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Abstract—This paper considers a downlink multicell coopera-
tion model in which the base-stations (BSs) are connected to a
central processor (CP) via rate-limited backhaul links. A user-
centric clustering model is adopted where each scheduled user is
cooperatively served by a cluster of BSs, and the serving BSs for
different users may overlap. This paper formulates an optimal
joint clustering and beamforming design problem in which each
user dynamically forms a sparse network-wide beamforming
vector whose non-zero entries correspond to the serving BSs.
Specifically, we assume a fixed signal-to-interference-and-noise
ratio (SINR) constraint for each user, and investigate the optimal
tradeoff between the sum transmit power and the sum backhaul
capacity needed to form the cooperating clusters. Intuitively,
larger cooperation size leads to lower transmit power, because
interference can be mitigated through cooperation, but it also
leads to higher sum backhaul, because user data needs to be made
available to more BSs. Motivated by the compressive sensing
literature, this paper formulates the sparse beamforming problem
as an �0-norm optimization problem, then uses the iterative
reweighted �1 heuristic to find a solution. A key observation
of this paper is that the reweighting can be done on the �2-norm
square of the beamformers (i.e., the power) at the BSs. This gives
rise to a weighted power minimization problem over the entire
network, which can be solved using the uplink-downlink duality
technique with low computational complexity. This paper further
proposes judicious choice of the weights, and shows that the new
algorithm can provide a better tradeoff between the sum power
and the sum backhaul capacity in the high SINR regime than
previous algorithms.

I. INTRODUCTION

Wireless cellular networks are increasingly deployed with
progressively smaller cell sizes in order to support the ever
increasing demand for high-speed data. As a consequence,
intercell interference is now the main physical-layer bottle-
neck in cellular networks. Multicell cooperation, which allows
neighboring base-stations (BSs) to cooperate with each other
for joint precoding and joint processing of user data, is a
promising technology for intercell interference mitigation [1].
This emerging architecture, known as network multiple-input
multiple-output (MIMO) [2], has the potential to significantly
improve the overall throughput of the cellular network.

The idealized implementation of multicell cooperation,
where all BSs in the entire network cooperate and share the
data for all users, is clearly impractical. One way to implement
multicell cooperation in practice is to connect all the BSs with
a central processor (CP) via rate-limited backhaul links. For
downlink transmission, the CP then only needs to distribute
the user’s data to its serving BSs. Although fixed clustering

scheme, which simply groups the neighboring BSs into a larger
cluster, has already shown reasonable performance gain, in
such a scheme users at the cluster edge still suffer from consid-
erable intercell interference which limits the benefit of network
MIMO [3]. This paper adopts an alternative model, called
user-centric clustering, where the BS clusters are not fixed
but are determined for each user individually. In this model,
each user dynamically selects a set of favorable BSs; these
BSs then cooperatively serve the user using joint precoding
techniques. The benefit of user-centric clustering is that it has
no explicit cluster edges.

This paper addresses the question of how to determine the
best serving set of BSs and how to design the best network-
wide beamformer for each user. This is not a straightforward
task, because from the users’ perspective, each user wishes
to be served cooperatively by as many BSs as possible, while
from the BSs’ perspective, serving more users consumes more
power and backhaul capacity. There exists therefore a tradeoff
between the user rates, the transmit powers, and the backhaul
capacity. Further, the beamformer design problem for the
network MIMO system with user-centric clustering is also
nontrivial, because the sets of BSs serving different users
may overlap. The traditional zero-forcing (ZF) and minimum
mean square error (MMSE) beamforming designs specifically
developed for the single cell case need to be generalized [4].

This paper proposes a sparse beamforming design to solve
the above problem. Specifically, we design a network-wide
sparse beamforming vector for each user, where the nonzero
entries correspond to the serving BSs. We formulate the
optimization problem as that of finding the optimal trade-
off between the total transmit power and the sum backhaul
capacity over all BSs, under fixed signal-to-interference-and-
noise (SINR) constraints at the remote users. Intuitively, higher
backhaul capacity allows more BSs to cooperate, which leads
to less inter-cluster interference and therefore less transmit
power that would be needed to serve the users at the fixed
SINRs.

The above optimization problem can be formulated as an
�0-norm optimization problem. But, such a formulation is
nonconvex. Motivated by the compressive sensing literature
[5], this paper uses an iterative reweighted �1 technique
and proposes to approximate the backhaul rates in terms of
the weighted �2-norm square of the beamfomers. The key
observation here is that this transforms the problem into a



weighted power minimization problem with SINR constraints,
which can then be solved using the uplink-downlink duality
approach with low computational complexity.

The sparse beamforming problem has already been ad-
dressed previously in the literature [6]–[8]. In [6], the authors
use the �1-norm of the beamforming vector to approximate the
cluster size, while [8] proposes an algorithm to improve the �1-
norm approximation by reweighting. In both cases, the cluster
size is determined from the �2-norm of the beamformers at
each BS, and the resulting optimization problem becomes a
second-order cone programming (SOCP) problem [9], which
can be solved numerically by the interior-point method. To
reduce the computational complexity of the interior-point
method, the authors of [8] further propose a second algorithm,
which first solves the sum power minimization problem, then
iteratively removes the links corresponding to the smallest
link transmit power. One of the main contributions of this
paper is to show that by working with the weighted �2-norm-
square of the beamformers (which is equivalent to power),
instead of the �2-norm itself, we can formulate the problem
as a weighted power minimization for which the well-known
uplink-downlink duality approach can be used to solve the
problem efficiently. Our algorithm can therefore be thought of
as combining iterative reweighting with the low-complexity
feature of the weighted power minimization formulation.

Further, this paper adopts a new weight updating rule in
�1 reweighting, which is different from the weight updating
method of [8], where the weights are chosen as inversely pro-
portional to the beamformer entries. The new weight updating
rule enables the proposed algorithm to achieve a better tradeoff
between the sum power and the sum backhaul capacity, as
compared to the existing algorithms in [8].

The idea of compressive sensing has been used in various
scenarios in communication system design. In [10], the authors
design uplink sparse MMSE receivers for the uplink multicell
cooperation model using the �1-norm approximation, while
[11] uses similar ideas for joint power and link admission
control in an interference channel. The problem setup of this
paper is related to [12], which investigates the joint clustering
and beamforming design for the downlink by adding a �2-norm
approximation of the cluster size for each user as a penalized
item. However, [12] differs from the present paper by focusing
on the weighted sum rate maximization problem, instead
of power minimization. This allows [12] to use a weighted
MMSE technique to find a local optimal solution to the
rate maximization problem. Finally, the problem setup of the
present paper is also related to [13], which proposes a heuristic
way of solving the problem of clustering, beamforming design,
user scheduling, and power allocation in a decoupled fashion.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a network MIMO system with L BSs connected
to a CP via limited backhaul links with a total capacity limit
C, as depicted in Fig. 1. Suppose that there are K single
antenna users, and the CP has access to all user data and
channel state information (CSI) in the system. Although a fully
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Fig. 1. Downlink multicell cooperation system model with all the BSs
connected to a CP via limited backhaul links under a total capacity limit C,
where each scheduled user is cooperatively served by a potentially overlapping
subset of BSs.

cooperative network MIMO system, where every single user is
served by all the L BS’s, can dramatically reduce the intercell
interference, it also requires very high backhaul capacity,
because the CP needs to make every user’s data available at
every BS. This paper considers a more practical architecture in
which each user selects only a subset of serving BSs (which
are potentially overlapping) and the CP only distributes the
user’s data to its serving BSs.

Let wk ∈ C
ML×1 = [w1

k,w
2
k, · · · ,wL

k ] be the transmit
beamformer over all BSs for user k, where wl

k ∈ C
M×1 is

the transmit beamformer from BS l (l = 1, 2, · · · , L) to user
k (k = 1, 2, · · · ,K). Note that wl

k = 0 if BS l is not part of
user k’s serving cluster. The received signal yk ∈ C at user k
can be written as:

yk = hH
k wksk +

K∑
j �=k

hH
k wjsj + nk (1)

where hk ∈ C
ML×1 denotes the CSI vector from all the BSs to

user k, sk ∼ CN (0, 1) and nk ∼ CN (0, σ2) are the intended
signal and the receiver noise for user k, respectively.

The SINR for user k can be expressed as:

SINRk =
|hH

k wk|2∑
j �=k |hH

k wj |2 + σ2
. (2)

The achievable rate for user k is then

Rk = log(1 + SINRk). (3)

Since each user’s data only needs to be made available at
its serving BSs, the sum backhaul capacity consumption Ck

needed for serving user k can be represented as

Ck =
∥∥[‖w1

k‖2, ‖w2
k‖2, · · · , ‖wL

k ‖2
]∥∥

0
Rk (4)



where ‖ · ‖0 denotes the �0-norm of a vector1, i.e. the number
of nonzero entries in the vector.

We can now formulate an optimization problem that relates
various network resources and the system throughput. The
network resources considered in this paper consist of the
backhaul capacities and the transmit powers at the BSs. Clearly
more resources lead to higher throughput. But at fixed user
throughput, there is also a tradeoff between the backhaul
capacity and the transmit power. Intuitively, higher backhaul
capacity allows for more BSs to cooperate, which leads to less
interference; hence less transmit power is needed to achieve a
target user rate.

Formally, this paper formulates the tradeoff between the
total transmit power and the sum backhaul capacity over all
BSs under fixed user data rates as the following optimization
problem:

minimize
wl

k

∑
k

∥∥[‖w1
k‖2, ‖w2

k‖2, · · · , ‖wL
k ‖2]

∥∥
0
Rk

+ η
∑
k

∑
l

‖wl
k‖22

subject to SINRk ≥ γk, ∀k (5)

where η ≥ 0 is a constant indicating the tradeoff between sum
backhaul capacity and sum power, γk is the SINR target for
user k and Rk = log2(1 + γk). This paper focuses on the
numerical solution to this problem.

We note that the above problem formulation is not the only
possibility here. For example, [12] studies the tradeoff between
the user rates and the cluster size in a weighted sum rate
maximization problem under fixed power constraints. As a
further note, this paper considers the sum power and sum
backhaul capacity only, but in practice the per-BS transmit
power and the per-BS backhaul capacity are also of interest.
We defer such studies to future work.

III. SPARSE BEAMFORMING DESIGN ALGORITHMS

The optimization problem (5) is nonconvex due to the �0-
norm representation of the backhaul rate. Finding the global
optimal solution to (5) is difficult. Motivated by the compres-
sive sensing literature, we propose to solve (5) heuristically
by iteratively relaxing the �0-norm as a weighted �1-norm. In
this section, we first introduce our proposed algorithm and
then compare it with existing algorithms.

A. Proposed Algorithm with Reweighted Power Minimization

First, we make an observation that if the �2-norm in (4) is
replaced by �2-norm square, the overall �0-norm remains the
same. Thus, the backhaul consumption Ck can also be written
as

Ck =
∥∥[‖w1

k‖22, ‖w2
k‖22, · · · , ‖wL

k ‖22]
∥∥
0
Rk (6)

The basic idea of �1-heuristics in compressive sensing is to
replace the ‖ · ‖0 norm by ‖ · ‖1 norm in the optimization
problem. Applying this idea to (6) and further introducing

1Strictly speaking, ‖·‖0 is not a norm by definition since it does not satisfy
the homogenous property. However, we still call it �0-norm by convention.

the appropriate weights, Ck can now be approximated as the
weighted �2-norm square of the beamformers, and the problem
(5) can now be relaxed as

minimize
wl

k

∑
k

(∑
l

ρlk‖wl
k‖22

)
Rk + η

∑
k

∑
l

‖wl
k‖22

(7)
subject to SINRk ≥ γk, ∀k

where ρlk is the weight associated with BS l and user k.
Observe that the problem (7) can be further rearranged into

the following form

minimize
wl

k

∑
k,l

αl
k‖wl

k‖22 (8)

subject to SINRk ≥ γk, ∀k
where αl

k = ρlkRk + η. Since the �2-norm square of the
beamforming vectors are just the transmit powers at the BSs,
the above optimization problem is just a weighted power
minimization problem.

The weighted power minimization problem (8) has been
extensively studied in the literature. The key point is that
it can be solved efficiently using the well-known uplink-
downlink duality approach. The main novelty of this paper
is thus the observation that this particular relaxation of Ck

as weighted �2-norm square results in a problem formulation
whose structure can be efficiently exploited by numerical
algorithms.

Uplink-downlink duality for weighted power minimization
is developed for single cell case in [14] and subsequently
generalized to the multicell setting in [15]. This paper further
generalizes duality to the case where the weight associated
with each BS-user pair may be different.

Note that the solution to (8) for a fixed weight ρlk does not
necessarily provide sufficient sparsity. However, by iteratively
updating the weights ρlk and by solving problem (8) repeatedly
with updated ρlk, we eventually get a sparse network-wide
beamforming vector for each user, where entries corresponding
to the BSs outside of the optimal serving cluster go to zero
in the limit. In this paper, we adopt the following reweighting
function to update ρlk

ρlk =
1

‖wl
k‖2p2 + εp

(9)

where p is some positive exponent and ε is adaptively chosen
to be ε = max{(mink,l ‖wl

k‖22), τ} and τ is some small
positive value, and wl

k is the beamforming vector from the
previous iteration. We show numerically that with properly
chosen p, the reweighting function (9) improves upon the
performance of previous algorithms.

To completely characterize the proposed algorithm, we still
need to give the solution to (8) based on the following
generalization of uplink-downlink duality.

Proposition 3.1: The downlink weighted power minimiza-
tion problem (8) is equivalent to the following uplink sum
power minimization problem in the sense that they have



the same optimal solution up to a scalar factor, i.e., wk =√
δkŵk, ∀k:

minimize
λk,ŵk

∑
k

λk (10)

subject to
λk|ŵH

k hk|2∑
j �=k λj |ŵH

k hj |2 + ŵH
k Bkŵk

≥ γk

where ŵk ∈ C
ML×1 can be interpreted as the receiver

beamforming of the dual uplink channel and λk ≥ 0 has
the interpretation of dual uplink power, which is also the
Lagrangian dual variable associated with the SINR constraint
in (8), and Bk is the dual uplink noise covariance matrix
defined as Bk = diag{α1

kIM , α2
kIM , · · · , αL

k IM}, ∀k.
Proof: We omit the detailed proof since the proof is

similar to that in [15].
The optimal solution to (10) is the MMSE receiver [16],

which can be readily written as

ŵk =

⎛
⎝∑

j

λjhjh
H
j +Bk

⎞
⎠

−1

hk (11)

where the dual variable λj is to be determined. In addition,
to find the optimal solution wk to problem (8), we also need
to find the scalar δk relating ŵk to wk. Note that it’s easy
to see that the SINR constraints in both (8) and (10) must be
achieved with equality at the optimal point. This observation
provides a way to find λj , then δk.

Substituting (11) into the SINR constraint in problem (10)
with equality, we can get

λk =
γk

hH
k

(∑
j �=k λjhjhH

j +Bk

)−1

hk

(12)

where we use the fact that ŵk in (11) is colinear with

the vector
(∑

j �=k λjhjh
H
j +Bk

)−1

hk, which can be easily
verified by matrix inversion lemma [17]2. The expression in
(12) implies that λk can be found numerically by fixed-point
method, whose convergence is guaranteed by the fact that the
function in (12) is a standard function [19]; see [15], [20].

Now, by substituting wk =
√
δkŵk into the SINR constraint

in (8) with equality, we get K linear equations with K
unknowns δk, k = 1, 2, · · · ,K:

1

γk
δk|ŵH

k hk|2 =
∑
j �=k

δj |ŵH
k hj |2 + σ2, ∀k. (13)

Therefore, δk can be obtained by solving a system of linear
equations:

δ = F−11σ2 (14)

where δ = [δ1, δ2, · · · , δK ], F is defined as: Fii =
1
γi
|ŵH

i hi|2, and Fij = −|ŵH
j hi|2 for i �= j, and 1 denotes

the all-one vector.
We summarize the proposed algorithm in the following:

2MMSE receiver in general is not unique. The expression in (11) is optimal
up to a scalar. See results in [18].

Algorithm Sparse Beamforming Design
Fix the tradeoff scalar η:
Initialization: ρlk = 1 ∀k, l;
Repeat:

1) Find the optimal dual variable λk according to (12) using
fixed-point method;

2) Compute the optimal dual uplink receiver beamforming
ŵk, ∀k according to (11);

3) Update wk =
√
δkŵk, ∀k with δk found by (14);

4) Update ρlk according to (9).
Until convergence
To find a different tradeoff point between total transmit power
and sum backhaul, change η and repeat the above steps.

B. Comparison with Algorithms in [8]

As mentioned earlier, the reweighted �1-norm approach has
already been used to solve the sparse beamforming problem
in the previous work [8]. However, [8] uses a formulation
which is slightly different from (5); it studies the problem
of minimizing the total number of BS-user cooperation links,
i.e.

∑
k

∥∥[‖w1
k‖2, ‖w2

k‖2, · · · , ‖wL
k ‖2]

∥∥
0
, subject to SINR and

power constraints3. Moreover, [8] expresses the backhaul rate
in (4) directly using �2-norm of the beamforming vectors.
After approximating the �0 norm in (4) by the weighted �1-
norm, the resulting optimization problem becomes an SOCP
as follows:

minimize
tlk,w

l
k

∑
k,l

ρlkt
l
k (15)

subject to ‖wl
k‖2 ≤ tlk, ∀k, l∑

k,l

(tlk)
2 ≤ P

SINRk ≥ γk, ∀k
where P denotes the total power budget, and the SINR
constraint can also be cast into a SOCP form [20].

The key advantage of the algorithm proposed in this paper
as compared to (15) is that (15) can only be solved numerically
using, for example, the interior-point method. The complexity
of such a general purpose solver is much higher than the
uplink-downlink duality approach proposed in this paper.

This SOCP approach is referred to as “Algorithm 1” in [8].
In Algorithm 1, sparse beamforming vectors are obtained by
repeatedly solving (15) with iteratively updated weights ρlk.
In [8], the authors choose to update the weights according to
ρlk = 1

tlk+ε
, ∀k, l, where ε is some fixed small positive value.

Note that this reweigthing function can be seen as a special
case of (9) with p = 1/2 and with fixed regularization constant
ε. Numerically, this paper shows that by adopting an optimized
p, the performance of Algorithm 1 can be improved.

To address the complexity issue arising from the need to
use the interior-point method to solve (15), [8] also proposes

3In [8], the authors considered per-BS power constraint. For fair comparison
with our algorithm, we state the sum power constraint problem here.



an “Algorithm 2”, which first solves the following sum power
minimization problem

minimize
wl

k

∑
k,l

‖wl
k‖22 (16)

subject to SINRk ≥ γk, ∀k
then manually removes the BS-user cooperation links corre-
sponding to the least transmit powers until the desired tradeoff
point is achieved.

Note that the problem (16) has the same computational
complexity as (8), as the uplink-downlink duality approach
can be used in both cases. Rather than manually deleting the
BS-user cooperation links with the least transmit powers, the
algorithm proposed in this paper dynamically selects the BS
cluster for each user by iteratively updating the weights in (8).
Numerically, this paper shows that the iterative reweighting
approach gives superior performance as compared to manual
link removal. It is also interesting to point out that Algorithm
2 of [8] can be thought of as a special case of the algorithm
proposed in this paper, where all the αl

k’s in (8) are set to
be 1, except for the ones corresponding to the least transmit
powers, which are set to +∞ in each iteration.

IV. SIMULATION RESULTS

The effectiveness of our proposed algorithm is validated
through simulations based on a 7-cell (L = 7) wrap-around
multicell setup with 3 users per cell (K = 21) and 4
transmit antennas (M = 4) at each BS. The BS-to-BS
distance is set at 0.8km, and the noise power spectral density
is −162dBm/Hz. The channels from the BSs to the users
are generated according to a distance-dependent path-loss
model PL(dB) = 128.1+ 37.1 log10(d) with 8dB log-normal
shadowing and a Rayleigh component, where d is the distance
between the BS to the user in km. For this setup, numerical
experiments show that the proposed algorithm works well with
p = 4/3 and τ = 10−10 in updating the weight ρlk in (9).

We first set the tradeoff constant η = 0 (i.e. minimizing
the total backhaul only) and set SINR target γk = 15dB for
every user to illustrate how the sparse beamforming vectors are
formed in our proposed algorithm. Fig. 3 shows the transmit
power distribution over all 7 BS’s for serving user 3 in cell
2 (as shown in the topology in Fig. 2). From Fig. 3, we see
that as the iterations progress, BSs 2 and 4 form a serving
cluster for the user, while all the other BSs eventually drop
their transmit power to zero.

In Figs. 4 and 5, we compare the performance of the
proposed algorithm with Algorithms 1 and 2 in [8] in terms of
the tradeoff between total transmit power and sum backhaul
capacity over all BS’s under SINR=5dB and 15dB respectively.
For the proposed algorithm, we simulate a series of different
tradeoff constant η’s to get different points along the tradeoff
curve. For Algorithm 1, we set different total power budgets
P , and for each P , we solve problem (15) iteratively to find
the minimum total number of cooperation links needed, which
gives one point on the tradeoff curve. For Algorithm 2, we
iteratively remove the BS-user cooperation link corresponding
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Fig. 2. 7-cell wrap-around topology with 3 users/cell randomly distributed.
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Fig. 3. Transmit powers of the 7 BSs for serving user 3 in cell 2 under
SINR=15dB and η = 0.

to the least transmit power and find the corresponding minimal
total transmit power as in (16) until the problem becomes
infeasible. Note that in this case since all the users have the
same fixed SINR target, optimizing the total backhaul capacity
is equivalent to optimizing the total number of cooperation
links, as the two are related by a constant Rk = log(1+SINR).

Simulation results show that the proposed algorithm has
almost the same performance as Algorithms 1 and 2 of [8] at
SINR=5dB, whereas at SINR=15dB, the proposed algorithm
outperforms the algorithms of [8]. More specifically, as can be
seen in Fig. 5, to serve users at the SINR of 15dB, under a total
transmit power of -14dBm/Hz across the 7 BSs (corresponding
to about -23dBm/Hz average per-BS transmit power), our
proposed algorithm can reduce the total number of cooperation
links by 5 as compared to the solution provided by Algorithm
2 of [8]. Likewise, at a typical average cluster size of 3
for each user, which corresponds to a total number of active
cooperation links of 63, our proposed algorithm can reduce the
amount of total transmit power by more than 2dB as compared
with Algorithm 2 of [8]. Note that Algorithm 1 of [8] cannot
achieve fewer than 66 cooperation links, which appears to be
a significant disadvantage of the SOCP formulation.
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To illustrate the effectiveness of the reweighting function
adopted in this paper, we also plot the performance of Algo-
rithm 1 of [8] but with weights updated according to (9) for
p = 4/3, denoted as ‘Algorithm 1 with p=4/3’ in Fig. 5. We
see that ‘Algorithm 1 with p=4/3’ significantly improves the
original Algorithm 1, and it now performs approximately the
same as our proposed algorithm.

Finally, it should be emphasized that our proposed algorithm
is significantly less complex than Algorithm 1 in [8]. Thus,
even at the same performance, the proposed algorithm still has
considerable advantage.

V. CONCLUSION

This paper investigates the tradeoff between total transmit
power and sum backhaul capacity over all BSs in a net-
work MIMO system with limited cooperation. By adopting
a compressive sensing approach of using reweighted �1-norm

to approximate the �0-norm, we turn the original nonconvex
problem into a series of convex weighted power minimization
problem, which can be solved using a low-complex uplink-
downlink duality approach. The proposed algorithm can ef-
ficiently find a sparse network-wide beamforming vector for
each user where the entries corresponding to the non-serving
BSs eventually go down to zero in the iterative process. Sim-
ulation results show that the proposed algorithm can achieve a
better tradeoff between total transmit power and sum backhaul
capacity than existing methods in the high SINR regime.
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