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Abstract

Canonical correlation analysis (CCA) is a classical and important multivariate tech-

nique for exploring the relationship between two sets of variables. It has applications in

many fields including genomics and imaging, to extract meaningful features as well as

to use the features for subsequent analysis. This paper considers adaptive and compu-

tationally tractable estimation of leading sparse canonical directions when the ambient

dimensions are high. Three intrinsically related problems are studied to fully address the

topic. First, we establish the minimax rates of the problem under prediction loss. Sepa-

rate minimax rates are obtained for canonical directions of each set of random variables

under mild conditions. There is no structural assumption needed on the marginal covari-

ance matrices as long as they are well conditioned. Second, we propose a computationally

feasible two-stage estimation procedure, which consists of a convex programming based

initialization stage and a group-Lasso based refinement stage, to attain the minimax rates

under an additional sample size condition. Finally, we provide evidence that the addi-

tional sample size condition is essentially necessary for any randomized polynomial-time

estimator to be consistent, assuming hardness of the Planted Clique detection problem.

The computational lower bound is faithful to the Gaussian models used in the paper,

which is achieved by a novel construction of the reduction scheme and an asymptotic

equivalence theory for Gaussian discretization that is necessary for computational com-

plexity to be well-defined. As a byproduct, we also obtain computational lower bound

for the sparse PCA problem under the Gaussian spiked covariance model. This bridges

a gap in the sparse PCA literature.

Keywords. Convex programming, group-Lasso, Minimax rates, Computational com-

plexity, Planted Clique, Sparse CCA (SCCA), Sparse PCA (SPCA)

1 Introduction

Canonical correlation analysis (CCA) [20] is one of the most classical and important tools in

multivariate statistics [1, 27]. For two random vectors X ∈ Rp and Y ∈ Rm, at the population
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level, CCA finds successive vectors uj ∈ Rp and vj ∈ Rm (called canonical directions) that

solve
max
a,b

a′Σxyb,

subject to a′Σxa = b′Σyb = 1, a′Σxul = b′Σyvl = 0, ∀0 ≤ l ≤ j − 1,
(1)

where Σx = Cov(X),Σy = Cov(Y ),Σxy = Cov(X,Y ), u0 = 0, and v0 = 0. Since our primary

interest lies in the covariance structure among X and Y , we assume that their means are zeros

from here on. Then the linear combinations (u′jX, v
′
jY ) are the j-th canonical variates. This

technique has been widely used in various scientific fields to explore the relation between two

sets of variables. In practice, one does not have knowledge about the population covariance,

and Σx, Σy, and Σxy are replaced by their sample versions Σ̂x, Σ̂y, and Σ̂xy in (1).

Recently, there have been growing interests in applying CCA to analyzing high-dimensional

datasets, where the dimensions p and m could be much larger than the sample size n. It

has by now been well understood that classical CCA breaks down in this regime [22, 4, 16].

Motivated by genomics, neuroimaging and other applications, people have become interested

in seeking sparse leading canonical direction vectors. Various estimation procedures impos-

ing sparsity on canonical directions have been developed in the literature, which are usually

termed sparse CCA. See, for example, [37, 38, 28, 19, 24, 32, 3]. In addition to its use as a

high-dimensional multivariate analysis tool, sparse CCA is also used to extract meaningful

features in data for subsequent analysis. For example, Wang et al. [34] proposed to employ

sparse CCA to compute edge weights in gene networks and then to infer gene relationships

by community detection on the constructed networks.

The theoretical aspect of sparse CCA has also been investigated in the literature. A useful

model for studying sparse CCA is the canonical pair model proposed in [12]. In particular,

suppose there are r pairs of canonical directions (variates) among the two sets of variables,

then the canonical pair model reparameterizes the cross-covariance matrix as

Σxy = ΣxUΛV ′Σy, where U ′ΣxU = V ′ΣyV = Ir. (2)

Here U = [u1, ..., ur] and V = [v1, ..., vr] collect the canonical direction vectors and Λ =

diag(λ1, . . . , λr) with 1 > λ1 ≥ · · · ≥ λr > 0 are the ordered canonical correlations. Let

Su = supp(U) and Sv = supp(V ) be the indices of nonzero rows of U and V . One way to

impose sparsity on the canonical directions is to require the sizes of Su and Sv to be small,

namely |Su| ≤ su and |Sv| ≤ sv for some su ≤ p and sv ≤ m. Under this model, Gao et al.

[16] showed that the minimax rate for estimating U and V under the joint loss function

‖Û V̂ ′ − UV ′‖2F is
1

nλ2r

(
r(su + sv) + su log

ep

su
+ sv log

em

sv

)
. (3)

However, to achieve the rate, Gao et al. [16] used a computationally infeasible and non-

adaptive procedure, which requires exhaustive search of all possible subsets with the given

cardinality and the knowledge of su and sv. Moreover, it is unclear from (3) whether the

estimation of U per se interferes with that of V and vice versa.
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The goal of the present paper is to study three fundamental and practically important

questions: (1) What are the minimax rates for estimating the canonical directions on the two

sets of variables separately? (2) Is there a computationally efficient and sparsity-adaptive

method that achieves the optimal rates? (3) What is the price one has to pay to achieve the

optimal rates in a computationally efficient way?

Under the canonical pair model and Gaussianity assumption, we first characterize the

separate minimax rates for estimating U and V under a natural prediction loss function.

Moreover, we provide an affirmative answer to the second question by proposing a two-stage

estimation procedure where both stages are based on convex programming which admit

efficient computation. The resulting estimator is shown to achieve the minimax rates under

an extra sample size condition. Importantly, both the minimax characterization and the

adaptive procedure require no structural assumption on the marginal covariance matrices Σx
and Σy other than them being well-conditioned. To the best of our limited knowledge, this

is the first computationally feasible sparse CCA algorithm that achieves optimal statistical

performance without imposing restrictive assumptions on Σx and Σy. Last but not least, we

provide a computational lower bound to show that the additional sample size condition is

essentially the price one has to pay in order to achieve consistency, a weaker requirement than

minimax optimality whenever the minimax rates converge to zero, by any computationally

efficient algorithm. Our computational lower bound is faithful to the Gaussian canonical pair

model used in the paper, which distinguishes itself from previous results on the related sparse

PCA problem [6, 33] which required generalization to much larger space of distributions. In

fact, as a byproduct of our arguments, we also obtain a computational lower bound for the

sparse PCA problem under the Gaussian spiked covariance model [21].

1.1 Main contributions

We introduce in more detail the main contributions of the present paper from three different

viewpoints as suggested by the three questions we raised above.

Separate minimax rates The joint loss ‖Û V̂ ′ − UV ′‖2F studied by [16] characterizes the

joint estimation error of both canonical directions U and V . In this paper, we provide a

finer analysis by studying individual estimation errors of U and V separately under a natural

loss function that can be interpreted as prediction error of canonical variates. The exact

definition of the loss functions is given in Section 2. Separate minimax rates are obtained for

U and V . In particular, we show that the error in estimating U depends only n, r, λr, p and

su, but not on either m or sv. Consequently, if U is sparser than V , then convergence rate

for estimating U can be faster than that for estimating V . Such a difference is not reflected

by the joint loss, since its minimax rate (3) is determined by the slower between the rates of

estimating U and V .

Adaptive estimation To achieve optimal rates adaptively, we propose a computationally

efficient algorithm under the canonical pair model. The algorithm is a two-stage estimation
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procedure. In the first stage, we propose a convex programming for sparse CCA based on a

tight convex relaxation of a combinatorial program in [16] by considering the smallest convex

set containing all matrices of the form AB′ with both A and B being rank-r orthogonal

matrices. The convex programming can be efficiently solved by the Alternating Direction

Method with Multipliers (ADMM) algorithm [14, 10]. Based on the output of the first

stage, we formulate a sparse linear regression problem in the second stage to improve rates of

convergence, and the final estimator Û and V̂ can be obtained via a group-Lasso algorithm

[40]. Under the sample size condition that

n ≥ C susv log(p+m)

λ2r
, (4)

for some sufficiently large constant C > 0, we show Û and V̂ recover the true canonical direc-

tions U and V within optimal error rates adaptively with high probability. It is worthwhile

to point out that a naive application of Lasso algorithm leads to an inferior rate.

As was pointed out in [12] and [16], sparse CCA is a more involved problem than the

well-studied sparse PCA. A naive application of sparse PCA algorithm to sparse CCA leads

to possibly inconsistent results, as was shown in [12]. The additional difficulty in sparse

CCA comes from two sources. First, due to the presence of the nuisance parameters Σx and

Σy, the cross-covariance Σxy is not a sparse matrix itself. This makes the subset selection

procedure in [21] and [11] inapplicable in sparse CCA when Σx and Σy are unknown. Second,

the sparse canonical direction matrices U and V do not have orthogonal columns in the usual

Euclidean metric. Instead, their columns are orthogonal with respect to Σx and Σy, which

are unknown objects that have to be estimated from data. In high dimensional settings,

estimators of Σx and Σy can be inconsistent without strong structural assumptions imposed.

These difficulties were overcome by a computationally infeasible procedure in [16]. The key

observation in [16] was that the sample covariance matrix, when restricted on a subset of

variables of true sparsity size, is a good estimator of the true sub covariance matrix under

operator norm (Lemma 14 in [16]), though the whole sample covariance matrix may not be

consistent in high-dimensions. However, this required the algorithm to conduct an exhaustive

search over all possible subsets, which is computationally infeasible.

In the present paper, computational intractability is further overcome by the proposed

convex relaxation which is not only tight but also preserves the desired curvature of the

problem by establishing the corresponding curvature lemma (Lemma 6.3 below). The lemma

can be viewed as a convex extension of the generalized sin-theta theorem established in [16].

Together with the curvature lemma, we show that the error matrix of the convex optimization

lies in a generalized cone, a concept that we coin to extend the well-known cone condition in

sparse linear regression [8]. A restricted eigenvalue property is established on the generalized

cone, which leads to the desired convergence rate of our proposed estimator.

Computational lower bound As cost of computational feasibility, we require the sample

size condition (4) for the adaptive procedure to achieve optimal rates of convergence. As-

suming hardness of the Planted Clique detection problem, we provide a computational lower
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bound to show that a condition of this kind is unavoidable for any computationally feasible

estimation procedure to achieve consistency. To rigorously establish the computational lower

bound, we adopt the framework of asymptotically equivalent discretized model developed in

[26]. Up to an asymptotically equivalent discretization which is necessary for computational

complexity to be well-defined, our computational lower bound is established directly for the

Gaussian canonical pair model used throughout the paper.

An analogous sample size condition, namely n ≥ Cs2 log p/λ2 where s is the sparsity

of the leading eigenvector and λ the gap between the leading eigenvalue and the rest of

the spectrum, has been imposed in the sparse PCA literature (see [21, 25, 11, 31, 7]). In

an important paper, Berthet and Rigollet [6] showed that if there existed a polynomial-time

algorithm for a generalized sparse PCA detection problem while the condition is violated, then

the algorithm could be made (in randomized polynomial-time) into a detection method for

the Planted Clique problem in a regime where it is believed to be computationally intractable.

However, both the null and the alternative hypotheses in the sparse PCA detection problem

were generalized to include all multivariate distributions whose quadratic forms satisfy certain

uniform tail probability bounds. The same remark also applies to the subsequent work on

sparse PCA estimation [33]. Hence, the computational lower bound in sparse PCA was only

established for such enlarged parameter spaces. As a byproduct of our analysis, we establish

the desired computational lower bound for sparse PCA in the (discretized) Gaussian spiked

covariance model. This strengthens computational lower bounds in [6, 33] and bridges the

gap between the computational lower bound and the minimax/adaptive estimation for the

Gaussian sparse PCA.

1.2 Organization

After the introduction of notation below, the rest of the paper is organized as follows. In

Section 2, we formulate the sparse CCA problem by defining its parameter space and loss

function. Section 3 presents minimax rates of the problem by introducing a rate-optimal

estimator and establishing the corresponding minimax lower bound. Section 4 is devoted

to adaptive estimation, where we propose a two-stage estimator via a novel form of convex

relaxation. The proposed estimator is shown to be minimax optimal under an additional

sample size condition. The condition is shown to be essentially necessary for all randomized

polynomial-time estimator in Section 5. Section 6 presents proofs of theoretical results in

Section 4. Due to page limits, computational lower bounds on sparse PCA, implementation

of the adaptive procedure, numerical studies and additional proofs are all deferred to the

supplement.

1.3 Notation

For a positive integer t, [t] denotes the index set {1, 2, ..., t}. For any set S, |S| denotes its

cardinality. For any event E, 1{E} denotes its indicator function. For any number a, we use

⌈a⌉ to denote the smallest integer that is no smaller than a and ⌊a⌋ the largest integer no
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larger than a. For any two numbers a and b, let a ∨ b = max(a, b) and a ∧ b = min(a, b).

For a vector u, ||u|| =
√∑

i u
2
i , ||u||0 =

∑
i 1{ui 6=0}, and ||u||1 =

∑
i |ui|. For any matrix

A = (aij)i∈[p],j∈[k], the i-th row of A is denoted by Ai·. For any subset J ⊂ [p]× [k] of indices,

we use AJ = (aij1{(i,j)∈J}) to denote the p×k matrix whose entries on J are the same as those

in A and the entries outside J are all zeros. When J = J1 × J2 with J1 ⊂ [p] and J2 ⊂ [k],

we write AJ1J2 to stand for AJ1×J2 and write A(J1J2)c to stand for A(J1×J2)c . The notation

AJ1∗ means AJ1×[k] ∈ Rp×k while AJ1· stands for the corresponding nonzero submatrix which

is of size |J1| × k. For any square matrix A = (aij), denote its trace by Tr(A) =
∑

i aii.

For two square matrices A and B, the relation A � B means B −A is positive semidefinite.

Moreover, let O(p, k) =
{
A ∈ Rp×k : A′A = Ik

}
denote the set of all p×k orthogonal matrices

and O(k) = O(k, k). For any matrix A ∈ Rp×k, PA stands for the p × p projection matrix

onto the column space of A. The notation σi(A) stands for its i-th largest singular value. In

particular, σmax(A) = σ1(A) and σmin(A) = σp∧k(A). The Frobenius norm and the operator

norm of A are defined as ‖A‖F =
√

Tr(A′A) and ‖A‖op = σ1(A), respectively. The l1 norm

and the nuclear norm are defined as ||A||1 =
∑

ij |aij | and ‖A‖∗ =
∑

i σi(A), respectively.

The support of A is defined as supp(A) = {i ∈ [p] : ‖Ai·‖ > 0}, the index set of nonzero

rows. For any positive semi-definite matrix A, A1/2 denotes its principal square root that is

positive semi-definite and satisfies A1/2A1/2 = A. The trace inner product of two matrices

A,B ∈ Rp×k is defined as 〈A,B〉 = Tr(A′B). For two probability distributions P and Q, the

total variation distance is defined as TV(P,Q) = supB |P(B)−Q(B)|. We also write TV(p, q)

if p and q are the densities of P and Q, respectively. Given a random element X, L(X)

denotes its probability distribution. The constant C and its variants such as C1, C
′, etc.

are generic constants and may vary from line to line, unless otherwise specified. Notation P

and E stand for generic probability and expectation when the distribution is clear from the

context.

2 Problem Formulation

2.1 Parameter space

Consider a canonical pair model where the observed pairs of measurement vectors (Xi, Yi),

i = 1, . . . , n are i.i.d. from a multivariate Gaussian distribution Np+m(0,Σ) where

Σ =

[
Σx Σxy
Σyx Σy

]
,

with the cross-covariance matrix Σxy satisfying (2). We are interested in the situation where

the leading canonical directions are specified by sparse vectors. One way to quantify the level

of sparsity is to bound how many nonzero rows there are in the U and V matrices. This

notion of sparsity has been used previously in both sparse PCA [11, 31] and sparse CCA [16]

problems when one seeks multiple sparse vectors simultaneously.

Recall that for any matrix A, supp(A) collects the indices of nonzero rows in A. Adopt-

ing the above notion of sparsity, we define F(su, sv, p,m, r, λ;M) to be the collection of all
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covariance matrices Σ with the structure (2) satisfying

1. U ∈ Rp×r and V ∈ Rm×r with |supp(U)| ≤ su and |supp(V )| ≤ sv;
2. σmin(Σx) ∧ σmin(Σy) ≥M−1 and σmax(Σx) ∨ σmax(Σy) ≤M ;

3. λr ≥ λ and λ1 ≤ 1−M−1.

(5)

The probability space we consider is

P(n, su, sv, p,m, r, λ;M) =
{
L(X1, ..., Xn) : Xi

iid∼ Np+m(0,Σ)

with Σ ∈ F(su, sv, p,m, r, λ;M)
}
,

(6)

where n is the sample size. We shall allow su, sv, p,m, r, λ to vary with n, while M > 1 is

restricted to be an absolute constant.

Our goal is to achieve the optimal rates of convergence adaptively on a large collection of

parameter spaces of the above form. To this end, we need to further specify the loss function

we use, to which we now turn.

2.2 Prediction loss

From now on, the presentation of definitions and results will focus on U only since those for V

can be obtained via symmetry. Given an estimator Û = [û1, . . . , ûr] of the leading canonical

directions for X, a natural way of assessing its quality is to see how well it predicts the values

of the canonical variables U ′X⋆ ∈ Rr for a new observation X⋆ which is independent of and

identically distributed as the training sample used to obtain Û . This leads us to consider the

following loss function

L(Û , U) = inf
W∈O(r)

E⋆‖W ′Û ′X⋆ − U ′X⋆‖2, (7)

where E⋆ means taking expectation only over X⋆ and so L(Û , U) is still a random quantity

due to the randomness of Û . Since L(Û , U) is the expected squared error for predicting the

canonical variables U ′X⋆ via Û ′X⋆, we refer to it as prediction loss from now on. It is worth

noting that the introduction of an r × r orthogonal matrix W is unavoidable. To see this,

we can simply consider the case where λ1 = · · · = λr = λ in (2), then we can replace the

pair (U, V ) in (2) by (UW,VW ) for any W ∈ O(r). In other words, the canonical directions

are only determined up to a joint orthogonal transform. If we work out the E⋆ part in the

definition (7), then the loss function can be equivalently defined as

L(Û , U) = inf
W∈O(r)

Tr[(ÛW − U)′Σx(ÛW − U)]. (8)

By symmetry, we can define L(V̂ , V ) by simply replacing U , Û , X⋆ and Σx in (7) and (8)

with V , V̂ , Y ⋆ and Σy.

A related loss function is the squared subspace distance ‖P
Û
−PU‖2F. By Proposition 9.2

in the supplementary material, the prediction loss L(Û , U) is a stronger loss function than

the squared subspace distance. That is, ‖P
Û
− PU‖2F ≤ CL(Û , U) for some constant C > 0

only depending on M .
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3 Minimax Rates

To provide a benchmark for any estimation procedure, we determine the minimax rates of

the statistical problem formulated in the previous section. To this end, we first provide a

minimax upper bound using a combinatorial optimization procedure, and then show that the

resulting rate is optimal by further providing a matching minimax lower bound.

Let (X ′
i, Y

′
i )

′ ∈ Rp+m, i = 1, . . . , n, be i.i.d. observations following Np+m(0,Σ) for some

Σ ∈ F(su, sv, p,m, r, λ;M). For notational convenience, we assume the sample size is divisible

by three, i.e., n = 3n0 for some n0 ∈ N.

Procedure To obtain minimax upper bound, we propose a two-stage combinatorial op-

timization procedure. We split the data into three equal size batches D0 = {(X ′
i, Y

′
i )

′}n0
i=1,

D1 = {(X ′
i, Y

′
i )

′}2n0
i=n0+1 and D2 = {(X ′

i, Y
′
i )

′}ni=2n0+1, and denote the sample covariance ma-

trices computed on each batch by Σ̂
(j)
x , Σ̂

(j)
y and Σ̂

(j)
xy for j ∈ {0, 1, 2}.

In the first stage, we find (Û (0), V̂ (0)) which solves the following program:

max
L∈Rp×r,R∈Rm×r

Tr(L′Σ̂(0)
xyR),

subject to L′Σ̂(0)
x L = R′Σ̂(0)

y R = Ir, and

|supp(L)| ≤ su, |supp(R)| ≤ sv.

(9)

In the second stage, we further refine the estimator for U by finding Û (1) solving

min
L∈Rp×r

Tr(L′Σ̂(1)
x L)− 2Tr(L′Σ̂(1)

xy V̂
(0))

subject to |supp(L)| ≤ su.
(10)

The final estimator is a normalized version of Û (1), defined as

Û = Û (1)((Û (1))′Σ̂(2)
x Û (1))−1/2. (11)

The motivation of the second stage will be discussed below after the statement of Theorem

3.1. We remark that the purpose of sample splitting employed in the above procedure is to

facilitate the proof.

Theory and discussion We now state the bounds related to the initial and final estimators

together with discussion on the intuition behind the proposed procedure. The first upper

bound concerns the initial estimator (Û (0), V̂ (0)).

Theorem 3.1. Assume

1

n

(
r(su + sv) + su log

ep

su
+ sv log

em

sv

)
≤ c (12)

for some sufficiently small c > 0. Then for any C ′ > 0, there exists C > 0 only depending

on C ′ such that

‖Σ1/2
x

(
Û (0)(V̂ (0))′ − UV ′

)
Σ1/2
y ‖2F ≤

C

nλ2

(
r(su + sv) + su log

ep

su
+ sv log

em

sv

)
,
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with P-probability at least 1− exp (−C ′(su + log(ep/su)))− exp (−C ′(sv + log(em/sv))) uni-

formly over P ∈ P(n, su, sv, p,m, r, λ;M).

The program (9) was first proposed in [16] as a sparsity constrained version of the classical

CCA formulation. Theorem 3.1 can then be viewed as a special case of Theorem 1 in [16].

We nonetheless present its proof in Section 9.1 in the supplementary material for the paper to

be self-contained. Using Wedin’s sin-theta theorem, one can directly derive from the bound

in Theorem 3.1 an upper bound for estimating U under the prediction loss (7). However, the

resulting bound will then involve the sparsity level sv and the ambient dimension m of the V

matrix, which is sub-optimal. The second stage in the procedure is thus proposed to further

pursue the optimal estimation rates, as is shown in the following theorem.

Theorem 3.2. Assume (12) holds for some sufficiently small c > 0. Then for any C ′ > 0,

there exists C > 0 only depending on C ′ such that

L(Û , U) ≤ C

nλ2
su

(
r + log

ep

su

)
, (13)

with P-probability at least 1− exp (−C ′(su + log(ep/su)))− exp (−C ′(sv + log(em/sv))) uni-

formly over P ∈ P(n, su, sv, p,m, r, λ;M).

The motivation for the second stage is as follows. First, if we were given the knowledge

of V , then the least square solution of regressing V ′Y ∈ Rr on X ∈ Rp is

UΛ = argmin
L∈Rp×r

E‖Y ′V −X ′L‖2F

= argmin
L∈Rp×r

Tr(L′ΣxL)− 2Tr(L′ΣxyV ) + Tr(V ′ΣyV )

= argmin
L∈Rp×r

Tr(L′ΣxL)− 2Tr(L′ΣxyV ),

(14)

where the expectation is with respect to the distribution (X ′, Y ′)′ ∼ Np+m(0,Σ). The second

equality results from taking expectation over each of the three terms in the expansion of

the square Frobenius norm, and the last equality holds since Tr(V ′ΣyV ) does not involve

the argument to be optimized over. Comparing (10) with (14), it is clear that (10) is a

sparsity constrained version of (14) where the knowledge of V and the covariance matrix Σ

are replaced by the initial estimator V̂ (0) and sample covariance matrix from an independent

sample. Therefore, Û (1) can be viewed as an estimator of UΛ. Hence, a final normalization

step is taking in (11) to transform it to an estimator of U .

Under assumption (12), Theorem 3.2 shows that it is possible to achieve a high probability

bound for prediction loss in U that does not depend on any parameter related to V . The

optimality of this upper bound can be justified by the following minimax lower bound.

Theorem 3.3. Assume that r ≤ su∧sv
2 . Then there exists some constant C > 0 only depend-

ing on M and an absolute constant c0 > 0, such that

inf
Û

sup
P∈P

P

(
L(Û , U) ≥ c0 ∧

C

nλ2
su

(
r + log

ep

su

))
≥ 0.8,

where P = P(n, su, sv, p,m, r, λ;M).
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By Theorem 3.2 and Theorem 3.3, we conclude that (13) is the minimax rate of the

problem whenever it is upper bounded by a constant.

4 Adaptive and Computationally Efficient Estimation

The study in Section 3 determines the minimax rates for estimating U under the prediction

loss. However, there are two drawbacks of the procedure (9) – (11). One is that the procedure

requires the knowledge of the sparsity levels su and sv. It is thus not adaptive. The other is

that in both stages one needs to conduct exhaustive search over all subsets of given sizes in

the optimization problems (9) and (10), and hence the computation cost is formidable.

In this section, we overcome both drawbacks by proposing a convex programming ap-

proach towards sparse CCA. The procedure is named as CoLaR, standing for Convex pro-

gramming with group-Lasso Refinement. It is not only computationally feasible but also

achieves the minimax estimation error rates adaptively over a large collection of parameter

spaces under an additional sample size condition. In what follows, we introduce the procedure

in Section 4.1 and then present its theoretical guarantee in Section 4.2. The issues related

to the additional sample size condition will be discussed in more detail in the subsequent

Section 5.

4.1 Estimation scheme

The basic principle underlying the computationally feasible estimation scheme is to seek tight

convex relaxations of the combinatorial programs (9) – (10). In what follows, we introduce

convex relaxations for the two stages in order. As in Section 3, we assume that the data is

split into three batches D0,D1 and D2 of equal sizes and for j = 0, 1, 2, let Σ̂
(j)
x , Σ̂

(j)
y and Σ̂

(j)
xy

be defined as before.

First stage By the definition of trace inner product, the objective function in (9) can be

rewritten as Tr(L′Σ̂xyR) = 〈Σ̂xy, LR′〉. Since it is linear in F = LR′, this suggests treating

LR′ as a single argument rather than optimizing over L and R separately. Next, the support

size constraints |supp(L)| ≤ su, |supp(R)| ≤ sv imply that the vector ℓ0 norm ‖LR′‖0 ≤ susv.
Applying the convex relaxation of ℓ0 norm by ℓ1 norm and including it as a Lagrangian term,

we are led to consider a new objective function

max
F∈Rp×m

〈Σ̂(0)
xy , F 〉 − ρ||F ||1, (15)

where F serves as a surrogate for LR′, ‖F‖1 =
∑

i∈[p],j∈[m] |Fij | denotes the vector ℓ1 norm

of the matrix argument, and ρ is a penalty parameter controlling sparsity. Note that (15)

is the maximization problem of a concave function, which becomes a convex program if the

constraint set is convex. Under the identity F = LR′, the normalization constraint in (9)

reduces to

(Σ̂(0)
x )1/2F (Σ̂(0)

y )1/2 ∈ Or = {AB′ : A ∈ O(p, r), B ∈ O(m, r)}. (16)
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Naturally, we relax it to (Σ̂
(0)
x )1/2F (Σ̂

(0)
y )1/2 ∈ Cr where

Cr = {G ∈ Rp×m : ‖G‖∗ ≤ r, ‖G‖op ≤ 1} = conv(Or) (17)

is the smallest convex set containing Or. For a proof of (17), see Section 9.4 in the supple-

mentary material. Combining (15) – (17), we use the following convex program for the first

stage in our adaptive estimation scheme:

max
F∈Rp×m

〈Σ̂(0)
xy , F 〉 − ρ||F ||1

subject to ‖(Σ̂(0)
x )1/2F (Σ̂(0)

y )1/2‖∗ ≤ r, ‖(Σ̂(0)
x )1/2F (Σ̂(0)

y )1/2‖op ≤ 1.
(18)

This optimization problem can be solved by the Alternating Direction Method with Mul-

tipliers (ADMM) [14, 10]. For details, see Section 10 in the supplementary material.

Remark 4.1. A related but different convex relaxation was proposed in [31] for the sparse

PCA problem, where the set of all rank r projection matrices (which are symmetric) is relaxed

to its convex hull – the Fantope {P : Tr(P ) = r, 0 � P � Ip}. Such an idea is not directly

applicable in the current setting due to the asymmetric nature of the matrices included in

the set Or in (16).

Remark 4.2. The risk of the solution to (18) for estimating UV ′, as we shall see in Theorem

4.1 below, is sub-optimal compared to the optimal rates determined in [16] and Theorem 3.3.

Nonetheless, it leads to a reasonable estimator for the subspaces spanned by first r left and

right canonical directions under a sample size condition, which is sufficient for the purpose

of achieving the optimal estimation rates for U and V in the second stage refinement to be

introduced below. In some sense, a further refinement of the optimizer in (18) is indispensable

for achieving optimal statistical performance. Actually, the improvement by the second stage

can be considerable as to be revealed by both Theorems 4.1 and 4.2 below and the simulation

results reported in Section 11 in the supplementary material.

Second stage Now we turn to convex relaxation to (10) in the second stage. By the

discussion following Theorem 3.2, if we view the rows of L as groups, then (10) becomes

a least square problem with a constrained number of active groups. A well-known convex

relaxation for such problems is the group-Lasso [40] where the number of active groups

constraint is relaxed by bounding the sum of ℓ2 norms of the coefficient vector of each group.

Let Â be the solution to (18) and Û (0) (resp. V̂ (0)) be the matrix consisting of its first r left

(resp. right) singular vectors. Thus, in the second stage of the adaptive estimation scheme,

we propose to solve the following group-Lasso problem:

min
L∈Rp×m

Tr(L′Σ̂(1)
x L)− 2Tr(L′Σ̂(1)

xy V̂
(0)) + ρu

p∑

j=1

‖Lj·‖, (19)

where
∑p

j=1 ‖Lj·‖ is the group sparsity penalty, defined as the sum of the ℓ2 norms of all the

row vectors in L, and ρu is a penalty parameter controlling sparsity. Note that the group

11



sparsity penalty is crucial, since if one uses an ℓ1 penalty instead, only a sub-optimal rate can

be achieved. Suppose the solution to (19) is Û (1), then our final estimator in the adaptive

estimation scheme is its normalized version

Û = Û (1)((Û (1))′Σ̂(2)
x Û (1))−1/2. (20)

As in Section 3, the reason of using sample splitting in the estimation scheme is only for

the technical arguments in the proof. Simulation results in Section 11 in the supplementary

material show that using the whole dataset repeatedly in (18) – (20) yields satisfactory

performance.

4.2 Theoretical guarantees

We first state the upper bound for the solution Â to the convex program (18).

Theorem 4.1. Assume that

n ≥ C1
susv log(p+m)

λ2
, (21)

for some sufficiently large constant C1 > 0. For any constant C ′ > 0, there exist positive

constants γ1, γ2 and C only depending on M and C ′, such that when ρ = γ

√
log(p+m)

n for

γ ∈ [γ1, γ2],

‖Â− UV ′‖2F ≤ Csusvρ2/λ2,
with P-probability at least 1−exp(−C ′(su+log(ep/su)))−exp(−C ′(sv+log(em/sv))) for any

P ∈ P(n, su, sv, p,m, r, λ;M).

Note that the error bound in Theorem 4.1 can be much larger than the optimal rate for

joint estimation of UV ′ established in Theorem 3.1 and [16]. Nonetheless, under the sample

size condition (21), it still ensures that Â is close to UV ′ in Frobenius norm distance. This

fact, together with the proposed refinement scheme (19) – (20), guarantees the optimal rates

of convergence for the estimator (20) as stated in the following theorem.

Theorem 4.2. Assume (21) holds for some sufficiently large C1 ≥ 0. For any C ′ > 0, there

exist constants γ and γu only depending on C ′, C1 and M such that if we set ρ = γ′
√

log(p+m)
n

and ρu = γ′u

√
r+log p
n for any γ′ ∈ [γ, C2γ] and γ

′
u ∈ [γu, C2γu] for some absolute constant

C2 > 0, there exists a constant C > 0 only depending on C ′, C1, C2 and M , such that

L(Û , U) ≤ C
su (r + log p)

nλ2
,

with P-probability at least 1 − exp(−C ′(su + log(ep/su))) − exp(−C ′(sv + log(em/sv))) −
exp(−C ′(r + log(p ∧m))) uniformly over P ∈ P(n, su, sv, p,m, r, λ;M).

By Theorem 3.3, the rate in Theorem 4.2 is optimal. By Theorem 4.1 and Theorem 4.2,

the choices of the penalty parameters ρ and ρu in (18) and (19) do not depend on su or sv.

Therefore, the proposed estimation scheme (18) – (20) achieves the optimal rate adaptively

over sparsity levels.

We conclude this section with two important remarks.

12



Remark 4.3. The group sparsity penalty used in the second stage (19) plays an important

role in achieving the optimal rate su(r+log p)
nλ2

. If we simply use an ℓ1 penalty, then we will

obtain the rate rsu log p
nλ2

, which is clearly sub-optimal.

Remark 4.4. Comparing Theorem 3.2 with Theorem 4.2, the adaptive estimation scheme

achieves the optimal rates of convergence for a smaller collection of parameter spaces of in-

terest due to the more restrictive sample size condition (21). This inevitably invites the

question: Is such a condition necessary? In Section 5, we show evidence that a condition

of this kind is unavoidable for any polynomial time algorithm to produce a consistent es-

timator even for Gaussian data based on the conjectured hardness of the Planted Clique

detection problem. Therefore, the sample size condition is in some sense necessary for any

computationally tractable algorithm.

5 Computational Lower Bounds

In this section, we provide evidence that the sample size condition (21) imposed on the

adaptive estimation scheme in Theorems 4.1 and 4.2 is essentially unavoidable for any com-

putationally feasible estimator. To be specific, we show that for a sequence of parameter

spaces in (5) – (6), if the condition is violated, then any computationally efficient estimator

of sparse canonical directions leads to an efficient algorithm for the Planted Clique detection

problem in a regime where it is believed to be computationally intractable.

Let N be a positive integer and k ∈ [N ]. We denote by G(N, 1/2) the Erdős-Rényi

graph on N vertices where each edge is drawn independently with probability 1/2, and by

G(N, 1/2, k) the random graph generated by first sampling from G(N, 1/2) and then selecting

k vertices uniformly at random and forming a clique of size k on these vertices. For an adja-

cency matrix A ∈ {0, 1}N×N of an instance from either G(N, 1/2) or G(N, 1/2, k), the Planted
Clique detection problem of parameter (N, k) refers to testing the following hypotheses

HG
0 : A ∼ G(N, 1/2) v.s. HG

1 : A ∼ G(N, 1/2, k). (22)

To form the connection of the Planted Clique problem to sparse CCA, let us first define

a sparse canonical correlation detection problem. Denoting the distribution Np+m(0, Ip+m)

by P0, we consider the following detection problem:

HC
0 : {(X ′

i, Y
′
i )

′}ni=1 ∼ Pn0 v.s.

HC
1 : {(X ′

i, Y
′
i )

′}ni=1 ∼ P ∈ P(n, su, sv, p,m, r, λ;M),
(23)

where the parameter space in HC
1 is defined as in (6). To establish the connection between

(22) and (23), we shall propose a four-step reduction scheme from (22) to (23) where n ≍ N ,

su = sv ≍ k, r = 1, λ ≍ k2/N up to a sub-polynomial factor and p = m with log p ≍ log n.

From a given adjacency matrix A, we are able to generate observations {(X ′
i, Y

′
i )

′}ni=1, such

that when A follows G(N, 1/2), the distribution of {(X ′
i, Y

′
i )

′}ni=1 is close to Pn0 in total

variation, and when A follows G(N, 1/2, k), the distribution of {(X ′
i, Y

′
i )

′}ni=1 is close in total
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variation to a mixture of distributions in P(n, su, sv, p,m, r, λ;M). When there is a good

estimator of the leading canonical direction, we are able to test between HC
0 and HC

1 , which

immediately leads to a good test between HG
0 and HG

1 . Note that the reduction scheme

proposed in this paper to connect (22) and (23) is directly targeted for the Gaussian sparse

CCA model, and does not require any parameter space enlargement as was done in [6, 33]

for the related sparse PCA problem. A delicate procedure is incorporated in the proposed

reduction scheme to generate nearly Gaussian distributed i.i.d. random vectors {(X ′
i, Y

′
i )

′}ni=1

from a Bernoulli random matrix A.

It is widely believed that when k = o(
√
N), the Planted Clique detection problem (22)

cannot be solved by any randomized polynomial-time algorithm. According to the aforemen-

tioned correspondence between (N, k) and (n, su, sv, p,m, r, λ) by our reduction scheme, the

hard regime k = o(
√
N) for the Planted Clique problem corresponds to the regime of sparse

CCA problem where the sample size condition (21) is violated. Hence, the computational

hardness of the Planted Clique problem implies the computational hardness of sparse CCA.

The hypothesized hardness of Planted Clique problem can be formalized into the following

hypothesis.

Hypothesis A. For any sequence k = k(N) such that lim supN→∞
log k
logN < 1

2 and any

randomized polynomial-time test ψ,

lim inf
N→∞

(
PHG

0
ψ + PHG

1
(1− ψ)

)
≥ 2

3
.

Evidences supporting this hypothesis have been provided in [29, 15]. Recently, compu-

tational lower bounds in several statistical problems have been established by assuming the

above hypothesis and its close variants, including sparse PCA detection [6] and estimation

[33], submatrix detection [26] and community detection [18].

In what follows, Section 5.1 introduces the asymptotically equivalent discretized model

and states the rigorous computational lower bounds for the discretized sparse CCA problem.

The key step in establishing the lower bound is a randomized polynomial time reduction which

maps any solution to the sparse CCA estimation problem to a solution to the Planted Clique

detection problem, where dealing with discrete data is necessary for rigorous complexity

theoretic investigation under Turing machine models [2]. To convey the main ideas in a more

transparent way, we present a sketch of the reduction scheme in Section 5.2 ignoring the

discretization issue. A rigorous treatment is deferred to Section 8.3 in the supplement. A

slight variant of the proposed reduction scheme leads to a computational lower bound for

sparse PCA under the Gaussian spiked covariance model. For details, see Section 7 in the

supplement.

5.1 Asymptotically equivalent discretization and hardness of sparse CCA

To formally address the computational complexity issue in a continuous statistical model, we

adopt the framework of asymptotically equivalent discretization proposed in [26]. The asymp-

totically equivalent discretized model allows computational complexity to be well-defined,
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while preserving the statistical difficulty of the original continuous problem. For any t ∈ N,

define the function [·]t : R→ 2−tZ by

[x]t = 2−t
⌊
2tx
⌋
. (24)

For any vector v = (vi) and any matrix R = (Rij), [v]t = ([vi]t) and [R]t = ([Rij ]t).

Let E(p,n)M = {L(X1, . . . , Xn) : Xi
iid∼ Np(µ,Σ),M

−1 ≤ σmin(Σ) ≤ σmax(Σ) ≤ M}, and

E(p,n,t)M = {L([X1]t, . . . , [Xn]t) : L(X1, . . . , Xn) ∈ E(p,n)M }. The following lemma bounds the Le

Cam distance [23] and hence establishes the asymptotic equivalence of multivariate Gaussian

distribution and its appropriate discretization.

Lemma 5.1. When 2tt−1/2 ≥ 2(pM)3/2, the Le Cam distance ∆(E(p,n)M , E(p,n,t)M ) ≤ n(pM)3/2t1/22−t.

Now define the discretized sparse CCA probability space: for any t ∈ N,

Pt(n, su, sv, p,m, r, λ;M) = {L([X]t, [Y ]t) : L(X,Y ) ∈ P(n, su, sv, p,m, r, λ;M)} .

The following theorem gives the computational lower bound for the sparse CCA estimation

problem considered in the present paper.

Theorem 5.1. Suppose that Hypothesis A holds and that as n → ∞, p = m satisfying

2n ≤ p ≤ na for some constant a > 1, su = sv, n(log n)
5 ≤ cs4u for some sufficiently small

c > 0, and λ = susv
9720n(log(12n))2

. If for some δ ∈ (0, 1),

lim inf
n→∞

(susv)
1−δ log(p+m)

nλ2
> 0, (25)

then for any randomized polynomial-time estimator û,

lim inf
n→∞

sup
P∈Pt(n,su,sv ,p,m,1,λ;4)

P

{
L(û, u) >

1

3× 322

}
>

1

4
, (26)

where t = ⌈4 log2(p+m+ n)⌉.

Let us abbreviate Pt(n, su, sv, p,m, 1, λ; 4) and P(n, su, sv, p,m, 1, λ; 4) by Pt and P. On

one hand, when t = ⌈4 log2(p + m + n)⌉, Lemma 5.1 implies that Pt is asymptotically

equivalent to P. This is because Pt ⊂ E(p+m,n,t)5 and P ⊂ E(p+m,n)5 , which implies ∆(Pt,P) ≤
∆(E(p+m,n,t)5 , E(p+m,n)5 )→ 0 with the given t. In addition, following the lines of the proofs of

Theorems 3.1–3.2 and 4.1–4.2, one can show that the same upper bounds continue to hold

when we apply the estimator (9)–(11) and the adaptive procedure (18)–(20) on the discrete

data directly. In summary, results in Sections 3 and 4 continue to hold for appropriately

discretized problems. On the other hand, Theorem 5.1 provides a sequence of asymptotically

equivalent discretized models under which the condition (21) is not only sufficient but also

necessary (up to a sub-polynomial factor) for any randomized polynomial-time estimator

to be consistent. Therefore, the computationally feasible adaptive estimation scheme in

Section 4 does not require excessively strong condition to achieve optimal rates of convergence.
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5.2 A sketch of the reduction scheme

The key step in establishing the computational lower bounds in Theorem 5.1 is a randomized

polynomial-time reduction that maps any solution to the sparse CCA estimation problem to

a solution to the Planted Clique detection problem. To better explain the main ideas, we

present below the construction for the continuous case. A discretized reduction scheme is

introduced in Section 8.3 in the supplement.

Preliminaries We start with some notation. Consider integers k and N . Define

δN =
k

N
, ηN =

k

45N(logN)2
. (27)

For any µ ∈ R, let φµ denote the density function of the N(µ, 1) distribution, and define

φ̄µ =
1

2
(φµ + φ−µ). (28)

Next, let Φ̃0 be the restriction of theN(0, 1) distribution on the interval [−3
√
logN, 3

√
logN ].

For any |µ| ≤ 3
√
ηN logN , define two probability distributions Fµ,0 and Fµ,1 with densities

fµ,0(x) = M0

(
φ0(x)− δ−1

N [φ̄µ(x)− φ0(x)]
)
1{|x|≤3

√
logN}, (29)

fµ,1(x) = M1

(
φ0(x) + δ−1

N [φ̄µ(x)− φ0(x)]
)
1{|x|≤3

√
logN}, (30)

where the Mi’s are normalizing constants such that
∫
R
fµ,i = 1 for i = 0, 1. It can be verified

that fµ,i are properly defined probability density function when |µ| ≤ 3
√
ηN logN . For

details, see Section 8.1. The reason for introducing the above two distributions is to match

specific mixtures of them to φ0 and φ̄µ respectively as summarized in the following lemma.

Lemma 5.2. There exists an absolute constant C > 0, such that for all integers N ≥ 12,

k ≤ N/12 and all |µ| ≤ 3
√
ηN logN ,

TV(hµ,0, φ0) ≤ CN−3 and TV(hµ,1, φ̄µ) ≤ CN−3,

where hµ,0 =
1
2(fµ,0 + fµ,1) and hµ,1 = δNfµ,1 + (1− δN ) 1

2(fµ,0 + fµ,1).

Reduction We now propose our approach to turning an estimator for the sparse CCA

problem to a testing procedure for (22).

Let A ∈ {0, 1}N×N be an adjacency matrix sampled either fromHG
0 orHG

1 . Let n ≤ N/12,
and we first construct n pairs of random vectors (Xi, Yi) where Xi ∈ Rp, Yi ∈ Rm with

p = m ≥ 2n. The goal here is to ensure that the joint distribution of {(Xi, Yi)}ni=1 is close to

HC
0 in (23) when A ∼ HG

0 and to a mixture of the distributions in HC
1 when A ∼ HG

1 . This

would allow us to turn any test for (23) to a test for (22), and the remaining job would be to

turn an estimator of the canonical directions to a test for the sparse CCA hypotheses (23). To

this end, we construct n auxiliary random vectors Wi, which are asymptotically independent
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of {(Xi, Yi)}ni=1. When A ∼ HG
0 , the Wi’s are close in distribution to i.i.d. Np(0, Ip) vectors.

When A ∼ HG
1 , the leading eigenvector of the covariance matrix of Wi is essentially identical

to the leading canonical directions between the (Xi, Yi)’s. With the aid of the Wi’s, we are

able to turn any sparse CCA estimator to a test for the sparse CCA hypothesis (23).

More precisely, the reduction scheme consists of the following four steps in order. The

first three steps generate {(Xi, Yi)}ni=1 and {Wi}ni=1 and the last step constructs the test.

1. Initialization. Generate i.i.d. random variables ξ1, . . . , ξ2n ∼ Φ̃0. Set

µi = η
1/2
N ξi, i = 1, . . . , 2n. (31)

2. Gaussianization. Generate two matrices B0, B1 ∈ R2n×2n where conditioning on the

µi’s, all the entries are mutually independent satisfying

L((B0)ij |µi) = Fµi,0 and L((B1)ij |µi) = Fµi,1. (32)

Let A0 ∈ {0, 1}2n×2n be the lower–left 2n× 2n submatrix of the matrix A. Generate a

matrix W ∈ R2n×p where for each i ∈ [2n], if j ∈ [2n], then we set

Wij = (B0)ij (1− (A0)ij) + (B1)ij(A0)ij . (33)

If 2n < j ≤ p, we let Wij be an independent draw from N(0, 1).

3. Sample Generation. For i ∈ [2n], let Wi = (Wi1, . . . ,Wip)
′ be i-th row vector of W .

Then for i = 1, . . . , n, we generate independent standard normal vector Zi ∼ Np(0, Ip).

Define

Xi =
1√
2
(Wn+i + Zi), Yi =

1√
2
(Wn+i − Zi), (34)

and let X = [X ′
1, . . . , X

′
n]

′ ∈ Rn×p and Y = [Y ′
1 , . . . , Y

′
n]

′ ∈ Rn×m.

4. Test Construction. Let û = û(X,Y ) be the estimator of the first canonical correlation

direction by treating {(Xi, Yi)}ni=1 as data. We reject HG
0 if

û′( 1n
∑n

i=1WiW
′
i )û

‖û‖2 ≥ 1 +
1

4
k ηN . (35)

We now discuss in more detail how the reduction scheme achieves its goal. For simplicity,

focus on the case where p = m = 2n. Let ǫ = (ǫ1, ..., ǫ2n) be a binary vector where ǫi is

the indicator of whether the i-th row of A0 belongs to the planted clique or not, and γ =

(γ1, ..., γ2n) the indicators of the columns of A0. In what follows, we discuss the distributions

of W,X and Y when A ∼ HG
0 and HG

1 , respectively.

When A ∼ HG
0 , the ǫi’s and γj ’s are all zeros. In this case, we can verify that the entries

of W are mutually independent and for each (i, j) the marginal distribution of Wij is close

to the N(0, 1) distribution by Lemma 5.2. Hence, the rows of W are close to i.i.d. random
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vectors from the Np(0, Ip) distribution. This, together with (34), further implies that the

Xi’s and Yi’s are close to i.i.d. random vectors from the Np(0, Ip) distribution, and they are

independent of W1, . . . ,Wn. Since û is independent of {Wi}ni=1, the LHS of (35) is close in

distribution to a χ2
n random variable scaled by n which concentrates around its expected

value one. Indeed, the LHS is upper bounded by 1 +O(
√
log(n)/n) with high probability.

If A ∼ HG
1 , then the (i, j)-th entry of A0 is an edge in the planted clique if and only if

ǫi = γj = 1. Moreover, the joint distribution of {ǫ1, . . . , ǫ2n, γ1, . . . , γ2n} is close to that of 4n

i.i.d. Bernoulli random variables {ǫ̃1, . . . , ǫ̃2n, γ̃1, . . . , γ̃2n} with success probability δN = k/N .

To get the intuition, suppose that the indicators of whether the rows and the columns belong

to the planted clique are i.i.d. Bernoulli(δN ) variables {ǫ̃1, . . . , ǫ̃2n, γ̃1, . . . , γ̃2n}. Then, Lemma

5.2 implies that on one hand, conditioning on γ̃j = 0, for any i ∈ [2n], the conditional

distribution of (Wij |γ̃j = 0), after integrating over the conditional distribution of ǫ̃i, µi and

(A0)ij , is close in total variation to the N(0, 1) distribution. On the other hand, conditioning

on γ̃j = 1, for any i ∈ [2n], the conditional distribution of (Wij |γ̃j = 1) is close in total

variation to N(0, 1 + ηN ). Therefore, conditioning on γ̃ the distribution of the Wi’s is close

to that of 2n i.i.d. random vectors sampled from the distribution

Np(0, τθθ
′ + Ip), where θ = γ̃/‖γ̃‖ and τ = ηN‖γ̃‖2, (36)

which is of the form of a Gaussian spiked covariance model used in the sparse PCA literature.

Here, the leading eigenvector θ has sparsity level |supp(θ)| = |supp(γ̃)| =
∑

j γ̃j , which

concentrates around its mean value nδN ≍ k if N ≍ n. In addition, the sample generation

(34) ensures that the (X ′
i, Y

′
i )

′ ∈ Rp+m are close to i.i.d. random vectors sampled from

Np+m(0,Σ) where

Σx = Σy =
τ

2
θθ′ + Ip, Σxy = Σx(λuv

′)Σy (37)

with u = v = θ√
τ/2+1

, λ = τ/2
τ/2+1 . This is a special case of the Gaussian canonical pair model

(2). In addition, the (Xi, Yi) pairs are (asymptotically) independent of W1, . . . ,Wn. Thus,

if û estimates u in (37) well, then û/‖û‖ is close to θ (up to a sign change), the leading

eigenvector of the covariance matrix of W1, . . . ,Wn. Thus, the LHS of (35) should exceed

1 + O(
√

log(n)/n) under the alternative hypothesis and hence yield a test with small error

for the Planted Clique problem (22).

The materialization of the foregoing discussion leads to the following result which demon-

strates quantitatively that a decent estimator of the leading canonical correlation direction

results in a good test (by applying the reduction (31) – (35)) for the Planted Clique detection

problem (22).

Theorem 5.2. For some sufficiently small constant c > 0, assume k2

N(logN)2
∨ N(logN)5

k4
≤ c,

cN ≤ n ≤ N/12 and p ≥ 2n. Then, for any û such that

sup
P∈P(n,3k/2,3k/2,p,p,1,kηN/8;4)

P

{
L(û, u) >

1

3× 322

}
≤ β, (38)
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the test ψ defined by (31) – (35) satisfies

PHG
0
ψ + PHG

1
(1− ψ) < β +

4n

N
+ C(n−1 +N−1 + e−C

′k),

for sufficiently large n with some constants C,C ′ > 0.

Remark 5.1. To bridge the gap between Theorem 5.2 and the desired result in Theorem 5.1,

we need to turn the above sketch (31) - (34) into a randomized polynomial-time reduction

for discrete data. To this end, the major modification is to replace the random number

generation in steps 1–3 with their discrete counterparts. For details, see Section 8.3.2 in the

supplement.

Remark 5.2. This section mainly studies computational lower bounds for sparse CCA es-

timation. Similar results also hold for sparse CCA detection. Indeed, if we have a testing

procedure for the sparse CCA hypotheses in (23), we can replace the fourth reduction step

with directly applying the test to the (Xi, Yi) vectors constructed in (33). A simple modifi-

cation of the proof of Theorem 5.1 then leads to the proof of computational lower bounds for

sparse CCA detection.

Remark 5.3. As we have hinted in (36), a slight variant of the reduction leads to a com-

putational lower bound for sparse PCA under the Gaussian spiked covariance model. This

allows us to close the gap in sparse PCA computational lower bounds left by [6] and [33]. A

detailed discussion is given in Section 7 in the supplement.

6 Proofs

This section presents proofs of Theorems 4.1 and 4.2. The proofs of the other theoretical

results are given in the supplement.

6.1 Proof of Theorem 4.1

Before presenting the proof, we state some technical lemmas. The proofs of all the lemmas

are given in Section 9.4 in the supplement. First, note that the estimator is normalized with

respect to Σ̂
(0)
x and Σ̂

(0)
y , while the truth U and V is normalized with respect to Σx and

Σy. To address this issue, we normalize the truth with respect to Σ̂
(0)
x and Σ̂

(0)
y to obtain

Ũ = U(U ′Σ̂(0)
x U)−1/2 and Ṽ = V (V ′Σ̂(0)

y V )−1/2. Also define Λ̃ = (U ′Σ̂(0)
x U)1/2Λ(V ′Σ̂(0)

y V )1/2.

For notational convenience, define

ǫn,u =

√
1

n

(
su + log

ep

su

)
, ǫn,v =

√
1

n

(
sv + log

em

sv

)
. (39)

The following lemma bounds the normalization effect.
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Lemma 6.1. Assume ǫ2n,u + ǫ2n,v ≤ c for some small constant c > 0. Then, for any C ′ > 0,

there exists C > 0 only depending on C ′ such that

‖Σ1/2
x (Ũ − U)‖op ≤ Cǫn,u, ‖Σ1/2

y (Ṽ − V )‖op ≤ Cǫn,v,
‖Λ̃− Λ‖op ≤ C(ǫn,u + ǫn,v),

with probability at least 1− exp (−C ′(su + log(ep/su)))− exp (−C ′(sv + log(em/sv))).

Using the definitions of Ũ and Ṽ , let us state the following lemma, which asserts that the

matrix Ã = Ũ Ṽ ′ is feasible to the optimization problem (18).

Lemma 6.2. Define Ã = Ũ Ṽ ′. When Ã exists, we have

‖(Σ̂(0)
x )1/2Ã(Σ̂(0)

y )1/2‖∗ = r and ‖(Σ̂(0)
x )1/2Ã(Σ̂(0)

y )1/2‖op = 1.

As was argued in Section 4.1, the set Cr is the convex hull of Or. To show that the

relaxation Cr preserves the curvature of the original constraint Or, we need the following

curvature lemma.

Lemma 6.3. Let F ∈ O(p, r), G ∈ O(m, r), K ∈ Rr×r and D = diag(d1, ..., dr) with

d1 ≥ ... ≥ dr > 0. If E satisfies ‖E‖op ≤ 1 and ‖E‖∗ ≤ r, then

〈FKG′, FG′ − E〉 ≥ dr
2
‖FG′ − E‖2F − ‖K −D‖F‖FG′ − E‖F. (40)

Define

Σ̃xy = Σ̂(0)
x UΛV ′Σ̂(0)

y . (41)

Lemma 6.4 is instrumental in determining the proper value of the tuning parameter required

in the program (18).

Lemma 6.4. Assume r

√
log(p+m)

n ≤ C1 for some constant C1 > 0. Then, for any C ′ > 0,

there exists a constant C > 0 only depending on C1, C
′,M , such that

||Σ̂(0)
xy − Σ̃xy||∞ ≤ C

√
log(p+m)

n
,

with probability at least 1− (p+m)−C
′

.

We also need a lemma on restricted eigenvalue. For any p.s.d. matrix B, define

φBmax(k) = max
||u||0≤k,u6=0

u′Bu
u′u

, φBmin(k) = min
||u||0≤k,u6=0

u′Bu
u′u

.

The following lemma is adapted from Lemma 12 in [16], and its proof is omitted.
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Lemma 6.5. Assume 1
n

(
(ku∧p) log(ep/(ku∧p))+(kv∧m) log(em/(kv∧m))

)
≤ C1 for some

constant C1 > 0. Then, for any C ′ > 0, there exists a constant C > 0 only depending on

C1, C
′,M , such that for δu(ku) =

√
(ku∧p) log(ep/(ku∧p))

n and δv(kv) =

√
(kv∧m) log(em/(kv∧m))

n ,

we have

M−1 − Cδu(ku) ≤ φΣ̂
(j)
x

min (ku) ≤ φΣ̂
(j)
x

max(ku) ≤M + Cδu(ku),

M−1 − Cδv(kv) ≤ φΣ̂
(j)
y

min (kv) ≤ φ
Σ̂

(j)
y

max(kv) ≤M + Cδv(kv),

with probability at least 1−exp
(
−C ′(ku∧p) log(ep/(ku∧p))

)
−exp

(
−C ′(kv∧m) log(em/(kv∧

m))
)
, for j = 0, 1, 2.

Finally, we need a result on subspace distance. Recall that for a matrix F , PF denotes

the projection matrix onto its column subspace.

Lemma 6.6. For any matrix F ∈ O(d, r) and any matrix G ∈ Rd×r, we have

inf
W
‖F −GW‖2F =

1

2
‖PF − PG‖2F.

If furthermore, G ∈ O(d, r), then we have

inf
W∈O(r,r)

‖F −GW‖2F =
1

2
‖PF − PG‖2F.

Proof of Theorem 4.1. In the rest of this proof, we denote Σ̂
(0)
x , Σ̂

(0)
y and Σ̂

(0)
xy by Σ̂x, Σ̂y and

Σ̂xy for notational convenience. We also let ∆ = Â − Ã. The proof consists of two steps.

In the first step, we are going to derive an upper bound for ‖Σ̂1/2
x ∆Σ̂

1/2
y ‖F. In the second

step, we derive a generalized cone condition and use it to lower bound ‖Σ̂1/2
x ∆Σ̂

1/2
y ‖F by a

constant multiple of ‖∆‖F and hence the upper bound on ‖Σ̂1/2
x ∆Σ̂

1/2
y ‖F leads to an upper

bound on ‖∆‖F.
Step 1. By Lemma 6.1, Ũ and Ṽ are well-defined with high probability. Thus, Ã is

well-defined with high probability, and we have

‖Σ1/2
x (Ã− UV ′)Σ1/2

y ‖op ≤ C(ǫn,u + ǫn,v). (42)

with probability at least 1 − exp (−C ′(su + log(ep/su))) − exp (−C ′(sv + log(em/sv))). Ac-

cording to Lemma 6.2, Ã is feasible. Then, by the definition of Â, we have

〈Σ̂xy, Â〉 − ρ||Â||1 ≥ 〈Σ̂xy, Ã〉 − ρ||Ã||1.

After rearrangement, we have

− 〈Σ̃xy,∆〉 ≤ ρ
(
||Ã||1 − ||Ã+∆||1

)
+ 〈Σ̂xy − Σ̃xy,∆〉, (43)

where Σ̃xy is defined in (41). For the first term on the right hand side of (43), we have

||Ã||1 − ||Ã+∆||1 = ||ÃSuSv ||1 − ||ÃSuSv +∆SuSv ||1 − ||∆(SuSv)c ||1
≤ ||∆SuSv ||1 − ||∆(SuSv)c ||1.
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For the second term on the right hand side of (43), we have 〈Σ̂xy − Σ̃xy,∆〉 ≤ ||Σ̂xy −
Σ̃xy||∞||∆||1. Thus when

ρ ≥ 2||Σ̂xy − Σ̃xy||∞, (44)

we have

− 〈Σ̃xy,∆〉 ≤
3ρ

/
2||∆SuSv ||1 −

ρ

2
||∆(SuSv)c ||1. (45)

Using Lemma 6.3, we can lower bound the left hand side of (45) as

− 〈Σ̃xy,∆〉 = 〈Σ̂1/2
x UΛV ′Σ̂1/2

y , Σ̂1/2
x (Ã− Â)Σ̂1/2

y 〉
= 〈Σ̂1/2

x Ũ Λ̃Ṽ ′Σ̂1/2
y , Σ̂1/2

x (Ã− Â)Σ̂1/2
y 〉

≥ 1

2
λr‖Σ̂1/2

x (Ã− Â)Σ̂1/2
y ‖2F − δ‖Σ̂1/2

x (Ã− Â)Σ̂1/2
y ‖F, (46)

where δ = ‖Λ̃− Λ‖F. Combining (45) and (46), we have

λr‖Σ̂1/2
x ∆Σ̂1/2

y ‖2F ≤ 3ρ||∆SuSv ||1 − ρ||∆(SuSv)c ||1 + 2δ‖Σ̂1/2
x ∆Σ̂1/2

y ‖F (47)

≤ 3ρ||∆SuSv ||1 + 2δ‖Σ̂1/2
x ∆Σ̂1/2

y ‖F. (48)

Solving the quadratic equation (48) by Lemma 2 of [11], we have

‖Σ̂1/2
x ∆Σ̂1/2

y ‖2F ≤ 6ρ||∆SuSv ||1/λr + 4δ2/λ2r . (49)

Combining (47) and (49), we have

0 ≤ 3ρ||∆SuSv ||1 − ρ||∆(SuSv)c ||1 + δ2/λr + λr‖Σ̂1/2
x ∆Σ̂1/2

y ‖2F
≤ 9ρ||∆SuSv ||1 − ρ||∆(SuSv)c ||1 + 5δ2/λr, (50)

which gives rise to the generalized cone condition that we are going to use in Step 2. Finally,

by the bound ||∆SuSv ||1 ≤
√
susvρ‖∆SuSv‖F and (49), we have

‖Σ̂1/2
x ∆Σ̂1/2

y ‖2F ≤ 6
√
susvρ‖∆SuSv‖F/λr + 4δ2/λ2r , (51)

which completes the first step.

Step 2. By (50), we have obtained the following condition

||∆(SuSv)c ||1 ≤ 9||∆SuSv ||1 +
5δ2

ρλr
. (52)

Due to the existence of the extra term 5δ2/(ρλr) on the RHS, we call it a generalized cone

condition. In this step, we are going to lower bound ‖Σ̂1/2
x ∆Σ̂

1/2
y ‖F by ‖∆‖F on the generalized

cone. Motivated by the argument in [8], let the index set J1 = {(ik, jk)}tk=1 in (Su × Sv)c
correspond to the entries with the largest absolute values in ∆, and we define the set J̃ =

(Su × Sv) ∪ J1. Now we partition J̃c into disjoint subsets J2, ..., JK of size t (with |JK | ≤ t),
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such that Jk is the set of (double) indices corresponding to the entries of t largest absolute

values in ∆ outside J̃ ∪
⋃k−1
j=2 Jj . By triangle inequality,

‖Σ̂1/2
x ∆Σ̂1/2

y ‖F ≥ ‖Σ̂1/2
x ∆

J̃
Σ̂1/2
y ‖F −

K∑

k=2

‖Σ̂1/2
x ∆JkΣ̂

1/2
y ‖F

≥
√
φΣ̂x
min(su + t)φ

Σ̂y

min(sv + t)‖∆
J̃
‖F −

√
φΣ̂x
max(t)φ

Σ̂y
max(t)

K∑

k=2

‖∆Jk‖F.

By the construction of Jk, we have

K∑

k=2

‖∆Jk‖F ≤
√
t
K∑

k=2

||∆Jk ||∞ ≤ t−1/2
K∑

k=2

||∆Jk−1
||1 ≤ t−1/2||∆(SuSv)c ||1

≤ t−1/2

(
9||∆SuSv ||1 +

5δ2

ρλr

)
≤ 9

√
susv
t
‖∆

J̃
‖F +

5δ2

ρλr
√
t
, (53)

where we have used the generalized cone condition (52). Hence, we have the lower bound

‖Σ̂1/2
x ∆Σ̂1/2

y ‖F ≥ κ1‖∆J̃
‖F −

κ2δ
2

ρλr
√
t
,

with

κ1 =

√
φΣ̂x
min(su + t)φ

Σ̂y

min(sv + t)− 9

√
susv
t

√
φΣ̂x
max(t)φ

Σ̂y
max(t), (54)

κ2 = 5

√
φΣ̂x
max(t)φ

Σ̂y
max(t).

Taking t = c1susv for some sufficiently large constant c1 > 1, with high probability, κ1 can

be lower bounded by a positive constant κ0 only depending on M . To see this, note that by

Lemma 6.5, (54) can be lower bounded by the difference of
√
M−1 − Cδu(2c1susv)

√
M−1 − Cδv(2c1susv)

and 9c
−1/2
1

√
M + Cδu(c1susv)

√
M + Cδv(c1susv), where δu and δv are defined as in Lemma

6.5. It is sufficient to show that δu(2c1susv), δv(2c1susv), δu(c1susv) and δv(c1susv) are suf-

ficiently small to get a positive absolute constant κ0. For the first term, when 2c1susv ≤ p,

it is bounded by 2c1susv log(ep)
n and is sufficiently small under the assumption (12). When

2c1susv > p, it is bounded by 2c1susv
n and is also sufficiently small under (12). The same ar-

gument also holds for the other terms. Similarly, κ2 can be upper bounded by some constant.

Together with (51), this brings the inequality

‖∆
J̃
‖2F ≤

C1
√
susvρ

λr
‖∆

J̃
‖F + C2

(
δ2

λ2r
+

(
δ2

ρλr
√
t

)2
)
.

Solving this quadratic equation, we have

‖∆
J̃
‖2F ≤ C

(
susvρ

2

λ2r
+
δ2

λ2r
+

(
δ2

ρλr
√
t

)2
)
. (55)
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By (53), we have

‖∆
J̃c‖F ≤

K∑

k=2

‖∆Jk‖F ≤ 9

√
susv
t
‖∆

J̃
‖F +

5δ2

ρλr
√
t
. (56)

Summing (55) and (56), we obtain a bound for ‖∆‖F. According to Lemma 6.4, we may

choose ρ = γ

√
log(p+m)

n for some large γ, so that (44) holds with high probability. By Lemma

6.1, δ ≤ C
√

r(su+sv+log(p+m))
n ≤ C ′ρ

√
t with high probability. Hence,

‖∆‖F ≤ C
√
susvρ/λr, (57)

with high probability. This completes the second step. Finally, by triangle inequality, we

have ‖Â− UV ′‖F ≤ ‖∆‖F + ‖Ã− UV ′‖F. By (42) and (57), the proof is complete.

6.2 Proof of Theorem 4.2

Define

U∗ = UΛV ′ΣyV̂
(0), ∆ = Û (1) − U∗.

Lemma 6.7. Assume r+log p
n ≤ C1 for some constant C1 > 0. Then, for any C ′ > 0, there

exists a constant C > 0 only depending on C1, C
′,M , such that

max
1≤j≤p

||[Σ̂(1)
xy V̂

(0) − Σ̂(1)
x U∗]j·|| ≤ C

√
r + log p

n
,

with probability at least 1− exp
(
− C ′(r + log p)

)
.

Proof of Theorem 4.2. In the rest of this proof, we denote Σ̂
(1)
x , Σ̂

(1)
y and Σ̂

(1)
xy by Σ̂x, Σ̂y

and Σ̂xy for simplicity of notation. Note that they depends on D1, while the estimator V̂ (0)

depends on D0. Hence, V̂ (0) is independent of the sample covariance matrices occurring

in this proof. The proof consists of three steps. In the first step, we derive a bound for

Tr(∆′Σ̂x∆). In the second step, we derive a cone condition and use it to obtain a bound for

‖∆‖F by arguing that Tr(∆′Σ̂x∆) upper bounds ‖∆‖F. In the last step, we derive the desired

bound for L(Û , U).

Step 1. By definition of Û (1), we have

Tr((Û (1))′Σ̂xÛ
(1))− 2Tr((Û (1))′Σ̂xyV̂

(0)) + ρu
∑p

j=1 ||Û
(1)
j· ||

≤ Tr((U∗)′Σ̂xU
∗)− 2Tr((U∗)′Σ̂xyV̂

(0)) + ρu
∑p

j=1 ||U∗
j·||.

After rearrangement, we have

Tr(∆′Σ̂x∆) ≤ ρu
p∑

j=1

[
||U∗

j·|| − ||U∗
j· +∆j·||

]
+ 2Tr

[
∆′(Σ̂xyV̂

(0) − Σ̂xU
∗)
]
. (58)
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For the first term on the right hand side of (58), we have

p∑

j=1

(
||U∗

j·|| − ||U∗
j· +∆j·||

)
=

∑

j∈Su

||U∗
j·|| −

∑

j∈Su

||U∗
j· −∆j·|| −

∑

j∈Sc
u

||∆j·||

≤
∑

j∈Su

||∆j·|| −
∑

j∈Sc
u

||∆j·||.

For the second term on the right hand side of (58), we have

Tr

(
∆′(Σ̂xyV̂

(0) − Σ̂xU
∗)
)
≤
( p∑

j=1

||∆j·||
)

max
1≤j≤p

||[Σ̂xyV̂ (0) − Σ̂xU
∗]j·||,

where [·]j· means the j-th row of the corresponding matrix. When

ρu ≥ 4 max
1≤j≤p

||[Σ̂xyV̂ (0) − Σ̂xU
∗]j·||, (59)

we have

Tr(∆′Σ̂x∆) ≤ 3ρu
2

∑

j∈Su

||∆j·|| −
ρu
2

∑

j∈Sc
u

||∆j·||. (60)

Since
∑

j∈Su
||∆j·|| ≤

√
su
√∑

j∈Su
||∆j·||2, (60) can be upper bounded by

Tr(∆′Σ̂x∆) ≤ 3
√
suρu
2

√∑

j∈Su

||∆j·||2. (61)

This completes the first step.

Step 2. The inequality (60) implies the cone condition

∑

j∈Sc
u

||∆j·|| ≤ 3
∑

j∈Su

||∆j·||. (62)

Let the index set J1 = {j1, ..., jt} in Scu correspond to the rows with the largest ℓ2 norm in ∆,

and we define the extended support S̃u = Su ∪ J1. Now we partition S̃cu into disjoint subsets

J2, ..., JK of size t (with |JK | ≤ t), such that Jk is the set of indices corresponding to the t

rows with largest ℓ2 norm in ∆ outside S̃u ∪
⋃k−1
j=2 Jj . Note that Tr(∆′Σ̂x∆) = ‖n−1/2X∆‖2F,

where X = [X1, ..., Xn]
′ ∈ Rn×p denotes the data matrix. By triangle inequality, we have

‖n−1/2X∆‖F ≥ ‖n−1/2X∆
S̃u∗‖F −

∑

k≥2

‖n−1/2X∆Jk∗‖F

≥
√
φΣ̂x
min(su + t)‖∆

S̃u∗‖F −
√
φΣ̂x
max(t)

∑

k≥2

‖∆Jk∗‖F,
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where for a subset B ⊂ [p], ∆B∗ = (∆ij1{i∈B,j∈[r]}), and

∑

k≥2

‖∆Jk∗‖F ≤
√
t
∑

k≥2

max
j∈Jk
||∆j·|| ≤

√
t
∑

k≥2

1

t

∑

j∈Jk−1

||∆j·|| (63)

≤ t−1/2
∑

j∈Sc
u

||∆j·|| ≤ 3t−1/2
∑

j∈Su

||∆j·||

≤ 3

√
su
t

√∑

j∈Su

||∆j·||2 ≤ 3

√
su
t
‖∆

S̃u∗‖F. (64)

In the above derivation, we have used the construction of Jk and the cone condition (62).

Hence, ‖n−1/2X∆‖F ≥ κ‖∆
S̃u∗‖F with κ =

√
φΣ̂x
min(su + t) − 3

√
su
t

√
φΣ̂x
max(t). In view of

Lemma 6.5, taking t = c1su for some sufficiently large constant c1, with high probability, κ

can be lower bounded by a positive constant κ0 only depending on M . Combining with (61),

we have

‖∆
S̃u∗‖F ≤ C

√
suρu/(2κ

2
0). (65)

By (63)-(64), we have

‖∆
(S̃u)c∗‖F ≤

∑

k≥2

‖∆Jk∗‖F ≤ 3
√
su/t‖∆S̃u∗‖F ≤ 3c

−1/2
1 ‖∆

S̃u∗‖F. (66)

Summing (65) and (66), we have ‖∆‖F ≤ C
√
suρ. By Lemma 6.7, we may choose ρu ≥

γu

√
r+log p
n for some large γu so that (59) holds with high probability. Hence,

‖∆‖F ≤ C
√
su(r + log p)/n, (67)

with high probability. This completes the second step.

Step 3. Using the same argument in Step 2 of the proof of Theorem 3.2 (see supplementary

material), we obtain the desired bound for L(Û , U). The proof is complete.
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Supplement to “Sparse CCA: Adaptive Estimation and Computational
Barriers”

7 Computational Barriers for Sparse PCA

In this section, we show that the argument in Section 5 can be modified into a computational

lower bound for sparse PCA under the Gaussian spiked covariance model. Being the most

commonly used model for sparse PCA, the Gaussian spiked covariance model assumes that

the data follows a multivariate Gaussian distribution Np(0,Σ), with

Σ = ΘΛΘ′ + Ip, (68)

for some Θ ∈ O(p, r) and Λ = diag(λ1, ..., λr) satisfying λ1 ≥ ... ≥ λr. Let Q(n, s, p, r, λ;κ)
denote the space of distributions of i.i.d. {Xi}ni=1 following Np(0,Σ), with Σ having the

spiked covariance structure (68), where |supp(Θ)| ≤ s and λ ≤ λr ≤ · · · ≤ λ1 ≤ κλ. Here and
after, we treat κ ≥ 1 as an absolute constant that does not change with any other parameter.

Recall that for any matrix A, PA denotes the projection matrix onto its column subspace.

The minimax estimation rate for Θ under the loss ‖P
Θ̂
− PΘ‖2F is

1

nλ2
s
(
r + log

ep

s

)
. (69)

See, for instance, [11]. However, to achieve the above minimax rate via computationally

efficient methods such as those proposed in [9, 25, 7, 11, 35], researchers have required the

sample size to satisfy

n ≥ C s
2 log p

λ2
(70)

for some sufficiently large constant C > 0. When the condition (70) is violated, there is

no known efficient algorithm even for consistent estimation for sparse PCA. Denote the

Np(0, Ip) distribution by Q0. For i.i.d. observations {Xi}ni=1, A closely related sparse PCA

testing problem is

HP
0 : {Xi}ni=1 ∼ Qn

0 , v.s. HP
1 : {Xi}ni=1 ∼ Q ∈ Q(n, s, p, 1, λ;κ). (71)

Berthet and Rigollet [6] showed that the assumption (70) is essentially necessary for all

polynomial-time testing procedures if both the null and the alternative in (71) were enlarged

to include all distributions that some tail probability bounds are satisfied. The same kind of

enlargement of Q(n, s, p, 1, λ;κ) was also needed in the subsequent work [33] on estimation.

In the rest of this section, we show that the sample size condition (70) is essentially

necessary for consistent sparse PCA estimation under the Gaussian spiked covariance model

(68).
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Hardness of sparse PCA To achieve complexity theoretic rigor, define the discretized

sparse PCA probability space by

Qt(n, s, p, r, λ;κ) = {L([X]t) : X ∼ Q ∈ Q(n, s, p, r, λ;κ)} .

The following theorem provides a computational lower bound for the sparse PCA estimation

problem.

Theorem 7.1. Suppose that Hypothesis A holds and that as n→∞, 2n ≤ p ≤ na for some

constant a > 1, n(log n)5 ≤ cs4 for some sufficiently small c > 0, and λ = s2

2430n(log(12n))2
. If

for some δ ∈ (0, 2),

lim inf
n→∞

s2−δ log p
nλ2

> 0,

then for any randomized polynomial-time estimator θ̂,

lim inf
n→∞

sup
Q∈Qt(n,s,p,1,λ;3)

Q

{
‖P

θ̂
− Pθ‖2F >

1

3

}
>

1

4
, (72)

where the discretization level is t = ⌈4 log2(p+ n)⌉.

With the choice of n, s, p, λ and t in the theorem, Lemma 5.1 implies that the experi-

ments Q(n, s, p, 1, λ; 3) and Qt(n, s, p, 1, λ; 3) are asymptotically equivalent. Thus, the the-

orem states that for a sequence of asymptotically equivalent discretized sparse PCA model,

the assumption (70) is necessary (up to a sub-polynomial factor) for any computationally

efficient consistent estimator. On the other hand, under (70) applying a discretized version1

of the efficient procedure in Section 3 of [11] on {[Xi]t}ni=1 achieves the optimal rates (69).

A sketch of the reduction scheme In parallel to Section 5.2, we sketch below the

reduction scheme omitting the discretization issue. A randomized polynomial-time reduction

for the discretized model will be presented in Section 8.3, together with that for the sparse

CCA problem.

The reduction for sparse PCA is a three-step procedure, where the first two steps are

exactly the same as (31) – (33), the first two steps for sparse CCA reduction. Thus, after the

first two steps, we have at hand 2n vectors W1, . . . ,W2n ∈ Rp. Turn to the third step. For

any estimation procedure, let θ̂ = θ̂(Wn+1, . . . ,W2n) be the resulting estimator by applying

the procedure on the second half of the Wi’s. We reject HG
0 in (22) if

θ̂′
(
1
n

∑n
i=1WiW

′
i

)
θ̂

‖θ̂‖2
≥ 1 +

1

4
kηN . (73)

1To be more precise, we need to replace the entries in the random matrix Z̃ in Step 1 in Section 3.1 of [11]

with discrete random variables sampled from the truncated dyadic approximation to the N(0, 1) distribution

spelled out below in Section 8.3.2. The constants used in the approximation can be chosen as w = t, K =

⌈log2(3
√
log p)⌉ and b as in (90) below.
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The intuition behind the above scheme for sparse PCA is closely related to that of the

reduction for sparse CCA. Recall that as discussed following (31) – (35), when HG
0 holds, the

Wi’s are close in total variation to 2n i.i.d. random vectors from the Np(0, Ip) distribution,

while when HG
1 holds, the joint distribution is close to a mixture of the distribution of 2n

i.i.d. random vectors following the Gaussian spiked covariance model in (36). Thus, following

the same intuition as discussed after (35), the behavior of the LHS of (73) is similar to that

of the LHS of (35), either under HG
0 or HG

1 , which leads to the following counterpart of

Theorem 5.2.

Theorem 7.2. For some sufficiently small constant c > 0, assume k2

N(logN)2
∨ N(logN)5

k4
≤ c,

cN ≤ n ≤ N/12 and p ≥ 2n. Then, for any θ̂ such that

sup
Q∈Q(n,3k/2,p,1,kηN/2;3)

Q

{
‖P

θ̂
− Pθ‖2F >

1

3

}
≤ β,

the test ψ defined by (31) – (33) and (73) satisfies

PHG
0
ψ + PHG

1
(1− ψ) < β +

4n

N
+ C(n−1 +N−1 + e−C

′k),

for sufficiently large n with some constants C,C ′ > 0.

Remark 7.1. With slight modification, the above reduction scheme leads to a computational

lower bound for the sparse PCA testing problem (71). If we have a testing procedure for

(71), we can simply replace the third step (73) with directly applying the test to {Wi}ni=1

and then using the output of this test as the testing result for (22). A simple modification of

the proof of Theorem 7.1 then leads to a comparable computational lower bound for sparse

PCA testing.

8 Proofs for Computational Lower Bounds

In this section, we prove the results stated in Sections 5 and 7. The proof of Lemma 5.2

is given in Section 8.1. In Section 8.2, we prove Theorems 5.2 and 7.2. These results and

proofs do not consider the issue of discretization. The main purpose is to help the readers get

the intuition behind the problem without worrying about rigor at the theoretical computer

science level. A rigorous treatment of the computational lower bounds is presented in Section

8.3, where we first prove Lemma 5.1 on asymptotically equivalent discretized models, and

then show how the reductions for the continuous Gaussian models in Sections 5 and 7 can be

made into truly randomized polynomial-time reductions. Discretized versions of Theorems

5.2 and 7.2 are presented, followed by the proofs of Theorems 5.1 and 7.1.

8.1 Proof of Lemma 5.2

We first verify that (29) – (30) are proper density functions when |µ| ≤ 3
√
ηN logN , which

is a direct consequence of the following lemma.
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Lemma 8.1. For any k ≤ N/12, |µ| ≤ 3
√
ηN logN and |x| ≤ 3

√
logN , we have

δ−1
N

∣∣φ̄µ(x)− φ0(x)
∣∣ ≤ 4

5
φ0(x).

Proof. By definition,

δ−1
N

∣∣φ̄µ(x)− φ0(x)
∣∣ = (2δN )

−1φ0(x)

∣∣∣∣exp
(
µx− µ2

2

)
+ exp

(
−µx− µ2

2

)
− 2

∣∣∣∣ .

Under the conditions of the lemma, we have |µx|+ µ2

2 ≤ 1
2 , which implies that

∣∣∣∣exp
(
µx− µ2

2

)
+ exp

(
−µx− µ2

2

)
− 2

∣∣∣∣ ≤ µ
2 +

4

3
|µx|2 + µ4

3
≤ 8µ2 logN.

We complete the proof by combining the last two displays.

By the result of the above lemma and the definitions of fµ,0 and fµ,1, we immediately

have fµ,0 ≥ 0 and fµ,1 ≥ 0. Hence, they are valid density functions. The following lemma

further controls the rescaling constants in (29) and (30).

Lemma 8.2. There exists an absolute constant C > 0 such that for any |µ| ≤ 1, |Mi − 1| ≤
CN−4 for i = 0, 1.

Proof. Note that

1 =

∫
fµ,0(x)dx = M0

∫ (
φ0(x)− δ−1

N (φ̄µ(x)− φ0(x))
)
dx

−M0

∫

|x|>3
√
logN

(
φ0(x)− δ−1

N (φ̄µ(x)− φ0(x))
)
dx

= M0 −M0

∫

|x|>3
√
logN

(
φ0(x)− δ−1

N (φ̄µ(x)− φ0(x))
)
dx.

The integral on the RHS is upper bounded by

(
1 + δ−1

N

) ∫

|x|>3
√
logN

φ0(x)dx+ δ−1
N

∫

|x|>3
√
logN

φ̄µ(x)dx ≤ CN−4,

where the last inequality comes from standard Gaussian tail bounds. This readily implies

|M0 − 1| ≤ CN−4 The desired bound on M1 follows from similar arguments.

Proof of Lemma 5.2. Define

gi(x) = φ0(x)− (−1)i+1δ−1
N (φ̄µ(x)− φ0(x)), for i = 0, 1.

Then we have for i = 0 and 1,

fµ,i(x) = gi(x)− (1−Mi1{|x|≤3
√
logN})gi(x),
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By Lemma 8.1 and Lemma 8.2,
∫
|fµ,i(x)− gi(x)|dx ≤

∫ ∣∣∣(1−Mi1{|x|≤3
√
logN})gi(x)

∣∣∣ dx

≤ |1−Mi|
∫
|gi(x)|dx+Mi

∫

|x|>3
√
logN

|gi(x)|dx ≤ CN−3. (74)

Therefore, we have

TV

(
1

2
(fµ,0 + fµ,1), φ0

)
=

1

2

∫ ∣∣∣∣φ0(x)−
1

2
(fµ,0(x) + fµ,1(x))

∣∣∣∣ dx

≤ 1

2

∫ ∣∣∣∣φ0(x)−
1

2
(g0(x) + g1(x))

∣∣∣∣ dx+
1

4

∑

i=0,1

∫
|fµ,i(x)− gi(x)|dx

≤ CN−3,

where the last inequality is due to the identity φ0 = 1
2(g0 + g1) and (74). In addition, we

have

TV

(
δNfµ,1 + (1− δN )

1

2
(fµ,0 + fµ,1) , φ̄µ

)

=
1

2

∫ ∣∣∣∣δNfµ,1(x) +
1− δN

2
(fµ,0(x) + fµ,1(x))− φ̄µ(x)

∣∣∣∣ dx

≤ 1

2

∫ ∣∣∣∣δNg1(x) +
1− δN

2
(g0(x) + g1(x))− φ̄µ(x)

∣∣∣∣ dx

+
∑

i=0,1

1− (−1)iδN
4

∫
|fµ,i(x)− gi(x)|dx

≤ CN−3.

Here, the last inequality is due to the identity δNg1 +
1−δN

2 (g0 + g1) = φ̄µ and (74). This

completes the proof.

8.2 Proofs of Theorems 5.2 and 7.2

To facilitate the proof, we first state and prove two lemmas which characterize the distribu-

tions of the Wi’s and the (Xi, Yi)’s under H
G
0 and HG

1 respectively.

Let L({Wi}2ni=1) denote the joint distribution of {Wi}2ni=1 and L ({(Xi, Yi)}ni=1, {Wi}ni=1)

that of {(Xi, Yi)}ni=1 and {Wi}ni=1. In addition, denote the (p+m)-dimensional normal distri-

bution with mean zero and covariance (37) by Pθ,τ , and the p-dimensional normal distribution

with mean zero and covariance (36) by Qθ,τ . When τ = 0, the two distributions reduce to

Np+m(0, Ip+m) and Np(0, Ip), which are denoted by P0 and Q0, respectively. We use P × Q

to denote the product measure of two probability measures P and Q.

The first lemma concerns the joint distributions of the Wi, Xi and Yi vectors when HG
0

holds. Roughly speaking, under HG
0 , the joint distribution of {Wi}2ni=1 is close in total vari-

ation to that of a random sample of size 2n from Q0, and that of {(Xi, Yi)}ni=1 and {Wi}ni=1

34



is close in total variation to that of a random sample of size n from P0 together with an

independent random sample of size n from Q0.

Lemma 8.3. Suppose A ∼ G(N, 1/2). There exists an absolute constant C > 0 such that

TV(L({Wi}2ni=1),Q
2n
0 ) ≤ CN−1,

TV (L ({(Xi, Yi)}ni=1, {Wi}ni=1) ,P
n
0 ×Qn

0 ) ≤ CN−1.

Proof. Recall ηN defined in (27) and hµ,0 in Lemma 5.2. Let ν be N (0, ηN ), and ν̄ be the

distribution obtained by restricting ν on the set [−3
√
ηN logN, 3

√
ηN logN ]. Then the µi’s

in (31) are i.i.d. r.v.’s following the distribution ν̄.

For each i ∈ [2n] and each j ∈ [2n], define i.i.d. random variables W ij ∼ N(0, 1). For

each i ∈ [2n] and 2n < j ≤ p, define W ij =Wij . Let W i = (W i1, ...,W ip)
′. We also define

Xi =
1√
2
(Wn+i + Zi), Y i =

1√
2
(Wn+i − Zi), (75)

for all i ∈ [2n], where the Zi’s are the same random vectors as in (34). It is straightforward

to verify that L({W i}2ni=1) = Q2n
0 and L

(
{(Xi, Y i)}ni=1, {W i}ni=1

)
= Pn0 × Qn

0 . By the data-

processing inequality, we have

TV(L({Wi}2ni=1),Q
2n
0 ) ≤ TV(L({Wi}ni=1),L({W i}ni=1)),

TV (L ({(Xi, Yi)}ni=1, {Wi}ni=1) ,P
n
0 ×Qn

0 ) ≤ TV(L({Wi}ni=1),L({W i}ni=1)).

Hence, it is sufficient to bound TV(L({Wi}ni=1),L({W i}ni=1)). Conditioning on µi,Wij follows

hµi,0 when A ∼ G(N, k). Therefore,

TV(Wij ,W ij) = TV(

∫
hµi,0dν̄(µi), φ0)

≤ sup
|µi|≤3

√
ηN logN

TV(hµi,0, φ0) ≤ CN−3.

Here the last inequality is due to Lemma 5.2. Applying Lemma 7 of [26], we obtain

TV(L({Wi}ni=1),L({W i}ni=1)) ≤
n∑

i=1

n∑

j=1

TV(Wij ,W ij) ≤ CN−1.

This completes the proof.

The second lemma characterizes the joint distributions of the Wi, Xi and Yi vectors when

HG
1 holds. In this case, the joint distribution {Wi}2ni=1 is close in total variation to a mixture

of the joint distribution of a random sample of size 2n from Qθ,τ , and that of {(Xi, Yi)}ni=1

and {Wi}ni=1 is close in total variation to that of a mixture over the joint distribution of a

random sample of size n from Pθ,τ together with an independent random sample of size n from

Qθ,τ with the same θ and τ parameters. Here, the mixture is defined by a prior distribution

π on the (θ, τ) pair, which is supported on a region where θ is sparse and τ is bounded
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away from zero. For notational convenience, for any distribution Pβ indexed by parameter

β ∈ B and any probability measure π on B, we let
∫
Pβdν(β) denote the probability measure

P defined by P(E) =
∫
Pβ(E)dν(β) for any event E. When β ∼ ν is a random variable

and Pβ = L(W |β) is the conditional distribution of W |β, we also write
∫
L(W |β)dν(β) to

represent the marginal distribution of W after integrating out β.

Lemma 8.4. Suppose A ∼ G(N, 1/2, k). There exists a distribution π supported on the set

{
(θ, τ) : θ ∈ Sp−1, |supp(θ)| ≤ 3k/2, τ ∈ [kηN/2, 3kηN/2]

}
, (76)

such that for some absolute constants C1, C2 > 0,

TV(L({Wi}2ni=1),

∫
Q2n
θ,τdπ(θ, τ)) ≤ C1

(
e−C2k +

1

N

)
+

4n

N
,

TV(L({(Xi, Yi)}ni=1, {Wi}ni=1),

∫
(Pnθ,τ ×Qn

θ,τ )dπ(θ, τ)) ≤ C1

(
e−C2k +

1

N

)
+

4n

N
.

Proof. Recall ηN defined in (27) and hµ,0 and hµ,1 defined in Lemma 5.2. As in the proof of

Lemma 8.3, let ν be N (0, ηN ), and ν̄ the distribution obtained by restricting ν on the set

[−3
√
ηN logN, 3

√
ηN logN ]. Then the µi’s in (31) are i.i.d. r.v.’s following ν̄. Simple calculus

shows that
∫
φ0(x)dν(µ) = φ0(x) is the density function of N(0, 1), and

∫
φ̄µ(x)dν(µ) gives

the density function of N (0, 1 + ηN ).

We first focus on the case p = 2n. The case of p ≥ 2n will be treated at the end of the

proof.

Recall that (ǫ1, ..., ǫ2n) are the indicators of the rows of A0 whether the corresponding

vertices belong to the planted clique, and (γ1, ..., γp) are the corresponding indicators of the

columns of A0. Let (ǫ̃1, ..., ǫ̃2n) and (γ̃1, ..., γ̃p) be i.i.d. Bernoulli random variables with

mean δN = k/N . Define a matrix Ã0, where an entry (Ã0)ij = 1 if ǫ̃i = γ̃j = 1 and is an

independent instantiation of the Bernoulli(1/2) distribution otherwise. Then, we define W̃

with entries

W̃ij = (B0)ij(1− (Ã0)ij) + (B1)ij(Ã0)ij .

Then, by Theorem 4 of [13] and the data-processing inequality, we have

TV(L(W̃ ),L(W )) ≤ TV(L(ǫ̃, γ̃),L(ǫ, γ)) ≤ 4n

N
. (77)

Recall hµ,0 and hµ,1 defined in Lemma 5.2. By the definition of W̃ , conditioning on µi and

γ̃j = 0, W̃ij ∼ hµi,0, while conditioning on µi and γ̃j = 1, W̃ij ∼ hµi,1.
Further define W ij by setting

W ij |(γ̃j = 0, µi) ∼ φ0, W ij |(γ̃j = 1, µi) ∼ φ̄µi ,

where φ̄µi is defined according to (28). By Lemma 5.2 and Lemma 7 of [26], uniformly over

maxi |µi| ≤ 3
√
ηN logN , we have

TV

(
L(W̃ |γ̃, µ),L(W |γ̃, µ)

)
≤

2n∑

i=1

p∑

j=1

TV

(
L(W̃ij |γ̃j , µi),L(W ij |γ̃j , µi)

)
≤ CN−1
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for some constant C > 0.

Next, we integrate the above bound over µ. To this end, first note that

TV(ν, ν̄) =

∫

|µ|>3
√
ηN logN

dν(µ) =

∫

|x|>3
√
logN

φ0(x)dx ≤ CN−4.

With slight abuse of notation, let
∫
L(W̃ |γ̃, µ)dν̄(µ) (resp.

∫
L(W̃ |γ̃, µ)dν(µ)) denote the

conditional distribution of W̃ |γ̃ if the coordinates of µ = (µ1, . . . , µ2n) were i.i.d. following

ν̄ (resp. ν), and let
∫
L(W |γ̃, µ)dν̄(µ) and

∫
L(W |γ̃, µ)dν(µ) be analogously defined. Then,

conditioning on γ̃, we obtain

TV(

∫
L(W̃ |γ̃, µ)dν̄(µ),

∫
L(W |γ̃, µ)dν(µ))

≤ TV(

∫
L(W̃ |γ̃, µ)dν̄(µ),

∫
L(W |γ̃, µ)dν̄(µ))

+ TV(

∫
L(W |γ̃, µ)dν̄(µ),

∫
L(W |γ̃, µ)dν(µ))

≤ sup
maxi |µi|≤3

√
ηN logN

TV(L(W̃ |γ̃, µ),L(W |γ̃, µ)) + CnTV(ν̄, ν)

≤ CN−1.

Here, the first inequality comes from the triangle inequality, the second from the definition

of total variation distance. For each given γ̃ = (γ̃1, ..., γ̃n), define s =
∑n

j=1 γ̃j =
∑n

j=1 γ̃
2
j =

‖γ̃j‖2, θ = s−1/2γ̃ and τ = sηN . Note that both θ and τ are functions of γ̃. Then observe

that ∫
L(W |γ̃, µ)dν(µ) = Q2n

θ,τ ,

which implies for L(W̃ |γ̃) =
∫
L(W̃ |γ̃, µ)dν̄(µ),

TV

(
L(W̃ |γ̃),Q2n

θ,τ

)
≤ CN−1.

Define the event

Q = {γ̃ : |s− k| ≤ k/2}.
Then, by Bernstein’s inequality, P(Qc) ≤ e−Ck. Let π̃ be the joint distribution of (θ, τ), and π

be the distribution obtained from renormalizing the restriction of π̃ on {(θ(γ̃), τ(γ̃)) : γ̃ ∈ Q}
which is exactly the set in (76). Then we have TV(π, π̃) ≤ CP(Qc) ≤ Ce−Ck. In addition, we

note that L(W̃ |γ̃) = L(W̃ |θ, τ) since there exists one-to-one identification between the pair

(θ, τ) and γ̃. Therefore, we have

TV(L(W̃ ),

∫
Q2n
θ,τdπ(θ, τ)) ≤ TV(L(W̃ ),

∫
L(W̃ |θ, τ)dπ(θ, τ))

+TV(

∫
L(W̃ |θ, τ)dπ(θ, τ),

∫
Q2n
θ,τdπ(θ, τ))

≤ TV(π̃, π) + sup
θ,τ

TV(L(W̃ |θ, τ),Q2n
θ,τ )

≤ C
(
e−Ck +N−1

)
.
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Here, the second inequality holds since L(W̃ ) =
∫
L(W̃ |θ, τ)dπ̃(θ, τ). Hence, by (77),

TV(L(W ),

∫
Q2n
θ,τdπ(θ, τ)) ≤ C

(
e−Ck +N−1

)
+

4n

N
.

Note that on the support of π, the parameter (θ, τ) belongs to the set (76). An application

of data-processing inequality leads to the conclusion. When p ≥ 2n, we may first analyze

the distribution of the first 2n coordinates using the above arguments. The remaining 2n−
p coordinates are exact, and the total variation bound is zero. This establishes the first

inequality. The second inequality is a direct consequence of the data processing inequality.

This completes the proof.

Proof of Theorem 5.2. By (36) and (37), we have u = θ/
√
τ/2 + 1, and so θ̂ = û/‖û‖ can

be viewed as an estimator for θ. Abbreviate 1
n

∑n
i=1WiW

′
i by Σ̂. We can rewrite the testing

function ψ as

ψ(X,Y,W ) = ψ(A, µ,B0, B1, Z) = 1
{
θ̂′Σ̂θ̂ ≥ 1 + kηN/4

}
.

Here, µ = (µ1, . . . , µ2n) collects the random variables in (31) and Z = [Z ′
1, . . . , Z

′
n]

′ consists
of the random vectors used in defining the (Xi, Yi)’s in (34). Thus, it is clear that ψ is a

randomized test for the Planted Clique detection problem (22).

Note that for any (θ, τ) in the support of π, we have

Qn
θ,τ ∈ Q

(
n,

3k

2
, p, 1,

kηN
2

; 3

)
and

Pnθ,τ ∈ P
(
n,

3k

2
,
3k

2
, p, p, 1,

kηN
8

; 4

)
,

(78)

where the second relation holds when k2

180N(logN)2
≤ 1 which is satisfied under the condition

of the theorem. To simplify notation, we denote below Pn0 ×Qn
0 and Pnθ,τ ×Qn

θ,τ by P
joint
0 and

P
joint
θ,τ , respectively.

We now bound the testing errors of (38). For Type-I error, Lemma 8.3 implies

PHG
0
ψ ≤ P

joint
0 ψ + CN−1.

Note that under P
joint
0 , θ̂ and Σ̂ are independent. Conditioning on θ̂ and using Bernstein’s

inequality, we have

θ̂′Σ̂θ̂ = 1 +
1

n

n∑

i=1

(
|θ̂′Wi|2 − ||θ̂||2

)
> 1 +

kηN
4
,

with probability at most exp
(
− Cnk4

N2(logN)4

)
. Integrating over θ̂, we have

PHG
0
ψ ≤ exp

(
− Cnk4

N2(logN)4

)
+ CN−1 ≤ C(n−1 +N−1), (79)
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where the last inequality holds under the assumptions N(logN)5

k4
≤ c and cN ≤ n ≤ N/12 for

some sufficiently small constant c > 0.

Turn to the Type-II error. Lemma 8.4 implies

PHG
1
(1− ψ) ≤ Pjoint

π (1− ψ) + C
(
e−Ck +N−1

)
+

4n

N
, (80)

where we have used the notation P
joint
π =

∫
P
joint
θ,τ dπ. For each P

joint
θ,τ in the support of π, Wi

has representation

Wi =
√
τgiθ + ǫi,

where the gi’s and the ǫi’s are independently distributed according to N(0, 1) and Np(0, Ip),

and are independent across i = 1, ..., 2n, and τ ≥ kηN/2. Therefore,

θ̂′Σ̂θ̂ = τ |θ̂′θ|2
(
1

n

n∑

i=1

g2i

)
+

1

n

n∑

i=1

|θ̂′ǫi|2 +
2
√
τ

n
θ̂′θ

n∑

i=1

giǫ
′
iθ̂.

After rearrangement, we have

∣∣∣θ̂′Σ̂θ̂ − (1 + τ)
∣∣∣ ≤

∣∣∣∣∣
1

n

n∑

i=1

(g2i − 1)

∣∣∣∣∣+ τ min{|(θ̂ − θ)′θ|2, |(θ̂ + θ)′θ|2}

+

∣∣∣∣∣
1

n

n∑

i=1

(|θ̂′ǫi|2 − 1)

∣∣∣∣∣+
∣∣∣∣∣
2

n

n∑

i=1

gi(ǫ
′
iθ̂)

∣∣∣∣∣ ,

where min{|(θ̂ − θ)′θ|2, |(θ̂ + θ)′θ|2} is bounded by

min
{
||θ̂ − θ||2, ||θ̂ + θ||2

}
≤ 4min{||û− u||2, ||û+ u||2}

||u||2

≤ 4

σ2min(Σx)||u||2
L(û, u) ≤ 4

σ2max(Σx)

σ2min(Σx)
L(û, u)

≤ 322L(û, u). (81)

Here, Σx is defined in (37) and the last inequality is due to (78). Together with (38), the

above bound implies that for each (θ, τ) pair in the support of π,

P
joint
θ,τ

{
min{|(θ̂ − θ)′θ|2, |(θ̂ + θ)′θ|2} > 1

3

}
≤ β. (82)

By Bernstein’s inequality, we have

P
joint
θ,τ

{∣∣∣∣∣
1

n

n∑

i=1

(g2i − 1)

∣∣∣∣∣+
∣∣∣∣∣
1

n

n∑

i=1

(|θ̂′ǫi|2 − 1)

∣∣∣∣∣+
∣∣∣∣∣
2

n

n∑

i=1

gi(ǫ
′
iθ̂)

∣∣∣∣∣ > C

√
log n

n

}
≤ n−C′

.

Combining the above analysis and using the assumptions that N(logN)5

k4
≤ c and cN ≤ n ≤

N/12, we have

P
joint
θ,τ (1− ψ) ≤ β + n−C

′

. (83)
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Integrating over (θ, τ) according to the prior π and applying (80), we obtain

PHG
1
(1− ψ) ≤ β + n−C

′

+ C
(
e−Ck +N−1

)
+

4n

N
.

Summing up the Type-I and Type-II errors, we have

PHG
0
ψ + PHG

1
(1− ψ) ≤ β +

4n

N
+ C(n−1 +N−1 + e−C

′k). (84)

Thus, the proof is complete.

Proof of Theorem 7.2. The proof is similar to that of Theorem 5.2. Without loss of generality,

assume ‖θ̂‖ = 1. Then, the proof of Theorem 5.2 essentially follows while the major difference

is that the inequality (81) is replaced by

min{|(θ̂ − θ)′θ|2, |(θ̂ + θ)′θ|2} ≤ min
{
||θ̂ − θ||2, ||θ̂ + θ||2

}

≤ ‖P
θ̂
− Pθ‖2F.

With the above modification, the key inequalities (79), (80), (82), (83) and hence the con-

clusion (84) all follow. This completes the proof.

8.3 Discretized models and proofs of Theorems 5.1 and 7.1

In this section, we prove the rigorous computational lower bounds in Theorems 5.1 and 7.1. To

state these results, we have adopted the asymptotically equivalent discretization framework

established in [26] in Section 5. In what follows, we first prove Lemma 5.1 which bounds the

Le Cam distance between multivariate Gaussian experiments and their discretized versions.

Then we describe how the reduction for continuous models introduced in Section 5.2 and

Section 7 can be slightly modified to become truly randomized polynomial-time reductions

connecting the Planted Clique problem (22) and the discrete sparse CCA and sparse PCA

estimation problems. Proofs of Theorems 5.1 and 7.1 then follow.

8.3.1 Proof of Lemma 5.1

Recall that for two statistical experiments P = {Pθ : θ ∈ Θ} and Q = {Qθ : θ ∈ Θ}, the
Le Cam deficiency of P with respect to Q is defined by δ(P,Q) = infT supθ∈Θ TV(TPθ,Qθ),

where the infimum is over all Markov kernels, and TPθ denotes the image measure. The Le

Cam distance is then ∆(P,Q) = δ(P,Q) ∨ δ(Q,P). We need the following lemma to prove

Lemma 5.1.

Lemma 8.5. For X ∼ Np(µ,Σ) withM
−1 ≤ σmin(Σ) ≤ σmax(Σ) ≤M and U = (U1, . . . , Up)

′

where Ui
iid∼ Unif[0, 1], we have for any t−1/22t ≥ 2(pM)3/2,

TV(X, [X]t + 2−tU) ≤ (pM)3/2t1/22−t.
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Proof. Let f and g denote the density functions of X and [X]t + 2−tU , respectively. Then g

is a piecewise constant function. For any (x1, ..., xp) ∈ B =
∏p
i=1[2

−tij , 2−t(ij + 1)), where

ij ∈ Z, we have

g(x1, ..., xp) =
1

ν(B)

∫

B
f(x1, ..., xp)dx1...dxp,

where ν is the Lebesgue measure. Hence,

sup
||x−µ||∞≤K

∣∣∣∣
g(x)

f(x)
− 1

∣∣∣∣ ≤ sup
||x−µ||∞≤K
||x−y||∞≤2−t

∣∣∣∣
f(x)

f(y)
− 1

∣∣∣∣

≤ sup
||x−µ||∞≤K
||x−y||∞≤2−t

∣∣∣e|(x−µ)′Σ−1(x−µ)−(y−µ)′Σ−1(y−µ)|/2 − 1
∣∣∣

≤ sup
||x−µ||∞≤K
||x−y||∞≤2−t

∣∣∣e‖Σ−1‖F‖(x−µ)(x−µ)′−(y−µ)(y−µ)′‖F/2 − 1
∣∣∣ (85)

≤ exp
(
p3/2MK2−t

)
− 1 (86)

≤ 3

2
p3/2MK2−t,

whenever p3/2MK2−t ≤ 1
2 . The inequality (85) holds since

|(x− µ)′Σ−1(x− µ)− (y − µ)′Σ−1(y − µ)|
= Tr

(
Σ−1[(x− µ)(x− µ)′ − (y − µ)(y − µ)′]

)

≤ ‖Σ−1‖F‖(x− µ)(x− µ)′ − (y − µ)(y − µ)′‖F

by Cauchy-Schwarz inequality. The inequality (86) holds because ‖Σ−1‖F ≤
√
p‖Σ−1‖op ≤√

pM and ‖(x−µ)(x−µ)′− (y−µ)(y−µ)′‖F ≤ p||x−y||∞(||x−µ||∞+ ||y−µ||∞) ≤ 2pK2−t.
Note that

∫
|f − g| ≤

∫

||x−µ||∞>K
|f(x)− g(x)|dx+

∫

||x−µ||∞≤K
f(x)

∣∣∣∣
g(x)

f(x)
− 1

∣∣∣∣ dx.

According to Gaussian tail probability, the first term can be bounded by 2p
√

2
π

√
M

K−1e
− (K−1)2

2M .

The second term is bounded by 3
2p

3/2MK2−t according to our previous analysis. Choosing

K =
√
2Mt log 2 + 1, we obtain the bound 2(pM)3/2t1/22−t for all t−1/22t ≥ 2(pM)3/2. The

conclusion follows the simple fact that TV(X, [X]t + 2−tU) = 1
2

∫
|f − g|.

Proof of Lemma 5.1. Since each distribution in E(p,n,t)M comes from discretizing a correspond-

ing distribution in E(p,n)M on a grid with equal spacing 2−t, we have δ(E(p,n)M , E(p,n,t)M ) = 0. On

the other hand, Lemma 8.5 and Lemma 7 of [26] lead to

δ(E(p,n,t)M , E(p,n)M ) ≤ n(pM)3/2t1/22−t.

This completes the proof.
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8.3.2 Randomized polynomial-time reduction for discretized models

For the discretized model, we modify the reduction scheme in Sections 5.2 and 7 and turn

them into randomized polynomial-time reductions.

Truncated dyadic approximations To this end, we first introduce the following trun-

cated dyadic approximation for any univariate distribution F with density f . For any

w,K ∈ N and K + w + 1 < b ∈ N, define the discrete distribution Aw,b,K [F ] with prob-

ability mass function Aw,b,K [f ] as

Aw,b,K [f ](−2K + (i− 1)2−w) =



∫ −2K+i2−w

−2K+(i−1)2−w f(x)dx
∫ 2K

−2K f(x)dx



b

, i ∈ [2K+w+1 − 1], (87)

and let

Aw,b,K [f ](2K − 2−w) = 1−
2K+w+1−1∑

i=1

Aw,b,K [f ](−2K + (i− 1)2−w). (88)

In (87), [·]b is the quantization defined previously in (24), and (88) ensures that Aw,b,K [F ] is a
proper probability distribution. Albeit the relatively complicated expressions in (87) and (88),

the distribution Aw,b,K [F ] can be obtained in the following way. For any random variable

U ∼ F , we have the distribution of [U1{U∈[−2K ,2K ]}]w having probability mass function

P([U1{U∈[−2K ,2K ]}]w = −2K + (i− 1)2−w) = pi =

∫ −2K+i2−w

−2K+(i−1)2−w f(x)dx
∫ 2K

−2K f(x)dx

for i = 1, . . . , 2K+w+1. Then (87) and (88) are obtained by replacing (p1, . . . , p2K+w+1) with

its dyadic approximation

([p1]b, . . . , [p2K+w+1−1]b, 1−
∑2K+w+1−1

i=1 [pi]b). (89)

Remark 8.1. By the definition of total variation distance, it is straightforward to verify that

the approximation error in total variation distance by (89) is upper bounded by 2K+w+1−b.
As discussed in Section 4.2 of [26], regardless of the original distribution F , the computational

complexity of drawing a random number from Aw,b,K(F) is O(b2K+w). This fact is crucial

in ensuring the modified reduction below is of randomized polynomial-time.

Randomized polynomial-time reduction Let t = ⌈4 log2(p + m + n)⌉ in the case of

CCA (and t = ⌈4 log2(p+ n)⌉ in the case of PCA),

w = t+ ⌈4 log2 p⌉, K = ⌈log2(3
√
log(N + p))⌉,

b = w +K + 1 + ⌈4 log2 p⌉.
(90)

With the above choice of w, b and K, in the case of sparse CCA, we apply the following

modifications to the four steps:
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1. Initialization. We sample i.i.d. r.v.’s ξ̌1, . . . , ξ̌2n ∼ Aw,b,K [Φ̃0] and set µ̌i = [η
1/2
N ]w ξ̌i for

i ∈ [2n].

2. Gaussianization. We generate two 2n× 2n matrices B̌0, B̌1 where conditioning on the

µ̌i’s all entries are mutually independent satisfying

L((B̌0)ij |µ̌i) = Aw,b,K [Fµi,0], L((B̌1)ij |µ̌i) = Aw,b,K [Fµi,1].

We then generate a matrix W̌ of size 2n× p where

W̌ij = (B̌0)ij (1− (A0)ij) + (B̌1)ij(A0)ij , for i ∈ [2n], j ∈ [2n].

When 2n < j ≤ p, we let W̌ij be independent draws from Aw,b,K [N(0, 1)].

3. Sample Generation. Let W̌i be the i-th row of W̌ . For i ∈ [n], we generate independent

random vector Ži = (Ži1, . . . , Žip) where Žij
iid∼ Aw,b,K [N(0, 1)]. Define

X̌i =
1

[
√
2]w

(W̌n+i + Ži), Y̌i =
1

[
√
2]w

(W̌n+i − Ži).

Let X̌ = [X̌ ′
1, . . . , X̌

′
n]

′ and Y̌ = [Y̌ ′
1 , . . . , Y̌

′
n]

′.

4. Test Construction. Let û = û([X̌]t, [Y̌ ]t) by treating {([X̌i]t, [Y̌i]t)}ni=1 as data. We

reject HG
0 if

û′( 1n
∑n

i=1[W̌i]t[W̌i]
′
t)û

‖û‖2 ≥ 1 +
1

4
kηN .

In the case of sparse PCA, the first two steps of the reduction are the same as above.

In the third step, denote the i-th row of W̌ by W̌i. Let θ̂ = θ̂([W̌n+1]t, . . . , [W̌2n]t) be the

estimator of θ by treating {[W̌n+i]t}ni=1 as data. We reject HG
0 if

θ̂′( 1n
∑n

i=1[W̌i]t[W̌i]
′
t)θ̂

‖θ̂‖2
≥ 1 +

1

4
kηN .

Remark 8.2. We now verify that under the conditions of Theorems 5.1 and 7.1 and the choice

of w, b and K in (90), the modified reductions stated above are of randomized polynomial

time. First, by Remark 8.1 and (90), the complexity for sampling any random variable

in the above reduction is O(p8(log p)3/2), and in total, we need to generate no more than

O(n(p+n)) random variables. Hence, the total complexity for random number generation is

O(p10(log p)3/2) in view of the condition p ≥ 2n. On the other hand, it is straightforward to

verify that all the other computations (except for the estimator û or θ̂) have complexity no

more than O(p10(log p)3/2). Since the conditions of Theorems 5.1 and 7.1 ensure that for some

constant a > 1, 2n ≤ p ≤ na and n ≤ N/12, we obtain that the additional computational

complexity induced by the proposed reductions is O(N10a(logN)3/2). Therefore, they are of

randomized polynomial-time.
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Intermediate results for discrete data We now present results for discrete data which

are in parallel to those in Lemmas 8.3 and 8.4 and Theorems 5.2 and 7.2 for continuous

data. The proofs of these results can be modified from those of Lemmas 8.3 and 8.4 and

Theorems 5.2 and 7.2 in essentially the way as was did in turning the proofs of Lemmas 3-4

and Theorem 3 to those of Lemmas 5-6 and Theorem 4 in [26], and hence are omitted.

To state the results, let Pt,n0 , Qt,n
0 , Pt,nθ,τ and P

t,n
θ,τ be the discretized versions of Pn0 , Q

n
0 , P

n
θ,τ

and Pnθ,τ . The following two lemmas are in parallel to Lemmas 8.3 and 8.4.

Lemma 8.6. Suppose A ∼ G(N, 1/2). Then there exists some constant C1 > 0, such that

TV(L({[W̌i]t}2ni=1),Q
t,2n
0 ) ≤ C1N

−1,

TV(L({[X̌i]t, [Y̌i]t}ni=1, {[W̌i]t}ni=1),P
t,n
0 ×Q

t,n
0 ) ≤ C1N

−1.

Lemma 8.7. Suppose A ∼ G(N, 1/2, k). Then there exists a distribution π supported on the

set (76) such that for some absolute constants C1, C2 > 0,

TV(L({[W̌i]t}2ni=1),

∫
Q
t,2n
θ,τ dπ(θ, τ)) ≤ C1

(
e−C2k +

1

N

)
+

4n

N
,

TV(L({([X̌i]t, [Y̌i]t)}ni=1, {[W̌i]t}ni=1),

∫
(Pt,nθ,τ ×Q

t,n
θ,τ )dπ(θ, τ))

≤ C1

(
e−C2k +

1

N

)
+

4n

N
.

The next two theorems are in parallel to Theorems 5.2 and 7.2, respectively.

Theorem 8.1. Let k,N, n, p satisfy the condition of Theorem 5.2. For any randomized

polynomial-time estimator û satisfying

sup
P∈Pt(n,3k/2,3k/2,p,p,1,kηN/8;4)

P

{
L(û, u) >

1

3× 322

}
≤ β, (91)

for t = ⌈4 log2(p+m+n)⌉, there exists a randomized polynomial-time test ψ for (22) satisfying

PHG
0
ψ + PHG

1
(1− ψ) < β +

4n

N
+ C(n−1 +N−1 + e−C

′k),

for sufficiently large n with some constants C,C ′ > 0.

Theorem 8.2. Let k,N, n, p satisfy the condition of Theorem 7.2. For any randomized

polynomial-time estimator θ̂ satisfying

sup
Q∈Qt(n,3k/2,p,1,kηN/2;3)

Q

{
‖P

θ̂
− Pθ‖2F >

1

3

}
≤ β,

for t = ⌈4 log2(p+ n)⌉, there exists a randomized polynomial-time test ψ for (22) satisfying

PHG
0
ψ + PHG

1
(1− ψ) < β +

4n

N
+ C(n−1 +N−1 + e−C

′k),

for sufficiently large n with some constants C,C ′ > 0.

44



8.3.3 Proofs of Theorems 5.1 and 7.1

We present below the proof of Theorem 5.1 and Theorem 7.1 can be proved in a similar way.

Proof of Theorem 5.1. Suppose there existed a randomized polynomial-time estimator û such

that as n→∞, (25) holds and

lim inf
n→∞

sup
P∈Pt(n,su,sv ,p,m,1,λ;4)

P

{
L(û, u) >

1

3× 322

}
≤ 1

4
. (92)

Now let N = 12n and k = ⌊2su/3⌋. Then Theorem 8.1 implies that there exists a randomized

polynomial-time test ψ for (22) such that

lim inf
n→∞

(
PHG

0
ψ + PHG

1 (1−ψ)

)
≤ 1

4
+

4

12
<

2

3
. (93)

On the other hand, (25) and the conditions of the theorem implies

lim sup
n→∞

log k

logN
<

1

2
.

This contradicts Hypothesis A and hence completes the proof.

9 Additional Proofs

9.1 Proof of Theorem 3.1

In this section, we denote Σ̂
(0)
x , Σ̂

(0)
y and Σ̂

(0)
xy by Σ̂x, Σ̂y and Σ̂xy for simplicity of notation.

Lemma 9.1. Assume 1
n (su log(ep/su) + sv log(em/sv)) ≤ c for some sufficiently small c > 0.

Then, for any C ′ > 0, there exists C > 0 only depending on C ′ such that

(1− δC)‖Σ1/2
x (Û V̂ ′ − Ũ Ṽ ′)Σ1/2

y ‖2F ≤ ‖Σ̂1/2
x (Û V̂ ′ − Ũ Ṽ ′)Σ̂1/2

y ‖2F
≤ (1 + δC)‖Σ1/2

x (Û V̂ ′ − Ũ Ṽ ′)Σ1/2
y ‖2F,

with probability at least 1− exp(−C ′su log(ep/su))− exp(−C ′sv log(em/sv)), with

δC = C

[√
su log(ep/su)

n
+

√
sv log(em/sv)

n

]
.

For the following two lemmas, we use the notation

ǫ2n =
1

n

(
r(su + sv) + su log

ep

su
+ sv log

em

sv

)
.

The following two lemmas are slight variations of Lemma 5 and Lemma 6 in [16], and thus

we omit their proofs.
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Lemma 9.2. Assume 1
n (r(su + sv) + su log(ep/su) + sv log(em/sv)) ≤ c for some suffi-

ciently small c > 0. Then, for any C ′ > 0, there exists C > 0 only depending on C ′

such that ∣∣∣〈Σxy − Σ̂xy, Ũ Ṽ
′ − Û V̂ ′〉

∣∣∣ ≤ Cǫn‖Σ1/2
x (Û V̂ ′ − Ũ Ṽ ′)Σ1/2

y ‖F,

with probability at least 1− exp (−C ′(r(su + sv) + su log(ep/su) + sv log(em/sv))).

Lemma 9.3. Assume 1
n (r(su + sv) + su log(ep/su) + sv log(em/sv)) ≤ c for some suffi-

ciently small c > 0. Then, for any C ′ > 0, there exists C > 0 only depending on C ′

such that
∣∣∣〈Σ̂xUΛV ′Σ̂y − ΣxUΛV ′Σy, Ũ Ṽ

′ − Û V̂ ′〉
∣∣∣ ≤ Cǫn‖Σ1/2

x (Û V̂ ′ − Ũ Ṽ ′)Σ1/2
y ‖F,

with probability at least 1− exp (−C ′(rsu + su log(ep/su)))− exp (−C ′(rsv + sv log(em/sv))).

Proof of Theorem 3.1. We use the notation ∆ = U (0)(V̂ (0))′ − Ũ Ṽ ′. Let us first derive a

bound for ‖Σ1/2
x ∆Σ

1/2
y ‖2F. We have

‖Σ1/2
x ∆Σ1/2

y ‖2F
≤ 2‖Σ̂1/2

x ∆Σ̂1/2
y ‖2F (94)

≤ 4

λr
〈Σ̂xŨ Λ̃Ṽ ′Σ̂y,−∆〉+

4

λr
‖Λ̃− Λ‖F‖Σ̂1/2

x ∆Σ̂1/2
y ‖F (95)

=
4

λr
〈Σ̂xUΛV ′Σ̂y,−∆〉+

4

λr
‖Λ̃− Λ‖F‖Σ̂1/2

x ∆Σ̂1/2
y ‖F

≤ 4

λr
〈Σ̂xUΛV ′Σ̂y − Σ̂xy,−∆〉+

4

λr
‖Λ̃− Λ‖F‖Σ̂1/2

x ∆Σ̂1/2
y ‖F (96)

≤ 4

λr
〈Σ̂xUΛV ′Σ̂y − ΣxUΛV ′Σy,−∆〉

+
4

λr
〈Σxy − Σ̂xy,−∆〉+

8

λr
‖Λ̃− Λ‖F‖Σ1/2

x ∆Σ1/2
y ‖F.

In the above argument, we have used Lemma 9.1 to obtain (94). The inequality (95) is due

to Lemma 6.3, and the inequality (96) is because of the fact that

〈Σ̂xy,−∆〉 ≤ 0,

by the definition of the estimator. Let us use the notation L = ‖Σ1/2
x ∆Σ

1/2
y ‖F and ǫ2n =

1
n

(
r(su + sv) + su log

ep
su

+ sv log
em
sv

)
. By Lemma 6.1, Lemma 9.2 and Lemma 9.3, we have

L2 ≤ 16CǫnL

λr
,

with high probability. This leads to L2 ≤ C1(ǫn/λ)
2 with high probability. By triangle

inequality, we have

‖Σ1/2
x (U (0)(V̂ (0))′ − UV ′)Σ1/2

y ‖F ≤ ‖Σ1/2
x ∆Σ1/2

y ‖F + ‖Σ1/2
x (Ũ Ṽ ′ − UV ′)Σ1/2

y ‖F.

Using Lemma 6.1 and L2 ≤ C1(ǫn/λ)
2, we complete the proof.
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9.2 Proof of Theorem 3.2

In this section, we denote Σ̂
(1)
x , Σ̂

(1)
y and Σ̂

(1)
xy by Σ̂x, Σ̂y and Σ̂xy for simplicity of notation.

Let U∗ = UΛV ′ΣyV̂ (0), and ∆ = Û (1) − U∗.

Lemma 9.4. Assume su log(ep/su)
n ≤ c for some sufficiently small c > 0. Then, for any

C ′ > 0, there is some C > 0 only depending on C ′, such that

‖Σ1/2
y V̂ (0)‖op ≤ 1 + C

√
su log(ep/su)

n
,

‖(V̂ (0))′ΣyV̂
(0) − I‖op ≤ C

√
su log(ep/su)

n
,

with probability at least 1− exp(−C ′su log(ep/su)).

Lemma 9.5. Assume su log(ep/su)
n ≤ c for some sufficiently small c > 0. Then, for any

C ′ > 0, there is some C > 0 only depending on C ′, such that

(1− δ′C)‖Σ1/2
x ∆‖2F ≤ ‖Σ̂1/2

x ∆‖2F ≤ (1 + δ′C)‖Σ1/2
x ∆‖2F,

with probability at least 1− exp(−C ′su log(ep/su)), with δ′C = C

√
su log(ep/su)

n .

Lemma 9.6. Assume 1
n (sv log(em/sv) + su log(ep/su) + rsu) ≤ c for some sufficiently small

c > 0. Then, for any C ′ > 0, there is some C > 0 only depending on C ′, such that

∣∣∣Tr
(
∆′(Σ̂xy − Σxy)V̂

(0)
)∣∣∣ ≤ C

√
rsu + su log(ep/su)

n
‖Σ1/2

x ∆‖F,

with probability at least 1− exp (−C ′(su log(ep/su) + rsu))− exp(−C ′sv log(em/sv)).

Lemma 9.7. Assume 1
n (sv log(em/sv) + su log(ep/su) + rsu) ≤ c for some sufficiently small

c > 0. Then for any C ′ > 0, there is some C > 0 only depending on C ′, such that

∣∣∣Tr
(
∆′(Σ̂x − Σx)U

∗
)∣∣∣ ≤ C

√
rsu + su log(ep/su)

n
‖Σ1/2

x ∆‖F,

with probability at least 1− exp (−C ′(su log(ep/su) + rsu))− exp(−C ′sv log(em/sv)).

Proof. The proof consists of two steps. In the first step, we derive a bound for ‖Σ1/2
x ∆‖F. In

the second step, we derive the desired bound for L(Û , U).

Step 1. By the definition of the estimator, we have

Tr((Û (1))′Σ̂xÛ
(1))− 2Tr((Û (1))′Σ̂xyV̂

(0)) ≤ Tr((U∗)′Σ̂xU
∗)− 2Tr((U∗)′Σ̂xyV̂

(0)).

After rearrangement, we have

Tr(∆′Σ̂x∆)

≤ 2Tr
(
∆′(Σ̂xyV̂

(0) − Σ̂xU
∗)
)

≤ 2
∣∣∣Tr
(
∆′(Σ̂xy − Σxy)V̂

(0)
)∣∣∣+ 2

∣∣∣Tr
(
∆′(Σ̂x − Σx)U

∗
)∣∣∣ .
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Using Lemma 9.5, Lemma 9.6 and Lemma 9.7, we have

1

2
‖Σx∆‖2F ≤ 4C

√
rsu + su log(ep/su)

n
‖Σ1/2

x ∆‖F,

with high probability, which immediately implies a bound for ‖Σx∆‖2F. This completes Step

1.

Step 2. We claim that

σ−1
min

(
Σ1/2
x UΛV ′ΣyV̂

(0)
)
≤ C

λ
, (97)

‖Σ1/2
x Û − Σ1/2

x Û (1)((Û (1))′ΣxÛ
(1))−1/2‖F ≤ C

√
rsu + su log(ep/su)

n
, (98)

with high probability. The two claims (97) and (98) will be proved in the end. We bound

L(Û , U) by

√
L(Û , U) = inf

W∈O(r,r)
‖Σ1/2

x (ÛW − U)‖F

≤ ‖Σ1/2
x Û − Σ1/2

x Û (1)((Û (1))′ΣxÛ
(1))−1/2‖F

+ inf
W∈O(r,r)

‖Σ1/2
x Û (1)((Û (1))′ΣxÛ

(1))−1/2W − Σ1/2
x U‖F

≤ C

√
rsu + su log(ep/su)

n
+

1√
2
‖P

Σ
1/2
x Û
− P

Σ
1/2
x U
‖F (99)

≤ C

√
rsu + su log(ep/su)

n
+ Cσ−1

min

(
Σ1/2
x UΛV ′ΣyV̂

(0)
)
‖Σ1/2

x ∆‖F (100)

≤ C

√
rsu + su log(ep/su)

nλ2
,

with high probability. The inequality (99) is due to the claim (98), Lemma 6.6 and the fact

that P
Σ1/2Û

= P
Σ1/2Û(1) . The inequality (100) is derived from the sin-theta theorem [36].

Thus, we have obtained the desired bound for the loss L(Û , U). To finish the proof, we need

to prove the two claims (97) and (98). Since Σ
1/2
x U ∈ O(p, r), we have

σ−1
min

(
Σ1/2
x UΛV ′ΣyV̂

(0)
)
≤ λ−1‖(V ′ΣyV̂

(0))−1‖op.

Thus, it is sufficient to bound ‖(V ′ΣyV̂ (0))−1‖op. By Theorem 3.1 and sin-theta theorem [36],

‖P
Σ

1/2
y V̂ (0) − PΣ

1/2
y V
‖F is sufficiently small. In view of Lemma 6.6, there exists W ∈ O(r, r),

such that

‖Σ1/2
y V̂ (0)(V̂ (0)ΣyV̂

(0))−1/2 − Σ1/2
y VW‖F

is sufficiently small. Therefore, together with Lemma 9.4,

‖V ′ΣyV̂
(0) −W‖op

≤ ‖V ′ΣyV̂
(0) − V ′ΣyVW (V̂ (0)ΣyV̂

(0))1/2‖op + ‖W‖op‖(V̂ (0)ΣyV̂
(0))1/2 − I‖op

≤ ‖Σ1/2
y V̂ (0)(V̂ (0)ΣyV̂

(0))−1/2 − Σ1/2
y VW‖F‖(V̂ (0)ΣyV̂

(0))1/2‖op + ‖(V̂ (0)ΣyV̂
(0))1/2 − I‖op
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is also sufficiently small. By Weyl’s inequality [17, p.449], |σmin(V
′ΣyV̂ (0))−1| ≤ ‖V ′ΣyV̂ (0)−

W‖op is sufficiently small. Hence, ‖(V ′ΣyV̂ (0))−1‖op ≤ 2 with high probability, which implies

the desired bound in (97). Finally, we need to prove (98). We have

‖Σ1/2
x Û − Σ1/2

x Û (1)((Û (1))′ΣxÛ
(1))−1/2‖F

≤ ‖Σ1/2
x Û (1)‖F‖((Û (1))′Σ̂(2)

x Û (1))−1/2 − ((Û (1))′ΣxÛ
(1))−1/2‖op

≤ C
(
‖Σ1/2

x UΛV ′ΣyV̂
(0)‖F + ‖Σ1/2

x ∆‖F
)
‖(Û (1))′(Σ̂(2)

x − Σx)Û
(1)‖op.

We have already shown that ‖Σ1/2
x ∆‖F is sufficiently small. The term ‖Σ1/2

x UΛV ′ΣyV̂ (0)‖F
is bounded by

√
r‖V ′ΣyV̂ (0)‖op ≤

√
r(1 + ‖V ′ΣyV̂ (0) −W‖op) ≤ C

√
r by using the bound

derived for ‖V ′ΣyV̂ (0) −W‖op. To bound ‖(Û (1))′(Σ̂(2)
x − Σx)Û

(1)‖op, note that Σ̂
(2)
x only

depends on D2 and is independent of Û (1). Using union bound and an ǫ-net argument (see,

for example, [30]) and the fact that r ≤ su (which is implied by Σ
1/2
x U ∈ O(p, r)), we have

‖(Û (1))′(Σ̂(2)
x − Σx)Û

(1)‖op ≤ C

√
rsu+su log(ep/su)

n with high probability. Hence, the proof is

complete.

9.3 Proof of Theorem 3.3

For any probability measures P,Q, define the Kullback-Leibler divergence by D(P||Q) =∫ (
log dP

dQ

)
dP. The following result is Lemma 14 in [16]. It gives explicit formula for the

Kullback-Leibler divergence between distributions generated by a special kind of covariance

matrices.

Lemma 9.8. For i = 1, 2, let Σ(i) =

[
Ip λU(i)V

′
(i)

λV(i)U
′
(i) Im

]
with λ ∈ (0, 1), U(i) ∈ O(p, r)

and V(i) ∈ O(m, r). Let P(i) denote the distribution of a random i.i.d. sample of size n from

the Np+m(0,Σ(i)) distribution. Then

D(P(1)||P(2)) =
nλ2

2(1− λ2)‖U(1)V
′
(1) − U(2)V

′
(2)‖2F.

The main tool for our proof is Fano’s lemma. The following version is adapted from [39,

Lemma 3].

Proposition 9.1. Let (Θ, ρ) be a metric space and {Pθ : θ ∈ Θ} a collection of probability

measures. For any totally bounded T ⊂ Θ, denote by M(T, ρ, ǫ) the ǫ-packing number of T

with respect to ρ, i.e., the maximal number of points in T whose pairwise minimum distance

in ρ is at least ǫ. Define the Kullback-Leibler diameter of T by

dKL(T ) , sup
θ,θ′∈T

D(Pθ||Pθ′). (101)

Then

inf
θ̂
sup
θ∈Θ

Pθ

(
ρ2
(
θ̂(X), θ

)
≥ ǫ2

4

)
≥ 1− dKL(T ) + log 2

logM(T, ρ, ǫ)
. (102)
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Finally, we lower bound the prediction loss by the squared subspace distance. Its proof

is given in Section 9.4.

Proposition 9.2. There exists a constant C > 0 only depending on M , such that

‖P
Û
− PU‖2F ≤ CL(Û , U).

A similar inequality holds for L(V̂ , V ).

Proof of Theorem 3.3. Let us first give an outline of the proof. By Proposition 9.2, we have

inf
Û

sup
P∈P

P

(
L(Û , U) ≥ Cǫ2

)
≥ inf

Û
sup
P∈P

P
(
‖P

Û
− PU‖2F ≥ C1ǫ

2
)
,

for any rate ǫ2. Therefore, it is sufficient to derive a lower bound for the loss ‖P
Û
− PU‖2F.

Without loss of generality, we assume su/3 is an integer and su ≤ 3p/4. The case su >

3p/4 is harder and thus it shares the same lower bound. The subset of covariance class

F(p,m, su, sv, r, λ;M) we consider is

T =

{
Σ =

[
Ip λUV ′

0

λV0U
′ Im

]
:U =

[
Ũ 0

0 ur

]
, Ũ ∈ B,

ur ∈ Rp−2su/3, ||ur|| = 1, |supp(ur)| ≤ su/3
}
,

where V0 =

[
Ir
0

]
∈ O(m, r) and B is a subset of O(2su/3, r − 1) to be specified later. From

the construction, U depends on the matrix Ũ and the vector ur. As Ũ and ur vary, we always

have U ∈ O(p, r). We use T (u∗r) to denote a subset of T where ur = u∗r is fixed, and use

T (Ũ∗) to denote a subset of T where Ũ = Ũ∗ is fixed.

The proof has three steps. In the first step, we derive the part rsu
nλ2

using the subset T (u∗r)

for some particular u∗r . In the second step, we derive the other part su log(ep/su)
nλ2

using the

subset T (Ũ∗) for some fixed Ũ∗. Finally, we combine the two results in the third step.

Step 1. Let u∗r = (1, 0, ..., 0)′, and we consider the subset T (u∗r). Let Ũ0 =

[
Ir−1

0

]
∈

O(2su/3, r − 1) and ǫ0 ∈ (0,
√
r] to be specified later. Define

B = B(ǫ0) =
{
Ũ ∈ O(2su/3, r − 1) : ‖Ũ − Ũ0‖F ≤ ǫ0

}
.

By Lemma 9.8,

dKL (T (u
∗
r)) = sup

Ũ(i)∈B(ǫ0)

nλ2

2(1− λ2)‖Ũ(1) − Ũ(2)‖2F ≤
2nλ2ǫ20
1− λ2 . (103)

Here, the equality is due to the definition of V0 and the inequality due to the definition of

B(ǫ0). We now establish a lower bound for the packing number of T (u∗r). For some α ∈ (0, 1)
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to be specified later, let {Ũ(1), . . . , Ũ(N)} ⊂ O(2su/3, r − 1) be a maximal set such that for

any i 6= j ∈ [N ],

‖Ũ(i)Ũ
′
(i) − Ũ0Ũ

′
0‖F ≤ ǫ0, ‖Ũ(i)Ũ

′
(i) − Ũ(j)Ũ

′
(j)‖F ≥

√
2αǫ0. (104)

Then by [11, Lemma 1], for some absolute constant C > 1,

N ≥
(

1

Cα

)(r−1)(2su/3−r+1)

.

It is easy to see that the loss function ‖PU(i)
−PU(j)

‖2F on the subset T (u∗r) equals ‖Ũ(i)Ũ
′
(i)−

Ũ(j)Ũ
′
(j)‖2F. Thus, for ǫ =

√
2αǫ0 with sufficiently small α, logM(T (u∗r), ρ, ǫ) ≥ (r−1)(2su/3−

r+1) log 1
Cα ≥ (r−1)(16su−1) log 1

Cα ≥ 1
12rsu log

1
Cα when r is sufficiently large and r ≤ su/2.

Taking ǫ20 = c1
rsu
nλ2

for sufficiently small c1, we have

inf
Û

sup
T (u∗r)

P

(
‖P

Û
− PU‖2F ≥

ǫ2

4

)
≥ 1−

2c1rsu
1−λ2 + log 2
1
12rsu log

1
Cα

. (105)

Since λ is bounded away from 1, we may choose sufficiently small c1 and α, so that the right

hand side of (105) can be lower bounded by 0.9. This completes the first step.

Step 2. The part su log(ep/su)
nλ2

can be obtained from the rank-one argument spelled out

in [12]. To be rigorous, consider the subset T (Ũ∗) with Ũ∗ =

[
Ir−1

0

]
∈ O(2su/3, r − 1).

Restricting on the set T (Ũ∗), the loss function is

‖PU(i)
− PU(j)

‖2F = ‖ur,(i)u′r,(i) − ur,(j)u′r,(j)‖2F.

Let X = [X1 X2] with X1 ∈ Rn×(r−1) and X2 ∈ Rn×(p−r+1), and Y = [Y1 Y2] with

Y1 ∈ Rn×(r−1) and Y2 ∈ Rn×(m−r+1). Then it is further equivalent to estimating u1 un-

der projection loss based on the observation (X2, Y2), because (X2, Y2) is a sufficient statistic

for ur. Applying the argument in [12, Appendix G] and choosing the appropriate constant,

we have

inf
Û

sup
T (Ũ∗)

P

(
‖P

Û
− PU‖2F ≥ C

su log(ep/su)

nλ2
∧ c0

)
≥ 0.9, (106)

for some constant C > 0. This completes the second step.

Step 3. For any P ∈ P, by union bound, we have

P
(
‖P

Û
− PU‖2F ≥ ǫ21 ∨ ǫ22

)

≥ 1− P
(
‖P

Û
− PU‖2F < ǫ21

)
− P

(
‖P

Û
− PU‖2F < ǫ22

)

= P
(
‖P

Û
− PU‖2F ≥ ǫ21

)
+ P

(
‖P

Û
− PU‖2F ≥ ǫ22

)
− 1.

Taking sup
T (u∗r)∪T (Ũ∗)

on both sides of the inequality, and letting ǫ21 = C1
rsu
nλ2

in (105) and

ǫ22 = C2
su log(ep/su)

nλ2
∧ c0 in (106), we have

sup
P∈P

P
(
‖P

Û
− PU‖2F ≥ ǫ21 ∨ ǫ22

)
≥ 0.9 + 0.9− 1 = 0.8,

51



where we have used the identity sup
Ũ∈T (u∗r),ur∈T (Ũ∗)

(
f(ur) + g(Ũ)

)
= sup

ur∈T (Ũ∗)
f(ur) +

sup
Ũ∈T (u∗r)

g(Ũ). Careful readers may notice that we have assume sufficiently large r in Step

1. For r which is not sufficiently large, a similar rank-one argument as in Step 2 gives the

desired lower bound. Thus, the proof is complete.

9.4 Proofs of technical lemmas

This section gathers the proofs of all technical results used in the above sections. The proofs

are organized according to the order of their first appearance. To simplify notation, we denote

Σ̂
(j)
x , Σ̂

(j)
y and Σ̂

(j)
xy by Σ̂x, Σ̂y and Σ̂xy for j ∈ {0, 1, 2} whenever there is no confusion from

the context.

Let us first prove the claim (17) in Section 4.

Proof of (17). Remember that Or = {AB′ : A ∈ O(p, r), B ∈ O(m, r)} and Cr = {G ∈
Rp×m : ‖G‖∗ ≤ r, ‖G‖op ≤ 1}. Since Or ⊂ Cr and Cr is convex, we have conv(Or) ⊂ Cr. It is
sufficient to show the other direction. For some AB′ ∈ Or, we must have −AB′ ∈ Or. Thus
0 = 1

2(AB
′ − AB′) ∈ conv(Or). Hence, conv(Or) = conv(Or ∪ {0}), and it is sufficient to

prove Cr ⊂ conv(Or ∪ {0}). For any G ∈ Cr, it has SVD

G =

q∑

l=1

λlulv
′
l.

Define

Hk =

k−1+r∑

l=k−1

ulv
′
l, for k = 2, ..., q, and H1 = 0.

It is easy to see that Hk ∈ Or ∪ {0}, for k = 1, ..., q, and

G = (1− λ1)H0 +

q∑

k=2

(λk−1 − λk)Hk.

Since (1 − λ1) +
∑q

k=2(λk−1 − λk) = 1, we have G ∈ conv(Or ∪ {0}), and therefore Cr ⊂
conv(Or ∪ {0}). Thus, the proof is complete.

Then we prove the lemmas in Section 6.

In order to prove Lemma 6.1, we need an auxiliary result.

Lemma 9.9. Assume 1
n(su + sv + log(ep/su) + log(em/sv)) ≤ C1 for some constant c > 0.

Then, for any C ′ > 0, there exists C > 0 only depending on C ′ such that

‖U ′Σ̂xU − I‖op ∨ ‖(U ′Σ̂xU)1/2 − I‖op ≤ C

√
1

n

(
su + log

ep

su

)
,

‖V ′Σ̂yV − I‖op ∨ ‖(V ′Σ̂yV )1/2 − I‖op ≤ C

√
1

n

(
sv + log

em

sv

)
,

with probability at least 1− exp(−C ′(su + log(ep/su)))− exp(C ′(sv + log(em/sv))).
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Proof. Using the definition of operator norm and the sparsity of U , we have

‖U ′Σ̂xU − Ir‖op = ‖U ′(Σ̂x − Σx)U‖op = ‖(USu∗)
′(Σ̂xSuSu − Σ̂xSuSu)USu∗‖op

= sup
||v||=1

(USu∗v)
′(Σ̂xSuSu − Σ̂xSuSu)(USu∗v) ≤ ‖Σ

1/2
xSuSu

USu∗‖2op‖Σ
−1/2
xSuSu

Σ̂xSuSuΣ
−1/2
xSuSu

− I‖op,

where ‖Σ1/2
xSuSu

USu∗‖2op ≤ 1 and ‖Σ−1/2
xSuSu

Σ̂xSuSuΣ
−1/2
xSuSu

− I‖op is bounded by the desired rate

with high probability according to Lemma 16 in [16]. Lemma 15 in [16] implies ‖(U ′Σ̂xU)1/2−
I‖op ≤ C‖U ′Σ̂xU − I‖op, and thus ‖(U ′Σ̂xU)1/2 − I‖op also shares same upper bound. The

upper bound for ‖V ′Σ̂yV − I‖op ∨‖(V ′Σ̂yV )1/2− I‖op can be derived by the same argument.

Hence, the proof is complete.

Proof of Lemma 6.1. According to the definition, we have

‖Σ1/2
x (U − Ũ)‖op ≤ ‖Σ1/2

x U‖op‖(U ′Σ̂xU)1/2 − I‖op‖(U ′Σ̂xU)−1/2‖op,
‖Σ1/2

y (V − Ṽ )‖op ≤ ‖Σ1/2
y V ‖op‖(V ′Σ̂yV )1/2 − I‖op‖(V ′Σ̂yV )−1/2‖op,

‖Λ̃− Λ‖op ≤ ‖(U ′Σ̂xU)1/2 − I‖op‖Λ(V ′Σ̂yV )1/2‖op
+‖Λ‖op‖(V ′Σ̂yV )1/2 − I‖op.

Applying Lemma 9.9, the proof is complete.

Proof of Lemma 6.2. By the definition of Ũ , we have Ũ ′Σ̂xŨ = I, and thus Σ̂
1/2
x Ũ ∈ O(p, r).

Similarly Σ̂
1/2
y Ṽ ∈ O(m, r). Thus,

‖Σ̂1/2
x ÃΣ̂1/2

y ‖op ≤ ‖Σ̂1/2
x Ũ‖op‖Σ̂1/2

y Ṽ ‖op ≤ 1. (107)

Now let us use the notation Q = Σ̂
1/2
x ÃΣ̂

1/2
y . Then, by the definition of Ã, we have Q′Q =

Σ̂
1/2
y V (V ′Σ̂yV )−1V ′Σ̂1/2

y , and

Tr(Q′Q) = Tr((V ′Σ̂yV )−1(V ′Σ̂yV )) = r. (108)

Combining (107) and (108), it is easy to see that all eigenvalues of Q′Q are 1. Thus, we have

‖Q‖∗ = r and ‖Q‖op = 1. The proof is complete.

Proof of Lemma 6.3. Denote F = [f1, ..., fr], G = [g1, ..., gr] and cj = f ′jEbj . By ‖E‖op ≤ 1,

we have |cj | ≤ 1. The left hand side of (40) is lower bounded by

〈FKG′, FG′ − E〉 ≥ 〈FDG′, FG′ − E〉 − ‖K −D‖F‖FG− E‖F,

where

〈FDG′, FG′ − E〉 = 〈D, I − F ′EG〉 =
r∑

l=1

dl(1− cl) ≥ dr
r∑

l=1

(1− cl).
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The right hand side of (40) is

dr
2
‖FG′ − E‖2F =

dr
2

(
‖FG′‖2F + ‖E‖2F − 2Tr(F ′EG)

)

≤ dr
2

(
Tr(F ′FG′G) + ‖E‖op‖E‖∗ − 2

r∑

j=1

cj

)

≤ dr
r∑

j=1

(1− cj).

This completes the proof.

Proof of Lemma 6.4. Using triangle inequality, ||Σ̂xy − Σ̃xy||∞ can be upper bounded by the

following sum,

||Σ̂xy − Σxy||∞ + ||(Σ̂x − Σx)UΛV ′Σy||∞
+||ΣxUΛV ′(Σ̂y − Σy)||∞ + ||(Σ̂x − Σx)UΛV ′(Σ̂y − Σy)||∞.

The first term can be bounded by the desired rate by union bound and Bernstein’s inequality

[30, Prop. 5.16]. For the second term, it can be written as

max
j,k

∣∣∣∣∣
1

n

n∑

i=1

(Xij [X
′
iUΛV ′Σy]k − EXij [X

′
iUΛV ′Σy]k)

∣∣∣∣∣ ,

where Xij is the j-th element of Xi and the notation [·]k means the k-th element of the

referred vector. Thus, it is a maximum over average of centered sub-exponential random

variables. Then, by Bernstein’s inequality and union bound, it is also bounded by the desired

rate. Similarly, we can bound the third term. For the last term, it can be bounded by∑r
l=1 λl||(Σ̂x − Σx)ulv

′
l(Σ̂y − Σy)||∞, where for each l, ||(Σ̂x − Σx)ulv

′
l(Σ̂y − Σy)||∞ can be

written as

max
j,k

∣∣∣∣∣

(
1

n

n∑

i=1

(XijX
′
iul − EXijX

′
iul)

)(
1

n

n∑

i=1

(YikY
′
i vl − EYikY

′
i vl)

)∣∣∣∣∣ .

It can be bounded by the rate log(p+m)
n with the desired probability using union bound and

Bernstein’s inequality. Hence, the last term can be bounded by λ1r log(p+m)
n . Under the

assumption that r

√
log(p+m)

n is bounded by a constant, it can further be bounded by the

rate

√
log(p+m)

n with high probability. Combining the bounds of the four terms, the proof is

complete.

Proof of Lemma 6.6. By the property of least squares, we have

inf
W
‖F −GW‖2F = ‖F −G(G′G)−G′F‖2F

= ‖F − PGF‖2F
= r − Tr(PFPG).

Since ‖PF − PG‖2F = 2r − 2Tr(PFPG), the proof is complete.
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Proof of Lemma 6.7. By the definition of U∗, we have ΣxyV̂
(0) = ΣxU

∗. Thus,

max
1≤j≤p

||[Σ̂xyV̂ (0) − Σ̂xU
∗]j·|| ≤ max

1≤j≤p
||[(Σ̂xy − Σxy)V̂

(0)]j·||+ max
1≤j≤p

||[(Σ̂x − Σx)U
∗]j·||.

Let us first bound max1≤j≤p ||[(Σ̂x − Σx)U
∗]j·||. Note that the sample covariance can be

written as

Σ̂x = Σ1/2
x

(
1

n

n∑

i=1

ZiZ
′
i

)
Σ1/2
x ,

where {Zi}ni=1 are i.i.d. Gaussian vectors distributed as N(0, Ip). Let T ′
j be the j-th row of

Σ
1/2
x , and then we have

[(Σ̂x − Σx)U
∗]j· =

1

n

n∑

i=1

(T ′
jZiZ

′
iΣ

1/2
x U∗ − T ′

jΣ
1/2
x U∗).

For each i and j, define vector

W
(j)
i =

[
T ′
jZi

(U∗)′Σ1/2
x Zi

]
.

Since T ′
jZiZ

′
iΣ

1/2
x U∗ is a submatrix of W

(j)
i (W

(j)
i )′, we have

||[(Σ̂x − Σx)U
∗]j·|| ≤ ‖

1

n

n∑

i=1

(W
(j)
i (W

(j)
i )′ − EW

(j)
i (W

(j)
i )′)‖op.

Hence, for any t > 0, we have

P

{
max
1≤j≤p

||[(Σ̂x − Σx)U
∗]j·|| > t

}

≤
p∑

j=1

P

{
‖ 1
n

n∑

i=1

(W
(j)
i (W

(j)
i )′ − EW

(j)
i (W

(j)
i )′)‖op > t

}

≤
p∑

j=1

exp

(
C1r − C2nmin

{
t

‖W(j)‖op
,

t2

‖W(j)‖2op

})
, (109)

whereW(j) = EW
(j)
i (W

(j)
i )′, and we have used concentration inequality for sample covariance

[30, Thm. 5.39]. Since ‖W(j)‖op ≤ C3 for some constant C3 only depending on M , (109) can

be bounded by

exp
(
C ′
1(r + log p)− C ′

2n(t ∧ t2)
)
.

Take t2 = C4
r+log p
n for some sufficiently large C4, and under the assumption n−1(r+log p) ≤

C1, max1≤j≤p ||[(Σ̂x−Σx)U∗]j·|| ≤ C
√

r+log p
n with probability at least 1−exp(−C ′(r+log p)).

Similar arguments lead to the bound of max1≤j≤p ||[(Σ̂xy − Σxy)V̂
(0)]j·||. Let us sketch the

proof. Note that we may write

[(Σ̂xy − Σxy)V̂
(0)]j =

1

n

n∑

i=1

(
T ′
jZiY

′
i V̂

(0) − E(T ′
jZiY

′
i V̂

(0))
)
.
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Then, define

H
(j)
i =

[
T ′
jZi

(V̂ (0))′Yi

]
,

and we have

max
1≤j≤p

||[(Σ̂xy − Σxy)V̂
(0)]j || ≤ max

1≤j≤p
‖ 1
n

n∑

i=1

(H
(j)
i (H

(j)
i )′ − EH

(j)
i (H

(j)
i )′)‖op.

Using the same argument, we can bound this term by C
√

r+log p
n with probability at least

1− exp(−C ′(r + log p)). Thus, the proof is complete.

Finally, we prove the technical results in Section 9.

Proof of Lemma 9.1. Let us use the notation ∆ = Û V̂ ′−Ũ Ṽ ′, Tu = Ŝu∪Su and Tv = Ŝv∪Sv,
where Ŝu = supp(Û) and Ŝv = supp(V̂ ). By the sparsity of ∆, we have

‖Σ1/2
x ∆Σ1/2

y ‖2F = Tr(Σx∆Σy∆
′) = Tr(ΣxTuTu∆TuTvΣyTvTv(∆TuTv)

′) = ‖Σ1/2
x ∆Σ1/2

y ‖2F Tr(KK ′),

where

K = ‖Σ1/2
xTuTu

∆TuTvΣ
1/2
yTvTv

‖−1
F Σ

1/2
xTuTu

∆TuTvΣ
1/2
yTvTv

= ‖Σ1/2
x ∆Σ1/2

y ‖−1
F Σ

1/2
xTuTu

∆TuTvΣ
1/2
yTvTv

,

so that ‖K‖F = 1. Similarly, we have

‖Σ̂1/2
x ∆Σ̂1/2

y ‖2F = ‖Σ1/2
x ∆Σ1/2

y ‖2F Tr(ÎxKÎyK
′),

where

Îx = Σ
−1/2
xTuTu

Σ̂xTuTuΣ
−1/2
xTuTu

and Îy = Σ
−1/2
yTvTv

Σ̂yTvTvΣ
−1/2
yTvTv

.

Therefore,
∣∣∣‖Σ1/2

x ∆Σ1/2
y ‖2F − ‖Σ̂1/2

x ∆Σ̂1/2
y ‖2F

∣∣∣ ≤ ‖Σ1/2
x ∆Σ1/2

y ‖2F
∣∣∣Tr(ÎxKÎyK ′)− Tr(KK ′)

∣∣∣ . (110)

Note that
∣∣∣Tr(ÎxKÎyK ′)− Tr(KK ′)

∣∣∣

≤
∣∣∣Tr((Îx − I|Tu|)KÎyK ′)

∣∣∣+
∣∣∣Tr(I|Tu|K(Îy − I|Tv |)K ′)

∣∣∣

≤ ‖(Îx − I|Tu|)K‖F‖ÎyK ′‖F + ‖I|Tu|K‖F‖(Îy − I|Tv |)K ′‖F
≤ ‖(Îx − I|Tu|)‖op‖Îy‖op + ‖I|Tu|‖op‖(Îy − I|Tv |)‖op

≤ C

[√
su log(ep/su)

n
+

√
sv log(em/sv)

n

]
,

with high probability, where we have used the fact that ‖K‖F = 1 and the bounds of Lemma

12 in [16]. In view of (110), we have completed the proof.
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Proof of Lemma 9.4. Let Tv = Ŝv∪Sv, where Ŝv = supp(V̂ (0)). First, let us bound ‖Σ1/2
yTvTv

V̂
(0)
Tv∗‖op.

Since (V̂ (0))′Σ̂yV̂ (0) = Ir, we have

‖Σ1/2
yTvTv

V̂
(0)
Tv∗‖op ≤ ‖Σ1/2

yTvTv
Σ̂
−1/2
yTvTv

‖op‖Σ̂1/2
yTvTv

V̂ (0)‖op ≤ ‖Σ1/2
yTvTv

Σ̂
−1/2
yTvTv

‖op
= ‖Σ1/2

yTvTv
Σ̂−1
yTvTv

Σ
1/2
yTvTv

‖1/2op = σmin(Σ
−1/2
yTvTv

Σ̂yTvTvΣ
−1/2
yTvTv

)−1/2

≤
(
1− ‖Σ−1/2

yTvTv
Σ̂yTvTvΣ

−1/2
yTvTv

− I‖op
)−1/2

≤ 1 + C

√
su log(ep/su)

n
,

with probability at least 1 − exp(−C ′su log(ep/su)), where the last inequality is by Lemma

12 of [16]. Hence,

‖(V̂ (0))′ΣyV̂
(0) − I‖op = ‖(V̂ (0))′(Σy − Σ̂y)V̂

(0)‖op
= ‖(V̂ (0)

Tv∗)
′(ΣyTvTv − Σ̂yTvTv)V̂

(0)
Tv∗‖op

≤ ‖Σ1/2
yTvTv

V̂
(0)
Tv∗‖

2
op‖Σ

−1/2
yTvTv

Σ̂yTvTvΣ
−1/2
yTvTv

− I‖op

≤ 4C

√
su log(ep/su)

n
,

with probability at least 1 − exp(−C ′su log(ep/su)). The proof is completed by realizing

‖Σ1/2
yTvTv

V̂
(0)
Tv∗‖op = ‖Σ1/2

y V̂ (0)‖op.

Proof of Lemma 9.5. Let Tu = Ŝu ∪ Su, where Ŝu = supp(Û). Using the definition of Frobe-

nius norm, we have
∣∣∣‖Σ1/2

x ∆‖2F − ‖Σ̂1/2
x ∆‖2F

∣∣∣ =
∣∣∣Tr(∆′(Σ̂x − Σx)∆)

∣∣∣

=
∣∣∣Tr((∆Tu∗)

′(Σ̂xTuTu − ΣxTuTu)∆Tu∗)
∣∣∣

≤ ‖ΣxTuTu∆Tu∗‖2F‖Σ
−1/2
xTuTu

Σ̂xTuTuΣ
−1/2
xTuTu

− I‖op

≤ C

√
su log(ep/su)

n
‖Σ1/2

x ∆‖2F,

with high probability, where we have used ‖ΣxTuTu∆Tu∗‖2F = ‖Σ1/2
x ∆‖2F and Lemma 12 in

[16] in the last inequality. After rearrangement, the proof is complete.

Proof of Lemma 9.6. In this proof, Σ̂x is constructed from D0 and Σ̂y is constructed from D1.

We use the notation Tu = Su∪Ŝu and Tv = Sv∪Ŝv, where Ŝu = supp(Û) and Ŝv = supp(V̂ (0)).

Note that Tu depends on D1 and Tv depends on D0. We first condition on D0, and then we
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have
∣∣∣Tr
(
∆′(Σ̂xy − Σxy)V̂

(0)
)∣∣∣

=
∣∣∣〈Σ̂xyTuTv − ΣxyTuTv ,∆

′
Tu∗(V̂

(0)
Tv∗)

′〉
∣∣∣

≤ ‖Σ1/2
yTvTv

V̂
(0)
Tv∗‖op‖Σ

1/2
xTuTu

∆Tu∗‖F
∣∣∣〈Σ−1/2

xTuTu
(Σ̂xyTuTv − ΣxyTuTv)Σ

−1/2
yTvTv

,KTu〉
∣∣∣

≤ ‖Σ1/2
yTvTv

V̂
(0)
Tv∗‖op‖Σ

1/2
xTuTu

∆Tu∗‖F sup
T

∣∣∣〈Σ−1/2
xTT (Σ̂xyTTv − ΣxyTTv)Σ

−1/2
yTvTv

,KT 〉
∣∣∣

where T ranges over all subsets with cardinality bounded by 2su, and for each such T ,

KT = ‖Σ1/2
xTT∆

′
T∗(V̂

(0)
Tv∗)

′Σ1/2
yTvTv

‖−1
F Σ

1/2
xTT∆

′
T∗(V̂

(0)
Tv∗)

′Σ1/2
yTvTv

satisfying ‖KT ‖F = 1. We do not

put Tv in the subscript of K because conditioning on D0, Tv is fixed. For each T , we can

use Lemma 7 in [16] to bound
∣∣∣〈Σ−1/2

xTT (Σ̂xyTTv − ΣxyTTv)Σ
−1/2
yTvTv

,KT 〉
∣∣∣. A direct union bound

argument leads to

sup
T

∣∣∣〈Σ−1/2
xTT (Σ̂xyTTv − ΣxyTTv)Σ

−1/2
yTvTv

,KT 〉
∣∣∣ ≤ C

√
rsu + su log(ep/su)

n
,

with probability at least 1−exp (−C ′(su log(ep/su) + rsu)). By Lemma 9.4, we have ‖Σ1/2
yTvTv

V̂
(0)
Tv∗‖op =

‖Σ1/2
y V̂ (0)‖op ≤ 2 with high probability. Finally, observing that ‖Σ1/2

xTuTu
∆Tu∗‖F = ‖Σ1/2

x ∆‖F,
we have completed the proof.

Proof of Lemma 9.7. The proof is very similar to that of Lemma 9.6, and is thus omitted.

Proof of Proposition 9.2. Let the singular value decomposition of U be U = ΘRH ′. Then

we have HRΘ′ΣxΘRH ′ = U ′ΣxU = I, from which we derive Θ′ΣxΘ = R−2. Using Lemma

6.6, we have

‖P
Û
− PU‖F =

√
2 inf
W
‖ÛW −Θ‖F

≤
√
2 inf
W
‖ÛWHR−1 −ΘRH ′HR−1‖F

≤
√
2 inf
W
‖ÛW − U‖F‖R−1‖op

≤
√
2M1/2 inf

W
‖Σ1/2

x (ÛW − U)‖F‖Θ′ΣxΘ‖1/2op

≤
√
2M inf

W
‖Σ1/2

x (ÛW − U)‖F

≤
√
2M inf

W∈O(r,r)
‖Σ1/2

x (ÛW − U)‖F.

Finally, by ‖Σ1/2
x (ÛW − U)‖2F = Tr((ÛW − U)′Σx(ÛW − U)), the proof is complete.

10 Implementation of (18)

To implement the convex programming (18), we turn to the Alternating Direction Method

of Multipliers (ADMM) [14, 10]. In the rest of this section, we write Σ̂x and Σ̂y for Σ̂
(0)
x and

Σ̂
(0)
y for notational convenience.
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First, note that (18) can be rewritten as

minimize f(F ) + g(G),

subject to Σ̂1/2
x F Σ̂1/2

y −G = 0,
(111)

where

f(F ) = −〈Σ̂xy, F 〉+ ρ‖F‖1, (112)

g(G) =∞1{‖G‖∗>r} +∞1{‖G‖op>1}. (113)

Thus, the augmented Lagrangian form of the problem is

Lη(F,G,H) = f(F ) + g(G) + 〈H, Σ̂1/2
x F Σ̂1/2

y −G〉+ η

2
‖Σ̂1/2

x F Σ̂1/2
y −G‖2F. (114)

Following the generic algorithm spelled out in Section 3 of [10], suppose after the k-

th iteration, the matrices are (F k, Gk, Hk), then we update the matrices in the (k + 1)-th

iteration as follows:

F k+1 = argmin
F
Lη(F,Gk, Hk), (115)

Gk+1 = argmin
G
Lη(F k+1, G,Hk), (116)

Hk+1 = Hk + η(Σ̂1/2
x F k+1Σ̂1/2

y −Gk+1). (117)

The algorithm iterates over (115) – (117) till some convergence criterion is met. It is clear

that the update (117) for the dual variable H is easy to calculate. Moreover the updates

(115) and (116) can be solved easily and have explicit meaning in giving solution to sparse

CCA. We are going to show that (115) can be viewed as a Lasso problem. Thus, this step

targets at the sparsity of the matrix UV ′. The update (116) turns out to be equivalent to

a singular value capped soft thresholding problem, and it targets at the low-rankness of the

matrix Σ
1/2
x UV ′Σ1/2

y . In what follows, we study in more details the updates for F and G.

First, we note that (115) is equivalent to

F k+1 = argmin
F

f(F ) + 〈Hk, Σ̂1/2
x F Σ̂1/2

y 〉+
η

2
‖Σ̂1/2

x F Σ̂1/2
y −Gk‖2F

= argmin
F

η

2
‖Σ̂1/2

x F Σ̂1/2
y − (Gk − 1

η
Hk +

1

η
Σ̂−1/2
x Σ̂xyΣ̂

−1/2
y )‖2F + ρ‖F‖1. (118)

Thus, it is clear that the update of F in (115) can be viewed as a Lasso problem as summarized

in the following proposition. Here and after, for any positive semi-definite matrix A, A−1/2

denotes the principal square root of its pseudo-inverse.

Proposition 10.1. Let vec be the vectorization operation of any matrix and ⊗ the Kronecker

product. Then vec(F k+1) is the solution to the following standard Lasso problem

min
x
‖Γx− b‖2F +

2ρ

η
‖x‖1

where Γ = Σ̂
1/2
y ⊗ Σ̂

1/2
x and b = vec(Gk − 1

ηH
k + 1

η Σ̂
−1/2
x Σ̂xyΣ̂

−1/2
y ).
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Remark 10.1. It is worth mentioning that the vectorized formulation in Proposition 10.1

is for illustration only. In practice, we solve the problem in (118) directly, since the vector-

ized version, especially the Kronecker product, would great increase the computation cost.

The solver to (118) can be easily implemented in standard software packages for convex

programming, such as TFOCS [5].

Since each update of F is the solution of some Lasso problem, it should be sparse in the

sense that its vector ℓ1 norm is well controlled.

Turning to the update for G, we note that (116) is equivalent to

Gk+1 = argmin
G

g(G)− 〈Hk, G〉+ η

2
‖Σ̂1/2

x F k+1Σ̂1/2
y −G‖2F

= argmin
G

η

2
‖G− (

1

η
Hk + Σ̂1/2

x F k+1Σ̂1/2
y )‖2F

+∞1{‖G‖∗>r} +∞1{‖G‖op>1}

= argmin
G
‖G− (

1

η
Hk + Σ̂1/2

x F k+1Σ̂1/2
y )‖2F

+∞1{‖G‖∗>r} +∞1{‖G‖op>1}. (119)

The solution to the last display has a closed form according to the following result.

Proposition 10.2. Let G∗ be the solution to the optimization problem:

minimize ‖G−W‖F
subject to ‖G‖∗ ≤ r, ‖G‖op ≤ 1.

Let the SVD of W be W =
∑m

i=1 ωiaib
′
i with ω1 ≥ · · · ≥ ωm ≥ 0 the ordered singular values.

Then G∗ =
∑m

i=1 giaib
′
i where for any i, gi = 1∧ (ωi − γ∗)+ for some γ which is the solution

to

minimize γ, subject to γ > 0,
m∑

i=1

1 ∧ (ωi − γ)+ ≤ r.

Proof. The proof essentially follows that of Lemma 4.1 in [31]. In addition to the fact that

the current problem deals with asymmetric matrix, the only difference that we now have an

inequality constraint
∑

i gi ≤ r rather than an equality constraint as in [31]. The asymmetry

of the current problem does not matter since it is orthogonally invariant.

Here and after, we call the operation in Proposition 10.2 singular value capped soft thresh-

olding (SVCST) and writeG∗ = SVCST(W ). Thus, any update forG results from the SVCST

operation of some matrix, and so it has well controlled singular values.

In summary, the convex program (18) is implemented as Algorithm 1.

11 Numerical Studies

This section presents numerical results demonstrating the competitive finite sample perfor-

mance of the proposed adaptive estimation procedure CoLaR on simulated datasets.
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Algorithm 1: An ADMM algorithm for SCCA

Input:

1. Sample covariance matrices Σ̂x, Σ̂y and Σ̂xy,

2. Penalty parameter ρ,

3. Rank r,

4. ADMM parameter η and tolerance level ǫ.

Output: Estimated sparse canonical correlation signal Â.

1 Initialize: k = 0, F 0 = SVCST(Σ̂xy), G
0 = 0, H0 = 0.

repeat

2 Update F k+1 as in (115) (Lasso) ;

3 Update Gk+1 ← SVCST(η−1Hk + Σ̂
1/2
x F k+1Σ̂

1/2
y ) (SVCST) ;

4 Update Hk+1 ← Hk + η(Σ̂
1/2
x F k+1Σ̂

1/2
y −Gk+1) ;

5 k ← k + 1 ;

until max{‖F k+1 − F k‖F, ρ‖Gk+1 −Gk‖F} ≤ ǫ;
6 Return Â = F k.

Simulation settings We consider three simulation settings. In all these settings, we set

p = m, Σx = Σy = Σ, and r = 2 with λ1 = 0.9 and λ2 = 0.8. Moreover, the nonzero rows of

both U and V are set at {1, 6, 11, 16, 21}. The values at the nonzero coordinates are obtained

from normalizing (with respect to Σ) random numbers drawn from the uniform distribution

on the finite set {−2, 1, 0, 1, 2}. The choices of Σ in the three settings are as follows:

1. Identity: Σ = Ip.

2. Toeplitz: Σ = (σij) where σij = 0.3|i−j| for all i, j ∈ [p]. In other words, Σx and Σy
are Toeplitz matrices.

3. SparseInv: Σ = (σ0ij/
√
σ0iiσ

0
jj). We set Σ0 = (σ0ij) = Ω−1 where Ω = (ωij) with

ωij = 1{i=j} + 0.5× 1{|i−j|=1} + 0.4× 1{|i−j|=2}, i, j ∈ [p].

In other words, Σx and Σy have sparse inverse matrices.

In all three settings, we normalize the variance of each coordinate to be one.

Implementation details The proposed CoLaR estimator in Section 4.1 has two stages.

The convex program (18) in the first stage can be solved via an ADMM algorithm [10]. The

details of the ADMM approach are presented in Section 10. The optimization problem (19)

in the second stage can be solved by a standard group-Lasso algorithm [40].

In all numerical results reported in this section, we used the same penalty level ρ =

0.55
√
log(p+m)/n in (18) and we used η = 2 in (117). In (19), we used five-fold cross

validation to select a common penalty parameter ρu = ρv = b
√
(r + log p)/n. In particular,
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for l = 1, . . . , 5, we use one fold of the data as the test set (Xtest
(l) , Y

test
(l) ) and the other four

folds as the training set (Xtrain
(l) , Y train

(l) ). For any choice of b, we solved (19) on (Xtrain
(l) , Y train

(l) )

to obtain estimates (Û(l), V̂(l)). Then we computed the sum of canonical correlations between

Xtest
(l) Û(l) ∈ Rn×r and Y test

(l) V̂(l) ∈ Rn×r to obtain CVl(b). Finally, CV(b) =
∑5

l=1CVl(b).

Among all the candidate penalty parameters, we select the b value such that CV(b) is maxi-

mized. The candidate b values used in the simulation below are {0.5, 1, 1.5, 2}. Throughout

the simulation, we used all the sample {(Xi, Yi)}ni=1 to form the sample covariance matrices

used in (18) – (20).

In addition to the performance of CoLaR, we also report that of the method proposed

in [38] (denoted by PMA here and on). The PMA seeks the solution to the optimization

problem

max
u,v

u′Σ̂xyv, subject to ||u|| ≤ 1, ||v|| ≤ 1, ||u||1 ≤ c1, ||v||1 ≤ c2.

The solution is used to estimate the first canonical pair (û1, v̂1). Then the same procedure is

repeated after Σ̂xy is replaced by Σ̂xy − (û′1Σ̂xyv̂1)û1v̂
′
1, and the solution gives the estimator

of the second canonical pair (û2, v̂2). This process is repeated until ûr, v̂r is obtained. Note

that the normalization constraint ‖u‖ ≤ 1 and ‖v‖ ≤ 1 implicitly assumes that the marginal

covariance matrices Σx and Σy are identity matrices. We used the R implementation of the

method (function CCA in the PMA package in R) by the authors of [38]. To remove undesired

amplification of error caused by normalization, we renormalized each individual ûj with

respect to Σ̂x and each individual v̂j with respect to Σ̂y before calculating the error under

the loss (7). For each simulated dataset, we set the sparsity penalty parameters penaltyx

and penaltyz of the function CCA at each of the eleven different values {0.6l : l = 0, 1, . . . , 10}
and only the smallest estimation error out of all eleven trials was used to compute the error

reported in the tables below.

Results Tables 1 – 3 report, in each of the three settings, the medians of the prediction

errors of CoLaR and PMA out of 100 repetitions for four different configurations of (p,m, n)

values.

In each table, the columns U -PMA and V -PMA report the medians of the smallest es-

timation errors out of the eleven trials on each simulated dataset. The columns U -init and

V -init report the median estimation errors of the renormalized r left singular vectors and

right singular vectors of the solutions to the initialization step (18), where the renormaliza-

tion is the same as in (20) and in both (18) and renormalization we used all the n pairs

of observations. Last but not least, the columns U -CoLaR and V -ColaR report the median

estimation errors of the CoLaR estimators where both stages were carried out.

In all simulation settings, both the renormalized initial estimators and the CoLaR esti-

mators consistently outperform PMA. Comparing the last four columns within each table,

we also find that the CoLaR estimators with both stages carried out significantly improve

over the renormalized initial estimators, which is in accordance with our theoretical results

in Section 4.
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In summary, the proposed method delivers consistent and competitive performance in all

three covariance settings across all dimension and sample size configurations, and its behavior

agrees well with the theory.

(p,m, n) U -PMA V -PMA U -init V -init U -CoLaR V -CoLaR

(300, 300, 200) 2.1316 2.1297 0.2653 0.1712 0.0498 0.0646

(600, 600, 200) 3.4154 3.3584 0.3167 0.2087 0.0671 0.0776

(300, 300, 500) 0.2683 0.2701 0.1207 0.0665 0.0135 0.0159

(600, 600, 500) 2.0335 2.0368 0.1448 0.0817 0.0166 0.0203

Table 1: Prediction errors (Identity): Median in 100 repetitions.

(p,m, n) U -PMA V -PMA U -init V -init U -CoLaR V -CoLaR

(300, 300, 200) 2.1853 2.1840 0.2885 0.1706 0.0511 0.0601

(600, 600, 200) 3.4247 3.4852 0.3236 0.2004 0.0638 0.0764

(300, 300, 500) 0.2358 0.2191 0.1202 0.0664 0.0135 0.0166

(600, 600, 500) 2.1214 2.0889 0.1408 0.0811 0.0176 0.0209

Table 2: Prediction errors (Toeplitz): Median in 100 repetitions.

(p,m, n) U -PMA V -PMA U -init V -init U -CoLaR V -CoLaR

(300, 300, 200) 2.9697 2.9619 0.5552 0.5718 0.1568 0.1194

(600, 600, 200) 4.6908 4.3339 0.5596 0.6133 0.2123 0.1572

(300, 300, 500) 2.3967 2.0620 0.2695 0.1917 0.0242 0.0219

(600, 600, 500) 2.8707 2.8609 0.3068 0.2368 0.0338 0.0271

Table 3: Prediction errors (SparseInv): Median in 100 repetitions.
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