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Abstract—Sparse Bayesian learning (SBL) and specifically
relevance vector machines have received much attention in the
machine learning literature as a means of achieving parsimonious
representations in the context of regression and classification.
The methodology relies on a parameterized prior that encourages
models with few nonzero weights. In this paper, we adapt SBL to
the signal processing problem of basis selection from overcomplete
dictionaries, proving several results about the SBL cost function
that elucidate its general behavior and provide solid theoretical
justification for this application. Specifically, we have shown that
SBL retains a desirable property of the 0-norm diversity measure
(i.e., the global minimum is achieved at the maximally sparse
solution) while often possessing a more limited constellation of
local minima. We have also demonstrated that the local minima
that do exist are achieved at sparse solutions. Later, we provide a
novel interpretation of SBL that gives us valuable insight into why
it is successful in producing sparse representations. Finally, we
include simulation studies comparing sparse Bayesian learning
with Basis Pursuit and the more recent FOCal Underdetermined
System Solver (FOCUSS) class of basis selection algorithms. These
results indicate that our theoretical insights translate directly into
improved performance.

Index Terms—Basis selection, diversity measures, linear inverse
problems, sparse Bayesian learning, sparse representations.

I. INTRODUCTION

SPARSE signal representations from overcomplete dic-
tionaries have found increasing relevance in a large

number of application domains [1]–[3]. Moreover, attaining
such representations is tantamount to solving regularized
linear inverse problems that have far-reaching significance in
signal processing, compression, and feature extraction. Ex-
ample applications include biomagnetic imaging [4], channel
equalization [5]–[7], bandlimited extrapolation and spectral
estimation [8], [9], direction-of-arrival estimation [10], func-
tional approximation [11]–[13], echo cancellation [14], [15],
and image restoration [16]. Consequently, deeper insight into
these issues is of both theoretical and practical importance.

The canonical form of this problem is given by

(1)

where is a matrix whose columns represent a pos-
sibly overcomplete basis (i.e., rank and ),

is the vector of weights to be learned,
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is noise, and is a vector of targets. In this
vein, we seek weight vectors whose entries are predominantly
zero while still allowing us to accurately approximate . This
is equivalent to representing with a minimal number of basis
vectors.1

Recently, a sparse Bayesian learning (SBL) framework has
been derived to find robust solutions to problems like (1) in
the context of regression and classification [17]–[19]. A key
feature of this development that is germane to the basis se-
lection problem is the incorporation of a parameterized prior
on the weights that encourages sparsity in representation, i.e.,
few nonzero weights. In addition, when is square and formed
from a positive-definite kernel function, we obtain the relevance
vector machine (RVM), which is a Bayesian competitor of the
support vector machine (SVM) with several significant advan-
tages [18].

Unlike popular methods for basis selection, it is not imme-
diately transparent how the SBL cost function leads to sparse
representations in practice, nor have many of the theoretical de-
tails of this relatively new paradigm been fleshed out, especially
those most relevant to basis selection. In this paper, we prove a
collection of results about the SBL cost function that elucidate
its general behavior and provide solid theoretical justification
for adapting it to basis selection tasks. Furthermore, we adapt
an iterative SBL algorithm to perform basis selection and em-
pirically substantiate the algorithm by comparing it with current
methods.

A. Current Basis Selection Methods

The most successful current basis selection algorithms [1],
[3], [20] essentially perform least squares regression with the
addition of a fixed, regularizing weight prior of the form

(2)

where . Such a prior has been shown to encourage
sparsity in many situations because of the heavy tails and sharp
peak at zero (i.e., the prior is super-Gaussian). Moreover, as we
allow , the exponent of this prior approaches an -norm,
i.e., a count of the number of nonzero entries in defined as

(3)

1Some authors refer to this process of selecting basis vectors as “subset se-
lection,” reserving “basis selection” to refer to the process of selecting a full
spanning basis in < : the signal dimension. In contrast, we will simply refer
to basis selection as the task of finding a minimal number of basis vectors (typ-
ically much less than N ) needed to represent the signal of interest.
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where denotes the indicator function. Given this prior, max-
imum a posteriori (MAP) solutions to (1) are formulated as

(4)

where we have assumed a Gaussian likelihood model, and
represents a trade-off parameter balancing sparsity with quality
of fit [1], [20]. In the absence of noise (or as ), we instead
seek solutions of the form

s.t. (5)

i.e., the log prior becomes the objective function over the con-
straint surface given by . This is very similar to a proce-
dure originally outlined in [21] based on work in [22].

When , we can obtain the standard Basis Pursuit cost
function [1], which finds the weight vector satisfying
with minimum -norm. In contrast, the FOCUSS algorithm [2],
[3] typically maintains a value of (i.e., strictly less
than one).2 Both the FOCUSS and Basis Pursuit algorithms have
been adapted to handle noiseless and noisy conditions, with the
later condition requiring the selection of the trade-off parameter

given in (4).
While both the Basis Pursuit and FOCUSS algorithms are

marked by demonstrable successes, each is hampered to some
extent by a significant shortcoming. With Basis Pursuit, we ben-
efit from a cost function devoid of local minima, and further-
more, we can typically guarantee convergence to the global min-
imum.3 The problem, however, is that the global minimum of
this cost function does not necessarily coincide with the sparsest
solutions to (1) (except in the special case where the optimal so-
lution is sufficiently sparse; see, e.g., [25]). We will refer to this
misalignment as structural error.

Conversely, the cost function employed by FOCUSS has
many local minima. However, as we allow , the corre-
lation between the global minimum of this cost function and
the sparsest solutions to (1) approaches certainty since we are
effectively now performing -norm minimization.4 While
we no longer experience structural errors in this scenario,
we frequently converge to suboptimal local minima termed
convergence errors.

Because of the limitations of both of these algorithms, there
exists room for alternative approaches to basis selection. In this
paper, we will demonstrate that the SBL cost function, like the

-norm, prevents any structural errors (at least in the absence

2Actually, p can assume any value less than zero as well, but performance is
poor in this region [3]. In addition, we exclude the p = 1 case from the FOCUSS
domain mainly to avoid confusion with Basis Pursuit.

3Basis Pursuit can be cast as a linear programming problem.
4It should be noted that p need not equal zero exactly to obtain this correlation.

As described in [21], there exists a p sufficiently small such that, for all 0 <

p < p , the global minimum will represent the sparsest solution, i.e., minimum
` -norm solution. Unfortunately, however, p is dependent on �, and ttt and can
be arbitrarily small. Moreover, there is no way to determine its value without a
priori knowledge of the global solution.

of noise) while possessing potentially far fewer local minima
than FOCUSS. We later provide examples where this translates
directly into improved performance marked by no structural er-
rors and fewer convergence errors.

B. Basis Selection versus Regression

In many ways, basis selection can be thought of as regression
with the additional assumption that regularization must be with
respect to sparsity of representation. Nonetheless, there remains
one fundamental difference: While the ultimate goal of regres-
sion is to minimize generalization error (i.e., error on evalua-
tion data not available during model training), basis selection
is primarily concerned with finding sparse representations of
itself. This distinction is reflected in the results of this paper,
which emphasize sparsity and make no claims about general-
ization performance. However, for the interested reader, there is
a known relationship between sparsity of fit and generalization
performance, as discussed in [19].

C. Organization of Paper

The organization of this paper is as follows. In Section II,
we present a simplified derivation of SBL and our accommoda-
tions for basis selection. In Sections III and IV, we will prove a
collection of results pertaining to the global and local minima
of the SBL cost function. We then recast this method from a
variational perspective in Section V, demonstrating a rigorous
association between SBL and a sparsity inducing weight prior.
This alternate interpretation gives us valuable insight into why
it is effective in producing sparse solutions to (1). Finally, Sec-
tion VI contains the results from empirical comparisons of SBL
with Basis Pursuit and FOCUSS.

II. SPARSE BAYESIAN LEARNING

Like current basis selection methods, SBL assumes the
Gaussian likelihood model

(6)

Obtaining maximum likelihood estimates for under these con-
ditions is equivalent to finding the minimum -norm solution
to (1). Such solutions are well known to produce nonsparse
representations. To alleviate this problem, we must incorporate
some form of weight prior that encourages sparsity. We should
note that modern Bayesian methodology does not attempt to se-
lect the “right” priors nor employ the FOCUSS/Basis Pursuit
approach of selecting a fixed, sparsity-inducing prior. Rather,
many different priors can be invoked, corresponding to different
hypothesis about underlying truth. These hypothesis can be em-
pirically compared by evaluating the Bayesian evidence for each
model prior [23].

Suppose we hypothesize two different priors denoted and
. Our goal is to compare these hypotheses with respect to

observed data . This can be accomplished by evaluating the
evidence for each prior, which can be computed by
marginalizing over the weights via

(7)
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where is the likelihood model, and denotes
the weight prior under hypothesis . If

, we chose and vice versa. This procedure can
also be employed to estimate the noise variance , i.e., we
chose to maximize the evidence as well.

A. Model Prior Formulation

In contrast to FOCUSS and Basis Pursuit, which assume a
fixed prior, SBL estimates a parameterized prior from the data.
The parametric form of the SBL weight prior is given by

(8)

where is a vector of hyperparameters
controlling the prior variance of each weight. These hyperpa-
rameters (along with the error variance if necessary) can
be estimated from the data by marginalizing over the weights
and then performing ML optimization. The marginalized pdf is
given by

(9)

where , and we have introduced the notation
diag .5 This procedure is referred to as evidence maxi-

mization or type-II maximum likelihood [17].

B. Algorithm Development

For fixed values of the hyperparameters governing the prior,
the posterior density of the weights is Gaussian [18], i.e.,

(10)

with and . Thus,
the onus remains in estimating and via type-II maximum
likelihood. Once we have these values, we choose as our weights
the satisfying

(11)

To find and , we employ the EM algorithm to
maximize .6 This is equivalent to minimizing

, giving the effective SBL cost function

(12)

The actual EM formulation proceeds by treating the weights
as hidden variables and then maximizing

where represents the like-
lihood of the complete data . We may then compute the
following for the th iteration:

(13)

5We will sometimes use � and 


 interchangeably when appropriate.
6An alternate formulation is also provided in [18] that has been observed to

drastically speed convergence; however, unlike the EM algorithm, it does not
lead to a proven descent function.

(14)

Likewise, an update rule for can be simply incorporated
during the M-step [18],

(15)
Interestingly, upon convergence, we find that many of the ’s
are driven to zero, effectively forcing the associated weights
at the mean of (10) to zero. In other words, if , then

, which will dominate the likelihood
term and force the posterior probability to satisfy

Prob (16)

In its current form, SBL requires the inversion of the
matrix : an operation. This can be problematic since
in cases of extreme overcompleteness, can be quite large. To
alleviate this problem, we compute as

(17)

We must now only invert the matrix , reducing the
algorithm to (like the FOCUSS algorithm), which is
clearly superior when . Additionally, in noiseless envi-
ronments, we may want to allow . Using straightforward
results from linear algebra, we can accommodate this require-
ment by using the following expressions for and :

(18)

(19)

where denotes the Moore–Penrose pseudoinverse. In this
formulation, it is very transparent how the sparsity profile of

dictates that of . We also observe that all are feasible,
i.e., for all . Of course, this assumes that is in the
span of the columns of associated with nonzero elements in

; however, this will always be the case if is in the span of ,
and all are initialized to nonzero values.

C. Convergence Issues

By virtue of the well-known properties of the EM algorithm,
SBL is globally convergent (i.e., each iteration is guaranteed to
reduce the cost function until a fixed point is reached). More-
over, this guarantee includes the estimation of the noise variance

: the SBL counterpart of . This is possible because the noise
variance estimation is easily packaged with the hyperparame-
ters during evidence maximization, as shown above.

Likewise, both Basis Pursuit and FOCUSS are globally con-
vergent algorithms as well but only with respect to optimiza-
tion of the weights themselves [3]. The trade-off parameter
must be estimated via some other means or fixed in advance by
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some prior knowledge. Furthermore, estimating via an evi-
dence maximization procedure is not straightforward since the
required integration (7) is intractable using the super-Gaussian
prior from (2).

III. ANALYSIS OF GLOBAL MINIMA

When tasked with sparse linear inverse problems such as (1),
we ideally seek cost functions whose minimization corresponds
with maximally sparse solutions (at least in the noiseless case).
Unfortunately, the global minima of current basis selection cost
functions typically do not achieve this objective (an exception
of course is FOCUSS with ). In contrast, we will show that
given certain conditions, the SBL cost function is characterized
by a global minimum that can produce the maximally sparse
solution at the posterior mean. Thus, in situations where the SBL
algorithm fails, it is a convergence issue and not a structural one.

We will now analyze the sparsity of the global minima of (12).
Before we begin, it is useful to introduce the notation

. We will refer to as a diversity measure since it counts
the number of entries in that are greater than zero. This is in
contrast to sparsity, which measures the number of weights that
equal zero. Thus, we can relate the two via

diversity sparsity (20)

We will now formally define a sparse solution as a set of weights
, or weight prior variances , that satisfy or
. When the inequality is strict, we say that the solution is a

degenerate sparse solution.
We now present a theorem that links global minima of with

sparse solutions.
Theorem 1: Let the noise term in (1) be equal to zero,

and denote the maximally sparse solution to as
which we assume satisfies and . Fur-
thermore, let denote a vector of prior variances such that

, where the minimum nonzero is

greater than some , and . Then, the global
minimum of (with respect to and ) is achieved at
and .

Proof: The cost function from (12) is composed of two
terms: the logarithm of a volume (or determinant) of and the
projection of along , i.e., . While the later term
is strictly greater than zero for all and , we can drive the
former to minus infinity by reducing the volume of to zero.
As such, the minimum of occurs whenever

(21)

while maintaining some finite bound such that

(22)

We will now demonstrate that (or, equivalently, ) sat-
isfies these conditions. First, we observe that with and

, we readily satisfy (21). This occurs because

rank rank (23)

Since is therefore not full rank, its volume must be
zero, in accordance with (21). We now handle (22). To facilitate
the analysis, we define

and (24)

By construction, we observe that

(25)

We may then re-express (22) at as

(26)

By invoking the basic result from linear algebra

(27)

we arrive at

(28)

This result is bounded by assumption, completing the proof.
This theorem establishes that the global minimum of is

achieved at a solution such that the posterior mean, as given
by (18), equals . Although limited to the noise-free case, this
theorem is nonetheless important, since establishing positive re-
sults in such situations is typically a necessary condition for ex-
tensions to noisy domains. Furthermore, a substantial body of
useful theoretical work exists pertaining to Basis Pursuit and
FOCUSS in noiseless environments [1]–[3], [24], [25]; it there-
fore seems appropriate to flesh out comparative theoretical de-
tails of SBL. In this instance, no equivalent result to Theorem 1
exists for the other algorithms (with the exception of FOCUSS,

), which is certainly worthwhile to know.
Additionally, we should mention that Theorem 1 contains no

guarantee of uniqueness, i.e., solutions with suboptimal sparsity
may also globally minimize . We address this point as follows.

1) Assuming represents the unique representation prop-
erty (URP) (i.e., any subset of columns of are lin-
early independent), then the global minimum can only be
achieved at degenerate vectors that produce degenerate
sparse solutions at the posterior mean, i.e., .
Per the analysis in [2], there are a very limited number
of such solutions. Additionally, degenerate sparse solu-
tions, even if not optimal, are better than solutions with

.
2) In the absence of noise, satisfying the URP, and given

very mild conditions on the optimal weight vector ,
there will exist no other degenerate sparse solutions (see
[29]). As such, the global minimum to in this situation
must produce at the posterior mean.

3) Degenerate sparse solutions minimize by collapsing
to a subspace of dimensional -space. In the absence
of noise, all such degenerate solutions reduce to minus
infinity, as we have already shown. However, if we fix
to some sufficiently small value greater than zero, then
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these solutions are no longer equivalent with respect to
minimizing . The variational analysis in Section V sheds
some light on this topic.

IV. ANALYSIS OF LOCAL MINIMA

Like FOCUSS, the SBL cost function can potentially have
many local minima. That multiple minima exist should not be
surprising. After all, from Theorem 1, the global minimum is
achieved at the maximally sparse solution. Moreover, from [12],
we know that finding the maximally sparse solution is NP-hard.
Thus, any descent algorithm that claims to be devoid of local
minima in this context must be suspect.

Nevertheless, to whatever degree possible, we would like to
quantify similarities and differences between the local minima
of FOCUSS and those of SBL (Basis Pursuit, of course, has no
local minima and, consequently, will not be considered in this
section). To move forward in this direction, we first demonstrate
that the local minima of the SBL cost function are achieved
at sparse solutions (similar to FOCUSS).7 This is a result of
general interest and applies in both noisy and noiseless condi-
tions. We will then derive a bound on the number of distinct
local minima characterizing under certain conditions. It can
also be shown that the FOCUSS cost function (with ) must
achieve this bound exactly. In contrast, we will demonstrate spe-
cific cases where the number of local minima of the SBL cost
function is strictly less than this bound.

A. Local Minima and Sparsity

Sparse solutions are formally equivalent to the basic solutions
in LP, i.e., solutions with at most nonzero entries. In
this section, we show that all local minima of are achieved at
sparse solutions. First, we introduce two lemmas that are neces-
sary for the final result.

Lemma 1: is concave with respect to (or, equiva-
lently, ).

Proof: In the space of psd matrices (such as ), is
a concave function (see, e.g., [26]). Furthermore, based on [27,
Th. 5.7], if a function is concave on and is an affine
transformation from to , then is also concave.
Therefore, by defining

(29)

(30)

we achieve the desired result.
Lemma 2: The term equals a constant over all

satisfying the linear constraints , where

(31)

diag (32)

and is any fixed vector such that .
Proof: By construction, the constraint

is subsumed by the constraint

7To clarify, the FOCUSS algorithm converges directly to some sparse solu-
tion, whereas SBL converges to a sparse 


 vector such that the corresponding
posterior mean, which we use as our weight estimate, is sparse.

. By rearranging the later, we get
or, equivalently

diag (33)

completing the proof.
Theorem 2: Every local minimum of is achieved at a sparse

solution, regardless of whether noise is present or not.
Proof: Consider the optimization problem

subject to (34)

where and are defined as in (31) and (32), and
. From Lemma 2, the above constraints hold

constant on a closed, bounded convex polytope (i.e., we are min-
imizing the first term of while holding the second term con-
stant to some ). In addition, Lemma 1 dictates that the objec-
tive function is concave.

Clearly, any local minimum of , e.g., , , must also be a
local minima of (34) with

(35)

However, from [28, Th. 6.5.3], all minima of (34) are achieved
at extreme points and additionally, Theorem 2.5 establishes the
equivalence between extreme points and basic feasible solu-
tions, i.e., solutions with at most nonzero values. Conse-
quently, all local minima must be achieved at sparse solutions.

In [20], it is shown that the local minima of FOCUSS are
sparse. As such, we have placed SBL on a similar theoretical
footing with respect to sparsity and local minima.

B. Local Minima Bound

We will now establish a bound on the number of distinct local
minima of the SBL cost function ; however, we first present a
simple preliminary result that facilitates the development of this
bound.

Lemma 3: Assume and and that satisfies the
URP. Then, for every subset of basis vectors with associated

values, denoted , there is at most one minimum of with
respect to these bases (i.e., we are holding all other fixed
at zero and showing that the resulting constrained cost function
has a single minimum).

Proof: Given the specified conditions, we can perform the
following manipulations of :

(36)

where we have used the fact that the sparse solution with respect
to these basis vectors is , where is a vector
of zeros. We then form the gradients

(37)

By equating these gradients to zero, we find that a single min-
imum occurs when for all in . In addition, we
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observe that whenever a weight is zero, the corresponding
must also be zero. This also implies that at any local minimum,
we can achieve

Using the above result, we are now positioned to derive the
bound, at least in a noiseless setting.

Theorem 3: Assume and , that satisfies the
URP, and that there exist degenerate sparse solutions

such that and . Then, the
number of distinct local minima of , denoted , satisfies

(38)

Proof: Theorem 2 dictates that every local minimum is
achieved at a sparse solution or a subset of at most bases (i.e.,

nonzero ’s). Furthermore, Lemma 3 requires that there can
only be a single local minimum per subset of bases. There-
fore, we cannot have more local minima than there are -fold
subsets. With being , there are possible subsets
of bases.

For each such -fold subset, there exists one of two possibil-
ities. First, if no degenerate sparse solution with bases
exists within this subset, then these bases contain a unique
local minimum (with ). In contrast, suppose
a degenerate sparse solution exists with respect to these
bases. By Lemma 3, achieves the only local minimum
with respect to these bases; however, it is no longer unique to
this subset: All subsets of bases containing this degenerate
solution share this minimum.

To compensate in our overall count, we observe that there are
different -fold subsets that contain [2]. Since all

of these subsets contain the same minimum, we must subtract
from the total. Repeating this procedure for all

produces the above bound.

C. Comparative Analysis of Bound

As stated previously, the FOCUSS cost function must
achieve this bound exactly: a result that follows because the
set of sparse solutions equals the set of local minima with
FOCUSS, as shown in [29]. We will now demonstrate that with
SBL, this need not be the case.

Theorem 4: For the special case of , ,
, and satisfying the URP, there exists a single minimum of
, i.e., .

Proof: See the Appendix.
While, certainly, cases are not of much practical

importance, this result demonstrates a nontrivial example where
falls well below the theoretical bound. More concretely,

with and satisfying the URP, it can be shown that
must equal one (or we violate the URP [2]). Since

, we have

(39)

assuming . In contrast, FOCUSS retains the full
local minima. In addition, we

can easily demonstrate empirically situations where FOCUSS
consistently fails to uncover the solution because of
convergence to one of these local minima.

In more difficult problem domains [i.e., ], we can,
of course, no longer guarantee that is devoid of local minima.
In fact, it is a simple matter to construct example configura-
tions of -fold subsets of basis vectors that both do and do not
constitute local minima to . With randomized dictionaries and

, it is a stochastic matter as to which configurations
occur and with what frequency. Consequently, in this scenario,
the local minima count is actually a random variable such that

Prob (40)

Again, with FOCUSS, the local minima count will still be fixed
at .

In any event, it seems reasonable that with potentially fewer
local minima, we may increase the likelihood of converging to
the maximally sparse solution and the global minima. Our em-
pirical results in Section VI support this conclusion. However,
before we proceed to these results, we present a novel interpre-
tation of SBL that provides additional rigor to the development
and gives some intuitive insight into why sparsity is achieved in
practice.

V. VARIATIONAL INTERPRETATION OF SPARSE

BAYESIAN LEARNING

We have already observed that while current methods
employ super-Gaussian priors that explicitly reward sparsity,
SBL invokes a parameterized Gaussian prior that (perhaps sur-
prisingly) leads to sparse representations through an evidence
maximization approach. Previous results notwithstanding, why
should it be that a procedure, which on the surface utilizes
a nonsparsity inducing Gaussian prior, should lead to sparse
results in practice?

In [18], this question is addressed by placing a hyperprior on
and then inferring what is assumed to be the “true” or implicit

weight prior by integrating out the hyperparameters via

(41)

where we have explicitly denoted this hypothesized implicit
weight prior by . The conditional density is given by
(8), and the hyperprior selected for each is

(42)

for , . Upon integration of (41), we obtain the weight
prior

(43)

which is proportional to a Student-t density. As we allow ,
, we can obtain the improper hyperprior

(44)
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Such priors are sometimes advocated for use with scale param-
eters, since in this capacity, they act as a reasonable noninfor-
mative prior [30]. The resultant weight prior then becomes

(45)

which is clearly recognized as encouraging sparsity due to the
heavy tails and sharp peak at zero. This is given as evidence in
[18] that sparse representations are reasonable in practice since
we are ostensibly working with the sparse, implicit weight prior

.
What exactly, however, is the relationship between our pa-

rameterized prior introduced in Section II and the
presumed sparse prior derived via the hierarchical structure of
(41)? Moreover, how does this putative affiliation lead to sparse
results when using the evidence maximization framework al-
ready mentioned?

To address these questions, we appeal to variational methods
[31] to express in a dual form, introducing a set of vari-
ational parameters as described next.8 The methodology is re-
lated to the procedure outlined in [33] in the context of indepen-
dent component analysis and is explored in detail in [34]. This
formulation will allow us to demonstrate that SBL is actually
evidence maximization over the space of variational approxi-
mations to a model with the weight prior . Moreover,
from the vantage point afforded by this new perspective, we can
better understand the sparsity properties of SBL that arise out
of the evidence framework.

Before we begin, it is useful to address one very reasonable
question, namely, if we have the sparse prior from (43), why not
just find maximum a posteriori estimates of the weights, casting
aside any ambiguities that arise concerning the hyperparameters

? The problem with this direction is the same as the problem
we encountered with FOCUSS using . For example, in the
noiseless case, we encounter an NP-hard optimization problem
if we want to find the global maximum. In fact, it can be shown
that finding this MAP estimate is equivalent to finding the min-
imum -norm solution using FOCUSS with [3]. Fortu-
nately, we can substitute variational methods when confronting
such problematic priors, as discussed next.

A. Variational Approximations and Evidence Maximization

In this section, we define a space of variational approxima-
tions to the prior . We will then choose from this space
the approximate model with maximum Bayesian evidence, es-
tablishing the link between and . At the heart
of this methodology is the ability to represent a convex function
in a dual form. For example, given a convex function

, the dual form is given by

(46)

where denotes the conjugate function [27]. Geometri-
cally, this can be interpreted as representing as the upper
envelope or supremum of a set of lines parameterized by . The
selection of as the intercept term ensures that each line is

8We note that the analysis in this section is different from [32], which derives
a different SBL algorithm based on variational methods.

Fig. 1. Variational approximation example in both y space and w space for
a, b ! 0. (Left) Dual forms in y space. The solid line represents the plot of
f(y ), whereas the dotted lines represent variational lower bounds in the dual
representation for three different values of � . (Right) Dual forms in w space.
The solid line represents the plot of p(w ;H), whereas the dotted lines represent
Gaussian distributions with three different variances.

tangent to . If we drop the maximization in (46), we obtain
the bound

(47)

Thus, for any given , we have a lower bound on ; we may
then optimize over to find the optimal or tightest bound in a
region of interest.

To apply this theory to the problem at hand, we must express
our sparse prior as some convex
function. Clearly, each is not convex in ; however,

if we let and define

(48)

we see that we now have a convex function in amenable to
dual representation. The constant is not chosen to enforce
proper normalization; rather, it is chosen to facilitate the vari-
ational analysis. By computing the conjugate function
via the duality relation

(49)

constructing the dual using (46), and then transforming back to
, we obtain the representation

(50)
Details of these manipulations are deferred to [34]. As ,

, it is readily apparent that what were straight lines in the
domain are now Gaussian functions with variance in the
domain. Fig. 1 illustrates this connection. When we drop the
maximization, we obtain a lower bound on of the form

(51)

which serves as an approximate prior to . Combining
results for each , we obtain

(52)

where diag , as previously defined.
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To review, we have a hypothesized weight prior that
precludes simple algorithms for obtaining optimal a posterior
estimates. Nonetheless, we can express the problematic prior in
a dual form via (50), providing us with a convenient parameter-
ized set of approximations to given by . Sup-
pose we wish to adopt a specific approximation out of this set
for use in our original problem, i.e., finding regularized solu-
tions to . The Bayesian approach to this task is to
choose the approximation with maximal evidence. Specifically,
we choose (or more explicitly ) via

(53)

In other words, we are selecting the approximate hypothesis ,
out of a class of variational approximations to , that most prob-
ably explains the training data , marginalized over the weights
(a form of regularization per the results in [23]).

From an implementational standpoint, (53) can be re-ex-
pressed as

(54)

which is of course the identical optimization procedure as in
Section II-B (excluding, for simplicity, consideration of es-
timation). The difference is that, where before we were opti-
mizing over a somewhat arbitrary model parameterization, now
we see that it is actually evidence maximization over the space
of variational approximations to a model with a sparse, regu-
larizing prior . Furthermore, we obtain this connection
without having to assume any hyperprior .

B. Analysis

While the variational perspective is interesting, the question
still remains (and is not answered in [17] or [18]), why should
it necessarily be that approximating the sparse prior
leads to sparse representations in practice? After all, it is easy
to construct scenarios where an approximation to such a prior
does not lead to sparse results. We will now address this question
using a simple example.

In Fig. 2, we have illustrated a example of evidence max-
imization within the context of variational approximations to

.9 Recall that the evidence for a model is given by
marginalizing over the product of the likelihood and the prior.
A substantial contribution to this integral typically occurs in re-
gions of -space, where both the likelihood and the prior have
significant mass. This is represented by the shaded region of the
plot on the left for the full model . Moreover, we can infer
from the variational analysis of the previous section that this re-
gion also represents the only area where an approximate prior
and the likelihood can potentially overlap. Consequently, the ev-
idence maximization procedure described previously is roughly
tantamount to finding an approximate prior such that the largest
percentage of its mass lies in the shaded region.

9Here, we have assumed thatM = N = 2 and that � > 0. In the overcom-
plete case, i.e., M > N , the likelihood resembles more of a ridge in www space,
but the analysis remains essentially the same.

Fig. 2. Comparison between full model and approximate models with a,
b ! 0. (Left) Contours of equiprobability density for p(www;H) and constant
likelihood p(tttjwww;� ); the prominent density and likelihood lie within each
region, respectively. The shaded region represents the area where both have
significant mass. (Right) Here, we have added the contours of p(www; Ĥ) for
two different values of 


, i.e., two approximate hypotheses denoted Ĥ and
Ĥ . The shaded region represents the area where both the likelihood and the
approximate prior Ĥ have significant mass. Note that by the variational
bound, each p(www; Ĥ) must lie within the contours of p(www;H).

In the plot on the right, we have graphed two approximate
priors that satisfy the variational bounds, i.e., they must lie
within the contours of . We see that the narrow prior
that aligns with the horizontal spine of places a large
percentage of its mass in the shaded region. This corresponds
with a variational prior of

(55)

This creates a long narrow prior since there is minimal vari-
ance along the axis. In fact, it can be shown that owing to
the infinite density of the variational constraint along each axis
(which is allowed as , ), the maximum evidence is ob-
tained when is strictly equal to zero, giving the approximate
prior infinite density along this axis as well. This implies that

also equals zero and can be pruned from the model. In con-
trast, a model with significant prior variance along both axes

is hampered because it cannot extend directly out (due to
the dotted variational boundary) along the spine to penetrate the
likelihood.

Similar effective weight pruning occurs in higher dimen-
sional problems, as evidenced by simulation studies, Theorem
2, and the analysis in [35]. In higher dimensions, the algorithm
only retains those weights associated with the prior spine(s)
that span a subspace penetrating the most prominent portion
of the likelihood mass (i.e., a higher dimensional analog to the
shaded region already mentioned). The prior navigates
the variational constraints, placing as much as possible of its
mass in this region, driving many of the ’s to zero.

VI. EMPIRICAL RESULTS

To quantify the performance of SBL relative to other
methods, we completed a simulation study of each approach, as
in [3] and [20]. For simplicity and ease of comparison, noise-
less tests were performed. This facilitates direct comparisons
because discrepancies in results cannot be attributed to poor
selection of the trade-off parameter (which balances sparsity
and quality of fit) in the case of FOCUSS and Basis Pursuit
[1], [20]. Moreover, we have found that relative performance
with the inclusion of noise remains essentially the same (see
Section VI-C).
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A. Random Dictionaries

Randomized dictionaries are of particular interest in signal
processing and other disciplines [7], [14], [15], [25]. Moreover,
basis vectors from many real-world measurements can often be
modeled as random. In any event, randomized dictionaries cap-
ture a wide range of phenomena and, therefore, represent a vi-
able benchmark for testing basis selection methods. At least we
would not generally expect an algorithm to perform well with a
random dictionary and poorly on everything else.

Consistent with [3], we generated a random dictionary
, whose entries were each drawn from a standardized Gaussian

distribution. The columns were then normalized to unit -norm.
Sparse weight vectors were generated with
randomly selected nonzero entries (with uniformly distributed
amplitudes on the nonzero components). The vector of target
values is then computed as

(56)

Each algorithm is then presented with and and attempts to
find , with a minimum -norm initialization being used in
each case. Under this construction (i.e., no noise and randomly
generated dictionaries and random weight amplitudes), all local
minima almost surely have a suboptimal diversity of

; therefore, is maximally sparse [29]. As such, we can
be certain that when an algorithm finds , it has found the
maximally sparse solution.10 For this study, we chose ,

, and , i.e., an overcompleteness ratio of 2.0.
Results using other combinations (not shown) are similar with
respect to relative performance. Of course, if we increase the
overcompleteness ratio, all algorithms have more difficulty. In
contrast, if we increase and proportionately, all results
improve.

The purpose of this study was to examine the relative fre-
quency of cases where each algorithm failed to uncover the gen-
erating sparse weights. In addition, we would like to elucidate
the cause of failure, i.e., convergence to a standard local min-
imum (i.e., convergence error) or convergence to a minimum
(possibly global) that is not maximally sparse yet has a lower
cost function value than the generating solution (i.e., structural
error). To this end, we ran each algorithm 1000 times and com-
pared cost function values at convergence with the “ideal” cost
function value at . Results are presented in the Table I .

Several items are worth noting with respect to these results.
First, we see that with Basis Pursuit, we only observe structural
errors.11 This is to be expected since the Basis Pursuit algorithm
has no local minima. However, we see that there is essentially
a 22.3% chance that the minimum -norm solution of Basis
Pursuit does not correspond with the generating sparse solution.

In contrast, FOCUSS is functionally similar
to the -norm minimization, as mentioned previously. Thus,
we experience no structural errors but are frequently trapped
by local minima. When is raised to 0.9, the number of
local minima does not change, but the relative basin sizes

10A threshold of 10 was used, and components of www with a magnitude
below this value were set to zero.

11These results hold whether we use interior-point or Simplex methods for
Basis Pursuit.

TABLE I
COMPARATIVE RESULTS FROM SIMULATION

STUDY OVER 1000 INDEPENDENT TRIALS USING RANDOMLY GENERATED

DICTIONARIES. CONVERGENCE ERRORS ARE DEFINED AS CASES WHERE THE

ALGORITHM CONVERGED TO A LOCAL MINIMUM WITH COST FUNCTION

VALUE ABOVE (i.e., INFERIOR TO ) THE VALUE AT THE MAXIMALLY SPARSE

SOLUTION www . STRUCTURAL ERRORS REFER TO SITUATIONS WHERE THE

ALGORITHM CONVERGED TO A MINIMUM (POSSIBLY GLOBAL WITH) COST

FUNCTION VALUE BELOW THE VALUE AT www

becomes skewed toward the -norm solution. Consequently,
FOCUSS exhibits both types of errors.

On the other hand, we see that SBL failure is strictly the re-
sult of convergence errors as with FOCUSS , al-
though we observe a much superior error rate because of the
fewer number of local minima. To make this conclusion more
explicit, we collected all examples where FOCUSS
converged to a local minimum and initialized SBL in the neigh-
borhood of these points. In approximately 80% of these cases,
SBL escaped (although sometimes to an alternate local min-
imum), indicating that these points were not local minima to the
SBL cost function. This implies that FOCUSS is consistently
converging to local minima that are not local minima to SBL.
Conversely, when we reverse this process, FOCUSS was never
able to escape from SBL failures as these represent local minima
to FOCUSS as well.

B. Pairs of Orthobases

Lest we attribute the superior performance of SBL to the
restricted domain of randomized dictionaries, we performed
an analysis similar to the preceding section using dictionaries
formed by concatenating two orthobases, i.e.,

(57)

where and represent two 20 20 orthonormal bases. Can-
didates for and include Hadamard–Walsh functions, DCT
bases, identity matrices, and Karhunen–Loève (K–L) expan-
sions among many others. The idea is that, whereas a signal may
not be compactly represented using a single orthobasis, it may
become feasible after we concatenate two or more such dictio-
naries. For example, a sinusoid with a few random spikes would
be amenable to such a representation. Additionally, in [24] and
[25], much attention is placed on such dictionaries.

For comparison purposes, and were generated in
an identical fashion, as before. and were selected to
be Hadamard and K–L bases, respectively (other examples
have been explored as well). Unfortunately, by applying the
results in [25], we cannot a priori guarantee that is the
sparsest solution, as we could with randomized dictionaries.
More concretely, it is not difficult to show that even given the
most favorable conditions for pairs of 20 20 orthobases,
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TABLE II
COMPARATIVE RESULTS FROM SIMULATION STUDY OVER 1000 INDEPENDENT

TRIALS USING PAIRS OF ORTHOBASES. CONVERGENCE ERRORS AND

STRUCTURAL ERRORS ARE DEFINED AS BEFORE

we cannot guarantee that is the sparsest possible solution
unless . Nevertheless, we did find that in all cases
where an algorithm failed, it converged to a solution with

. Results are displayed in Table II.
The results are remarkably similar to the randomized dic-

tionary case, strengthening our premise that SBL represents a
viable alternative, regardless of the dictionary type. Likewise,
when SBL was initialized at the FOCUSS local minima as be-
fore, we observed a similar escape percentage. FOCUSS could
still not escape from any SBL local minima, as expected.

C. Experiments with Noise

To conclude our collection of experiments, we performed
tests analogous to those above with the inclusion of noise.
Specifically, white Gaussian noise was added to produce an
SNR of 20 dB. This relatively high number was selected to
obtain reasonable results with limited signal dimension ( is
only samples). For example, if we double and ,
retaining an overcompleteness ratio of 2.0, we can produce
similar results at a much lower SNR.

With the inclusion of noise, we do not expect to reproduce
exactly. Consequently, we must balance our desire for sparse

representations with our goal of approximating . For all algo-
rithms, the trade-off parameter was selected such that each algo-
rithm produced the same average MSE, where MSE is defined
as

MSE (58)

This value is then averaged across the 1000 trials. An average
MSE value of 0.007 was chosen such that, somewhat conve-
niently, all algorithms did about their best with respect to recov-
ering the generative bases.

Results are presented in Table III. Note that we have no longer
partitioned the error rates into categories since the distinction
between structural and convergence errors becomes muddied
with the inclusion of noise. Furthermore, we now classify a trial
as successful if the magnitude of each weight associated with
a nonzero element of is greater than the magnitudes of all
other weights associated with zero-valued elements of .

From this table, we see that for an equivalent average MSE,
we enjoy a much higher probability of recovering the genera-
tive basis vectors with SBL. Once again, these results corrob-
orate our earlier theoretical and empirical findings, suggesting
the superiority of SBL for basis selection.

TABLE III
COMPARATIVE RESULTS FROM SIMULATION STUDY OVER 1000 INDEPENDENT

TRIALS USING RANDOMLY GENERATED DICTIONARIES AND THE INCLUSION OF

ADDITIVE WHITE GAUSSIAN NOISE TO 20 dB

VII. CONCLUSIONS

In this paper, we motivated the SBL cost function as a vehicle
for finding sparse representations of signals from overcomplete
dictionaries. We have also proven several results that comple-
ment existing theoretical work with FOCUSS and Basis Pur-
suit, clearly favoring the adaptation of SBL to basis selection
tasks. Specifically, we have shown that SBL retains a desirable
property of the -norm diversity measure (i.e., no structural er-
rors as occur with Basis Pursuit) while often possessing a more
limited constellation of local minima (i.e., fewer convergence
errors than with FOCUSS ). We have also demon-
strated that the local minima that do exist are achieved at sparse
solutions. Moreover, our simulation studies indicate that these
theoretical insights translate directly into improved performance
with both randomized dictionaries and pairs of orthobases. To-
gether, these are representative of a large class of applications.

Upon inspection of the SBL cost function and associated al-
gorithms for its optimization, it is appropriate to ponder intu-
itive explanations for the sparsity that is so often achieved in
practice. This is an especially salient task in light of the con-
siderable differences between the sparse Bayesian framework
and other paradigms such as FOCUSS. As a step in this direc-
tion, we have demonstrated that SBL can be recast using duality
theory, where we observe that the hyperparameters can be in-
terpreted as a set of variational parameters, as first established in
[34]. The end result of this analysis is an evidence maximization
procedure that is equivalent to the one originally formulated in
[18]. The difference is that, where before we were optimizing
over a somewhat arbitrary model parameterization, we now see
that it is actually evidence maximization over the space of varia-
tional approximations to a model with a sparse, well-motivated
prior. Moreover, from the vantage point afforded by this new
perspective, we can better understand the sparsity properties of
SBL and the relationship between sparse priors and approxima-
tions to sparse priors.

APPENDIX

PROOF OF THEOREM 4

Given , there cannot exist any other degen-
erate sparse solutions, or we violate the URP. Therefore,
assume for the moment that there exists a local minima with

(all local minima must be achieved at
sparse solutions by Theorem 2, and we have already ruled out
degenerate sparse solutions). We will define this -fold subset
of nonzero ’s as .

Since , we know that there exists one
column of that is a scalar multiple of ; however, we must
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assume that the hyperprior associated with this column, denoted
, is zero. For simplicity, we may absorb the scalar multiple into
without affecting the proof. Under these conditions, we can

write the covariance of at this local minima as

(59)

where is the column of associated with , and for now,

, , and . If we are truly at a
local minimum, then the following conditions must hold:

(60)

(61)

where we note that the gradient with respect to need not
equal zero since must be greater than or equal to zero. In
other words, we cannot reduce along a positive nonzero
gradient because this would push below zero. We will now
demonstrate that both conditions cannot be met simultaneously,
demonstrating that we cannot be at a local minimum of .

To accomplish this, we expand the two terms of our cost func-
tion in light of (59). First, using the matrix inversion lemma,
we can write

(62)

We observe that will always be invertible by the URP assump-
tion. Next, we expand using the determinant identity
from [36, App. A], giving us

(63)

Thus, we arrive at the cost function

(64)

where we have defined for convenience. We now
differentiate with respect to to obtain

(65)

At the point and , which is the presumed local
minimum, the above gradient becomes

(66)

At this point, we must determine the value of so that we can
ascertain the sign the gradient. If it turns out to be negative,
then we violate condition (61), proving we are not at a local
minimum.

To find , we take the gradient of with respect to , giving

(67)

Because we have assumed we are at a local minimum, this gra-
dient must equal zero when and by (60). Solving
for , we arrive at .

Plugging this value into (66), we find that the partial of with
respect to is negative since by assumption, . Therefore,
we cannot be at a local minimum.
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