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Abstract
Our goal is to estimate causal interactions in multivariate time series. Using vector autore-
gressive (VAR) models, these can be defined based on non-vanishing coefficients belonging
to respective time-lagged instances. As in most cases a parsimonious causality structure is
assumed, a promising approach to causal discovery consists in fitting VAR models with an ad-
ditional sparsity-promoting regularization. Along this line we here propose that sparsity should
be enforced for the subgroups of coefficients that belong to each pair of time series, as the ab-
sence of a causal relation requires the coefficients for all time-lags to become jointly zero. Such
behavior can be achieved by means of `1,2-norm regularized regression, for which an efficient
active set solver has been proposed recently. Our method is shown to outperform standard
methods in recovering simulated causality graphs. The results are on par with a second novel
approach which uses multiple statistical testing.
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1. Introduction
Causality is commonly defined based on the widely accepted assumption that an effect is always
preceded by its cause. Granger (1969) postulates a measure of causal influence between two
time series (Granger Causality). In a nutshell, a time series zi Granger-causes time series z j if
knowledge of past values of zi improves the prediction of z j (compared to only using past values
of z j). The improvement is assessed by means of the Granger score, which is defined as the
logarithm of the ratio of the residuals of the two models (1) including only z j and (2) including
both zi and z j.

In the case of a set F = {z1, . . . ,zM} of time series, the pairwise analysis may lead to spurious
detection of a causal relation. For this reason it is advisable to additionally include the set
F ∖{zi,z j} of all other observable time series in both models. This approach, to which we refer
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as complete (or conditional) Granger Causality, resolves the problem of spurious causality due
to common hidden factors z* if z* ∈ F . If the z* are not observable, Granger causality fails and
we refer to Nolte et al. (2008) for a detailed discussion and a remedy.

Just to illustrate the problem, consider that a hidden driving factor is equally pronounced in
two variables zi′ and zi′′. If both variables contain roughly the same amount of noise, all of the
sets F , F ∖ {zi′} and F ∖ {zi′′} provide equal information about z j, for which reason complete
Granger causality will neither identify zi′ nor zi′′ as a driver. This type of mistake can only be
avoided if each set F ∖{zi′} is tested against all sets not including zi′, which leads to exponential
complexity.

An elegant alternative to the pairwise comparisons of (complete) Granger causality is to
handle all potential causal relations between all time series at once. Assuming a linear dynamics
of the system under study, this leads us to the vector autoregressive (VAR) model. Interestingly,
the parameters of the VAR model induce a natural alternative definition of causal influence,
which is compliant with Granger’s considerations.

In many applications the true causality graph is assumed to be sparse, i.e. only a few causal
interactions between time series are expected. Ordinary Least Squares (OLS) and Ridge Re-
gression, which are usually used for fitting VAR models, however, are known for producing
dense coefficients. Only recently Valdes-Sosa et al. (2005) have proposed to enforce estima-
tion of sparse AR coefficients using `1-norm regularized models such as the Lasso (Tibshirani,
1996).

In this paper we propose a novel sparse approach which – unlike Lasso – accounts for the
fact that the absence of a causal relation between zi and z j requires all AR coefficients belonging
to that certain pair of time series to be jointly zero. Furthermore, we consider Ridge Regression
in combination with the multiple statistical testing procedure provided by Hothorn et al. (2008).
More details on the methodology are given in section 3. These methods are evaluated and
compared to standard approaches in extensive simulations.

2. Background
In this section, we briefly summarize related approaches to estimate sparse vector autoregressive
models in the context of causal discovery. We roughly distinguish between sparse estimation
methods and testing strategies.

Given a multivariate time series z(t) ∈ RM a linear vector autoregressive process of order P
is defined as

z(t) =
P

∑
p=1

A(p)z(t− p)+ ε(t) , (1)

where A(p) ∈ RM×M , ε ∼ 𝒩 (0,σ2I) and t ∈ Z indicates time. Hence, the signal at time t is
modeled as a linear combination of its P past values and Gaussian measurement noise. Inspired
by the initial assumption that the cause should always precede the effect, we suggest the fol-
lowing definition of causality. We say that time series zi has a causal influence on time series z j

if for at least one p ∈ {1, . . . ,P}, the coefficient A(p)
ji corresponding to the interaction between

z j and zi at the pth time-lag is nonzero.
Thus, causal inference may be conducted by estimating the matrices A(p) from a sam-

ple Z = (z(1), . . . ,z(T )). Let us introduce the following shortcuts. We denote by A =
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(
A(1), . . . ,A(P)

)⊤
the matrix of all VAR coefficients and set X = (Z1, . . . ,ZP), Y = Z0, Zp =

(z(P+1− p), . . . ,z(T − p))⊤. Here vec(·) denotes the vectorization operation.

2.1 Sparsity

Probably the most straightforward way to estimate a sparse VAR is to use `1-regularization on
the set of coefficients,

Âlasso = argmin
A
‖vec(XA−Y )‖2

2 +λ ‖vec(A)‖1 , λ ≥ 0 .

Recently, Valdes-Sosa et al. (2005) proposed a combination of VAR-estimation and the
Lasso (Tibshirani, 1996). While Valdes-Sosa et al. (2005) only consider a VAR model of order
1, there have been extensions to higher orders (e.g. Arnold et al., 2007). However, we note
in the latter case, Lasso is not used on the VAR coefficients directly, but that the problem
is transformed into the task of estimating partial correlation coefficients between time-lagged
copies of the time series (see also Opgen-Rhein and Strimmer, 2007).

2.2 Testing

Just as in the case of sparse methods, it is often suggested to transform the regression task into
the estimation of the matrix of partial correlation coefficients between time-lagged copies of the
time series. While Drton and Perlman (2008) estimate the correlation matrix in an unregularized
way, Opgen-Rhein and Strimmer (2007) propose a shrinkage estimator, which is superior in the
case of high-dimensional data (Schäfer and Strimmer, 2005). Afterwards, significant partial
correlations are detected by controlling false discovery rates. While the latter approach is only
tested for P = 1, it is straightforward to extend it to higher order VAR’s.

3. Our Approach
In the following, we provide the details regarding the groupwise sparsity and the alternative
testing strategy respectively.

3.1 Ridge Regression and Multiple Testing

Under the assumption of Gaussian white noise it is natural to estimate the AR coefficients using
regularized least squares, and probably the most straightforward way to do so is to use Ridge
Regression,

Âridge = argmin
A
‖vec(XA−Y )‖2

2 +λ ‖vec(A)‖2
2 = (X⊤X +λ I)−1X⊤Y ,λ ≥ 0 . (2)

Thanks to the Ridge penalty, Eq. 2 delivers solutions with small coefficients, which, however,
are in general never exactly zero. In the strict sense of Granger, this corresponds to a fully-
connected dependency graph, rendering Ridge Regression an improper candidate for sparse
causal recovery. On the other side, many of the estimated coefficients are expected to be non-
significant. Hence, we propose a sparsification by means of statistical testing, where our ap-
proach is, in contrast to e.g. bootstrapping, to explicitly derive p-values.

From Eq. 2 it is apparent that the estimation can be done independently for each col-
umn of A, and so does the testing. Let therefore αk denote the kth column of A and let
yk = (zk(P+1), . . . ,zk(T ))

⊤. Neglecting the dependency of X and Y , the Ridge coeffi-
cients depend linearly on Y , we can conclude that under the null-hypothesis H0 : αk = 0,
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we have α̂k ∼ 𝒩 (0,σ2
k Σ) with Σ =

(
X⊤X +λ I

)−1 X⊤X
(
X⊤X +λ I

)−1. Furthermore, setting

H = X
(
X⊤X +λ I

)−1 X⊤ an estimate of the model variance σ2
k is given by

σ̂
2
k =

‖yk−Hyk‖2

trace((I−H)(I−H⊤))
. (3)

Using Eq. 3 we can now construct normalized test statistics α̃ik = α̂ik/
√

σ2
k Σii which are jointly

normally distributed with α̃ ∼ 𝒩 (0,R) and Ri j := Σi j/
√

ΣiiΣ j j. Suppose we want to test all
individual hypotheses H0,i : αik = 0 simultaneously, then, according to Hothorn et al. (2008),
the adjusted p-values are pi = 1− g(R, |α̃ik|). We reject a hypothesis, if the p-value is below
the predefined significance level γ . Here,

g(R, t) = P
(

max
i
|α̃ik| ≤ t

)
=
∫ t

−t
. . .
∫ t

−t
φ(α1, . . . ,αMP)dα1 · · ·dαMP (4)

and φ(α) is the density function of the multivariate normal distribution 𝒩 (0,R).

3.2 Group Lasso

Sparse causal discovery using Ridge Regression is a two-step procedure and may possibly suffer
from the aggregation of assumptions that enter in each step. Direct estimation of sparse VAR
coefficients (e.g. via Lasso) is therefore desirable, as this would allow omission of the multiple
significance testing step. However, for higher order models, this approach is prone to selecting a
different set of causal interactions for each of the P time lags. We here suggest that this behavior
can be overcome by enforcing joint sparsity of the coefficient vectors that belong to a certain
pair of time series. This corresponds to incorporating the prior belief that causal influences
between time series are not restricted to only one particular time lag into the estimation. The
positive effect of such modeling can be verified in Figure 1 (see Section 4 for more details).

The idea of imposing groupwise sparse coefficients leads to `1,2-norm regularized regression
also known as the Group Lasso (Yuan and Lin, 2006), which has also applications in Multiple
Kernel Learning (Bach et al., 2004; Sonnenburg et al., 2006) and the EEG/MEG inverse problem
(e.g. Haufe et al., 2008). The term `1,2-norm stands here for an `1-norm of a vector of `2-norms.
Our proposed objective is given by

Âglasso = argmin
A
‖vec(XA−Y )‖2

2 (5)

s.t.
∥∥∥
(

A(1)
11 , . . . ,A

(P)
MM

)∥∥∥
2
+∑

i ̸= j

∥∥∥
(

A(1)
i j , . . . ,A(P)

i j

)∥∥∥
2
≤ κ , (6)

This penalty leads to a groupwise variable selection, i.e. a whole block of coefficients is jointly
zero. Note that the first term in Eq. 6 penalizes all MP coefficients describing univariate rela-
tions. In this way, those coefficients are shrunk and hence, overfitting is avoided. Furthermore,
we remark that it is also conceivable to to split the the whole estimation of A into M subproblems
(as suggested in Subsection 3.1), which is desirable in large-scale scenarios.

Eqs. 5 and 6 define a non-differentiable but convex optimization problem which can be
solved in polynomial time by means of Second-order Cone Programming (SOCP). For prob-
lems with sparse expected structure, however, the optimization can be carried out much more
efficiently using the results of Roth and Fischer (2008). By keeping a set of active coefficient
groups, their algorithm needs to call the SOCP solver only for problem sizes far smaller than
the original problem – leading to a considerable reduction of memory usage and computation
time. In the experiments, we employ the active-set algorithm of Roth and Fischer (2008) in
combination with a freely available SOCP solver (Sturm, 1999).
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4. Simulations
We conduct a series of experiments in which the causal structure of simulated data has to be
recovered. We include the proposed groupwise sparse approach, standard Lasso, Ridge Regres-
sion with multiple testing and complete Granger Causality based on AR models in the compar-
ison. All four approaches are applied both with and without knowledge of the true model order.
In the latter case P = 10 is chosen for the reconstruction. For all methods considered, it is also
possible to estimate the model order P, e.g., via cross-validation.

4.1 Setup

Each simulated data set consists of a multivariate time series with parameters M = 7 and
T = 1000 that is generated by a random VAR process of order P = 5 according to 1. The
distribution of the noise component ε(t) is chosen to be the standard normal distribution. The
VAR coefficients for all but 10 randomly chosen pairs of time series are set to zero, yielding
exactly 10 causal interactions. The non-zero coefficients are drawn randomly from𝒩 (0,0.04I).
Each set of VAR coefficients is tested for the stability of its induced dynamical system by look-
ing at the eigenvalues of the corresponding transition matrix. Only coefficients leading to stable
systems (i.e those with transition matrices with eigenvalues of at most 1) are accepted. We con-
sider the following three types of problems, for each of which we created 10 instances: 1) no
noise is added to the data generated by the VAR model 2) the data is superimposed by Gaussian
noise of approximately the same strength, which is uncorrelated (white) both across time and
sensors 3) the data is superimposed by mixed noise of approximately the same strength, which
is generated as a random instantaneous mixture of M univariate AR processes of order 20. Note
that in none of these cases the noise itself possesses a causal structure which would superimpose
the true structure.

For measuring performance we consider Receiver Operating Characteristics (ROC) curves,
which allow objective assessment of the performance in different regimes (e.g. very few false
positives). As an additional measure of absolute performance we also calculate the Area Under
Curve (AUC). ROC curves and AUC values are averaged across the 10 problem instances and
standard errors are computed for AUC.

Complete Granger Causality is calculated using the Levinson-Wiggens-Robinson algorithm
for fitting AR models (Marple, 1987), which is available in the open Biosig toolbox (Schlögl,
2003). For each pair of variables, the Granger score is calculated. The Granger score is stan-
dardized by dividing it by it’s standard deviation as estimated by the jackknife. To obtain a
ROC-curve, the standardized scores are threshold at different values, ranging from completely
sparse to completely dense solutions.

The regularization parameter of Ridge Regression λ is chosen via 10-fold cross-validation
(with respect to time-series prediction accuracy). For this value of λ , we derive the test statistics
defined in Subsection3.1. The multidimensional integrals in Eq. 4 are computed using Monte
Carlo sampling according to Genz (1992). ROC-curves are constructed by varying the signifi-
cance level γ .

For Lasso and Group Lasso, solutions ranging from completely sparse to completely dense
are obtained through variation of the regularizing constant λ and κ respectively.

4.2 Results and Discussion

First, we illustrate the different behavior of the investigated methods in Figure 1. This example
corresponds to the situation without noise and with known model order P = 5. The leftmost part
of the Figure shows the true underlying causal structure. In the top we show the strength of the
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generating AR coefficients belonging to each pair of variables. Following Granger, this defines
the binary causal influence matrix in the bottom, where black boxes indicate causal interactions.

The reconstructions for the different methods are here based on a point estimate of the
VAR coefficients, rather than the whole ROC curve. For Granger causality, this estimate is
obtained by thresholding the standardized Granger score. A causal influence is defined to be
significant, if the standardized score exceeds a threshold of 0.5. The regularizing constant of
Ridge Regression, Lasso and Group Lasso is fixed using 10-fold cross-validation. Note that for
the Lasso variants, this already determines the sparse causality structure. For Ridge Regression,
we perform subsequent sparsification using a significance level of γ = 0.05.

We display the estimated binary influence matrices in the bottom row of Figure 1. In the top
row, we also show for the sake of comprehensibility the quantities these matrices are derived
from by means of thresholding. In cases of Lasso and Group Lasso these quantities are simply
the estimated AR coefficients and the threshold is zero (the machine precision). For Ridge
Regression we depict the negative logarithmic p-values derived from the AR coefficients, while
for complete Granger causality the standardized Granger score is shown.
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Figure 1: Simulated causal influence matrix and estimates according to Granger Causality,
Ridge Regression, Lasso and Group Lasso. In the top row the generating AR co-
efficients and their Lasso/Group Lasso estimates are shown, as well as the p-values
derived from Ridge Regression and the (complete) Granger-score. The bottom row
depicts the binarized causal influence matrices.

Table 1 summarizes the AUC scores obtained in the experiments described above. The
complementing ROC curves are shown in Figure 2. In short it can be stated that Group Lasso
and Ridge Regression outperform their competitors in all scenarios, although not always sig-
nificantly. While Ridge Regression performs slightly better than Group Lasso in the noiseless
condition, Group Lasso has a clearly visible yet insignificant advantage over all methods in the
white noise setting. Under the influence of mixed noise Ridge Regression and Group Lasso are
on par. Note furthermore that the ROC curve for Lasso is below the ROC curve of Group Lasso,
which shows that Lasso tends to be too dense. Interestingly, knowledge of the true model order
hardly provided any significant advantage in our simulations.

5. Conclusion
We presented a novel approach for causal discovery in multivariate time series which is based
on the Group Lasso. As an alternative we also discussed Ridge Regression with subsequent
multiple testing according to Hothorn et al. (2008) which is also novel in the context of VAR
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Figure 2: Average ROC curves of Granger Causality (red), Ridge Regression (green), Lasso
(blue) and Group Lasso (black) in three different noise conditions and for two differ-
ent model orders.

GRANGER RIDGE LASSO GLASSO
NO NOISE 0.991 ± 0.004 1.000 ± 0.000 0.996 ± 0.002 0.997 ± 0.002

P = 5 WHITE NOISE 0.910 ± 0.023 0.948 ± 0.020 0.941 ± 0.021 0.971 ± 0.016
MIXED NOISE 0.896 ± 0.012 0.928 ± 0.010 0.889 ± 0.011 0.926 ± 0.012
NO NOISE 0.980 ± 0.005 0.998 ± 0.002 0.996 ± 0.002 0.999 ± 0.001

P = 10 WHITE NOISE 0.885 ± 0.019 0.958 ± 0.012 0.948 ± 0.013 0.979 ± 0.005
MIXED NOISE 0.893 ± 0.013 0.931 ± 0.015 0.861 ± 0.014 0.931 ± 0.007

Table 1: Average AUC scores and standard errors of Granger Causality, Ridge Regression,
Lasso and Group Lasso in three different noise conditions and for two different model
orders. Entries with significant superior score are highlighted.

modeling. Both approaches were shown to outperform standard methods in simulated scenarios.
Future research will aim at applying our techniques to real-world problems. Given that the
sparsity assumption is correct, our Group Lasso approach should be able to handle much larger
problems than the ones that were considered here by 1) splitting the problem into M independent
subproblems and 2) using the active set solver of Roth and Fischer (2008) in combination with
strong regularization that ensures staying in the sparse regime. We expect that this will allow
large-scale applications such as the estimation of cerebral information flow from functional
Magnetic Resonance Tomography (fMRI) recordings to benefit from the improved accuracy of
our approach.
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