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Abstract

Learning long-term dependencies in extended temporal sequences requires credit
assignment to events far back in the past. The most common method for training
recurrent neural networks, back-propagation through time (BPTT), requires credit
information to be propagated backwards through every single step of the forward
computation, potentially over thousands or millions of time steps. This becomes
computationally expensive or even infeasible when used with long sequences.
Importantly, biological brains are unlikely to perform such detailed reverse replay
over very long sequences of internal states (consider days, months, or years.)
However, humans are often reminded of past memories or mental states which
are associated with the current mental state. We consider the hypothesis that
such memory associations between past and present could be used for credit
assignment through arbitrarily long sequences, propagating the credit assigned to
the current state to the associated past state. Based on this principle, we study a
novel algorithm which only back-propagates through a few of these temporal skip
connections, realized by a learned attention mechanism that associates current states
with relevant past states. We demonstrate in experiments that our method matches or
outperforms regular BPTT and truncated BPTT in tasks involving particularly long-
term dependencies, but without requiring the biologically implausible backward
replay through the whole history of states. Additionally, we demonstrate that the
proposed method transfers to longer sequences significantly better than LSTMs
trained with BPTT and LSTMs trained with full self-attention.

1 Introduction

Humans have a remarkable ability to remember events from the distant past which are associated
with the current mental state (Ciaramelli et al., 2008). Most experimental and theoretical analyses
of memory have focused on understanding the deliberate route to memory formation and recall.
But automatic reminding—when memories pop into one’s head—can have a potent influence on
cognition. Reminding is normally triggered by contextual features present at the moment of retrieval
which match distinctive features of the memory being recalled (Berntsen et al., 2013; Wharton
et al., 1996), and can occur more often following unexpected events (Read & Ian, 1991). Thus, an
individual’s current state of understanding can trigger reminding of a past state. Reminding can
provide distracting sources of irrelevant information (Forbus et al., 1995; Novick, 1988), but it can
also serve a useful computational role in ongoing cognition by providing information essential to
decision making (Benjamin & Ross, 2010).
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In this paper, we identify another possible role of reminding: to perform credit assignment across
long time spans. Consider the following scenario. As you drive down the highway, you hear an
unusual popping sound. You think nothing of it until you stop for gas and realize that one of your
tires has deflated, at which point you are suddenly reminded of the pop. The reminding event helps
determine the cause of your flat tire, and probably leads to synaptic changes by which a future pop
sound while driving would be processed differently. Credit assignment is critical in machine learning.
Back-propagation is fundamentally performing credit assignment. Although some progress has been
made toward credit-assignment mechanisms that are functionally equivalent to back-propagation (Lee
et al., 2014; Scellier & Bengio, 2016; Whittington & Bogacz, 2017), it remains very unclear how the
equivalent of back-propagation through time, used to train recurrent neural networks (RNNs), could
be implemented by brains. Here we explore the hypothesis that an associative reminding process
could play an important role in propagating credit across long time spans, also known as the problem
of learning long-term dependencies in RNNs, i.e., of learning to exploit statistical dependencies
between events and variables which occur temporally far from each other.

1.1 Credit Assignment in Recurrent Neural Networks
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RNNs are used to processes sequences of variable length. They have
achieved state-of-the-art results for many machine learning sequence pro-
cessing tasks. Examples where models based on RNNs shine include
speech recognition (Miao et al., 2015; Chan et al., 2016), image captioning
(Vinyals et al., 2015; Lu et al., 2017), machine translation (Luong et al.,
2015).

It is common practice to train RNNs using gradients computed with back-
propagation through time (BPTT), wherein the network states are unrolled
in time over the whole trajectory of discrete time steps and gradients
are back-propagated through the unrolled graph. The network unfolding
procedure of BPTT does not seem biologically plausible. It requires
storing and playing back these events (in reverse order) using the same
recurrent weights to combine error signals with activities and derivatives at
previous time points. The replay is initiated only at the end of a trajectory
of T time steps, and thus requires memorization of a large number of states. If a discrete time
instant corresponds to a saccade (about 200-300ms,) then a trajectory of 100 days would require
replaying back computations through over 42 million time steps. This is not only inconvenient,
but more importantly a small error to any one of these events could either vanish or blow up and
cause catastrophic outcomes. Also, if this unfolding and back-propagation is done only over shorter
sequences, then learning typically will not capture longer-term dependencies linking events across
larger temporal spans then the length of the back-propagated trajectory.

What are the alternatives to BPTT? One approach we explore here exploits associative reminding
of past events which may be triggered by the current state and added to it, thus making it possible
to propagate gradients with respect to the current state into approximate gradients in the state
corresponding to the recalled event. The approximation comes from not backpropagating through
the unfolded ordinary recurrence across long time spans, but only through this memory retrieval
mechanism. Completely different approaches are possible but are not currently close to BPTT in
terms of learning performance on large networks, such as methods based on the online estimation
of gradients (Ollivier et al., 2015). Assuming that no exact gradient estimation method is possible
(which seems likely) it could well be that brains combine multiple estimators.

In machine learning, the most common practical alternative to full BPTT is truncated BPTT (TBPTT)
Williams & Peng (1990). In TBPTT, a long sequence is sliced into a number of (possibly overlapping)
subsequences, gradients are backpropagated only for a fixed, limited number of time steps into the past,
and the parameters are updated after each backpropagation through a subsequence. Unfortunately,
this truncation makes capturing dependencies across distant timesteps nigh-impossible, because no
error signal reaches further back into the past than TBPTT’s truncation length.

Neurophysiological findings support the existence of remembering memories and their involvement
in credit assignment and learning in biological systems. In particular, hippocampal recordings in
rats indicate that brief sequences of prior experience are replayed both in the awake resting state and
during sleep, both of which conditions are linked to memory consolidation and learning (Foster &
Wilson, 2006; Davidson et al., 2009; Gupta et al., 2010; Ambrose et al., 2016). Thus, the mental
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look back into the past seems to occur exactly when credit assignment is to be performed. Thus, it is
plausible that hippocampal replay could be a way of doing temporal credit assignment (and possibly
BPTT) on a short time scale, but here we argue for a solution which could handle credit assignment
over much longer durations.

1.2 Novel Credit Assignment Mechanism: Sparse Attentive Backtracking

Inspired by the ability of brains to selectively reactivate memories of the past based on the current
context, we propose here a novel solution called Sparse Attentive Backtracking (SAB) that incorpo-
rates a differentiable, sparse (hard) attention mechanism to select from past states. Inspired by the
cognitive analogy of reminding, SAB is designed to retrieve one or very few past states. This may
also be advantageous in focusing the credit assignment, although this hypothesis remains to be tested.
SAB meshes well with TBPTT, yet allows gradient to propagate over distances far in excess of the
TBPTT truncation length. We experimentally answer affirmatively the following questions:

Q1. Can Sparse Attentive Backtracking (SAB) capture long-term dependencies? SAB cap-
tures long-term dependencies. See results for 7 tasks supporting this in §4.

Q2. Generalization and transfer ability of SAB? See the strong transfer results in §4.

Q3. How does SAB perform compared to the Transformers (Vaswani et al., 2017)? SAB

outperforms the Transformers (comparison in §4).

Q4. Is sparsity important for SAB and does it learn to retrieve meaningful memories? See
the results on the Importance of Sparsity and Table 4 in §4.

2 Related Machine Learning Work

Skip-connections and gradient flow Neural architectures such as Residual Networks (He et al.,
2016) and Dense Networks (Huang et al., 2016) allow information to skip over convolutional
processing blocks of an underlying convolutional network architecture. This construction provably
mitigates the vanishing gradient problem by allowing the gradient at any given layer to be bounded.
Densely-connected convolutional networks alleviate the vanishing gradient problem by allowing a
direct path from any layer in the network to the output layer. In contrast, in this work we propose
and explore what one might regard as a form of dynamic skip connection, modulated by an attention
mechanism corresponding to a reminding process, which matches the current state with an older state
that is retrieved from memory.

Recurrent neural networks with skip-connections in time can allow information to flow over much
longer time spans. These skip-connections can have either a fixed time span such as in hierarchical
El Hihi & Bengio (1996) or clockwork Koutnik et al. (2014) RNNs, or a dynamic time span such
as in Chung et al. (2016); Mozer et al. (2017); Ke et al. (2018). All of these models still need to
be trained with full BPTT, which requires a full replay of past events. Designs also exist based on
wormhole connections, implemented as differentiable reads and writes to external memories, as in
Gulcehre et al. (2017). Also, as noted in Kádár et al. (2018), with highly complex architectures,
training procedure and implementations might hinder their utility.

The transformer network The Transformer network (Vaswani et al., 2017) takes sequence pro-
cessing using attention to its logical extreme – using attention only, not relying on RNNs at all. The
attention mechanism is a softmax not over the sequence itself but over the outputs of the previous
self-attention layer. In order to attend to multiple parts of the layer outputs simultaneously, the
Transformer uses 8 small attention “heads” per layer (instead of a single large head) and combines
the attention heads’ outputs by concatenation. No attempt is made to make the attention weights
sparse, and the authors do not test their models on sequences of length greater than the intermediate
representations of the Transformer model. With brains clearly involving a recurrent computation,
this approach would seem to miss an important characteristic of biological credit assignment through
time. Another implausible aspect of the Transformer architecture is the simultaneous access to (and
linear combination of) all past memories (as opposed to a handful with SAB.)
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Figure 1: This figure illustrates the forward pass in SAB for the configuration ktop = 3, katt = 2, ktrunc = 2. This
involves sparse retrieval (§ 3.1) and summarization of memories into the next RNN hidden state. Gray arrows
depict how attention weights a(t) are evaluated, first by broadcasting and concatenating the current provisional
hidden state ĥ(t) against the set of all memories M and computing raw attention weights with an MLP. The
sparsifier selects and normalizes only the ktop greatest raw attention weights, while the others are zeroed out.
Red arrows show memories corresponding to non-zero sparsified attention weights being weighted, summed,
then added into ĥ(t) to compute the final hidden state h(t).

3 Sparse Attentive Backtracking

Mindful that humans use a very sparse subset of past experiences in credit assignment, and are
capable of direct random access to past experiences and their relevance to the present, we present
here SAB: the principle of learned, dynamic, sparse access to, and replay of, relevant past states for
credit assignment in neural network models, such as RNNs.

In the limit of maximum sparsity (no access to the past), SAB degenerates to the use of a regular
static neural network. In the limit of minimum sparsity (full access to the past), SAB degenerates to
the use of a full self-attention mechanism. For the purposes of this paper, we explore the gap between
these with a specific variety of augmented LSTM models; but SAB does not refer to any particular
architecture, and the augmented LSTM described herein is used purely as a vehicle to explore and
validate our hypotheses in §1.

Broadly, an SAB neural network is required to do two things:

• During the forward pass, manage a memory unit and select at most a sparse subset of past
memories at every timestep. We will call this sparse retrieval.

• During the backward pass, propagate gradient only to that sparse subset of memory and its
local surroundings. We will call this sparse replay.

3.1 Sparse Retrieval of Memories

Just as humans make a selective use of all past memories to inform their decisions in the present, so
must an SAB model learn to remember and dynamically select only a few memories that could be
potentially useful in the present. There are several alternative implementations of this concept. An
important class of them are attention mechanisms, especially self-attention over a model’s own past
states. Closely linked to the question of dynamic access to memory is the structure of the memory
itself; for instance, in the Differentiable Neural Computer (DNC) (Graves et al., 2016), the memory is
a fixed-size tensor accessed with explicit read and write operations, while in Bahdanau et al. (2014),
the memory is implicitly a list of past hidden states that continuously grows.

For the purposes of this paper, we choose a simple approach similar to Bahdanau et al. (2014). Many
other options are possible, and the question of memory representation in humans (faithful to actual
brains) and machines (with good computational properties) remains open. Here, to test the principle
of SAB without having to answer that question, we use an approach already shown to work well
in machine learning. We augment a unidirectional LSTM with the memory of every katt’th hidden
state from the past, with a modified hard self-attention mechanism limited to selecting at most ktop
memories at every timestep. Future work should investigate more realistic mechanisms for storing
memories, e.g., based on saliency, novelty, etc. But this simple scheme allows us to test the hypothesis
that neural network models can still perform well even when compelled at every timestep to access
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their past sparsely. If they cannot, then it would be meaningless to further encumber them with a
bounded-size memory.

SAB-augmented LSTM We now describe the sparse retrieval mechanism that we have settled on.
It determines which memories will be selected on the forward pass of the RNN, and therefore also
which memories will receive gradient on the backward pass during training.

At time t, the underlying LSTM receives a vector of hidden states h(t−1), a vector of cell states

c(t−1), and an input x(t), and computes new cell states c(t) and a provisional hidden state vector

ĥ(t) that also serves as a provisional output. We next use an attention mechanism that is similar to
Bahdanau et al. (2014), but modified to produce sparse attention decisions. First, the provisional

hidden state vector ĥ(t) is concatenated to each memory vector m(i) in the memory M. Then, an
MLP with one hidden layer maps each such concatenated vector to a scalar, non-sparse, raw attention
weight a

(t)
i representing the salience of the memory i at the current time t. The MLP is parametrized

with weight matrices W1, W2 and W3.

Algorithm 1 SAB-augmented LSTM

1: procedure SABCell (h(t−1), c(t−1), x(t))
Require: ktop > 0, katt > 0, ktrunc > 0
Require: Memories m(i)

∈ M
Require: Previous hidden state h(t−1)

Require: Previous cell state c(t−1)

Require: Input x(t)

2: ĥ(t), c(t) ← LSTMCell(h(t−1), c(t−1),x(t))
3: for all i ∈ 1 . . . |M| do

4: d
(t)
i ← W1m

(i) +W2ĥ
(t)

5: a
(t)
i ← W3 tanh(d

(t)
i )

6: a
(t)
ktop ← sorted(a(t))[ktop+1]

7: ã(t)
← ReLU

⇣

a(t)
− a

(t)
ktop

⌘

8: s(t)
←

P

m
(i)∈M

ã
(t)
i m(i)

�
P

i

ã
(t)
i

9: h(t)
← ĥ(t) + s(t)

10: y(t)
← V1h

(t) + V2s
(t) + b

11: if t ≡ 0 (mod katt) then

12: M.append(h(t))

13: return h(t), c(t),y(t)

With the raw attention weights, we compute the
sparsified attention weights ã

(t)
i by subtracting

out the (ktop + 1)’th raw weight from all the
others, passing the intermediate result through
ReLU, then normalizing to sum to 1. This mech-
anism is differentiable (see S.3 for details) and
effectively implements a discrete, hard decision
to drop all but ktop memories, weigh the selected
memories by their prominence over the others,
as opposed to their raw value. This is different
from typical attention mechanisms that normal-
ize attention weights using a softmax function
(Bahdanau et al., 2014), whose output is never
sparse.

A summary vector s(t) is then computed using a
simple sum of the selected memories, weighted
by their respective sparsified attention weight.
Given that this sum is very sparse, the summary
operation is very fast. This summary is then

added into the provisional hidden state ĥ(t) com-

puted previously to obtain final state h(t).

Lastly, to compute the SAB-augmented LSTM

cell’s output y(t) at t, we concatenate h(t) and

summary vector s(t), then apply an affine output transform parametrized with learned weights
matrices V1 and V2 and bias vector b.

The forward pass into a hidden state h(t) has two paths contributing to it. One path is the regular
sequential forward path in an RNN; the other path is through the dynamic but sparse skip connections
in the attention mechanism that connect the present states to potentially very distant past experiences.

3.2 Sparse Replay

Humans are trivially capable of assigning credit or blame to events even a long time after the fact,
and do not need to replay all events from the present to the credited event sequentially and in reverse
to do so. But that is effectively what RNNs trained with full BPTT require, and this does not seem
biologically plausible when considering events which are far from each other in time. Even less
plausible is TBPTT because it ignores time dependencies beyond the truncation length ktrunc.

SAB networks’ twin paths during the forward pass (sequential connection and sparse skip connections)

allow gradient to flow not just from h(t) to h(t−1), but also to the at-most ktop memories m(i)

retrieved by the attention mechanism (and no others.) Learning to deliver gradient directly (and
sparsely) where it is needed (and nowhere else) (1) avoids competition for the limited information-
carrying capacity of the sequential path, (2) is a simple form of credit assignment, (3) and imposes
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Figure 2: This figure illustrates the backward pass in SAB for the configuration ktop = 3, katt = 2, ktrunc = 2.
The gradients are passed to the hidden states selected in the forward pass and a local truncated backprop is
performed around those hidden states. Blue arrows show the gradient flow in the backward pass. Red crosses
indicate TBPTT truncation points, where the gradient stops propagating.

a trade-off that is absent in previous, dense self-attentive mechanisms: opening a connection to an
interesting or useful timestep must be made at the price of excluding others. This competition for a
limited budget of ktop connections results in interesting timesteps being given frequent attention and
strong gradient flow, while uninteresting timesteps are ignored and starve.

Mental updates If we not only allow gradient to flow directly to a past timestep, but on to a few
local timesteps around it as well, we have mental updates: a type of local credit assignment around
a memory. There are various ways of enabling this. In our SAB-augmented LSTM, we choose to
perform TBPTT locally before the selected timesteps (ktrunc timesteps before a selected one.)

4 Experimental Setup and Results

Baselines We compare SAB to two baseline models for all tasks: 1) an LSTM trained both using full
BPTT and TBPTT with various truncation lengths; 2) an LSTM augmented with full self-attention
trained using full BPTT. For the pixel-by-pixel Cifar10 classification task, we also compare to the
Transformer architecture (Vaswani et al., 2017).

Copying and adding problems (Q1) The copy and adding problems defined in Hochreiter &
Schmidhuber (1997) are synthetic tasks specifically designed to evaluate a model’s performance
on long-term dependencies by testing its ability to remember a sub-sequence for a large number of
timesteps.

For the copy task, the network is given a sequence of T + 20 inputs consisting of: a) 10 (randomly
generated) digits (digits 1 to 8) followed by; b) T blank inputs followed by; c) a special end-of-
sequence character followed by; d) 10 additional blank inputs. After the end-of-sequence character
the network must output a copy of the initial 10 digits. The adding task requires the model to sum
two specific entries in a sequence of T (input) entries. Each example in the task consists of two input
vectors of length T . The first is a vector of uniformly generated values between 0 and 1. The second
vector encodes a binary mask which indicates the two entries in the first input to be added (the mask
vector consists of T − 2 zeros and 2 ones). The mask is randomly generated with the constraint that
masked-in entries must be from different halves of the first input vector.

The hyperparameters for both baselines and SAB are kept the same. All models have 128 hidden units
and use the Adam Kingma & Ba (2014) optimizer with a learning rate of 1e-3. The first model in
the ablation study (dense version of SAB) was more difficult to train, therefore we explored different
learning rates ranging from 1e-3 to 1e-5. We report the best performing model.

The performance of SAB almost matches the performance of LSTMs augmented with self-attention
trained using full BPTT. Note that our copy and adding LSTM baselines are more competitive
compared to ones reported in the existing literature (Arjovsky et al., 2016). These findings support
our hypothesis that at any given time step, only a few past events need to be recalled for the correct
prediction of output of the current timestep.
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Table 3 reports the cross-entropy (CE) of the model predictions on unseen sequences in the adding
task. LSTM with full self-attention trained using BPTT obtains the lowest CE loss, followed by
LSTM trained using BPTT. LSTM trained with truncated BPTT performs significantly worse. When
T = 200, SAB’s performance is comparable to the best baseline models. With longer sequences
(T = 400), SAB outperforms TBPTT, but is outperformed by pure BPTT. For more details regarding
the setup, refer to supplementary material.

Character level Penn TreeBank (PTB) (Q1) We follow the setup in Cooijmans et al. (2016) and
all of our models use 1000 hidden units and a learning rate of 0.002. We used non-overlapping
sequences of 100 in the batches of 32 as in Cooijmans et al. (2016). All models were trained for up
to 100 epochs with early stopping based on the validation performance.

We evaluate the performance of our model using the bits-per-character (BPC) metric. As shown in
Table 3, SAB’s performance is significantly better than TBPTT’s and almost matches BPTT, which is
roughly what one expects from an approximate-gradient method like SAB.

Text8 (Q1) We follow the setup of Mikolov et al. (2012); we use the first 90M characters for training,
the next 5M for validation and the final 5M characters for testing. We train on non-overlapping
sequences of length 180. Due to computational constraints, all baselines use 1000 hidden units. We
trained all models using a batch size of 64. We trained SAB for a maximum of 30 epochs.

Details about our experimental setup can be found in the supplementary material. Note that we
did not carry out any additional hyperparameter search for our model. Table 3 reports the BPC of
the model’s predictions on the test sets. SAB outperforms LSTM trained using TBPTT. SAB also
outperforms LSTM and self-attention trained with TBPTT. For more details, refer to supplementary
material.

Comparison to LSTM + self attention (with truncation) While SAB is trained with TBPTT
(and the vanilla LSTM+self-attention is not), Here we argue, that training the vanilla LSTM and self
attention with truncation works less well on a more challenging Text8 language modelling dataset.

Method Test BPC

LSTM (full BPTT) 1.42
LSTM (TBPTT, ktrunc=5) 1.56
LSTM (Self Attention
with Truncation, ktrunc=10)) 1.48

SAB (ktrunc=10, ktop=10, katt=10) 1.44

Table 1: Bit-per-character (BPC) Results on the
test set for Text8 (lower is better).

Permuted pixel-by-pixel MNIST (Q1) This task
is a sequential version of the MNIST classification
dataset. The task involves predicting the label of the
image after being given its pixels as a sequence per-
muted in a fixed, random order. All models use an
LSTM with 128 hidden units. The prediction is pro-
duced by passing the final hidden state of the network
into a softmax. We used a learning rate of 0.001. We
trained our model for about 100 epochs, and did early
stopping based on the validation set. Our experiment
setup can be found in the supplementary material.
Table 5 shows that SAB performs well compared to
BPTT.

CIFAR10 classification (Q1,Q3) We test our model’s performance on pixel-by-pixel CIFAR10 (no
permutation). This task involves predicting the label of the image after being given it as a sequence of
pixels. This task is relatively difficult compared to other tasks, as sequences are substantially longer
(length 1024.) Our method outperforms Transformers and LSTMs trained with BPTT (Table 5).

Learning long-term dependencies (Q1) Table 2 reports both accuracy and cross-entropy (CE)
of the models’ predictions on unseen sequences for the copy memory task. The best-performing
baseline model is the LSTM with full self-attention trained using BPTT, followed by vanilla LSTMs
trained using BPTT. Far behind are LSTMs trained using truncated BPTT. Table 2 demonstrates that
SAB is able to learn the task almost perfectly for all copy lengths T . Further, SAB outperforms all
LSTM baselines and matches the performance of LSTMs with full self-attention trained using BPTT
on the copy memory task. This becomes particularly noticeable as the sequence length increases.

Transfer learning (Q2) We examine the generalization ability of SAB compared to full BPTT
trained LSTM and LSTM with full self-attention. The experiment is set up as follows: For the copy
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Copying (T=100) Copying (T=200) Copying (T=300)

ktrunc ktop acc. CE10 CE acc. CE10 CE acc. CE10 CE

L
S

T
M

full BPTT 99.8 0.030 0.002 56.0 1.07 0.046 35.9 0.197 0.047
full self-attn. 100.0 0.0008 0.0000 100.0 0.001 0.000 100.0 0.002 7.5e-5

1 - 20.6 1.984 0.165 14.0 2.077 0.065
5 - 31.0 1.737 0.145 17.1 2.03 0.092

10 - 29.6 1.772 0.148 20.2 1.98 0.090
20 - 30.5 1.714 0.143 35.8 1.61 0.073 25.7 1.848 0.197

150 - - - - 35.0 1.596 0.073 24.4 1.857 0.058

S
A

B

1 1 57.9 1.041 0.087 39.9 1.516 0.069 43.1 0.231 0.045
1 5 100.0 0.001 0.000 89.1 0.383 0.012
5 5 100.0 0.000 0.000 100.0 0.000 0.000 99.9 0.007 0.001

10 10 100.0 0.000 0.001 100.0 0.000 0.000

Table 2: Test accuracy and cross-entropy (CE) loss performance on the copying task with sequence lengths of
T=100, 200, and 300. Accuracies are given in percent for the last 10 characters. CE10 corresponds to the CE
loss on the last 10 characters. These results are with mental updates; Compare with Table 4 for without.

Adding T=200 T=400

ktrunc ktop CE CE

L
S

T
M

full BPTT 4.59e-6 1.554e-7
full self-attn. 5.541e-8 4.972e-7

20 - 1.1e-3
50 - 3.0e-4

100 - 6.8e-4

S
A

B

5 5 4.26e-5
5 10 2.30e-4

10 10 2.0e-6 1.001e-5

Language PTB Text8

ktrunc ktop katt BPC BPC

L
S

T
M

full BPTT 1.36 1.42

1 - - 1.47
5 - - 1.44 1.56

20 - - 1.40

S
A

B

10 5 10 1.42 1.47
10 10 10 1.40 1.45
20 5 20 1.39 1.45
20 10 20 1.37 1.44

Table 3: Performance on the adding task (left) and language modeling tasks (PTB and Text8; right). The
adding task performance is evaluated on unseen sequences of the T = 200 and T = 400 (note that all methods
have configurations that allow them to perform near optimally.) For T = 400, BPTT slightly outperforms SAB,
which outperforms TBPTT. For the language modeling tasks, the BPC score is evaluated on the test sets of the
character-level PTB and Text8.

task of length T = 100, we train SAB, LSTM trained with BPTT, LSTM and full self-attention to
convergence. We then take the trained model and evaluate them on the copy task for an array of larger
T values. The results are shown in Table 6. Although all 3 models have similar performance on
T = 100, it is clear that performance for all 3 models drops as T grows. However, SAB still manages
to complete the task at T = 5000, whereas by T = 2000 both vanilla LSTM and LSTM with full
self-attention do no better than random guessing (1/8 = 12.5%).

Importance of sparisity and mental updates (Q4) We study the necessity of sparsity and mental
updates by running an ablation study on the copying problem. The ablation study focuses on two
variants. The first model attends to all events in the past while performing a truncated update. This
can be seen either as a dense version of SAB or an LSTM with full self-attention trained using TBPTT.
Empirically, we find that such models are both more difficult to train and do not reach the same
performance as SAB. The second ablation experiment tests the necessity of mental updates, without
which the model would only attend to the past time steps without passing gradients through them to
preceding time steps. We observe a degradation of model performance when blocking gradients to
past events. This effect is most evident when attending to only one timestep in the past (ktop = 1).

We evaluate SAB on language modeling, with the Penn TreeBank (PTB) (Marcus et al., 1993) and
Text8 Mahoney (2011) datasets. For models trained using truncated BPTT, the performance drops as
ktrunc shrinks. We found that on PTB, SAB with ktrunc = 20, ktop = 10 performs almost as well as full
BPTT. For the larger Text8 dataset, SAB with ktrunc = 10 and ktop = 5 outperforms LSTM trained
using BPTT.
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Ablation Copying, T=100 Adding,
T=200ktrunc ktop acc. CElast 10 CE CE

n
o

M
U 1 1 49.0 1.252 0.104

5 5 98.3 0.042 0.0036
10 10 99.6 0.022 0.0018 2.171e-6

5 all 40.5 1.529 0.127 0          40          80        120        160       200

Macrostatepast

220

210

210

220
210

220 -

-

-

-

T
im

e
st

e
p

a

c

b

Table 4: Left: ablation studies on the adding and copying tasks. The limiting cases of dense attention (ktop = all)
and of no mental updates (MU) were tested. Right: focus of the attention for the T=200 copying task, where
reproduction of the inital 10 input symbols is required (black corresponds to stronger attention weights). The
was generated at different points in training (a-c) within the first epoch. Attention quickly shifts to the relevant
parts of the sequence (the initial 10 states.)

Image class. pMNIST CIFAR10

ktrunc ktop katt acc. acc.

L
S

T
M full BPTT 90.3 58.3

300 - - 51.3

S
A

B

20 5 20 89.8
20 10 20 90.9
50 10 50 94.2
16 10 16 64.5

Transformer (Vasvani’17) 97.9 62.2

Table 5: Test accuracy for the permutated MNIST and
CIFAR10 classification tasks.

Transfer Learning Results

Copy len.
(T)

LSTM LSTM
+self-a.

SAB

100 99% 100% 99%
200 34% 52% 95%
300 25% 28% 83%
400 21% 20% 75%

2000 12% 12% 47%
5000 12% OOM 41%

Table 6: Transfer performance (Accuracy
for last 10 digits) for models trained on
T = 100 copy memory task. Compar-
isons to LSTM and LSTM with full self-
attention trained with BPTT.

Comparison to Transformer (Q3) We test how SAB compares to the Transformer model (Vaswani
et al., 2017), based a self-attention mechanism. On pMNIST, the Transformer model outperforms our
best model, as shown in Table 5. On CIFAR10, however, our proposed model performs much better.

5 Conclusions

By considering how brains could perform long-term temporal credit assignment, we developed
an alternative to the traditional method of training recurrent neural networks by unfolding of the
computational graph and BPTT. We explored the hypothesis that a reminding process which uses
the current state to evoke a relevant state arbitrarily far back in the past could be used to effectively
teleport credit backwards in time to the computations performed to obtain the past state. To test this
idea, we developed a novel temporal architecture and credit assignment mechanism called SAB for
Sparse Attentive Backtracking, which aims to combine the strengths of full backpropagation through
time and truncated backpropagation through time. It does so by backpropagating gradients only
through paths for which the current state and a past state are associated. This allows the RNN to learn
long-term dependencies, as with full backpropagation through time, while still allowing it to only
backtrack for a few steps, as with truncated backpropagation through time, thus making it possible to
update weights as frequently as needed rather than having to wait for the end of very long sequences.

Cognitive processes in reminding serve not only as the inspiration for SAB, but suggest two interesting
directions of future research. First, we assumed a simple content-independent rule for selecting hidden
states for inclusion in the memory (select at every katt step), whereas humans show a systematic
dependence on content: salient, extreme, unusual, and unexpected experiences are more likely to be
stored and subsequently remembered. These landmarks of memory should be useful for connecting
past to current context, just as an individual learns to map out a city via distinctive geographic
landmarks. Second, SAB determines the relevance of past hidden states to the current state through a
generic, flexible mapping, whereas humans perform similarity-based retrieval. We conjecture that
a version of SAB with a strong inductive bias in the mechanism to select past states may further
improve its performance.
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