2
min + 8λ2

max − λmin,

the coefficient 4
ρ
λ2
max − λmin − ρ

2 < 0 and thus (i) ≤ 0.

Furthermore, because of
√
λ2
min + 8λ2

max − λmin < λmin +
2
√
2λmax − λmin = 2

√
2λmax, we have the conclusion that

as long as ρ ≥ 2
√
2λmax(Rx), L(w(k+1),v(k+1),u(k+1)) −

L(w(k),v(k),u(k)) ≤ (i) ≤ 0.
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APPENDIX C

PROOF OF LEMMA 2

Note that the augmented Lagrangian function satisfies

L(w,v,u)

= λ‖w‖1 + vHRxv +
ρ

2
‖w−v+u‖22 −

ρ

2
‖u‖22

(a)
= λ‖w‖1 + vHRxv +

ρ

2
‖w−v+u‖22 −

ρ

2

∥∥∥∥
2

ρ
Rxv

∥∥∥∥
2

2

(b)

≥ λ‖w‖1 + vHRxv +
ρ

2
‖w−v+u‖22 −

2

ρ
vH[λ2

max(Rx)I]v

= λ‖w‖1 + vH

(
Rx−

2

ρ
λ2
max(Rx)I

)
v +

ρ

2
‖w−v+u‖22

(c)

≥ 0,

where in (a) we have used u = 2
ρ
Rxv

(
which is the result by

combining (12c) and (13)
)
; in (b) we have used the inequality

‖Rxv‖22 = vHRH
xRxv ≤ vH[λ2

max(Rx)I]v; and inequality

(c) holds if Rx−2
ρ
λ2
max(Rx)I � 0, which indicates (23). Note

that inequality (c) is not tight, since the ℓ1-norm term and the

ℓ2-norm term could be bounded from below by some large

positive value. Therefore, the second term, i.e., the quadratic

term w.r.t. v, has much space to be tuned, which results in the

fact that the lower bound for ρ in (23) is not tight.

APPENDIX D

PROOF OF THEOREM 1

Denote L(w(k+1),v(k+1),u(k+1)) and L(w(k),v(k),u(k))
by L(k+1) and L(k), respectively. According to Lemmata 1

and 2, the objective function value sequence {L(k)} produced

by Algorithm 1 converges. Further, since sequence {L(k)}
converges if ρ satisfies (24), we have L(k+1) − L(k) → 0
as k → ∞. On the other hand, we know from Appendix B

that L(k+1) − L(k) ≤ (i) − (ii) ≤ 0, as long as (24) holds,

where (i) and (ii) are defined in Appendix B. Therefore, when

(24) holds and k →∞, we have

0 = L(k+1) − L(k) ≤ (i)− (ii) ≤ 0, (37)

meaning that (i)− (ii) = 0 or equivalently (i) = (ii). Moreover,

we have (i) ≤ 0 when ρ ≥ 2
√
2λmax(Rx) holds, and (ii) ≥ 0.

Combining (i) = (ii), (i) ≤ 0, and (ii) ≥ 0, we have that

(i) = (ii) = 0. This further indicates that

w(k+1) = w(k) and v(k+1) = v(k). (38)

As already mentioned in Appendix B, u = 2
ρ
Rxv. By jointly

considering u = 2
ρ
Rxv and v(k+1) = v(k) in (38), we obtain

u(k+1) = u(k). (39)

Moreover, combining (39) and u(k+1) = u(k) +w(k+1) −
v(k+1) (i.e., Line 5 in Algorithm 1) yields

w(k+1) = v(k+1), (40)

as k →∞. Equivalently, w(k) = v(k) as k →∞.

APPENDIX E

PROOF OF THEOREM 2

The Lagrangian function of (11) is given by

λ‖w‖1 + vRxv + µ(|wHa0| − 1) + ℜ{〈y,w−v〉}, (41)

where µ and y are Lagrangian dual variables corresponding to

the inequality and equality constraints, respectively. Note that

the (Lagrangian) dual variable y and the scaled dual variable

u are related to each other as y = ρu [49]. A KKT point

(w⋆,v⋆) of Problem (11), together with the corresponding

dual variables µ⋆ and y⋆, satisfies [43]

0 = 2Rxv
⋆ − y⋆, (42a)

w⋆ ∈ argmin
w

{
λ‖w‖1 + µ⋆(|wHa0|2 − 1)
+ℜ{〈y⋆,w−v⋆〉}

}
, (42b)

w⋆ = v⋆. (42c)

Our aim is to show any limit point of Algorithm 1, referred

to as (w(k+1),v(k+1),u(k+1)) or (w(k+1),v(k+1),y(k+1)/ρ),
satisfies (42). Firstly, note that Line 4 in Algorithm 1 indicates

2Rxv(k+1) − ρ(w(k+1) − v(k+1) + u(k)) = 0. (43)

Jointly considering (39), (40), (43), and y(k+1) = ρu(k+1)

yields 2Rxv(k+1)−y(k+1) = 0, which is (42a). Additionally,

(40) shows that (42c) is also achieved.

Now we turn to (42b). According to (12a), we have: w(k+1)

=argmin
w

λ‖w‖1+
ρ

2
‖w−v(k)+u(k)‖22 s.t. |wHa0|2 ≥ 1

(a)
=argmin

w
λ‖w‖1+µ⋆(|wHa0|2−1)+

ρ

2
‖w−v(k)+u(k)‖22

=argmin
w

{
λ‖w‖1+µ⋆(|wHa0|2−1)+ ρ

2‖w− v(k)‖22
+ ρ

2‖u(k)‖22+ρℜ{〈u(k),w−v(k)〉}

}

(b)
=argmin

w
λ‖w‖1+µ⋆(|wHa0|2−1)+ρℜ{〈u(k),w−v(k)〉}

(c)
=argmin

w
λ‖w‖1+µ⋆(|wHa0|2−1)+ℜ{〈y(k+1),w−v(k+1)〉},

where in (a) we have written the constraint into the objective

function by involving its optimal dual variable µ⋆; in (b) we

have utilized the facts that w(k+1) = w(k) = v(k) at any limit

point, and ρ
2‖u(k)‖22 is a scalar term unrelated to w; in (c)

we have used ρu(k) = ρu(k+1) = y(k+1) and v(k) = v(k+1).

This completes the proof of Theorem 2.

APPENDIX F

PROOF OF LEMMA 3

First of all, by introducing an auxiliary variable into the

original Problem (9), the problem is equivalently rewritten as

min
w,v

vHRxv (44a)

subject to




|wHa0|2 ≥ 1,
‖w‖0 = L,
w = v.

(44b)

The Lagrangian function of the above problem is given by

vRxv + µ(|wHa0|2 − 1) + ν(‖w‖0 − L) + ℜ{〈y,w−v〉},
(45)
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where µ, ν, and y are Lagrangian dual variables corresponding

to the three constraints, respectively. A KKT point (w⋆,v⋆) of

Problem (44), together with the corresponding dual variables

µ⋆, ν⋆, and y⋆, satisfies

0 = 2Rxv
⋆ − y⋆, (46a)

w⋆ ∈ argmin
w

{
µ⋆(|wHa0|2 − 1) + ν⋆(‖w‖0 − L)
+ℜ{〈y⋆,w−v⋆〉}

}
,

(46b)

w⋆ = v⋆. (46c)

Our aim is to show any limit point of Algorithm 1, referred

to as (w(k+1),v(k+1),u(k+1)), satisfies (46). As has been

proven, (w(k+1),v(k+1),u(k+1)) satisfies (42). Since (46a)

and (46c) are the same as (42a) and (42c), respectively. The

limit point satisfies (46a) and (46c) due to the same reasons

presented for (42a) and (42c), see Appendix E. Our focus is

then to show the limit point satisfies (46b). We have

w(k+1)
(a)
=argmin

w

{
λ‖w‖1+µ⋆(|wHa0|2−1)
+ℜ{〈y(k+1),w−v(k+1)〉}

}

(b)
=argmin

w

{
µ⋆(|wHa0|2−1)+ℜ{〈y(k+1),w−v(k+1)〉}

}

s.t. ‖w‖0 = L

(c)
=argmin

w

{
µ⋆(|wHa0|2−1) + ν⋆(‖w‖0 − L)
+ℜ{〈y⋆,w−v⋆〉}

}
,

where in (a) we have used the fact that the limit point satisfies

(42b); in (b) we have used the fact that under some conditions,

such as restricted isometry property, and by carefully tuning

λ, the solution of (11) could be the same as that of Problem

(9) [64], [65]; and in (c) we have included the constraint into

the objective function by involving its optimal dual variable

ν⋆. The above equation indicates that the limit point satisfies

(46b). This completes the proof of Lemma 3.

REFERENCES

[1] H. Huang, H. C. So, and A. M. Zoubir, “Sparse array beamformer design
via ADMM,” in Proceedings of IEEE Sensor Array and Multichannel
Signal Processing Workshop (SAM), Trondheim, Norway, June 2022, pp.
336–340.

[2] W. F. Gabriel, “Adaptive arrays - An introduction,” Proceedings of the
IEEE, vol. 64, no. 2, pp. 239–272, February 1976.

[3] S. A. Vorobyov, “Chapter 12 - Adaptive and robust beamforming,” in
Academic Press Library in Signal Processing: Volume 3, ser. Academic
Press Library in Signal Processing, A. M. Zoubir, M. Viberg, R. Chel-
lappa, and S. Theodoridis, Eds. Elsevier, 2014, vol. 3, pp. 503–552.

[4] H.-C. Lin, “Spatial correlations in adaptive arrays,” IEEE Transactions

on Antennas and Propagation, vol. 30, no. 2, pp. 212–223, March 1982.

[5] X. Zhang, A. Molisch, and S.-Y. Kung, “Variable-phase-shift-based rf-
baseband codesign for MIMO antenna selection,” IEEE Transactions on

Signal Processing, vol. 53, no. 11, pp. 4091–4103, November 2005.

[6] P. Sudarshan, N. B. Mehta, A. F. Molisch, and J. Zhang, “Channel
statistics-based RF pre-processing with antenna selection,” IEEE Trans-

actions on Wireless Communications, vol. 5, no. 12, pp. 3501–3511,
December 2006.

[7] V. Venkateswaran and A.-J. van der Veen, “Analog beamforming in
MIMO communications with phase shift networks and online channel
estimation,” IEEE Transactions on Signal Processing, vol. 58, no. 8, pp.
4131–4143, August 2010.
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