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Sparse Brain Network Recovery

under Compressed Sensing
Hyekyoung Lee, Dong Soo Lee, Hyejin Kang, Boong-Nyun Kim, and Moo K. Chung

Abstract—Partial correlation is a useful connectivity measure
for brain networks, especially, when it is needed to remove
the confounding effects in highly correlated networks. Since it
is difficult to estimate the exact partial correlation under the
small-n large-p situation, a sparseness constraint is generally
introduced. In this paper, we consider the sparse linear regression
model with a l1-norm penalty, also known as the least absolute
shrinkage and selection operator (LASSO), for estimating sparse
brain connectivity. LASSO is a well-known decoding algorithm in
the compressed sensing (CS). The CS theory states that LASSO
can reconstruct the exact sparse signal even from a small set of
noisy measurements. We briefly show that the penalized linear
regression for partial correlation estimation is related to CS. It
opens a new possibility that the proposed framework can be
used for a sparse brain network recovery. As an illustration, we
construct sparse brain networks of 97 regions of interest (ROIs)
obtained from FDG-PET imaging data for the autism spectrum
disorder (ASD) children and the pediatric control (PedCon)
subjects. As validation, we check the network reproducibilities
by leave-one-out cross validation and compare the clustered
structures derived from the brain networks of ASD and PedCon.

Index Terms—Brain Connectivity, Compressed Sensing, Partial
Correlation, LASSO

I. INTRODUCTION

The functional and anatomical connectivity of human brain

has known to exhibit large and complex network structures

with nontrivial topological characteristics [1], [2], [3], [4], [5],

Copyright (c) 2010 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

H. Lee is with Department of Nuclear Medicine, the Department of Brain
and Cognitive Sciences, and the Institute of Radiation Medicine, Medical
Research Center, Seoul National University, Seoul, Republic of Korea (e-mail:
leehk@postech.ac.kr).

D. S. Lee is with the Department of Nuclear Medicine, WCU Department
of Molecular Medicine and Biopharmaceutical Sciences, and the Institute
of Radiation Medicine, Medical Research Center, Seoul National University,
Seoul, Republic of Korea (e-mail: dsl@snu.ac.kr).

H. Kang is with the Department of Nuclear Medicine and the Institute
of Radiation Medicine, Medical Research Center, Seoul National University,
Seoul, Republic of Korea (e-mail: hkang211@snu.ac.kr).

B.N. Kim is with the Devision of Child and Adolescent Psychiatry and the
Department of Neuropsychiatry, Seoul National University, Seoul, Republic
of Korea (e-mail:kbn1@snu.ac.kr).

M. K. Chung is with the Department of Biostatistics and Medical Informat-
ics, and the Waisman Laboratory for Brain Imaging and Behavior, University
of Wisconsin, Madison, WI 53705, USA and also with the Department of
Brain and Cognitive Sciences Seoul National University, Seoul, Republic of
Korea (e-mail: mkchung@wisc. edu).

This work was supported by the WCU Grant from the government of Korea
to M.K.C., by grant No. R31-2008-000-10103-0 from the WCU project of the
MEST and the NRF, and by a grant (M103KV010016-08K2201-01610) from
Brain Research Center of the 21st Century Frontier Research Program funded
by the Ministry of Science and Technology.

[6], [7], [8], [9], [10], [11], [12]. By incorporating the graph

theoretical approaches into connectivity analysis, we can gain

a new understanding of the characteristics of human brain,

from a microscale connectivity between single neurons to a

macroscale connectivity between regions of interest (ROIs)

in brain images. The brain connectivity has been usually

categorized into well-known complex networks such as small-

world [1], [3], [4], [5], [7], [11], scale-free [2], [5] or modular

networks [8], [9], [10]. The human brain networks is formed

from connectivity matrices defined between neuronal elements

(single neurons for microscale and ROIs for macroscale net-

work modeling). They are also known as ‘human connectome’

[13].

The majority of previous brain network studies have been

based on thresholding correlation in localizing the focal re-

gions of high connectivity [14], [15], [2]. The correlation is

used as a similarity measure of network connectivity between

two regions. However, the main limitation of correlation-

based connectivity analyses is that they fail to explicitly factor

out the confounding effect of other regions. To remedy this

shortcoming, partial correlation has been naturally introduced

in factoring out the dependency of other regions [16], [7], [6]

or eliminating the effect of experimental designs [17]. Unfor-

tunately, this type of problem usually belongs to the small-n
large-p setting, where the number of regions p are substantially

larger than the number of samples n, so it is not feasible to

estimate the partial correlation accurately [18], [19]. So far

the majority of literature have used the penalized likelihood

method in imposing the sparseness on the partial correlation

estimation [20], [21], [22], [23], [24], [25]. Moreover, since

the brain networks are known to be sparse and highly clustered

[26], [7], it is reasonable to incorporate the sparsity of network

in estimating partial correlation. In this paper, we introduce a

different approach based on the penalized linear regression for

estimating sparse partial correlation [27], [28]. The penalized

linear regression with l1-norm, which is also known as the

basis pursuit denoising in signal processing and least absolute

shrinkage and selection operator (LASSO) in statistics, is

usually formulated as the convex optimization to find the

sparsest solution of the under-determined linear regression

problem [29], [30].

LASSO is one of preferred decoding algorithms in the

compressed sensing (CS) theory [31], [32], [33], [34]. The CS-

theory states that if LASSO satisfies sparsity and incoherence,

the exact recovery is guaranteed with the overwhelmingly

high probability, even though the measurement data is not

sufficient and contaminated with noise [35], [36]. Note that,

incoherence is a stronger condition than a uniform uncertainty
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principle (UUP) [37]. If our penalized linear regression for the

partial correlation estimation satisfies sparseness and UUP, CS

may provide a natural framework for modeling sparse brain

networks, which has not been attempted before. We show that

the proposed framework satisfies UUP based on the fact that

the brain imaging data satisfies UUP for Gaussian ensemble.

In this paper, we focus on sparse model building of the

macro-scale connectivity of human brain under CS. The pro-

posed model is applied to the 97 ROIs extracted from FDG-

PET data for autistim spectrum disorder (ASD) children and

pediatric control (PedCon) subjects. It is generally known

that ASD has the global underconnectivity and the local

overconnectivity in the key brain regions [38], [39]. The

differences between ASD and PedCon are mostly found in

connectivities between lobes, especially, connection between

secondary association cortices such as frontal and parietal

regions [40], [41], [5]. Dense internal and sparse external

linkages are properties of a module. In particular, some studies

suggest that the small-world network, which is one of famous

characteristics of brain connectivity, induces a modular archi-

tecture [8], [9], [10]. Therefore, in this study, after estimating

the partial correlation by the penalized linear regression, we

seek the possible modular structures of ASD and PedCon

brain network and observe their differences based on the lobe

structures.

The main contributions of this paper are:

• to formulate the sparse brain connectivity based on cor-

relation and partial correlation in the penalized linear

regression framework,

• to show that the penalized linear regression for partial cor-

relation estimation can near-optimally recover the sparse

brain connectivity by showing our study satisfies UUP of

the Gaussian ensemble,

• to show the reproducibilities of the estimated networks

using the leave-one-out cross-validation,

• to show that controlling sparsity is related with determin-

ing the threshold of partial correlation matrix,

• and to suggest a new graph metric, the number of

connected components, for thresholding. The proposed

metric reflects the modular structures of brain network.

The organization of the paper is as follows. In Section II,

we provide notations that will be used through the paper and

present the standard methods for calculating correlation and

partial correlation. We formulate the problem of estimating

correlation and the partial correlation under a sparsity con-

straint as the sparse linear regression in Section III. Section

IV deal with the implementation for estimating the sparse

partial correlation. In Section V, after briefly introducing

CS and prove that our LASSO-based connectivity method

satisfies UUP. Numerical experiments are given in Section VI,

where we use the 97 ROIs extracted from FDG-PET data for

26 autistic and 11 pediatric control subjects. We show that

the proposed method consistently finds the brain networks

which characterize the two groups and have significant group

differences in network connectivity.

II. NETWORK CONSTRUCTION

A. Connectivity Matrix

Suppose that
{
f1, . . . ,fp

}
is the n-dimensional data vector

measured at the p selected ROIs on the FDG-PET images of

n subjects. The observed data vector f i is the realization of

random variable fi at the i-th ROI. The collection of measure-

ments fi are assumed to be normally distributed with mean

0 ∈ R
p and covariance Σ = [σij ] ∈ R

p×p. We will further

assume that f i is centered and normalized, i.e. f⊤
i f i = 1. The

covariance σij is then estimated as σij = f⊤
i f j . If there is no

ambiguity, we will interchangeably use σij and its estimation

σ̂ij . Given the inverse covariance matrix Σ
−1 = (πij), which

is also known as the precision matrix or concentration matrix,

the correlation coefficient ρij and the partial correlation θij
are given by

ρij =
σij√
σiiσjj

and θij = −
πij√
πiiπjj

.

The connectivity matrix of network is usually constructed as

a function of correlation or partial correlation. The partial

correlation is better in finding the true relationship between

two nodes than correlation coefficient due to the ability of

factoring out the influence of other regions [42].

B. Small-n large-p problem

Under high-dimension-small-sample-size setting, the covari-

ance matrix is singular and it cannot be inverted to the

precision matrix directly. The pseudo-inverse of covariance

matrix can be used (denoted as PINV hereafter), but it has

low statistical power and lack of consistency [19]. Imposing

the sparseness to the precision matrix is the most natural way

to find the precision matrix under small-n large-p situations.

It reduces the number of significant elements by forcing

all other elements to be zero. There are two most widely

used methods for estimating sparse partial correlation: (1) the

penalized maximum likelihood (referred as PML hereafter)

[22], [23], [43] and (2) the penalized linear regression (referred

as PLR hereafter) [27]. The penalized linear regression using

l1-norm penalty (LASSO) is known to have better performance

for the model selection and hub identification at the lower

computational cost. Peng, et al. proved the consistency of

identifying the true network neighborhood for n, p→∞ [27].

III. SPARSE CONNECTIVITY ESTIMATION

In this section, we present the penalized linear regression

framework for estimating sparse correlation and partial corre-

lation.

A. Linear Regression for Correlations

Both correlation and partial correlation can be obtained by

the linear regression.

• Correlation:

f i = αijf j + ǫi (i = 1, · · · , p). (1)
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Fig. 1. Linear regression model for the partial correlation estimation. Linear regression model in (2) is represented as (a) X = XB, where X =
[f1, · · · ,fp] ∈ R

n×p and B = [βij ] ∈ R
p×p. B is a symmetric matrix with zero diagonal terms. It can be written as (b) x = Ab, where x = vec(X),

A = I ⊗X ∈ R
np×p2 and b = vec(B) ∈ R

p2×1. I ∈ R
p×p is a identity matrix. If b is s-sparse, i.e. it has at most s number of nonzero elements.

The parameters αij are estimated by minimizing the sum

of squares

‖ f i − αijf j ‖2

= (f⊤
j f j)α

2
ij − 2(f⊤

i f j)αij + (f⊤
i f i).

The minimum is obtained when

αij =
f⊤
i f j

f⊤
j f j

=

√√√√ f⊤
i f i

f⊤
j f j

ρij .

For the normalization of the measurement f⊤
i f i = 1, we

have ρij = αij .

• Partial Correlation:

f i =
∑

j 6=i

βijf j + ǫi (i = 1, · · · , p), (2)

where βij is the measure of relationship between f i and

f j given all other data vectors. When var(ǫi) = (1/πii)
and cov(ǫi, ǫj) = πij/(πiiπjj), the partial correlation θij
is given by [27]

θij = βij

√
πii

πjj
. (3)

Now, we write the linear regression model in (2) to a matrix

form (Fig. 1) in order to explicitly show the relationship

between partial correlation, linear regression and CS. If we

denote X = [f1, · · · ,fp] ∈ R
n×p and B = [βij ] ∈ R

p×p. B

is assumed to be symmetric with zero diagonal entries. Then

(2) can be rewritten as

X = XB. (4)

Vectorize the both sides in (4) as

vec(X) = vec(XB), (5)

where vec(X) = [f⊤
1 · · ·f⊤

p ]
⊤ is the vectorization operator.

Since vec(XY Z) = (Z⊤ ⊗X)vec(Y ) with the Kronecker

product ⊗ [44], we have

vec(XB) = (I ⊗X)vec(B),

where I ∈ R
p×p is a identity matrix. Then, (5) can be written

in a matrix form

x = Ab, (6)

where x = vec(X), A = (I ⊗ X) ∈ R
np×p2

and b =
vec(B) ∈ R

p2×1. A is a block diagonal matrix, but not a

square matrix, of which main diagonal blocks consist of Xs

as shown in Fig. 1(b).

Let N = np and P = p2. For n ≪ p, we have

N ≪ P . Subsequently, the problem of estimating the partial

correlation in the linear model (6) fall under a high-dimension-

small-sample-size situation. Thus, we need to incorporate the

shrinkage method in regularizing the model parameters by

adding the l1-norm penalty to the model parameters.

B. Adding Sparseness Constraint

The solution of linear data model in (6) is usually obtained

by the least squares minimization:

b̂ = argmin
b

‖ x−Ab ‖22, (7)

where ‖ · ‖2 is a l2-norm. When the linear regression is under a

small-n large-p problem, there exist infinitely many solutions.

To obtain a unique solution, we need to add the sparseness

constraint. The sparsest solution is obtained by the l0-norm

penalty, which measures the number of non-zero elements, as

min
b
‖ b ‖0 subject to x = Ab. (8)

Since it is a combinatorial problem with NP-hard complexity,

instead of using the l0-norm, we employ the l1-norm penalty

(sum of absolute values of elements):

min
b
‖ b ‖1 subject to x = Ab, (9)

which is related with the linear programming and the basis

pursuit denoising problem [29]. The discussion about the l0
and l1 equivalence can be found in [45]. For a noisy case, we

can transform (9) to the quadratic programming with a linear

constraint

min
b
‖ x−Ab ‖22 subject to ‖ b ‖1< ǫ. (10)
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The formulation (10) is known as LASSO [30], [46]. By in-

troducing the sparseness control parameter λ, the formulation

(10) is rewritten by

b̂ = argmin
b

‖ x−Ab ‖22 +λ ‖ b ‖1 . (11)

The optimization for solving the sparse partial correlation is

done by the coordinate descent learning and the active-set

algorithm [27], [47]. We can also apply the LASSO framework

to (1) in estimating sparse correlation. The algorithms for the

sparse correlation and partial correlation are outlined in the

next section.

IV. ESTIMATING SPARSE (PARTIAL) CORRELATIONS

In this section, we derive an algorithm for estimating the

sparse (partial) correlations using the coordinate descent learn-

ing and the active-set algorithm [27], [47]. We also propose

the method tuning the amount of sparsity λ in (11) based on

the topological structure of the networks.

A. Algorithm for Sparse (Partial) Correlations

It requires huge computer memory to directly solve the

optimization problem for large number of nodes (11). So

we consider the LASSO frameworks of the element-wise

formulas (1) and (2) in estimating sparse correlation and partial

correlation [27]. The sparse correlation is obtained by

α̂ij = argmin
αij

p∑

i=1

∑

j 6=i

‖ f i − αijf j ‖22 +λ
∑

i,j

|αij | (12)

while the sparse partial correlation is estimated by

β̂ij = argmin
βij

p∑

i=1

‖ f i −
∑

j 6=i

βijf j ‖22 +λ
∑

i,j

|βij |. (13)

The coordinate descent learning and the active-set algorithm

are used to solve the optimization problems (12) and (13) [27],

[47].

The objective function for estimating correlation without l1-

norm-penality is given by

F =

p∑

i=1

∑

j 6=i

‖ f i − αijf j ‖22 .

Since F is a convex function, the minimum is achieved at α̂ij

when

∂F
∂αij

= −f⊤
i f j + αij = 0 ⇒ α̂ij = f⊤

i f j .

If we add the l1-norm penalty, we have a new objective

function

F1 =

p∑

i=1

∑

j 6=i

‖ f i − αijf j ‖22 +λ
∑

i,j

|αij |.

The derivatives are given by

∂F1

∂αij
=

{
−f⊤

i f j + αij + λ, for αij > 0

−f⊤
i f j + αij − λ, for αij < 0

.

Hence, the minimum is obtained when

α̂ij =
[
f⊤
i f j , λ

]
+
, (14)

where

[a, b]+ =





a− b if a > 0 and |a| > b
a+ b if a < 0 and |a| > b
0 if |a| ≤ b

.

The partial correlation is also estimated in the same way.

The objective function for sparse partial correlation is given

by

G1 =

p∑

i=1

‖ f i −
∑

j 6=i

θij

√
πjj

πii
f j ‖22 +λ

∑

i,j

|θij |
√

πjj

πii
.

Note that πii can be estimated directly from the sample

variance the measurements. So assuming πii is given, the

minimum is obtained when

∂G1
∂θij

=

{
Aθij − B(θik,k 6=i,j) + λ, for θij > 0
Aθij − B(θik,k 6=i,j)− λ, for θij < 0

where

A =
πjj

nπii
f⊤
j f j

B(θik,k 6=i,j) =
1

n

(
f⊤
i f j −

∑

k 6=i,j

θik

√
πkkπjj

πii
f⊤
k f j

)
.

B is a function of θik for all k = {1, . . . , p} \ {i, j}. Hence

the partial correlation is estimated as

θ̂ij =
[B(θik,k 6=i,j), λ]+

A
. (15)

While the correlation estimation (14) is in a closed-form,

the partial correlation estimation (15) is a function of all

other partial correlation coefficients. In the coordinate descent

optimization [48], we can obtain the global minimum by

sequentially minimizing with respect to θij while fixing all

other partial correlations. The algorithm for the coordinate

descent optimization is given below:

Input : X =
[
f1, · · · ,fp

]
∈ R

n×p, λ, δ
Output : θ ∈ R

p×p, π ∈ R
p

1 Normalize X such that f⊤
i 1 = 0 and

f⊤
i f i = 1 for all i (1 = [1, · · · , 1]⊤ ∈ R

n).

2 Initialize [θij ]i,j=1,...,p(i<j) and [πii]i=1,...,p.

3 While l
4 While m
5 For i = 1, ..., p and j = i+ 1, ..., p,

θ
(m)
ij ←

[

B(θ
(m−1)
ik,k 6=i,j

),λ
]

+

A .

6 Repeat 4 until |θ(m)
ij − θ

(m−1)
ij | < δ.

7 β
(l)
ij ← θ

(l)
ij

√
π
(l−1)
jj

π
(l−1)
ii

for all i, j.

8 For i = 1, ..., p,

π
(l)
ii ← 1/var(f i −

∑
j 6=i β

(l)
ij f j).

9 Repeat 3 until |π(l)
ii − π

(l−1)
ii | < δ.

For the convergence of the algorithm, we used δ = 10−3 and

initialized [θij ]i,j=1,...,p(i<j) and [πii]i=1,...,p using uniformly

generated values.
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Since we assume that most of the partial correlations θij
are zero, if we update only nonzero partial correlation, we

can reduce the computational complexity. Using this idea,

Friedman and Peng exploited the active set algorithm [27],

[47] which defines the nonzero partial correlation as the active

set and updates only θij belonging to the active set. In the

active set algorithm, the steps from 4 to 6 are then changed

as follows:

4* While m
Construct the current active set

Λ =
{
(i, j)| current θ

(m−1)
ij 6= 0

}
.

5* While m′

For all elements on the active set,

Update θ
(m′)
ij (i, j) ∈ Λ in (15).

Repeat 5* until convergence on the active set.

5** For i = 1, ..., p and j = i+ 1, ..., p,

Update θ
(m)
ij (i, j) ∈ Λ in (15).

6* Repeat Step 4* until convergence.

B. Controlling Sparsity

For practical purposes, it is necessary to determine the

amount of sparsity λ.

1) Thresholding and Sparseness: Estimating the partial

correlation by fixing λ is equivalent to thresholding the partial

correlations. This is evident from (15), where the partial

correlation is given as a function of λ. Thus, we can apply

the traditional thresholding methods for finding the suitable

sparse network instead of controlling the sparsity. However,

if the sparsity is too small in the small-n large-p situation, it

is impossible to estimate the exact partial correlations. In that

case, we cannot directly compare the sparse partial correlations

obtained from CS and the partial correlations obtained from

the usual thresholding.

For selecting the sparsity parameter λ, we investigate the

topological structures of the networks and check its stability

during the cross validation as λ increases. We estimate the

stability of the topological structures in two different ways.

First, the sample variance of the total number of edges in a

network is considered during the cross validation. The sparsity

which have the small sample variance is chosen. Second,

we estimate the number of edges which are included in the

previous network with smaller sparsity among all edges in the

network, i.e., |Eλt
∩ Eλt−1 | for λt−1 < λt, where |Eλ| is the

number of elements in a set of edges Eλ in the partial corre-

lation network with the sparsity λ. If |Eλt
∩ Eλt−1 | = |Eλt

|,
i.e., Eλt

⊂ Eλt−1 , then, the sparsity λt is chosen. Because the

thresholded network has the property that a set of edges in

the network is a subset of a set of that with smaller threshold.

If the obtained sparse network satisfies the same property of

thresholded network, we can consider that it is the optimal

solution of partial correlation.

2) Clustered Structure via Thresholding: The network ob-

tained from the partial correlation with the chosen λ in the

previous section still have many edges. Thus, we threshold it

once again to find more suitable sparse network reflecting the

characteristics of our dataset, ASD and PedCon.

Fig. 2. The plots of the number of clusters for changing threshold on
correlations. The cluster is defined as the connected components with more
than two nodes.

The well-known characteristics of ASD is local overcon-

nectivity and global underconnectivity. The overconnectivity

is characterized by more number of edges within the lobes

while the underconnectivity is characterized by less number

of edges between the lobes. The local overconnectivity and

global underconnectivity are related to the modular network

which has many number of edges within a module and small

number of edges between modules. In addition, the autistic and

normal control subjects show significant group differences in

connectivity between lobes and within lobes [40], [38], [39],

[49]. Hence, we hypothesized that (1) finding the modular

structure in the brain network can be used in differentiating

ASD and PedCon and (2) the modular structure of ASD

network shows the abnormal connectivity patterns within and

between lobes.

A cluster is defined to be a connected component that has

more than two nodes connected with edges. We consider that

the number of clusters is a graph metric reflecting the modular

structure of brain network. The modular structure generally

allows the edges between disjoint modules, while the clustered

structure does not allow such edges. In this sense, modular

and clustered structures are different. However, in this paper,

we will simply treat them equivalent to simply the problem

and consider that a cluster reflects the modular structure of

brain network. When the threshold is sufficiently small, all

nodes are connected and the number of clusters becomes one.

The number of clusters increases when the threshold increases

but at a certain threshold, it obtains the maximum (Fig. 2).

When the threshold is large, all nodes are disconnected and

the number of connected components becomes the number of

nodes, but the number of clusters becomes zero. We choose the

threshold corresponding to the maximum as the representation

of the network in subsequent analysis.

V. RELATIONSHIP TO COMPRESSED SENSING

In this section, we show that the sparse linear model for

estimating partial correlation is related to UUP. It opens a

possibility that the the near-optimal recovery of sparse brain

network can be done by the proposed method.

A. Uniform Uncertainty Principle

The coherence of A, µ(A), is defined as the maximum

correlation coefficient among all correlations between two dif-

ferent column vectors in (6). If all basis vectors are orthogonal,

the coherence is minimized. A signal is s-sparse if there
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exists at most s number of nonzero elements in the signal.

The exact sparse signal recovery is guaranteed for s-sparse

signal, if the coherence is bounded by µ(A) ≤ O(1/s) [50].

However, since N ≪ P , this condition is difficult to satisfy.

A looser condition, which guarantees the near-optimal sparse

data recovery is a UUP [35], [51].

Definition 1: A measurement matrix A satisfies the uniform

uncertainty principle (UUP) with the oversampling factor λ if,

for every sufficiently small γ > 0 and any s-sparse vector b

such that

s ≤ γ ·N/λ,

A holds inequalities

1

2
· N
P
· ‖ b ‖22 ≤ ‖ Ab ‖22 ≤

3

2
· N
P
· ‖ b ‖22, (16)

with probability at least 1−O(p−ρ/γ) for some fixed constant

ρ > 0.

Let S be the index set consisting of s numbers from between

1 and P . Let AS ∈ R
N×s be a submatrix consisting of s

column vectors of A (Fig. 1(c)). The columns are obtained

from the index set S. Then, it can be shown that the condition

(16) is equivalent to

1

2
· N
P
≤ λmin(A

⊤
SAS) ≤ λmax(A

⊤
SAS) ≤

3

2
· N
P
, (17)

for all subsets S. λmax(·) and λmin(·) denote the largest and

smallest eigenvalues.

Lemma 1: The Gaussian ensemble X ∈ R
n×p, which are

i.i.d. N (0, 1/p), holds the UUP with the oversampling factor

λ = log p.

Lemma 1 implies that, if we pick A in the sparse linear

model x = Ab as a Gaussian ensemble X with n ≥ γ ·s log p,

sparse recovery of b can be done with overwhelmingly large

probability [35].

Now, we will show that the brain connectivity obtained

by the penalized linear regression in (6) can be recovered

under UUP for the first time. It is sufficient to show that the

Gaussianess of data matrix X in (6).

B. Gaussianess of Data Matrix

After centering and normalizing the column vectors, we

check the Gaussianess of the data matrix X = [f1, · · · ,fp] ∈
R

n×p using both the Lilliefors test and quantile-quantile plots

(QQ-plots) [52]. Because it is not possible to visualize the

QQ-plots for all ROIs here, we measured the correlation

coefficients r of scatter points in the QQ-plots for quantifica-

tion. If the empirical distribution follows Gaussian, r should

asymptotically converge to 1. For the random numbers from

N (0, 1/p) whose dimension is identical to the data matrix of

ASD and PedCon, r = 0.98 ± 0.01 and r = 0.97 ± 0.03,

respectively. For the actual measurements from ASD and

PedCon, r = 0.97 ± 0.02 and r = 0.96 ± 0.03 (Fig. 3).

The high correlation in the QQ-plot guarantees that our data

matrix follows a normal distribution. Using Lilliefors statistic,

we also tested Gaussianness. Since the Lilliefors statistics

of data matrix are mostly smaller than the cutoff values of

0.19 (ASD) and 0.29 (PedCon) at 1% level, there is no

Fig. 3. Checking Gaussianness of data matrix for (a) ASD and (b) PedCon.
In the QQ-plots, the horizontal axises are the quantiles of a normal distribution
while the vertical axises are the quantiles of data. If the data are Gaussian,
the QQ-plot should be close to the straight red line. In the right panels, the
horizontal axises display the index of ROIs while the vertical axes displays
Lilliefors statistic which measures the maximum difference between empirical
and theoretical Gaussian distributions. Most ROIs (blue solid lines) are below
the cutoff values 0.19 for ASD (a) and 0.29 for PedCon (b) at the α level of
1%. The two test procedures confirm the Gaussianess of our data.

reason not to assume normality for the given data matrix, i.e.,

Xij ∼ N (0, 1/p) (Fig. 3). Since FDG-PET measurements are

obtained in 97 nodes that are not close to each other, the the

elements of X are likely to be i.i.d. so we did not check the

i.i.d. assumption here.

C. Sparse Brain Connectivity Recovery under CS

If the measurement matrix X follows i.i.d. Gaussian, from

Lemma 1, X satisfies UUP. In other words, for any submatrix

XK′ of X with K ′ ⊂ K , it satisfies the condition (17) like

1

2
· n
p
≤ λmin(X

⊤
KXK) ≤ λmin(X

⊤
K′XK′)

≤ λmin(X
⊤
K′XK′) ≤ λmax(X

⊤
KXK) ≤ 3

2
· n
p
.

Let AS ∈ R
N×s be a submatrix consisting of s column

vectors of A (Fig. 1(c)). To check if a measurement matrix

A in (11) holds UUP, we should show that all submatrices

AS′ (S′ ⊂ S) satisfy (17). Because AS is a block diagonal

matrix (not a square matrix) of which block matrices are

XK1 , . . . ,XKp
with the number of column vectors k1, . . . kp

(Fig. 1(c)), the smallest and largest eigenvalues of A⊤
SAS are

λmin(A
⊤
SAS)=min

{
λmin(X

⊤
K1

XK1), . . . , λmin(X
⊤
Kp

XKp
)
}
,

λmax(A
⊤
SAS)=max

{
λmax(X

⊤
K1

XK1), . . . , λmax(X
⊤
Kp

XKp
)
}
.

If we write the index set K = K1 ∪ · · · ∪Kp, then,

λmin(X
⊤
KXK) ≤ λmin(A

⊤
SAS)

≤ λmax(A
⊤
SAS) ≤ λmax(X

⊤
KXK).
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For all subsets S′ ⊂ S, the block matrices of AS′ come from

XK′ (K ′ ⊂ K). Therefore,

1

2
· n
p
≤ λmin(A

⊤
SAS) ≤ λmin(A

⊤
S′AS′)

≤ λmin(A
⊤
S′AS′) ≤ λmax(A

⊤
SAS) ≤

3

2
· n
p
.

The larger measurement matrix A will satisfy the condition

(17), showing that A also satisfies UUP with the same

probability as X . For this reason, the sparse partial correlation

obtained by LASSO is a near-optimal under CS and the

brain network recovery based on the partial correlation can

be theoretically guaranteed.

VI. NUMERICAL EXPERIMENTS

A. Imaging Data

1) Subjects: There are twenty six children with ASD (24

boys, mean age: 6.0 ± 1.8 years) and eleven children with

PedCon (8 boys, mean age: 9.73 ± 2.55 years). The ASD

group, who was diagnosed by the Korean version of Autism

Diagnostic Interview-Revised (K-ADI-R) [53], was recruited

from Child and Adolescent Psychiatric Outpatient Clinic of

Seoul National University Hospital, South Korea. The pediatric

controls comprised as children who failed to meet the criteria

of any psychiatric disorder and visited the clinic for IQ

evaluation.

2) Image Acquisition: All PET scans were obtained from

ECAT EXACT 47 (Siemens-CTI, Knoxville, USA) PET scan-

ner with an intrinsic resolution of 5.2 mm FWHM. PET

images were 47 contiguous planes with a thickness of 3.4

mm. After transmission scan measured by 68Ge rod sources

for attenuation correction, emission scan was administered.

All participants were scanned under the normal environmental

noise of the scanner room. Image reconstruction was per-

formed using a filtered back-projection algorithm (Shepp-

Logan filter at a cutoff frequency of 0.3 cycles/pixel as 128

× 128 × 47 matrices of size 2.1 × 2.1 × 3.4 mm).

3) Preprocessing: All PET data were preprocessed using

Statistical Parametric Mapping (SPM 2, University College

of London, UK), implemented in the Matlab 6.5 (Mathworks

Inc., USA) environment. The PET data is spatially normalized

to Korean standard template space developed by 78 Korean

normal right-handed volunteers (Male/Female=49/29) based

on MR and PET images. The mean FDG uptake within ROIs

was extracted using Statistical Probabilistic Anatomical Map-

Korean version (SPAM-K) [54]. The values of FDG uptake

were globally normalized to the individual’s total gray matter

mean count.

B. Controlling the sparsity

We selected the optimal sparsity λ using the leave-one-out

cross-validation in Section IV-B. Since the number of ASD

and PedCon data was 26 and 11 respectively, the leave-one-out

scheme produced 26 and 11 partial correlation maps of ASD

and PedCon for λ = 0.01, 0.1, 0.2, . . . , 2. The blue plots in

Fig. 4 (f) and (g) show the number of edges in the network as

we increases λ values. If the sample variance of the number

Fig. 4. (a)-(e) show the partial correlation maps for different λ =
0.01, 0.2, 0.8, 1.4 and 1.7. The number of edges in the network changes
as λ value changes for ASD (f) and PedCon (g). The blue plots are the total
numbers of edges in the network. The red plots are the numbers of edges
which are included in the previous network with smaller λ among all edges
in a graph.

of edges is large during the cross validation, it implies that

the obtained partial correlation is not stable. The variance is

relatively large between 0 ≤ λ ≤ 0.3. But for λ ≥ 0.4, the

variance gets relatively smaller.

For the sparse network with λ ≥ 0.4, most of edges in

a network start to belong to previous networks which have

smaller sparsity (red line in Fig. 4). If the sparseness is not too

small in the small-n large-p situation, finding the sparseness

parameter is related to fixing the threshold. Thus, we chose

the sparseness parameter λ = 0.4 for estimating the optimal

partial correlation.

C. Reproducibility of Brain Network

To validate our method, we checked the reproducibil-

ity (consistency or stability) of networks using the cross-

validation. We computed the mean and standard deviation of

partial correlations. If the standard deviation is less than 0.1,

we consider the network to be reproducible [55]. If the mean

is less than 0.1, we categorized it into zero. In this way, we

categorized the partial correlation into 4 classes: stable zero,

stable nonzero, unstable zero and unstable nonzero.

In Table I, we compared the reproducibility of 3 different

methods, the pseudo-inverse (PINV), the penalized maximum

likelihood (PML) and the penalized linear regression (PLR),

by measuring the ratio of partial correlations belonging to 4

classes. The methods were briefly explained in Section II-B.

The percentages of stable elements obtained by PINV, PML

and PLR are 61.90 %, 96.39 % and 100 % for ASD and

11.69 %, 89.54 % and 96.91 % for PedCon. Among nonzero

elements, PML has the stable and unstable elements in the

ratios (1.74:0.92) and (1.29:2.60) for ASD and PedCon. On

the other hand, PLR has the ratios (2.68:0) and (1.83:1.48) for
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ASD and PedCon. Since the number of PedCon data is smaller

than ASD, PedCon is less stable than ASD. For PedCon, PLR

finds more stable elements than PML. This empirical evidence

for the consistency and near-optimal-recovery of PLR-based

partial correlation is also discussed in Peng, et al. [27].

D. Visualization of Modular Structure

After obtaining the optimal partial correlation with λ = 0.4,

we thresholded the brain network when the number of clusters

are maximized in Section IV-B. For simplicity, we visualized

the estimated 3D brain networks in a 2D space using ISOMAP

(Fig. 6). ISOMAP is an embedding technique that preserves

the relative distance between neighboring nodes [56]. Fig.

6 (c) and (d) show the ASD and PedCon brain networks

thresholded. The color of nodes corresponds to a lobe the

nodes belong. The nodes and edges of the networks in (c)

and (d) have different colors for different clusters. The color

representing the cluster in (c) and (d) is selected by blending

node colors in the cluster. If the cluster consists of nodes in

the same lobe, the color of cluster is identical to the lobe

color. We observe that the ASD network is more similar to

the lobe coloring scheme compared to the PedCon network.

Based on the Bonferroni correction, the corrected p-value

of each thresholds obtained by the maximum number of

clusters are p = 0.0189 ± 0.0095 for 26 ASD networks and

p = 0.0253± 0.0164 for 11 PedCon networks [19].

E. Significance of Network Differences

We constructed 26 ASD and 11 PedCon networks by

thresholding the partial correlation based on four different

methods: PINV, PML and PLR and the correlation (CORR).

The CORR method was introduced in Section IV-A. We also

generated 100 weighted random networks using Erdős-Rényi

(ER) model [57]. In the ER random network, the weight of

edges is chosen randomly and uniformly in the interval [0, 1].
The generated random networks are thresholded in the same

way .

1) Global Inference: From each network, we extracted 4

global features: the number of (1) edges, (2) clusters, (3) edges

connected between two ROIs in different lobes and (4) edges

connected between two ROIs within the same lobe. To quantify

the network differences among ASD, PedCon and random

networks (Rand), the two-sample Wilcoxon rank sum test was

applied in a pairwise fashion. In Fig. 5, each panel shows the

box plots of 4 global features for ASD (red), PedCon (blue)

and Rand (green) using 4 different methods. The significant

group difference at 0.01 level is marked with the asterisk (*).

All global features obtained by PLR are significantly different

from random networks. Although the number of edges and

clusters of ASD and PedCon were not different in PLR, the

number of edges connected between lobes and the number

of edges connected within a lobe were significantly different

(p < 0.001). The results show that the autistic brain network

has local overconnectivity and long-range underconnectivity

[58]. The network obtained by CORR also shows similar

results.

2) Local Inference: We also extracted 28 local features

from ASD, PedCon and random networks (RAND). We con-

sidered ROIs belong to 7 lobes, frontal (F), subcortical (S),

limbic (L), temporal (T), parietal (P), occipital (O) and limbic

(L) lobes and Cerebellum (C). 7 features are the number of

edges connected within each lobe and 21 features are the

number of edges connected between two lobes. We performed

the Wilcoxon rank sum test on three pairs (ASD,RAND),

(PedCon,RAND) and (ASD,PedCon) and used the Bonferroni

procedure for the multiple comparison correction.

Fig. 7 shows the brain networks and the connectivity

matrices of 7 lobes on two groups (column) and three methods

(row). The ROI locations of the brain networks are shown in

Fig. 6. We obtained the thresholded brain networks based on

the number of connected components and counted the number

of connection of each edge during the cross validation. Thicker

edges represent more reproducible connections. The matrix

entries are the mean and standard deviation of number of edges

between the corresponding lobes during the cross validation.

The gray colored entries are the connections that are statisti-

cally different from the random networks at 0.05 level. The

red box indicates the significantly different connections in all

pairwise comparisons. PML, PLR and CORR found 18, 26

and 27 gray colored entries in ASD connectivity matrices and

14, 18 and 26 one in PedCon. The number of red boxes for

PML, PLR and CORR is 4, 9 and 5, respectively. The results

show that PLR finds more significant network than PML and

CORR.

From Fig. 7 (b), the local overconnectivity was found in the

ASD network in the frontal, parietal, limbic and subcortical

lobes (p < 0.001, corrected for comparison p < 0.01). The

long-range underconnectivity patterns between lobes were ob-

served in the ASD network: frontal-parietal, frontal-temporal,

frontal-limbic, parietal-temporal and occipital-temporal (p <
0.001, corrected for comparison p < 0.01). Functional un-

derconnectivity between frontal and parietal regions in ASD

was quite consistent with other studies, because it is associated

with deficits of planning and problem solving in ASD [41].

Frontal mirror neuron system was suggested to mediate un-

derstanding of other’s emotional states in concert with limbic

center, such as amygdala. This emotional dysfunction in ASD

children might be explained through the abnormal connectivity

between frontal and limbic system [59]. The occipital regions

showed reduced functional connectivity with the temporal

regions, which was associated with mentalizing impairment

in ASD [60]. Abnormal behavioral phenotypes in ASD could

be involved in these long-range dysconnectivities. Thus, we

can say that PLR finds more representative and discriminative

networks which fit the previous studies better.

VII. CONCLUSIONS

In this paper, we showed that the problem of estimating

correlation and partial correlation can be formulated in the

sparse linear regression framework. The partial correlation is

widely used in modeling highly correlated networks since it

shows the actual dependency between two nodes by factoring

out the redundant dependences of other nodes. However, the
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TABLE I
AFTER LEAVE-ONE-OUT CROSS VALIDATION, THE ENTRIES OF THE PARTIAL CORRELATION MAP ARE CATEGORIZED INTO 4 CLASSES: STABLE ZERO,

STABLE NONZERO, UNSTABLE ZERO AND UNSTABLE NONZERO. THE STABLE AND UNSTABLE CLASSES ARE DETERMINED BY WHETHER THE STANDARD

DEVIATION IS LESS THAN 0.1 OR NOT. THE ZERO AND NONZERO CLASSES ARE DETERMINED BY WHETHER THE MEAN IS LESS THAN 0.1 OR NOT. WE

COMPARED PINV, PML AND PLR METHODS ON ASD, PEDCON AND TWO RANDOM NETWORKS OBTAINED BY PERMUTING AND SELECTING THE GIVEN

DATA RANDOMLY. THE RESULTS ARE GIVEN IN TERMS OF THE PERCENTAGE OF EDGES BELONGING TO EACH CLASS AMONG TOTAL 4656 EDGES.

Group Class
PINV PML PLR

TRUE Random TRUE Random TRUE Random

ASD

stable 61.90 0.02 96.39 82.26 100 96.56

zero nonzero 39.78 22.12 0 0.02 94.65 1.74 82.24 0.02 97.32 2.68 95.98 0.58

unstable 38.10 99.98 3.60 17.74 0 3.44

zero nonzero 25.73 12.37 70.79 29.19 2.68 0.92 12.93 4.81 0 0 1.31 2.13

PedCon

stable 11.69 0.04 89.54 66.32 96.91 92.33

zero nonzero 6.64 5.05 0 0.04 88.25 1.29 66.32 0 95.08 1.83 92.33 0

unstable 88.32 99.96 10.46 33.68 3.09 7.67

zero nonzero 54.23 34.09 73.41 26.55 7.86 2.60 26.01 7.67 1.61 1.48 4.96 2.71

estimation of the partial correlation using the traditional least

squares method is unreliable when the number of observations

is smaller (small-n) than the large number of nodes (large-p) in

complex networks. To remedy the small-n large-p problem, the

l1-penalty for the sparseness constraint is usually introduced

to the regression. The penalized linear regression, as known

as LASSO, naturally leads to sparse brain network modeling.

Under the i.i.d. Gaussian assumption, the proposed brain

network model can recover sparse underling signal even from

small number of noisy measurements.

The numerical experiments show that the sparse brain

network can be estimated consistently. The proposed method

was applied in characterizing the local overconnectivity and

long-range underconnectivity in the autistic brain. Our result

is consistent with previous autism-related clinical studies [38],

[39], [49].

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous reviewers

for their useful suggestions. Hyekyoung Lee would like to

thank Jiho Yoo for helpful discussions and comments.

REFERENCES

[1] O. Sporn and J. Zwi, “The small world of the cerebral cortex,”
Neuroinformatics, vol. 2, pp. 145–162, 2004.

[2] V. Eguiluz, D. Chialvo, G. Cecchi, M. Baliki, and A. Apkarian, “Scale-
free brain functional networks,” Physical Review Letters, vol. 94, p.
018102, 2005.

[3] C. Stam, “Functional connectivity patterns of human magnetoencephalo-
graphic recordings : a small-world network?” Neuroscience Letters, vol.
355, pp. 25–28, 2004.

[4] C. Stam, B. Jones, G. Nolte, M. Breakspear, and P. Scheltens, “Small-
world networks and functional connectivity in alzheimer’s disease,”
Cerebral Cortex, vol. 17, pp. 92–99, 2007.

[5] S. Achard, R. Salvador, B. Whitcher, J. Suckling, and E. Bullmore, “A
resilient, low-frequency, small-world human brain functional network
with highly connected association cortical hubs,” Journal of Neuro-

science, vol. 26, pp. 63–72, 2006.

[6] R. Salvador, J. Suckling, M. Coleman, J. Pickard, D. Menon, and
E. Bullmore, “Neurophysiological architecture of functional magnetic
resonance images of human brain,” Cerebral Cortex, vol. 15, pp. 1332–
1342, 2005.

[7] Y. He, Z. Chen, and A. Evans, “Small-world anatomical networks in the
human brain revealed by cortical thickness from MRI,” Cerebral Cortex,
vol. 170, pp. 2407–2419, 2007.

[8] Z. Chen, Y. He, P. Rosa-Neto, J. Germann, and A. Evans, “Revealing
modular architecture of human brain structural networks by using
cortical thickness from MRI,” Cerebral Cortex, pp. 2374–2381, 2008.

[9] M. Valencia, M. Pastor, M. Fernandez-Seara, J. Artieda, J. Martinerie1,
and M. Chavez, “Complex modular structure of large-scale brain net-
works,” Chaos, vol. 19, 2009.

[10] P. Laurienti, C. Hugenschmidt, and S. Hayasaka, “Modularity maps
reveal community structure in the resting human brain,” Nature Pre-

ceedings, 2009.

[11] D. Bassett, “Small-world brain networks,” The Neuroscientist, vol. 12,
pp. 512–523, 2006.

[12] M. Rubinov and O. Sporns, “Complex network measures of brain
connectivity: Uses and interpretations,” NeuroImage, vol. 52, pp. 1059–
1069, 2010.

[13] O. Sporns, G. Tononi, and R. Kotter, “The human connectome: a
structural description of the human brain,” PLoS Computational Biology,
vol. 1, 2005.

[14] J. Cao and K. Worsley, “The geometry of correlation fields with an
application to functional connectivity of the brain,” Annals of Applied

Probability, vol. 9, pp. 1021–1057, 1999.

[15] M. Koch, D. Norris, and M. Hund-Georgiadis, “An investigation of func-
tional and anatomical connectivity using magnetic resonance imaging,”
NeuroImage, vol. 16, pp. 241–250, 2002.

[16] G. Marrelec, A. Krainik, H. Duffau, M. Pélégrini-Issac, S. Lehéricy,
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