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Abstract We present a novel method for solving Canonical Correlation Analysis (CCA) in
a sparse convex framework using a least squares approach. The presented method focuses
on the scenario when one is interested in (or limited to) a primal representation for the first
view while having a dual representation for the second view. Sparse CCA (SCCA) minimises
the number of features used in both the primal and dual projections while maximising the
correlation between the two views. The method is compared to alternative sparse solutions
as well as demonstrated on paired corpuses for mate-retrieval. We are able to observe, in
the mate-retrieval, that when the number of the original features is large SCCA outperforms
Kernel CCA (KCCA), learning the common semantic space from a sparse set of features.

Keywords Sparsity · Canonical correlation analysis

1 Introduction

Proposed by Hotelling (1936), CCA is a technique for finding pairs of vectors that maximise
the correlation between a set of paired variables. The set of paired variables can be consid-
ered as two views of the same object, a perspective we adopt throughout the paper. Since
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the debut of CCA, a multitude of analyses, adaptations and applications have been proposed
(Ketterling 1971; Fyfe and Lai 2000, 2000; Akaho 2001; Friman et al. 2001a, 2001b; Bach
and Jordan 2002; Hardoon and Shawe-Taylor 2003; Hardoon et al. 2004, 2006, 2007; Fuku-
mizu et al. 2007; Szedmak et al. 2007).

The potential disadvantage of CCA and similar statistical methods, such as Principle
Component Analysis (PCA) and Partial Least Squares (PLS), is that the learned projections
are a linear combination of all the features in the primal and dual representations respec-
tively. This makes the interpretation of the solutions difficult. Studies by Zou et al. (2004),
Moghaddam et al. (2006), Dhanjal et al. (2006) and the more recent d’Aspremont et al.
(2007), Sriperumbudur et al. (2007) have addressed this issue for PCA and PLS by learn-
ing only the relevant features that maximise the variance for PCA and covariance for PLS.
Subsequent to Hardoon and Shawe-Taylor (2007) an application of sparse CCA has been
proposed by Torres et al. (2007) where the authors imposed sparsity on the semantic space
by penalising the cardinality of the solution vector (Weston et al. 2003). The SCCA pre-
sented in this paper is novel to the extent that instead of working with covariance matrices
(Torres et al. 2007), which may be computationally intensive to compute when the dimen-
sionality of the data is large, it deals directly with the training data.

In the Machine Learning (ML) community it is common practice to refer to the input
space as the primal-representation and the kernel space as the dual-representation. In order
to avoid confusion with the meanings of the terms primal and dual commonly used in the
optimisation literature, we will use ML-primal to refer to the input space and ML-dual to
refer to the kernel space for the remainder of the paper, though note that the references to
primal and dual in the abstract refer to ML-primal and ML-dual.

Faced with real-world problems1 combined with the need to understand or interpret the
found solutions we introduce a new convex least squares variant of CCA which seeks a
semantic projection that uses as few relevant features as possible to explain as much corre-
lation as possible.

In previous studies, CCA had either been formulated in the ML-primal (input) or ML-
dual (kernel) representation for both views. These formulations, coupled with the need for
sparsity, could prove insufficient when one desires or is limited to a ML primal-dual rep-
resentation, i.e. one wishes to learn the correlation of words in one language that map to
documents in another. Further justification for this SCCA formulation is given in Sect. 2.
We address these possible scenarios by formulating SCCA in a ML primal-dual framework
in which one view is represented in the ML-primal and the other in the ML-dual (kernel
defined) representation.

We compare our proposed SCCA solution to that of a quadratic program as well as an
alternative sparse algorithm. We continue to compare SCCA with KCCA on two bilingual
data-set for a mate retrieval task. In our final experiment we show that in the mate retrieval
task SCCA performs as well as KCCA when the number of original features is small and
SCCA outperforms KCCA when the number of original features is large. This emphasises
SCCA’s ability to learn the semantic space from a small number of relevant features.

In Sect. 2 we give a brief review of CCA, and Sect. 3 formulates and defines SCCA. In
Sect. 4 we derive our optimisation problem and show how all the pieces are assembled to
give the complete algorithm. We provide a quadratic program and sparse alternate solution
to the SCCA optimisation in Sect. 5. In Sect. 6 we detail the bilingual datasets and continue
to discuss our experiments in Sect. 7. Section 8 concludes this paper.

1Detailed motivation for such real-world problems is given in Sect. 3.
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2 Canonical correlation analysis

We briefly review canonical correlation analysis and its ML-dual (kernel) variant to provide
a smooth understanding of the transition to the sparse formulation. First, basic notation
representation used in the paper is defined

b – boldface lower case letters represent vectors
s – lower case letters represent scalars

M – upper case letters represent matrices.

The correlation between xa and xb can be computed as

max
wa ,wb

ρ = w′
aCabwb√

w′
aCaaw′

aw′
bCbbwb

, (1)

where Caa = XaX
′
a and Cbb = XbX

′
b are the within-set covariance matrices and Cab = XaX

′
b

is the between-sets covariance matrix, Xa is the matrix whose columns are the vectors xi , i =
1, . . . , � from the first representation while Xb is the matrix with columns xi from the second
representation. We are able to observe that scaling wa,wb does not effect the quotient in (1),
which is therefore equivalent to maximising w′

aCabwb subject to w′
aCaawa = w′

bCbbwb = 1.
The kernelising of CCA (Fyfe and Lai 2000, 2000) offers an alternative by first pro-

jecting the data into a higher dimensional feature space φt : x = (x1, . . . , xn) → φt (x) =
(φ1(x), . . . ,φN(x)) (N ≥ n, t = a, b) before performing CCA in the new feature spaces.
The kernel variant of CCA is useful when the correlation is believed to exist in some non lin-
ear relationship. Given the kernel functions κa and κb let Ka = X′

aXa and Kb = X′
bXb be the

linear kernel matrices corresponding to the two representations of the data, where Xa is now
the matrix whose columns are the vectors φa(xi ), i = 1, . . . , � from the first representation
while Xb is the matrix with columns φb(xi ) from the second representation. The weights wa

and wb can be expressed as a linear combination of the training examples wa = Xaα and
wb = Xbβ . Substitution into the ML-primal CCA (1) gives the optimisation

max
α,β

ρ = α′KaKbβ√
α′K2

a αβK2
bβ

,

which is equivalent to maximising α′KaKbβ subject to α′K2
a α = β ′K2

bβ = 1. This is the
ML-dual form of the CCA optimisation problem given in (1) which can be cast as a gener-
alised eigenvalue problem and for which the first k generalised eigenvectors can be found
efficiently. Both CCA and KCCA can be formulated as symmetric eigenproblems.

A variety of theoretical analyses have been presented for CCA (Akaho 2001; Bach and
Jordan 2002; Hardoon et al. 2004; Shawe-Taylor and Cristianini 2004; Fukumizu et al. 2007;
Hardoon and Shawe-Taylor 2009). A common conclusion of some of these analyses is the
need to regularise KCCA. For example the quality of the generalisation of the associated
pattern function is shown in Hardoon and Shawe-Taylor (2009) to be controlled by the sum
of the squares of the weight vector norms. Although there are advantages in using KCCA,
which have been demonstrated in various experiments across the literature, we clarify that
when using a linear kernel in both views, regularised KCCA is the same as regularised CCA
(since the former and latter are linear). Nonetheless using KCCA with a linear kernel can
have advantages over CCA, the most important being speed when the number of features is
larger than the number of samples.2

2The KCCA toolbox used was from http://www.davidroihardoon.com/Research/Code.html.

http://www.davidroihardoon.com/Research/Code.html
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3 Sparse CCA

The motivation for formulating a ML primal-dual SCCA is largely intuitive when faced with
real-world problems combined with the need to understand or interpret the found solutions.
Consider the following examples as potential case studies which would require ML primal-
dual sparse multivariate analysis methods, such as the one proposed.

– Enzyme prediction; in this problem one would like to uncover the relationship between
the enzyme sequence, or more accurately the sub-sequences within each enzyme sequence
that are highly correlated with the possible combination of the enzyme reactants. We
would like to find a sparse ML-primal weight representation on the enzyme sequence
which correlates highly to sparse ML-dual feature vector of the reactants. This will allow
a better understanding of the enzyme structure relationship to reactions.

– Bilingual analysis; when learning the semantic relationship between two languages, we
may want to understand how one language maps from the word space (ML-primal) to the
contextual document (ML-dual) space of another language. In both cases we do not want
a complete mapping from all the words to all possible contexts but to be able to extract
an interpretable relationship from a sparse word representation from one language to a
particular and specific context (or sparse combination of) in the other language.

– Brain analysis; here, one would be interested in finding a (ML-primal) sparse voxel3 acti-
vation map to some (ML-dual) non-linear stimulus activation (such as musical sequences,
images and various other multidimensional input). The potential ability to find only the
relevant voxels in the stimuli would remove the particularly problematic issue of thresh-
olding the full voxel activation maps that are conventionally generated.

For the scope of this paper we limit ourselves to experiments with the bilingual texts prob-
lems.

Throughout the paper we only consider the setting when one is interested in a ML-primal
representation for the first view and a ML-dual representation for the second view, although
it is easily shown that the given derivations hold for the inverted case (i.e. a ML-dual rep-
resentation for the first view and a ML-primal representation for the second view) which is
therefore omitted. Furthermore, one could easily use this framework to learn the relationship
between a ML-primal and ML-dual representation of the same data (i.e. explicitly learning
a mapping).

Consider a sample from a pair of random vectors (i.i.d. assumptions hold) of the form
(xi

a,xi
b) each with zero mean (i.e. centred) where i = 1, . . . , �. Let Xa and Xb be matrices

whose columns are the corresponding training samples and let Kb = X′
bXb be the kernel ma-

trix of the second view and wb be expressed as a linear combination of the training examples
wb = Xbe (note that e is a general vector and should not be confused with notation some-
times used for unit coordinate vectors). The primal-dual CCA problem can be expressed as
a primal-dual Rayleigh quotient

ρ = max
wa ,wb

w′
aXaX

′
bwb√

w′
aXaX′

awawbXbX
′
bwb

= max
wa ,e

w′
aXaX

′
bXbe

√
w′

aXaX′
awae′X′

bXbX
′
bXbe

3A voxel is a pixel representing the smallest three-dimensional point volume referenced in a functional Mag-
netic Resonance Imaging (fMRI) image of the brain. It is usually approximately 3 mm × 3 mm.
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= max
wa ,e

w′
aXaKbe

√
w′

aXaX′
awae′K2

b e
, (2)

where we choose the primal weights wa of the first representation and dual features e of
the second representation such that the correlation ρ between the two vectors is maximised.
As we are able to scale wa and e without changing the quotient, the maximisation in (2)
is equal to maximising w′

aXaKbe subject to w′
aX

′
aXawa = e′K2

b e = 1. For simplicity let
X = Xa , w = wa and K = Kb .

Having provided the initial primal-dual framework we proceed to reformulate the prob-
lem as a convex sparse least squares optimisation problem. We are able to show that max-
imising the correlation between the two vectors Ke and X′w can be viewed as minimising
the angle between them. Since the angle is invariant to rescaling, we can fix the scaling of
one vector and then minimise the norm4 between the two vectors

min
w,e

‖X′w − Ke‖2 (3)

subject to ‖Ke‖2 = 1. This intuition is formulated in the following theorem,

Theorem 1 Vectors w, e are an optimal solution of (2) if and only if there exist μ,γ such
that μw, γ e are an optimal solution of (3).

Furthermore, we note that the least squares problem in (3) is not a traditional one, as
it has a constraint that makes it equivalent to an eigenvalue problem. Theorem 1 is well
known in the statistics community and corresponds to the equivalence between one form
of Alternating Conditional Expectation (ACE) and CCA (Breiman and Friedman 1985;
Hastie and Tibshirani 1990). For an exact proof see Theorem 5.1 on p. 590 in Breiman
and Friedman (1985).

Constraining the 2-norm of Ke (or X′w) will result in a non convex problem, i.e. we will
not obtain a positive/negative-definite Hessian matrix. Motivated by the Rayleigh quotient
solution for optimising CCA, whose resulting symmetric eigenproblem does not enforce the
‖Ke‖2 = 1 constraint, i.e. the optimal solution is invariant to rescaling of the solutions we
replace the scaling of ‖Ke‖2 = 1 with the scaling of e to be ‖e‖∞ = 1. We will readdress
the resulting convexity when we achieve the final formulation.

After finding an optimal CCA solution, we are able to re-normalise e so that ‖Ke‖2 = 1
holds. We emphasise that even though K has been removed from the constraint the link
to kernels (kernel tricks and RKHS) is represented in the choice of kernel K used for the
dual-view, otherwise the presented method is a sparse linear CCA.5 We can now focus on
obtaining an optimal sparse solution for w, e.

It is obvious that when starting with w = e = 0 further minimising is impossible. To
avoid this trivial solution and to ensure that the constraints hold in our starting condi-
tion6 we set ‖e‖∞ = 1 by fixing ek = 1 for some fixed index 1 ≤ k ≤ � so that e =
[e1, . . . , ek−1, ek, ek+1, . . . , e�]. To further obtain a sparse solution on e we constrain the 1-
norm of the remaining coefficients ‖ẽ‖1, where we define ẽ = [e1, . . . , ek−1, ek+1, . . . , e�].

4We define ‖ · ‖ to be the 2-norm.
5One should keep in mind that even kernel CCA is still linear CCA performed in kernel defined feature space.
6‖e‖∞ = max(|e1|, . . . , |e�|) = 1, therefore there must be at least one ei for some i that is equal to 1.
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The motivation behind isolating a specific k and constraining the 1-norm of the remain-
ing coefficients, other than ensuring a non-trivial solution, follows the intuition of wanting
to find similarities between the samples given some basis for comparison. In the case of
documents, this places the chosen document (indexed by k) in a semantic context defined by
an additional (sparse) set of documents. This captures our previously stated goal of wanting
to be able to extract an interpretable relationship from a sparse word representation from
one language to a particular and specific context in the other language. The j ∈ N

� choices
of k correspond to the ej ,wj projection vectors.

We discuss the optimal choice of k and ensuring orthogonality of the sparse projections
in Sect. 4.2. Furthermore, turning the constraint ‖Ke‖ = 1 into ‖e‖ = 1 links with similar
procedures in supervised classification (e.g., Roth 2004).

We are also now able to constrain the 1-norm of w without effecting the convexity of the
problem. This gives the final optimisation as

min
w,e

‖X′w − Ke‖2 + μ‖w‖1 + γ ‖ẽ‖1 (4)

subject to ‖e‖∞ = 1. The expression ‖X′w − Ke‖2 is quadratic in the variables w and e
and is bounded from below (≥0) and hence is convex since it can be expressed as ‖X′w −
Ke‖2 = C +g′w+f ′e+[w′e′]H [w′e′]′. If H were not positive definite taking multiple μ of
the eigenvector v′ = [v′

1v
′
2] with negative eigenvalue λ would give C +μg′v1 +μf ′v2 +μ2λ

creating arbitrarily large negative values. When minimising subject to linear constraints
(1-norms are linear) this makes the whole optimisation convex.

While (4) is similar to Least Absolute Shrinkage and Selection Operator (LASSO) (Tib-
shirani 1994) (Basis Pursuit Denoising (Chen et al. 1999)), (4) also has similarity to non-
negative matrix factorization (Heiler and Schnor 2006), it is not a standard LASSO problem
unless e is fixed. Here we are trying to find sparse solutions for both w, e.

4 Derivation and algorithm

We propose a novel method for solving the optimisation problem represented in (4), where
the suggested algorithm minimises the gap between the primal and dual Lagrangian solu-
tions using a greedy search on w, e. The proposed algorithm finds a sparse w, e vectors,
by iteratively solving between the ML primal and dual formulation in turn. The solving of
alternating formulations is similar in flavour to Lee et al. (2006) who had proposed a sparse
coding algorithm for learning basis functions that capture higher-level feature in unlabelled
data by proposing an algorithm that alternates between two optimisation L1 and L2 con-
strained least squares problems.

We give the proposed algorithm as the following high-level pseudo-code. A more com-
plete description will follow later;

– Repeat

1. Use the dual Lagrangian variables to solve the ML-primal variables
2. Check whether all constraints on ML-primal variables hold
3. Use ML-primal variables to solve the dual Lagrangian variables
4. Check whether all dual Lagrangian variable constraints hold
5. Check whether 2 holds, IF not go to 1

– End
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We have yet to address how to determine which elements in w, e are to be non-zero. We
will show that from the derivation given in Sect. 4.1 a lower and upper bound is computed.
Combining the bound with the constraints provides us with a criterion for selecting the non-
zero elements for both w and e. The criteria being that only the respective indices which
violate the bound and the various constraints need to be updated. Furthermore, we limit
ourselves to positive entries in e as we expect to align with a positive subset of articles.

We proceed to give the derivation of our problem. The minimisation

min
w,e

‖X′w − Ke‖2 + μ‖w‖1 + γ ‖ẽ‖1

subject to ‖e‖∞ = 1 can be written as

w′XX′w + e′K2e − 2w′XKe + μ‖w‖1 + γ ‖ẽ‖1

subject to ‖e‖∞ = 1, where μ, γ are fixed positive parameters.
To simplify our mathematical notation we revert to uniformly using e in place of ẽ,

as k will be fixed in an outer loop so that the only requirement is that no update will be
made for ek , which can be enforced in the actual algorithm. We further emphasise that we
are only interested in the positive spectrum of e, which again can be easily enforced by
updating any ei < 0 to be ei = 0.7 Therefore we could rewrite the constraint ‖e‖∞ = 1 as
0 ≤ ei ≤ 1,∀i ∈ R

�.
We are able to obtain the corresponding Lagrangian

L = w′XX′w + e′K2e − 2w′XKe + μ‖w‖1 + γ e′j − β ′e,

subject to

β ≥ 0,

where β is the dual Lagrangian variable on e and μ,γ are positive scale factors as discussed
in Theorem 1 and j is the all ones vector. We note that as we algorithmically ensure that
e ≥ 0 we are able to write γ ‖e‖1 = γ e′j as ‖e‖1 := ∑�

i=1 |ei |.
We further observe that μ,γ can be considered as the hyper-parameters (or regularisation

parameters) common in the LASSO literature, controlling the trade-off between the function
objective and the level of sparsity. We show that the scale parameters can be treated as a type
of dual Lagrangian parameters to provide an underlying automatic determination of sparsity.
We demonstrate that this approach obtains very good results and is discussed in detail in
Sect. 7.1.

To simplify the 1-norm derivation we express w by its positive and negative components8

such that w = w+ − w− subject to w+,w− ≥ 0.
This allows us to rewrite the Lagrangian as

L = (
w+ − w−)′

XX′(w+ − w−) + e′K2e

− 2
(
w+ − w−)′

XKe − α−′w− − α+′w+ − β ′e

+ γ
(
e′j

) + μ
((

w+ + w−)′
j
)
. (5)

7We can also easily enforce the ‖ · ‖∞ constraint by updating any ei > 1 to be ei = 1.
8This means that w+/w− will only have the positive/negative values of w and zero elsewhere.
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The corresponding Lagrangian in (5) is subject to

α+ ≥ 0,

α− ≥ 0,

β ≥ 0.

The two new dual Lagrangian variables α+,α− are to uphold the positivity constraints
on w+,w−.

4.1 SCCA derivation

In this section we will show that the constraints on the dual Lagrangian variables will form
the criterion for selecting the non-zero elements from w and e. First we define further no-
tations used. Given the data matrix X ∈ R

m×� and Kernel matrix K ∈ R
�×� as defined in

Sect. 3, we define the following vectors

w+ = [
w+

1 , . . . ,w+
m

]
,

w− = [
w−

1 , . . . ,w−
m

]
,

α+ = [
α+

1 , . . . , α+
m

]
,

α− = [
α−

1 , . . . , α−
m

]
,

e = [e1, . . . , e�],
β = [β1, . . . , β�].

Throughout this section let i be the index of either w, e that needs to be updated. We use
the notation (·)i or [·]i to refer to the ith index within a vector and (·)ii to refer to the ith
element on the diagonal of a matrix.

Taking derivatives of (5) in respect to w+, w−, e and equating to zero gives

∂L
∂w+ = 2XX′(w+ − w−) − 2X′Ke − α+ + μj = 0,

∂L
∂w− = −2XX′(w+ − w−) + 2X′Ke − α− + μj = 0, (6)

∂L
∂e

= 2K2e − 2KX′w − β + γ ′j = 0,

adding the first two equations gives

α+ = 2μj − α−,

α− = 2μj − α+,

implying a lower and upper component-wise bound on α−,α+ of

0 ≤ α− ≤ 2μj,

0 ≤ α+ ≤ 2μj.
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We use the bound on α to indicate which indices of the vector w need to be updated by
only updating the wi ’s whose corresponding αi violates the bound (i.e. the active sets of wi

and αi respectively). Similarly, we only update ei that has a corresponding βi value smaller
than 0.

We are able to rewrite the derivative with respect to w+ in terms of α−

∂L
∂w+ = 2XX′(w+ − w−) − 2X′Ke − 2μj + α− + μj

= 2XX′(w+ − w−) − 2X′Ke − μj + α−.

We wish to compute the update rule for the selected indices of w. Taking the second deriva-
tives of (5) in respect to w+ and w−, gives

∂2 L
∂w+2

= 2XX′,

∂2 L
∂w−2

= 2XX′,

so for the ii , the unit vector with entry 1, we have an exact Taylor series expansion t+ and
t− respectively for w+

i and w−
i as

L̂
(
w+ + t+ii

) = L
(
w+) + ∂L

∂w+
i

t+ + ∂2 L
∂w+

i

(
t+

)2
,

L̂
(
w− + t−ii

) = L
(
w−) + ∂L

∂w−
i

t− + ∂2 L
∂w−

i

(
t−

)2

giving us the exact update for w+
i by setting

∂L̂(w+ + t+ii )
∂t+

= (
2XX′(w+ − w−) − 2X′Ke − α+ + μj

)
i
+ 4

(
XX′)

ii
t+ = 0


⇒ t+ = 1

4(XX′)ii

[
2X′Ke − 2XX′(w+ − w−) − α− + μj

]
i
.

Therefore the update for w+
i is 
w+

i = t+. We also compute the exact update for w−
i as

∂L̂(w− + t−ii )
∂t−

= (−2XX′(w+ − w−) + 2X′Ke − α− + μj
)
i
+ 4

(
XX′)

ii
t− = 0


⇒ t− = − 1

4(XX′)ii

[
2X′Ke − 2XX′(w+ − w−) − α− + μj

]
i
,

so that the update for w−
i is 
w−

i = t−. Recall that w = (w+ − w−), hence the update rule
for wi is

ŵi ← wi + (

w+

i − 
w−
i

)
.

Therefore we find that the new value of wi should be

ŵi ← wi + 1

2(XX′)ii

[
2X′Ke − 2XX′w − α− + μj

]
i
.



340 Mach Learn (2011) 83: 331–353

We must also consider the update of wi when αi is within the constraints and wi = 0, i.e.
previously αi had violated the constraints triggering the updated of wi to be non zero. Notice
from (6) that

2
(
XX′)

ii
wi + 2

∑

j =i

(
XX′)

ij
wj = 2

(
X′Ke

)
i
− αi + μ.

It is easy to observe that the only component which can change is 2(XX′)iiwi , therefore as
we need to update wi towards zero. Hence when wi > 0 the absolute value of the update is

2
(
XX′)

ii

wi = 2μ − αi,


wi = 2μ − αi

2(XX′)ii

else when wi < 0 then the update is the negation of

2
(
XX′)

ii

wi = 0 − αi,


wi = −αi

2(XX′)ii

so that the update rule is ŵi ← wi −
wi . In the updating of wi we ensure that wi, ŵi do not
have opposite signs, i.e. we will always stop at zero before updating in any new direction.

We continue by taking second derivatives of the Lagrangian in (5) with respect to e,
which gives

∂2 L
∂e2

= 2K2,

so for ii , the unit vector with entry 1, we have an exact Taylor series expansion

L̂(e + t ii ) = L(e) + ∂L
∂ei

t + ∂2 L
∂ei

(t)2

giving us the following update rule for ei

∂L̂(e + t ii )
∂t

= (
2K2e − 2KX′w − β + γ ′j

)
i
+ 4K2

ii t = 0


⇒ t = 1

4K2
ii

[
2KX′w − 2K2e + β − γ ′j

]
i
,

the update for e is 
ei = t . The new value of ei will be

êi ← ei + 1

4K2
ii

[
2KX′w − 2K2e + β − γ ′j

]
i
,

again ensuring that 0 ≤ êi ≤ 1.
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Algorithm 1 The SCCA algorithm

Input: Data matrix X ∈ R
m×�, Kernel matrix K ∈ R

�×� and the value k.

% Initialisation:
w = 0, j = 1, e = 0, ek = 1
μ = 1

M

∑M

i |(2XKe)i |, γ = 1
�

∑�

i |(2K2e)i |
α− = 2XKe + μj
I = (α < 0) ‖ (α > 2μj)

repeat
% Update the found weight values:
Converge over w using Algorithm 2

% Find the dual values that are to be updated
β = 2K2e − 2KXw + γ j
J = (β < 0)

% Update the found dual projection values
Converge over e using Algorithm 3

% Find the weight values that are to be updated
α− = 2XKe − 2XX′w + μj
I = (α < 0) ‖ (α > 2μj)

until convergence

e = e
‖Ke‖ , w = w

‖X′w‖

Output: Feature directions w, e

4.2 SCCA algorithm

Observe that in the initial condition when w = 0 from (6) we are able to treat the scale
parameters μ,γ as dual Lagrangian variables and set them to

μ = 1

m

m∑

i

∣∣(2XKe
)
i

∣∣,

γ = 1

�

�∑

i

∣∣(2K2e
)
i

∣∣.

We emphasise that this is to provide an underlying automatic determination of sparsity and
show in Sect. 7.1 that this method works well in practice. Combining all the pieces we give
the SCCA algorithm as pseudo-code in Algorithm 1, which takes k as a parameter. In order
to choose the optimal value of k we need to run the algorithm with all values of k and select
the solution (and respective k), in each iteration, which gives the best (minimum) objective
value.

Finally, to ensure orthogonality of the extracted features (Shawe-Taylor and Cristianini
2004) for each ej and corresponding wj , we compute the residual matrices Xj , j = 1, . . . , �
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Algorithm 2 The SCCA algorithm—Convergence over w
repeat

for i = 1 to length of I do
if αIi > 2μ then

αIi = 2μ

ŵIi ← wIi + 1
2(XX′)Ii ,Ii

[2(XKe)Ii − 2(XX′w)Ii − α−
Ii

+ μ]
else if αIi < 0 then

αIi = 0
ŵIi ← wIi + 1

2(XX′)Ii ,Ii
[2(XKe)Ii − 2(XX′w)Ii − α−

Ii
+ μ]

else
if wIi > 0 then

ŵIi ← wIi − 2μ−αIi

2(XX′)Ii ,Ii
else if wIi < 0 then

ŵIi ← wIi + αIi

2(XX′)Ii ,Ii
end if

end if
if sign(wIi ) = sign(ŵIi ) then

wIi = 0
else

wIi = ŵIi

end if
end for

until convergence over w

Algorithm 3 The SCCA algorithm—Convergence over e
repeat

for i = 1 to length of J do
if Ji = k then

eJi
← eJi

+ 1
4K2

Ji Ji

[2(KX′w)Ji
− 2(K2e)Ji

− γ ]
if eJi

< 0 then
eJi

= 0
else if eJi

> 1 then
eJi

= 1
end if

end if
end for

until convergence over e

by projecting the columns of the data onto the orthogonal complement of X′
j (XjX

′
j wj ),

a procedure known as deflation,

Xj+1 = (
I − pj u′

j

)
Xj,

where U is a matrix with columns uj = XjX
′
j wj and P is a matrix with columns pj =

Xj X′
j

uj

u′
j
Xj X′

j
uj

. The extracted projection directions can be computed (following Shawe-Taylor
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Algorithm 4 The SCCA algorithm with deflation

Input: Data matrix X ∈ R
m×�, Kernel matrix K ∈ R

�×�.

X1 = X, K1 = K

for j = 1 to � do
k = select optimal k (elaborated in text)
[ej ,wj ] = SCCA_Algorithm 1 (Xj ,Kj , k)

τj = K ′
j (K

′
j ej )

uj = XjX
′
j wj

pj = Xj X′
j

uj

u′
j
Xj X′

j
uj

if j < � then

Kj+1 = (I − τj τ ′
j

τ ′
j
τj

)Kj (I − τj τ ′
j

τ ′
j
τj

)

Xj+1 = Xj(I − uj p′
j )

end if
end for

and Cristianini 2004) as U(P ′U)−1. Similarly we deflate for the dual view

Kj+1 =
(

I − τj τ
′
j

τ ′
j τj

)
Kj

(
I − τj τ

′
j

τ ′
j τj

)
,

where τj = K ′
j (K

′
j ej ) and compute the projection directions as B(T ′KB)−1T where B is a

matrix with columns Kj ej and T has columns τj . The deflation procedure is illustrated in
pseudocode in Algorithm 4, for a detailed review on deflation we refer the reader to Shawe-
Taylor and Cristianini (2004).

5 Alternate formulations

For the sake of completeness we compare our above solution to two alternative approaches.9

In the first, we formulate the SCCA minimisation as a quadratic program using the CVX10

Matlab toolbox, given in Algorithm 6, where we are able to observe that we are alternating
between the ML-primal and ML-dual optimisation problems.

In the second approach, we provide an alternative sparse (LARS-based)11 solution for
the SCCA problem. Here again we alternate between the ML-primal and ML-dual optimi-
sations problems. Furthermore, the LARS-based formulation has slightly more differences
from Algorithm 6 (as well as our original solution) as we are no longer able to uphold the
‖e‖∞ ≤ 1 constraint as well as moving μ‖w‖1, γ ‖ẽ‖1 from the optimisation objective to
its constraints as ‖w‖1 ≤ μ,‖e‖1 ≤ γ respectively. The latter has been shown by Tibshi-
rani (1994) to be equivalent. We highlight to the reader that both alternate approaches also
require the setting of k.

9We were unable to compare to the primal sparse CCA method of Torres et al. (2007) as it required a com-
mercial license of MOSEK.
10http://www.stanford.edu/~boyd/cvx/
11We use the implementation by Karl Skoglund, IMM, DTU, kas@imm.dtu.dk.

http://www.stanford.edu/~boyd/cvx/
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Algorithm 5 The SCCA algorithm—Quadratic program using CVX
repeat

y = Ke
cvx_begin
variable w(m)

minimize(‖X′w − y‖2 + μ‖w‖1)
cvx_end

y = X′w
cvx_begin
variable e(�)
minimize(‖y − Ke‖2 + γ ‖ẽ‖1)
subject to
ej = 1
‖e‖∞ ≤ 1
cvx_end

until convergence over e, w

Algorithm 6 The SCCA algorithm—Alternate solver using LARS
repeat

y = Ke
minw ‖X′w − y‖ s.t. ‖w‖1 ≤ μ

y = X′w
mine ‖y − Ke‖ s.t. ‖e‖1 ≤ γ

until convergence over e, w

5.1 Simulated data comparison

We construct simulated data by generating a 2 dimensional background cluster (background
noise) constituting of 200 samples drawn independently from a uniform distribution over a
10 × 10 cube centered at the origin. We then proceed to generated a paired 2 dimensional
cluster, each constituting of 20 samples drawn independently from Gaussian distributions
centered around {(4,2)} and {(−2,2)} for the two views respectively. We use a Gaussian
kernel with the smoothing parameter set to σ = 2 (arbitrarily set). Finally, in order to main-
tain similarity between the executions of the algorithms, we set γ and μ as illustrated in
Sect. 4.2 for all three approaches. We compute the optimisation value, for all methods, as
specific in (4) (after re-normalising the resulting weight ML-primal-dual weight vectors),
i.e.

f = ‖X′w − Ke‖2 + μ‖w‖1 + γ ‖e‖1.

In the following comparison we run the SCCA, SCCA CVX and SCCA LARS ap-
proaches on the simulated data and list in Table 1 their performance, averaged for all k. We
are able to observe that SCCA is significantly computationally faster (for the case of non-
linear kernel for ML-dual) as well as resulting in significantly smaller objective function
value and a higher correlation value when compared to the alternate CVX approach. Finally,
the correlation and objective values achieved by the SCCA LARS approach indicate that it
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Table 1 Comparison of SCCA to two alternate approaches of SSCA CVX and SCCA LARS. We list the run
time (seconds), number of elements selected for the ML-primal w and ML-primal e, optimisation objective
value and the correlation value

Method Run-time (s) # w # e f Correlation value

SCCA 0.0052 1 1 0.4262 0.2371

SCCA CVX 2.9709 2 120 53.51 0.1161

SCCA LARS 93.750 2 118 4.175e+7 1.0000

Fig. 1 We visualise the average
change in the duality gap for each
of the SCCA algorithm iterations
on the simulated data. As
anticipated this converges to zero
while the algorithm converges to
a solution

has over-fitted on the simulated-data. In the experiments section we compare and evaluate
between SCCA and its alternate methods on a mate-retrieval task. Finally, we demonstrate
the convergence properties of the proposed SCCA algorithm by visualising the duality-gap
in Fig. 1 where we are able to observe how the average change in the gap convergences to
zero as the algorithm convergences to its solution.

6 Data description and experimental setup

In the following experiments we use data from two datasets;

– The Danish-German corpus from the europal dataset (Koehn 2005)12 where we have a
total of 150 samples, consisting of aligned documents, with 12,679 Danish features and
26,028 German features.

– Two paired English-French and English-Spanish corpora from the jrc-acquis dataset (Ralf
et al. 2006). The English-French corpus consists of 300 samples with 2,637 English fea-
tures and 2,951 French features while the English-Spanish corpus consists of 1,000 sam-
ples with 40,629 English features and 57,796 Spanish features.

12http://people.csail.mit.edu/~koehn/publications/europarl.ps

http://people.csail.mit.edu/~koehn/publications/europarl.ps
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The features represent the number of words in each language. The corpora are pre-
processed into a Term Frequency Inverse Document Frequency (TFIDF) representation fol-
lowed by zero-meaning (centring) and normalisation. In our lingual based experiments the
linear kernel was used for the dual view.

Our experiment is of mate-retrieval, in which a document from the test corpus of one
language is considered as the query and only the mate document from the paired language
is considered relevant. In the following experiments the results are an average of retrieving
the mate for both language 1 and language 2 and has been repeated 10 times with a random
train-test split.

We compute the mate-retrieval by projecting the query document as well as the paired
(other language) test documents into the learnt semantic space where the inner product be-
tween the projected data is computed. Let q be the query in one language and Ks the kernel
matrix of the inner product between the second language’s testing and training documents

l =
〈

q ′w
‖q ′w‖ ,

Kse
‖Kse‖

〉
.

The resulting inner products l are then sorted by value. We measure the success of the mate-
retrieval task using average precision, this assesses where the correct mate within the sorted
inner products l is located. Let Ij be the index location of the retrieved mate from query qj ,
the average precision p is computed as

p = 1

M

M∑

j=1

1

Ij

,

where M is the number of query documents.

7 Experiments

7.1 Hyperparameter validation

In the following section we validated, on the jrc-acquis data, our approach for automat-
ically determining the regularisation parameter (hyper-parameter) μ (or alternatively γ ).
The SCCA problem

min
w,e

‖X′w − Ke‖2 + μ‖w‖1 + γ ‖ẽ‖1, (7)

subject to ‖e‖∞ = 1 can be simplified to a general LASSO solver by removing the optimi-
sation over e, resulting in

min
w

‖X′w − k‖2 + μ‖w‖1,

where, given our paired data, k is the inner product between the query and the training
samples and X is the second paired data samples. This simplified formulation is trivially
solved by Algorithm 1 by ignoring the loops that adapt e. The simplification of (7) allows
us to focus on showing that μ is close to optimal, which is also true for γ , and therefore
omitted.

The hyper-parameters control the level of sparsity. Therefore, we test the level of sparsity
as a function of the hyper-parameter value. We proceed by creating a new document d∗ from
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Fig. 2 Document generation for
the English-French corpus
(visualisation for a single query):
We plot the ratio of total number
of selected words to the total
number of words in the original
document. The horizontal line
defines the optimal choice where
the total number of selected
words is identical to the total
number of words in the original
document. The vertical line
represents the result using the
automatic setting of the
hyper-parameter. We are able to
observe that the automatic
selection of μ is a good
approximation for selecting the
level of sparsity

Table 2 French-English Corpus: The ratio of the total number of selected words to the actual total number of
words in the paired test document, averaged over all queries. The optimal average ratio if we always generate
an ‘ideal’ document is 1

Average selection ratio

Automatic setting of μ 1.01 ± 0.54

Non-sparse method 28.15 ± 15.71

a paired language that best matches our query13 and observe how the change in μ affects the
total number of words being selected. An “ideal” μ would generate a new document, in the
paired language, and select an equal number of words in the query’s actual paired document.
Recall that the data has been mean corrected (centred) and therefore no longer sparse.

We set μ to be in the range of [0.001, . . . ,1] with an increment of 0.001 and use a leave-
paired document-out routine for the English-French corpus, which is repeated for all 300
documents. Figure 2 illustrates, for a single query, the effective change in μ on the level of
sparsity. We plot the ratio of the total number of selected words to the total number of words
in the original document. An ideal choice of μ would choose a ratio of 1 (the horizontal
lines) i.e. create a document with exactly the same number of words as the original document
or in other words select a μ such that the cross would lie on the plot. We are able to observe
that the method for automatically choosing μ (the vertical line) is able to create a new
document with a close approximation to the total number of words in the original document.

In Table 2 we are able to show that the average ratio of total number of selected words for
each document generated in the paired language is very close to the ideal level of sparsity,
while a non-sparse method (as expected) generates a document with an average of ≈28
times the number of words from the original document. Now that we have established the
automatic setting of the hyper-parameters, we proceed in testing how ‘good’ the selected
words in the form of mate-retreiveal experiments.

13I.e. given a query in French we want to generate a document in English that best matches the query. The
generated document can then be compared to the actual paired English document.



348 Mach Learn (2011) 83: 331–353

Fig. 3 We plot the average
precision (y axis) on the 100 test
documents as a function of the
deflation iteration (x axis) for up
to the maximum of
40 components. As anticipated,
increasing the deflation steps
improves on the average
precision since a richer semantic
space is constructed. SCCA
LARS became numerically
unstable after iteration 5 and as a
result did not converge

Table 3 We give the averaged average precision (as detailed in Fig. 3) and reported the number of features
used #{w, e} at the last deflation step across all the computed primal and dual weight vectors. Finally, we list
the run-time for each deflation step for a chosen optimal k

Method (averaged) Average precision # w # e Run-time (s)

SCCA 0.4915 ± 0.0325 163.5 40 0.9046

SCCA LARS 0.1273 ± 0.0340 19.2 50 0.7442

7.2 Sparse CCA for mate-retrieval

In this section we discuss an experiment where we use the europal German-Danish paired bi-
lingual corpus to evaluate our SCCA solver to the proposed alternatives on a mate retrieval
task. Due to the large number of features we were unable to evaluate the SCCA CVX as the
resulting quadratic program was too computationally exhaustive to run in practice.

We randomly split the German-Danish samples into 50 training and 100 testing doc-
uments and use the procedure outlined in Sect. 7.1 to set the hyper-parameters for both
SCCA and SCCA LARS. The reported results are an averaged over 10 repetitions of ran-
domly splitting the data into train and test sets. Furthermore, we highlight that we use the
exact same procedure for the SCCA LARS approach as with our proposed algorithm (i.e. we
run Algorithm 4 where SCCA_Algorithm is replaced with Algorithm 6). Finally, we select
k by transversing, in each deflation iteration, through all possible k values (excluding those
previously selected) and choosing k with the associated smallest objective function value.
This is done for both approaches. Due to the kernel matrix rank we limit the maximum
number of deflation iterations to 40. We highlight that Algorithm 4 with SCCA LARS was
not able to converge beyond 5 deflation iterations as the LASSO solver became numerically
unstable.

Our results are given in Fig. 3 and in Table 3 where we are able to demonstrate that our
sparse CCA active set approach, despite being slightly slower in run-time per each deflation
step, is able to significantly outperform the SCCA LARS alternative as well as being more
numerically stable. In Table 3 we report the average number of features (both primal and
dual) at the final deflation step. It is interesting to observe that SCCA LARS makes use
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Fig. 4 English-French: The average precision error (1−p) with ± standard division error bars for SCCA and
KCCA for different number of projections used for the mate-retrieval task. The left figure is for 50 training
and 250 testing documents while the right figure is for 100 training and 200 testing documents

of all 50 dual features14 at iteration 5 (as detailed above, the method became numerically
unstable beyond this point) whereas our SCCA solver still only used 40 dual features15 at
final (40th) iteration. Both approaches resulted with a very sparse primal weight vector from
the original 12,679 Danish and 26,028 German features.

7.3 KCCA–SCCA comparison

In previous studies (Vinokourov et al. 2003; Hardoon and Shawe-Taylor 2003; Hardoon
et al. 2003; Szedmak et al. 2007) KCCA has been shown to work well for mate-retrieval
therefore in the following experiment we compare KCCA to SCCA on the mate-retrieval
task. The best test performance for the KCCA regularisation parameter for the paired cor-
pora was found to be 0.03. We used this value to ensure that KCCA was not at a disadvantage
since SCCA had no parameters to tune. Finally, we adopt a simplistic strategy of picking the
values of k in numerical order k = 1, . . . , �.

We start by giving the results for the English-French mate-retrieval as shown in Fig. 4.
The left plot depicts the average precision (± standard deviation) when 50 documents are
used for training and the remaining 250 are used as test queries. The right plot in Fig. 4 gives
the average precision (± standard deviation) when 100 documents are used for training and
the remaining 200 for testing. It is interesting to observe that even though SCCA does not
learn the common semantic space using all the features (average plotted in Fig. 5) for ei-
ther ML primal or dual views (although SCCA will use full dual features when using the
full number of projections) its error is extremely similar to that of KCCA and in fact con-
verges with it when a sufficient number of projections are used. It is important to emphasise
that KCCA uses the full number of documents (50 and 100) and the full number of words
(an average of 2,794 for both languages) to learn the common semantic space. For example,

14Averaged across elars
i

,wlars
i

for i = 1, . . . ,5.
15Averaged across escca

i
,wscca

i
for i = 1, . . . ,40.
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Fig. 5 English-French: Level of Sparsity—the following figure is an extension of Fig. 4 which uses 50
documents for training. The left figure plots the average number of words used while the right figure plots the
average number of documents used with the number of projections. For reference, KCCA uses all the words
(average of 2794) and documents (50) for all number of projections

Fig. 6 English-Spanish: The
average precision error (1 − p)
with ± standard division error
bars of SCCA and KCCA for
different number of projections
used for the mate-retrieval task.
We use 100 documents for
training and 900 for testing
documents

following the left plot in Fig. 4 and the additional plots in Fig. 5 we are able to observe that
when 35 projections are used KCCA and SCCA show a similar error. However, SCCA uses
approximately 142 words and 42 documents to learn the semantic space, while KCCA uses
2,794 words and 50 documents.

The second mate-retrieval experiment uses the English-Spanish paired corpus. In each
run we randomly split the 1000 samples into 100 training and 900 testing paired documents.
The results are plotted in Fig. 6 where we are clearly able to observe SCCA outperforming
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Fig. 7 English-Spanish: Level of Sparsity—the following figure is an extension of Fig. 6 which uses 100
documents for training. The left figure plots the average number of words used and while the right figure plots
the average number of documents used with increasing number of projections. For reference, KCCA uses all
the words (average of 49,212) and documents (100) for all number of projections

KCCA throughout. We believe this to be a good example of when too many features hinder
the learnt semantic space, also explaining the difference in the results obtained from the
English-French corpus as the number of features are significantly smaller in that case. The
average level of SCCA sparsity is plotted in Fig. 7. In comparison to KCCA which uses all
words (49,212) SCCA uses a maximum of 460 words.

The performance of SCCA, especially in the latter English-Spanish experiment, shows
that we are indeed able to extract meaningful semantics between the two languages, using
only the relevant features.

Despite these already impressive results our intuition is that even better results are at-
tainable if the hyper-parameters would be tuned to give optimal results. The question of
hyper-parameter optimality is left for future research. Although, it seems that the main gain
of SCCA is sparsity and interpretability of the features.

8 Conclusions

Despite being introduced in 1936, CCA has proven to be an inspirational methodology for
new and continuing research. In this paper we analyse the formulation of CCA and address
the issues of sparsity as well as convexity by presenting a novel sparse CCA method formu-
lated as a convex least squares approach. We also provide a different perspective of solving
CCA by using a ML primal-dual formulation which focuses on the scenario when one is
interested in (or limited to) a ML-primal representation for the first view while having a
ML-dual representation for the second view. A greedy optimisation algorithm is derived.
Furthermore, we give two alternate solutions for SCCA; the first as a quadratic program and
the second as a LARS based solver.

The method is demonstrated on a bi-lingual English-French and English-Spanish paired
corpora for mate retrieval. The true capacity of SCCA becomes visible when the number
of features becomes extremely large as SCCA is able to learn the common semantic space
using a very sparse representation of the ML primal-dual views.
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The paper’s reason d’être is to propose a new efficient algorithm for solving the sparse
CCA problem. We believe that while addressing this problem new and interesting questions
which need to be addressed have surfaced

– Theoretically justified approach to compute the hyperparameters μ,γ .
– Extending SCCA to a ML primal-primal (ML dual-dual) framework.
– Theoretical analysis of consistency.

We believe this work to be an initial stage for a new sparse framework to be explored and
extended.
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