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a b s t r a c t

Shallow water acoustic response functions at high frequencies and large bandwidths exhibit spatio

temporal variability that depends greatly on the propagation media’s volume and boundary conditions 

as well as system source-receiver motion. For this reason practical acoustic systems invariably must 

operate without perfect knowledge of the space-time state of the ocean media. Considered here is 

a Gaussian mixture assignment over Doppler and channel bandwidth employed to describe the am

plitude and phase of such acoustic response functions over signal duration and bandwidth that can 

serve in many scenarios to replace recursive least squares and Kalman-like algorithms. The mixtue 

Gaussian model of channel dynamics allows for the accurate and adaptive description of the response 

function. The model is flexible and naturally accommodates varying degrees of observed channel spar

sity. Posterior expectations are derived and shown to be soft shrinkage operators over Doppler-channel 

frequency. The model allows for novel and accurate estimates regarding the aggregate acoustic path 

dilation process that serve to replace conventional phase locked loops. This adaptive filtering scheme 

with aggregate path dilation estimation and compensation is tested on M-ary orthogonal signals at 

both 1 and 2 bits per symbol during the Unet08 acoustic communication experiments. These tests 

took place in the downward refracting, lossy bottom environment of St. Margaret’s Bay Nova Scotia 

off of the R/V Quest. Receiver algorithms based on this approach were applied to a single element 

acoustic time series and empirical bit error rates demonstrate a 4 dB improvement over rank based 

maximal path combining methods. For a single hydrophone at 2 bits per symbol a bit error rate of less 

than 10~4 is observed at received SNR < -10 dB corresponding to an SNR/bit < 14 dB.

1 i n t r o d u c t i o n

This work is concerned with the basic problem of accurately 

estimating the time varying broadband acoustic Green’s func

tion in dynamic shallow water environments from observed 

measurements at very low signal to noise ratios (SNRs). The 

methods are fundamentally adaptive filtering schemes and 

constitute an essential component to a wide range of signal 

analysis methods from medical diagnostics [16] and classi

fication of volume density from ultrasound backscatter [8] 

to acoustic communications applications [11][18] . Conven

tional approaches in the context of acoustic communications 

include variants of least mean square, recursive least squares 

and the Kalman filtering algorithm[2][10][15]. These ap

proaches fundamentally leverage the temporal coherence of 

the Green’s function through appropriate averaging to en

sure that the resulting estimates are statistically efficient. One 

shortcoming of these algorithms is that they are typically em

ployed in a look-back framework, only exploiting preceed- 

ing observations to make inferences regarding the present 

time sample. By marching forward in time and leverag

ing a Markov assumption regarding the process, these al

gorithms exploit a temporal model of the dynamics of the 

response process to make an estimate of the present state.

For the case of observations over a finite duration window, 

more data can be brought to bear on the estimation prob

lem and greater statistical efficiency can be attained. The 

time-recursive Gauss-Markov framework is capable of being 

adapted to such scenarios by employing forward-backward 

methodologies to fully exploit the temporal dependencies.

This article develops and demonstrates an estima

tion scheme based on a mixture-Gaussian model over 

time/Doppler and frequency/selectivity such that the Green’s 

function at any instant can be estimated given all of the data 

over the entire duration and bandwith of the signal[9]. The 

resulting mixture-Gaussian framework allows for a level of 

flexibility in the regularization that is not as easily accom

plished with Gauss-Markov models short of full forward- 

backward recursions. The latent parameters of the mix

ture model succinctly and parsimoniously capture the de

gree of sparsity encountered in underwater acoustic environ

ments. Presented here is a modeling framework for time vary

ing acoustic response functions that can serve the practical 

needs of acoustic parameter estimation as well as coherent 

underwater acoustic communications. Much like forward- 

backward recursions the proposed adaptive filtering method 

allows for the efficient use of all of the observations within 

the signaling epoch to make inferences regarding each time
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instant within that epoch. 1.2 Organization of this article

1.1 Joint channel and symbol estimation

The specific application to be explored here is that of adap 

tive filtering applied to underwater acoustic communication 

receivers where estimates of the acoustic response enable 

coherent multipath combining. Let the measurements at 

the acoustic receiver be represented by r ,  the acoustic re 

sponse over the broadband channel as h  and let b  repre 

sent the symbols sent. An acoustic communication receiver 

can be broadly described as a set of symbol decision rules 

b  =  D h [b|r] that extract the relevant information regarding 

the symbols from the received data. However since the prior 

constraints on the acoustic response function are not easily 

analytically averaged out over the conditional density of the 

data the optimal solution

=  a r g m a W  p ( r |h ,  b )  X p (h )  dh  
b

=  a rg m a x  Eh  [p (r |h , b)] 
b

(1)

can be unwieldy. While the conditional model of the received 

data p ( r |h ,  b )  will almost invariably be a multivariate Gaus 

sian density and the bit coding scheme allows p (b |h ,  r )  to be 

well specified [15] the marginal p ( b |r )  is an average over an 

acoustic channel of high dimension residing in a much higher 

dimensional (>  1000) delay-Doppler space. This makes com 

puting b  a significant challenge. For this reason it is useful to 

break up the problem into a few simpler ones that are more 

easily handled and for which tractable and computationally 

less burdensome solutions can be derived. The solution b  can 

be well approximated by solving a sequence of conditional 

optimization problems in the parameters of h . The result is 

a set of estimators for the channel parameters and a set of 

decision rules conditioned on those channel estimates.

E h\b=b [h |r, b J - 1

b * =  a r g m a x p (b |r ,  h  =  h*) . 
b

(2)

This sequence characterizes the channel estimation based re 

ceiver approach taken here. Various optimization schemes 

for each conditional density may be chosen and associated 

algorithms follow. More accurate rules can be derived, for in 

stance the channel conditional expectation based on the sym 

bol decision could rather be weighted over symbol probabili

ties,

h* =  Eb\r E  [h |r, b]

rather than simply conditioned on the argmax: b *. Use of 

such s o f t  decision rules would lead to weighted averages 

with added computational costs but no greater conceptual 

hurdle. The receiver structure takes advantage of the ana 

lytic simplicity of the conditional densities of the channel and 

symbol parameters to approximate the maximizing argument 

of the marginal density. Adaptive filtering, the estimation of 

the channel state, is therefore critical for coherent multipath 

combining in time varying environments.

The remaining sections of this article are organized as fol

lows: Section 2 presents the salient features of shallow wa

ter acoustic response functions and associates the dynamic 

parameters with the delay-Doppler acoustic response. Sec 

tion 2 then goes on to present the Gaussian mixture model 

as a means of describing the sparse delay-Doppler arrivals of 

acoustic response functions. The section goes on to derive 

estimators for the acoustic response function given a received 

time series. Section 3 presents an aggregate path dilation pro 

cess model and shows how accurate estimates of the acous

tic response function can be used to unravel bulk correlated 

path delay time processes. Section 4 presents various acoustic 

communication receiver algorithms for M -ary orthogonal sig 

naling based on the proposed adaptive filtering scheme. Sec

tion 5 presents results from an M-ary orthogonal signaling 

experiment taken during at-sea tests in St. M argaret’s Bay. 

Section 6 presents summarizing statements, conclusions and 

future work.

2 MODEL OF UNDERWATER ACOUSTIC 

RESPONSE

Each acoustic path linking source and receiver exhibits ge 

ometric spreading and frequency dependent volume attenua

tion [12][20]. Let lm,t represent the acoustic path length of 

the m th acoustic path at time t  and let Tm,t =   ̂ds /c (s ,  t)  

represent its propagation delay. The amplitude and phase 

contribution of the pressure field at the receiver due to the
th path is

=  am ( t , f  ) x e jUTm-t v  =  2 n f .  (3)

The first term captures attenuation due to geometric spreading 

and with |em | <<  1 the refractive effects through the volume. 

The second term  summarizes the volume attenuation due to 

sea-water absorption losses [12][20]. The term k Ymk ( v )  

summarizes the boundary interactions where R e (7 |[nepers], 

Im{Y}[radians]. Here Ym , k is the reflection coefficent of the 

k th boundary interaction along the m th acoustic path. The fi

nal term captures the aggregate phase rotation associated with 

propagation over the acoustic path. The phase rotation is a 

linear funtion of frequency as the sound speed and thus Tm t 

is not a function of frequency. The aggregate acoustic re 

sponse function is the superposition of these M path acoustic 

contributions

Mp

ht f  =  hm t f . (4)

The inverse Fourier transform of Eq. (4) is the response func

tion over path-delay and geo-time and can be expressed as

h t ,t  =  Y1MPath ^m , t (T  -  Tm,t) 

ÿ m , t ( t ) =  (2 n )-1  /  am ( t , v / 2 n )  x  ejuT dv .
(5)
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Here notation is simplified by retaining h as the response 

function regardless of the basis functions or domain over 

which it is defined. The response function can likewise be 

represented over the delay-Doppler domain with

hA ,t  =  E ^  4 m ,a (t ) 
ÿ m , A(T ) =  JIt  ÿ m , t (t  -  Tm, t)e- j A t dt.

The total delay spread of the multi-path channel is

Tmax maXm,t{Tm,t} -  minm,t{Tm,t}.

(6)

(7)

Underwater acoustic response functions can vary greatly 

across ocean environments as well as over time in a given 

ocean environment. Certain bottom materials and roughness, 

water sound speed and surface wave spectra imply certain 

acoustic response functions and these can vary greatly spa

tially and temporally. Given the environmental conditions 

numerical solutions to acoustic propagtion can be useful in 

revealing the characteristics of broadband acoustic channel 

conditions [12] however acoustic receiver algorithms must 

be robust to spatial and temporally varying channel condi

tions with limited or no prior information regarding any of 

the acoustic environment parameters. The algorithms must 

effectively construct the essential parameters of the response 

from the measured pressure field. Because of the unknown 

and diverse range of channel conditions a significant hurdle 

in underwater acoustic receiver algorithms is that the underly

ing model must not place severe restrictions on the temporal 

or spatial variations of the functions { ÿ m ,Tm }m<Mpath be

tween communication epochs while simultaneously parsimo

niously allowing for their variation within a signaling epoch. 

Such parsimonious representation allows for the low variance 

estimation of the response function while giving flexibility to 

handle quite different environments.

In the approach presented here two features of shallow 

water acoustic response function are exploited. First, their 

sparsity, the interarrival durations on average exceed the de

lay bandwidth of the intra-path spreading functions ÿ m (T). 

Explicitly, with ipm (T) = ÿ m (T) / J 2 ^ m (T) it is postulated

that E  [ y S  T 2 *pm (T)dT] < E\\Tm — Tn |]) where the expecta

tion operator E[-] is over the observed sample space of envi

ronments. Secondly it is postulated that the arrival delay pro

cesses Tm (t) of the various paths for a given signaling epoch 

exhibit significant temporal correlation. This assumption is 

attributed to the fact that angle spreads of propagating paths 

in ocean waveguides are very small, typically less than 20° 

often less than 5° so that the dominant motion within the hor

izontal plane couples similarly to all coherent delay paths.

2.1 Model of passband frequency translated 

underwater acoustic response

Using the passband basis functions {ejUct^ ( t  — n / W )}n6l 

of bandwidth W , centered at time n / W  and frequency f c = 

u c/2n ,  express the M-ary orthogonal spread spectrum com

munication signal as

Here the notation Cb =  is employed allowing the

sent signal to be unencumbered with the specification of the 

duration N s of the signaling frame. At the receiver the signal 

is

H s(t)  = j  ht,Tst-TdT

and with the simplified broadband channel model (4) express 

this time-frequency distorted signal as

H s(t)  x  e- j ^ ct =  ^  cbe- j ^ cTm>t ÿ„ht(T — Tm,t)

m,n

x e -jUa(T-Tm,t)^ ( t  — t  — n / W  )dT. (9)

Expressing the baseband translated and filtered acoustic re 

sponse function for the m th path as

î>m,t(T ) = J  ÿ m,t(T') X e-jUcT' $(T — T ' ) dT '

results in

H s(t)  x  e jLJct = ^  x  h t , t -n /w  (10)

-3UcTm,t
'iPm,t(T Tm,t) .

The key features of the acoustic response (11) are now identi

fied. First, time variations in the acoustic path delays Tm,t 

imply both time varying phase modulations (ej ^ cTm-t ) and 

time varying arrival times of the phase-fronts (Tm,t). As pre

viously mentioned the phase fronts are not dispersed since 

sound speed is not a function of frequency. Most of the en

ergy is captured in a small set of delay times and therefore 

acoustic response functions are generally sparse with dom

inant arrivals occupying a relatively small proportion of the 

Tmax duration delay band. Secondly since angle spreads are 

small in the horizontal ocean waveguide the temporal process 

of the delay times exhibit considerable correlation.

The linear model (10) can be expressed as a sampled dis

crete time t  = p x  n ' / W  version as

H s(n ')  x  e- jpucn>/w = Cbh  . (11)

and letting I T = {0 < t  < T } be the K  x  N s/ W  + Tmax du

ration communication packet interval and I T = [maxTm (t), 

minTm(t)] the passband translated acoustic response function 

can be represented in the delay-Doppler domain as,

- j2 n A t- ju cTm,t x  ï>m,t(T — Tm,t)dt

which is simply expressed as,

hA,T UA ht,T (12)

=  pjUctY<n cb^ (t — n / W ) ■st = e (8)

where UA is the Fourier transform from geo-time to Doppler 

frequency. The channel response function can likewise be
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represented in the Doppler[Hz]-selectivity/frequency[Hz] do

main via

h-A,/ =  J  e- j2n /Th^ ,T dr

hA,/  — UA , / ht,T (13)

where UA,/ is the 2-D Fourier transform from geo-time[sec] 

and delay[sec] to Doppler[Hz] and selectivity[Hz]. Like

wise the passband filtered and baseband translated acoustic 

response function can be represented in the time-frequency 

domain as

ht,/  =  E * ( f  )am(t, f  + f c ) e - ^ {/+/c)m
m

ht,/ — Ut,/ht,T (14)

where it is understood that the argument denotes the Fourier 

transform, $ ( f  ) — f  $(t ) e - j2n / td t .

2.2 Prior density for acoustic response func

tion

Underwater acoustic response functions can vary consider

ably as a function of the environment. In order to capture 

this prior variability or uncertainty in the acoustic response 

function in such a way that variations are modeled in a par

simonious and yet flexible and accommodating way con

sider the use of an adaptive scheme suited for sparse time- 

varying channels. The notion of sparsity simply captures the 

fact that typical acoustic response functions obey the rule: 

Mpath < W rmax. It is useful to view each delay-Doppler 

slot therefore as a possible ensonified acoustic path between 

source and receiver. Each of these slots will have a prior 

probability of being acoustically occupied, coherently link

ing source and receiver. Acoustic path occupation likelihood 

at a given delay-Doppler is set by a probability nA ,T that is a 

function of the Doppler frequency. The amplitude and phase 

of the occupied Doppler-frequency slot will be hypothesized 

as Gaussian with zero mean and a known variance. For the 

unoccupied slots it is also postulated that the amplitude and 

phase are Gaussian however the unoccupied slots are natu

rally associated with a much smaller variance. The proba

bility density function of the channel’s amplitude and phase 

at any given slot is therefore modeled by a binary mixture 

Gaussian model that is fully specfified by two variances and 

a probability that the slot is in one of the given states. These 

prior assumptions are captured in the following hierarchical 

Bayesian model,

hi,k\zi,k -  K\ ' k (O, X \ ) X N— 'k (0 ,4 )  (15)

za , t  -  Ber(nA,T), ^ a , t  — noD(A)  X Uo,Tmaœ ( t )

J  D (A )dA  — 1.

The factor n0 is the a priori sparsity. The factor D (A )  is a 

marginal or average Doppler spectrum and captures the prior

likelihood of the ensonified channel paths’ scatterers possess

ing a given aggregate velocity v — cspeed x  A / f c. This aver

age Doppler spectrum has the interpretation of a probability 

density function. Given Tmax the delay profile U is a uniform 

density. Regarding Doppler spread, two physical processes 

are worth considering. First there is the Doppler offset as

sociated with initialization and estimation of source and re 

ceiver clock rate offsets and relative platform speeds. This 

spread can be quite large and will depend on both the time- 

bandwidth product of the initializing synchronization wave

form and the acceleration rate of the platforms. The second is 

the inherent Doppler spread associated with the acoustic re 

sponse function and captures for instance the different path 

dilation rates. It is accepted that actual acoustic path am

plitudes and phases with their times of arrival known do not 

necessarily obey a Gaussian density. While propagation mod

eling over actual underwater environments and geometries 

could provide insight into the actual densities of the chan

nel coefficients it would require environmental information 

that is not availale to most underwater systems. The pro

posed model is useful because it allows for the parsimonious 

treatment of sparse time varying arrivals and the analytic so

lution of all posterior moments leading to computationally 

reasonable solutions. The mixture weights n  and spectrum 

X, e could likewise be tuned with dependencies across delay- 

Doppler. For now it is accepted that the model, while not 

proved from propagation physics, offers an inductive frame

work that captures the essential spectral features of shallow 

water acoustic response functions. It thereby provides a use

ful adaptive structure for estimation of the response from ob

servations.

It is also useful to consider a similar Gaussian mixture 

model on the Doppler-selectivity domain

hi,k\zi,k -  K k  (O,X2 ) X Nh- y  (O,.2)

z a ,/ -  B e r (nA , / ), n A ,/ — n0D (A )  X S ( f ). (16)

The parameters n, X, and e can be estimated from the data as 

in [9].

2.3 Posterior inference for acoustic response 

function

Under the assumption that the acoustic noise is Gaussian and 

its covariance is known it can be whitened and the likelihood 

function is therefore Gaussian. It follows that the posterior 

density of the acoustic Green’s function over the symboling 

epoch is

p (h |r ,  b ) «  N r (Cb U—Th , I )  X

ht,T

H  (nAN hl>k (0, X2,k) + ( 1 -  n A )Nhi,k (0, 4l,k)) . (17) 
l,k

Assume that the symbols exhibit orthogonality over the de

lay, i.e. Cb satisfies Cb Cb — I  recalling that the Fourier
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transform U  is unitary we have 

p (h |r , b ) «  N h ( h , I )  x

n
l,k

n A N h , k (0, \ f , k ) (1 — n A ) N h i , k  ( °  el . k)

and refactoring the product of Gaussian densities implies

p ( h l r , b) «  ( n h l k N h i , k  (Y ( X l , k ) h l , k , Y ( X l , k ))  +  

l .k

(1 — n h l>k ) N hi,k (Y (e l , k ) h l , k , Y (e l , k ) ) )  (18) 

where the least squares estimates are

h A,T =  U A , t  h t,T , h t,T

and

hi, =  1 +
1 — nA N hi,k ( 0 , t f , k  +  1

n A N h i k ( 0 , t f , k  +  1)

Y ( x )  =
x 2 +  1

Since mixture Gaussian priors are conjugate for Gaussian 
likelihood functions the posterior density (18) is also a mix
ture Gaussian. The posterior mean is a weighted average of 
each model’s average and since the posterior model probabil
ities n  are also functions of the data the result, while akin to 
a classic Wiener filter, has an additional adaptable feature in 
the mixture weights. The result is a shrinkage operator of the 
raw delay-Doppler measurements h A,T,

E [ h l , k lr,  b ,ê,Â] =  ( n h i ,k Y ( X l , k ) +  (1 — n h hk ) Y (e l , k ))  h l,k

which is written in compact form with S  denoting the soft 
shrinkage rule

h  a , t  =  Sh (hA,T )■ (19)

This posterior expectation greatly attenuates smaller, noise
like coefficients while leaving the larger coefficients un
changed. The y ’s are Wiener-like gains over each delay- 
Doppler element. The variance is

Ul.k =  v a r [ h l , k l r ,  b , Â, X]

=  { n h i , k Y ( X l,k ) +  (1 — n hi , k ) Y ( e l , k ))

+ n h ,k (1 — n h i,k ) ( Y ( X l , k ) — Y (e l , k ))2 x h l k  (20)

and can be understood as var[hl,k] =  E zi ,k var[hl,k l z l ,k ] +  

varzi kE [ h l , k l z l . k ] .  The parameters { X l , k , e l , k ,nA} allow for 
adaptation of the model to the observations and they, like 
the gains, are estimated from the data, see for instance[9]. 
The Laplace approximation to the posterior distribution of the 
acoustic response function in the delay-time domain is there
fore

p ( h t , T lr, b , e, X )  *  N h ( U - T h a , t , U - 1 Y U A 1  )

Y  =  Diag(U). (21)

A computationally reasonable approximation to E[hlr] 
E b E [hlr, b]] is

where

E [ h | r ,  b]] *  UA1SBb,r [h](E b |r [hA,T])

E b|r [ht,T] =  ^ 2  h t T  (b)P ( b !r )

(22)

Figure 1 displays and comparse the least squares channel es
timate and the posterior mean estimate based on the proposed 
mixture Gaussian model for an acoustic response function 
taken in St. Margaret’s Bay. These are both for the same 2-ary 
spread spectrum signal set at -14 dB received SNR. The least 
square estimate is to the left and the MMSE posterior mean 
estimate based on the proposed mixture Gaussian model is 
to the right. Figure 2 shows a similar result for 4-ary signal 
epoch at a received SNR of -9 dB. In both figures 1 and 2 the 
power of the posterior mean to denoise dominant and faint 
arrivals as well as null the delay bands that are dominated by 
noise is apparent.

3 ESTIMATION OF AGGREGATE PATH 
DILATION

One of the critical advantage of accurate coherent estimates 
of the acoustic response function is that the bulk (aggre
gate, shared or common) dilation process associated with the 
acoustic arrival delay times can be estimated and factored out 
of the Green’s function by "un-dilating” the received acoustic 
waveform. These path delay time processes are driven largely 
by source receiver motion in the case of mobile communica
tors but also by common ocean volume forces. For many un
derwater acoustic applications platform velocity is relatively 
minimal in the vertical direction as vehicles typically transit 
at a constant depth. For small acoustic angle spreads in shal
low water, less than 15° range rate is a dominant factor in the 
shared delay time process. These arrival time variations for 
horizontally moving platforms are correlated having common 
time varying components that can be factored out to increase 
effective channel coherence. These facts account for the effi
cacy of phase tracking algorithms and the phase locked loop 
[15] for mobile commmunications and underwater acoustic 
communications[18] in particular. Here a subtly different ap
proach is taken; the acoustic response function captures all 
delay-Doppler behavior over the signaling epoch up to the 
resolution of the symbol duration and the aggregate arrival 
time variations are then deduced from this estimate. The 
bulk path dilation estimate defines a natural (time-varying) 
sampling rate for the acoustic response that nearly "straight
ens out” or compenstates for the shared time variation of the 
acoustic paths. The remaining time variations of the acous
tic arrivals constitute the natural coherence time of the ocean 
acoustic response function.

The Doppler bandwidth 1 /2N s^  associated with the 
symbol interval determines the bandwidth of the final esti
mate and this is set by the processing gain and signaling 
bandwidth. Consider the two cases: 1) Time invariance di
lation, that is, the shared component of the delay paths is a

2

1

2x
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Figure 1: Qualitative performance comparison of least squares channel estimate (left) with MMSE channel estimate 

based on Gaussian mixture model. Received SNR is -14 dB. Both are from the same 2-ary orthogonal spread spectrum 

data set.
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Figure 2: Qualitative performance comparison of least squares channel estimate (left) with MMSE channel estimate 

based on Gaussian mixture model. Received SNR is -9 dB. Both are from the same 4-ary orthogonal spread spectrum 

data set.
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simple linear function of time synonymous with a constant 

Doppler offset for all paths. 2) Time varying dilation. Al

low for a common, shared temporal variation in the acoustic 

arrival times over the symboling interval. In the following 

subsections each of these is considered and suitable estima

tors are developed.

3.1 Time invariant path dilation rate

Factoring out a common linear delay drift, consider the model 

of the M path dimensional arrival process as

Tm(t) = So x  t  + 6rm (t) , m  = { l , . . . M Path} (23)

where So is a shared dilation rate among all of the paths. This 

factoring is obviously not unique and therefore we will seek 

to specify it in such a way that an appropriately weighted 

combination of the Srm (t) are minimized. To do this express 

the channel of Eq. (14) over Doppler frequency A, and chan

nel frequency f , as

hA ,f = 4>(f ) E  /  e-j2n(A+( f+fc)«o)t x

m

am(t, f  + fc )e- j2n( f+fc)STm(t)dt. (24)

Let

</m,A,f =  H f  ) J  e j n  a m ( t , f  + fc) x

e- j 2n(f +fc)Srm(t)dt (25)

denote the m th residual acoustic arrival response demodu

lated by frequency So. Express the channel response, fre

quency shifted by So, as

hA - ( f+ fc)sOIf  =  E J m,A,f (26)

The Doppler spread for this particular acoustic response can 

be defined as

j  A \ha - ( f+ fc)s0, f \2dA ■

Choose as an estimate of So the value that minimize the total 

Doppler spread of the Doppler shifted version:

So = argmin  A 2\hA - ( f + f c)So,f\2dA df . (27)
<5 o J

This implies that the solution obeys

j  A \hA - ( f+ fc)S0,f \ d A d f  =  0, (28)

which can be interpreted as the expectation or the average 

over the Doppler spectral density \hA - ( f ) S~o f \2. The 

Doppler offset for the given So is proportional to the chan

nel frequency ( f  +  f c). The solution for a given f  is

( f  +  fc )So( f  ) =
S A \ h  A,f \2dA

f \ h  A, f \2dA

and averaged over the entire bandwidth is

A  \h A, f \2

( f  +  f c) J \hz, ^ \2d(d^
dAdf. (29)

3.2 Time-varying path dilation rate

Consider now factoring out a common time-varying delay 

process from each of the path arrival times. Doing so leads to 

a model of the M path arrival time processes as

Tm(t) = To(t) + A r m (t) , m  =  {1 , . . .  Mpath}. (30)

As a function of ro(t) the acoustic response function Eq. (11) 

is

ht,T = e- j ^ cTo(t) E  e j A m  x 4,m,t(r -  m )  (31)

and recalling that the conditional mean of the response func

tion in delay-time is h t T a computationally efficient estima

tion method for ro(t) is to consider the Laplace approxima

tion to the density of h \ r  and find its maximum with respect 

to ro(t). Define the bandwidth associated with the bulk dia- 

tion process as W o and further let the bandlimited version of 

ht,T, the posterior mean estimate of the channel from data be 

denoted as

h0tT = I  hA,T ej2nAxtdA.
’ JWo

(32)

Approximate the bulk dilation process with

To(t) = a rgm ax < ht,T,ht,T(ro(t)) > (33)
To(t)

= a rg m a x Re{ h t,T x  h't T (ro(t ) )dr}
To(t) j

leading to

ro(t) = argmax e+jUaTo(t') f  \ht ,T\<
To(t) J

ejZht’T x  (34)

0+j^aATm,t J j
J m’ t (r  -  Tm’t )dr .

Toaverage out the J'm t (-) and A r m,t assume that the remain

ing time varying phase variations {e+jUcATm.t } are negligi

bly small. This crude assumption allows us to approximate

E e+-WcATm'‘ Jm, t ( r  -  rm,t) = \ht’T\ejZh(0’T).

It follows that

To(t) = a rgm ax R e{e+jWcTo(t'> (35)
To(t)

J  \ht T \2 x  ej(zh t-T-zho-T)d r } 

so that a nearly maximum likelihood solution to ro(t) is

To(t) = u c 1arg \ht’T\2 x  ejZht-T zh°-Tdr (36)

This estimator weighs the phase rotation rate at each delay in 

proportion to it’s energy so that the dominant arrivals domi

nate the estimate.

x
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3.3 Inversion of the aggregate time dilation 

function

The proposed mixture Gaussian adaptive filtering scheme and 

the associated estimate of the bulk diation rate enable an in 

crease in the effective channel coherence by unraveling the 

effect of the aggregate dilation, To(t). This is accomplished 

by re-sampling the received data at a time-varying rate asso

ciated with the inverse of u(t) = t - T o(t). Recalling Eq. (10), 

note that

Hs(t)  = J2‘
- jucu(t)

E'

ï>m,t(u(t) -  ATm,t -  n / W )

u(t) = t  -  To(t).

Since the dilation rates are much smaller than the acoustic 

propagation speed the function u(t) is a monotonically in 

creasing function with a unique inverse t  = v o u o t  and 

therefore H s  can be expressed as a function of u  the natural 

time variable for the acoustic observations,

Hs(v  o u) = cn x  e
-jUcUE e- j u cArm (von)

îpm,vou(u -  ATm (v o u) -  n / W ). (37)

This is done to specify the inverse of the time dilation opera

tor u . To do this, note that incremental differences in the two 

sampling grids are: t  -  u = To(t), exactly the time varying 

dilation rate. Now approximate To(t) as a function of u  by a 

first order Taylor expansion to(t) «  To(u) + dnTo(u)(t -  u) 

so that

t  -  u «  To(u) + dnTo(u)(t -  u)

To(u) = (t -  u)(1 -  dnTo(u))

To(u)
t  = u +

1 -  dnTo(u)

and it follows that

v o u(t) = t  , v(x) = x  +
o(x)

1 -  dxTo(x)
(38)

The estimate of the resampling operator v  is derived from the 

estimated bulk dilation rate To(t) via a one to one map. The 

estimation process conditioned on the previous estimate of 

the symbol set can be summarized as follows:

h
E[-\r,b]

To(t) 
sarg max p[-\r,b\ e-to-one V o u  — t  (39)

3.4 Effect of resampling operator on acoustic 

response function

Considering again the model of the received pressure im 

parted from the information bearing source (37) on the re 

ceiver element as

H s  o v(u) = e -jUcn
E cbn T , '

- jucArmov(u)

m,ov(n)(u -  ATm o v(u) -  n / W )

the baseband demodulated and resampled acoustic response 

function can be identified as

hV (u  T ) =  E e-jlJcATm (u) x Vm,u(T -  ATm(u)) (40)
m

ATm (u) = ATm o v  (u) , Vm (t  ) = ^m,ov(u)(T ) .

Since Eq. (40) is of the same form as (10) the resampling op

erator can be decomposed into a set of composite resampling 

operators consistent with an iterative joint estimation based 

receiver. If the function v(t) is well estimated from the data 

the bandwidth of the residual channel response parameterized 

by ÿm ,u , ATm will on average be less than that of the original 

sampled processes.

To illustrate the value of the proposed scheme as a 

means to focus coherent acoustic energy dispersed in Doppler 

bandwidth by source-receiver motion consider the applica

tion of the proposed dilation compensation method. Fig

ure 3 presents an example of an acoustic Green’s function 

in Doppler[Hz] and channel frequency[kHz] comparing time- 

invariant dilation and time varying dilation. In both cases the 

results are taken from a joint symbol and channel estimation 

procedure associated with an acoustic communications sig

nal. The estimator on the left is that of one iteration after ini

tial channel and symbol estimates. The estimator to the right 

is that of the third iteration following time varying Doppler 

compensation. The significant focusing and narrowing of the 

Doppler bandwidth of the response function is observed.

4 AN M-ARY ORTHOGONAL SIGNALING 

FOR UNDERWATER ACOUSTIC COM

MUNICATIONS

The signaling scheme that is used to test these proposed adap

tive filtering schemes is similar to that of the M-ary Walsh/m- 

sequence signaling tested by Iltis [11]. Performance bounds 

have been derived for M-ary orthogonal spread spectrum sig

naling through fading channels for the case of independent 

channel gains [17][1][6][7][14] and specific algorithms for 

diversity combining of M-ary orthogonal signals have been 

explored [19]. In this present study it is assumed that the 

symbol sets have good orthogonal properties over the multi

path spread of the acoustic channel. The essential feature of 

such an M-ary signal set is that the symbol sequences cm, 

m  = 1, . . .M , obey

CkCl = I  x  s k- t + E,k,l (41)

where Cm is the convolution operator associated with the 

code word cm . The matrix E  has all coefficients less than 

1 /N s where N s is the sequence length. The receiver esti

mates the bit stream sent by

h  * 

b  *

E h\b=b{h \r, b  =  b * 1,To = To* 1]

a rg m a x p (b |r , h  =  h*, To =  Tq1) 
b

argmiaxp(hTo \r, b  =  b*- 1 ).

(42)

b x

x

T
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Figure 3: Display of acoustic response functions demonstrating the focusing of energy in Doppler that attends time 

varying dilation estimation and compensation (40). Channel estimates were taken from the same 4-ary orthogonal data 

sets. Left, with only time invariant Doppler compensation. Right, with time-varying Doppler compensation.

Here, as previously, h  represents the double spread chan

nel function, b  represents the sent bit stream of interest and 

To represents the aggregate time varying dilation rate. It

erative receiver structures can now be constructed from any 

of the various conditional estimators of channel and dilation 

rate coupled to symbol decisions conditioned on those esti

mates. In this section a few such receivers that provide a 

good compromise between accuracy and computational cost 

are discussed. Coherent and non-coherent symbol decisions 

are considered but only of the hard decision type.

4.1 Symbol decision rules

In this channel estimation based scheme symbol decisions are 

made conditioned on the data r  and the channel parameter es

timates which of course are functions of the data. For sim

plicity we ignore the variance of the channel estimates in the 

decision process. The likelihood function for each symbol is 

of the form

h) =  p(r\b = m, h ) /  m/ p(r\b = m ' , h  =  h). The results

r t |h t , bt ~  N r (Cbth t , I ) bt e { 1 ,  2 .. .M }

where bt specifies the sent codeword at the t th symboling 

frame determining the N s + L  — 1 x  L  convolution opera

tor Cbt.

4.2 Coherent soft and hard decisions

With equally probable and equal energy symbols the proba

bility of b = m  e  and ignoring the variance of the channel 

function estimation errors approximate as P (b = m \r, h  =

is

P(bt = m \r, h)
e2Re[h'Cm r t] 

^2 e2Re[h'C'rt]
(43)

and approximate M L  decisions conditioned on the channel 

iteration estimate are

bt æ  a rgm ax  Re\h'tC'mr t] (W PC — C). (44)
m

We denote this symbol decision rule as weighted path com

bining with coherent decisions (WPC-C).

4.3 Noncoherent soft and hard decisions

Likewise non-coherent symbol estimates and decisions are 

based on \h!C'mr t \2. Assume perfect orthogonality of the 

symbol code words over the L lag delay band CmCm  = 

Ih^m -m '  and for simplicity in what follows define h  =  

h / \ h \ 2 and noting that the M  statistically independent 

h'C'kr t complex scalar variables are Gaussian distributed

h'tC'm rt\bt = m  

h'tC'm rt\bt = m

so that

yk\m

\h 'C L  r t \2 

= \h!C'k r t \2

N x (\h\2, 1),

N x (0 ,1)

x2(\h\2)

x2 (45)

2
X* =m
2
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Table 1: MPC receiver
5 RESULTS.

MPC

Parameter Estimator

bulk path dilation: A t 0 N/A

symbol decision: Eq. (48)

channel estimate: N/A

where x i ( ^ 2) represents a non-central chi-square random 

variable [13] with non-centrality parameter A2 and x2 =  

X2(0) is the standard central chi-square random variable. 

Let px 2 (X)(x) denote the density function of a non-central 

chi-square random variable with non-centrality parameter A. 

It follows that symbol probabilities can be approximated 

by conditioning on the estimated channel response. It fol

lows that P  (bt = m \ x f , . . . , x j M ), h  =  h) =  p(r\b = 

m, h ) /  m  p(r\b = m' ,  h  =  h) and therefore

P  (bt = m \r, h)
PxKIh |2)( lh  ' C 'm r t f )

E k eM  pxi(|h |2)( |h ' C kr t\2)

Hard decisions are simply

bt = a rgm ax  \h!tC'mr t \2 (W PC -  NC).

(46)

(47)

Denote this symbol decision rule as weighted path com

bining with non-coherent decision (WPC-NC). These deci

sion schemes will be compared to a maximal path combin

ing (MPC) scheme that does not require channel estimation. 

While intuitively simple, the detail is worth stating. Let x (k) 

be the k th ranked order statistic of x  then choose the greatest 

L* ranked outputs and sum. This can be expressed succinctly 

as

bt = a rgm ax  x m}

m (k)=i

hm , (MPC).

h  m — Cm r t.

(48)

Table states the computationally fast maximal path com

bining (MPC) receiver where the decisions are based not on 

estimated h  but on simply the L* maximum coefficients of h, 

the matched filter outputs. Table 1 summarizes the maximal 

path combining receiver and Table 2 summarizes the channel 

estimation and dilation compensation based iterative receiver 

structures.

Figure 4 displays the performance of the proposed al

gorithm in terms of bit error rate as a function of iteration. 

Iteration one and iteration three are shown. Iteration one does 

not have time varying dilation estimation and iteration three 

does. The improvement by iteration three is approximately 2 

dB, a significant performance gain. The results show that for 

2-ary signaling at -12 dB received SNR the bit error rate is 

below 10~4. For 4-ary signaling at -9 dB received SNR the 

bit error rate is below 10~6. In each case the spreading gain 

is approximately 27 dB.

The proposed adaptive filtering scheme was implemented in 

a channel estimation based communication receiver enabling 

coherent multipath combining of M-ary orthogonal signals 

and allowing the comparison with conventional schemes. The 

proposed iterative receiver structures were tested on signals of 

the Unet-08 M-ary orthogonal spread spectrum experiment of 

June 2008 taken in St. Margaret’s Bay. Probability of bit er

ror over a range of SNRs were computed by Monte-Carlo av

eraging of the receiver’s error rate statistics. Presented here 

are comparisons of coherent channel estimate based results 

with maximal path combining, as well as coherent and non

coherent symbol decisions. All results are for single element 

reception. Array gain is not employed. The receivers tested 

are listed and described in Table 2. Rough synchronization 

and Doppler estimation are derived from short (1 symbol du 

ration) broad band synchronization signals that initializes the 

algorithm. For all cases tested the received signal to noise ra 

tio (rSNR) is measured as the in-band signal power average 

to the whitened noise power average over the entire signal

ing packet. Throughput rates for these schemes are as fol

lows: 2-ary corresponds to 10 bps. 4-ary corresponds to 20 

bps. Each communication packet employs 27 dB of process

ing gain, N s =  512. Signal bandwidth is roughly 5.12 kHz 

corresponding to one symbol every 1/10 of a second. Higher 

throughput rates can be achieved by employing larger band- 

widths, reduced procssing gain or larger alphabet sizes.

The performance of M-ary orthogonal signaling through 

a single element AWGN channel with coherent and nonco

herent decisions is displayed on all figures for reference as a 

lower bound on error rate performance. Figure 4 displays the 

performance as a function of receiver iteration for 2-ary and 

4-ary for 3 different channel epochs. The probability of error 

for two of the signaling epochs for 2-ary and 4-ary are shown 

in each panel. It is observed that refinement of the channel 

estimate leads to improved decisions. For the case of 2-ary 

we see roughly a .5 dB to 1.5 dB improvement from the first 

to the third iteration. Further iterations improve only slightly. 

For 4-ary we see a more significant 3 dB to 4 dB improvement 

from the first to the third iteration.

Consider a comparison of the proposed method with sim

ple maximal path combining (MPC). Shown in figure 5, it 

is observed that coherent multipath combining outperforms 

MPC by greater than 2 dB regardless of the M, alphabet size. 

This is attributed to accurate channel estimation allowing the 

weighing of lower power coherent paths and the rejection of 

spurious noisey paths. By down weighting the acoustic inter

arrival times significant performance gains are observed. It 

should be mentioned that MPC using more than the L  =  8 

maximal delay lag coefficients does not lead to improved 

results. If L  is chosen too large significant degradation in 

performance results as noise power is added to the decision 

statistic. Since MPC requires a prior information regarding 

the number of paths to combine it is clear that the channel 

estimation based schemes proposed here have an additional 

advantage of adaptability to channel conditions.

L

x
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Table 2: Iterative receiver algorithms for M-ary orthogonal spread spectrum signaling

Receiver 1

WPC w/ non-coh. decisions without symbol-aided timing estimation

Parameter Initialization Iterative estimator

symbol decision: b* p (b 0) = M - K  or (MPC) Eq. (47)

acoustic response: h* Eq. (22) Eq. (19)

resampling operator: v N/A

two iterations total

N/A

Receiver 2

WPC-non-coh. decisions with symbol-aided time-invariant timing estimation

Parameter Initialization Iterative estimator

symbol decision b* p ( b 0) =  M - K  or (MPC) Eq. (47)

acoustic response: h* 

bulk path dilation: A t  *

Eq. (22) 

Eq. (29)

Eq. (19) 

Eq. (29)

resampling operator: v N/A N/A

three symbol decision iterations total

Receiver 3

WPC w/ coh. decisions with symbol-aided time-varying timing estimation

Parameter Initialization Iterative estimator

symbol decision: b* p ( b 0) =  M - K  or (MPC) Eq. (44)

acoustic response: h* 

bulk path dilation: t * (t)

Eq. (22) 

Eq. (29)

Eq. (19) 

Eq. (36)

resampling operator: v N/A Eq. (38)

three symbol decision iterations total

coherent decisions w/ channel est,, epochs 1,2 coherent decisions w/ channel est,, epochs 2,3

Figure 4: Performance of coherent multipath combining for M-ary orthogonal signaling with proposed adaptive filtering 

scheme as a function of iteration. Results are shown for signaling epochs 1 and 2 in the lefthand (a) graph and for epochs 

2 and 3 on the righthand (b) graph. Performance bound for AWGN channels is shown as a dashed line.
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Figure 5: Comparison of coherent combining of multipaths with channel estimation with that of maximal 4 paths 

combining (MPC) over a delay band of W  x rmax = 90. Improvement of 4 dB for 2-ary and 3 dB for 4-ary is apparent 

for all signaling epochs. AWGN bounds are shown as dashed lines.
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Figure 6: Comparison of coherent decisions with channel estimation based coherent multipath combining with that non 

coherent decisions. Improvements of up to 2 dB is observed for all signaling epochs for both 2-ary and 4-ary signaling 

is observed. AWGN bounds are shown as dashed lines.

Canadian Acoustics / Acoustique canadienne Vol. 40 No. 1 (2012) - 50



It is worth comparing coherent decisions with non

coherent decisions. See Table 2 for the explicit computa

tions with each. Figure 6 displays the performance of co

herent channel estimation and multipath combining with co

herent decisions against similar channel estimation with non

coherent decision. The receiver with Doppler compensation 

and coherent decisions outperforms that of non-coherent de

cisions over both signaling epochs and across signal to noise 

ratios. For 2-ary signaling a near 2 dB increase in perfor

mance is observed. For 4-ary the improvement with coherent 

decisions is also roughly 2 dB. It is observed that for 4-ary 

signaling an error rate of less than 10~4 is observed at -8 dB 

rSNR.

6 SUMMARY, CONCLUSIONS AND FU

TURE WORK.

Mixture model based adaptive filtering schemes can incorpo

rate all of the data in a signaling epoch to make accurate infer

ences regarding the acoustic response function at each symbol 

within the signaling epoch. These estimators enable iterative 

channel estimation based receiver algorithms for M-ary or

thogonal communications in shallow water acoustic environ

ments that can operatate at low SNR. Channel estimation is 

based on a Gaussian mixture model over Doppler and chan

nel frequency that provides flexibility in the regularization of 

sparse acoustic channel estimates. The resulting estimator 

leaves acoustic arrivals that exhibit concentration of energy in 

Doppler unattenuated while greatly attenuating background 

noise and the incoherent highly dispersed low energy arrivals. 

This channel estimate forms the basis for time-varying aggre

gate path dilation estimation and resampling that effectively 

increases channel coherence to the natural coherence of the 

ocean media. Since signaling epochs can be quite long in du

ration reliable aggregate path dilation estimates require all of 

the data within a packet in order to operate efficiently at low 

SNR.

This scheme has been tested with a number of re 

ceiver implementations employing both coherent and non

coherent symbol decisions with the proposed channel estima

tion scheme. These novel channel estimation based weighted 

path combining schemes are compared to simple maximal 

path combining. The proposed receivers demonstrate be

tween 3 and 4 dB of improvement over maximal path combin

ing at received SNRs corresponding to a probability of error 

<  10~5. For received SNRs of under -8 dB a probability of 

error of less than 10~4 for single element reception has been 

observed in the downward refracting environment of St. Mar

garet’s Bay NS with a drifting source.

The schemes are well suited for low rate, low SNR un

derwater acoustic communications. They can be adapted to 

multi-user communications and MIMO applications. Future 

work will focus on modeling the dependence between delay- 

Doppler indicator variables z k,i for improved channel esti

mation and the extension of this mixture Gaussian model 

to beam angle for computationally fast beamforming for re 

ceiver arrays.
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ICSV19 

PRESS RELEASE

The 19th International Congress on Sound and Vibration (ICSV19), sponsored by 

the International Institute of Acoustics and Vibration (IIAV) and Vilnius University, 

will be held from 8 - 12 July 2012 at Vilnius University in Vilnius, Lithuania. Vilnius is 

the historical capital of Lithuania and dates back to the 14th century and has since 

been awarded the status of World Cultural Heritage by UNESCO. Vilnius University 

is one of the oldest universities in Eastern Europe and the friendly atmosphere of 

the modern city will mesmerize you and leave you with unforgettable memories.

Theoretical and experimental research papers in the fields of acoustics, noise, 

and vibration are invited for presentation. Participants are welcome to sub

mit abstracts and companies are invited to take part in the ICSV19 exhibition 

and sponsorship. For more information, please visit < http://www.icsv19.org >.

For further details, please contact Malcolm J. Crocker at, crockmj@auburn.edu >.
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