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Abstract—In this paper, we present various channel estimators
that exploit the channel sparsity in a multicarrier underwater
acoustic system, including subspace algorithms from the array
precessing literature, namely root-MUSIC and ESPRIT, and
recent compressed sensing algorithms in form of Orthogonal
Matching Pursuit (OMP) and Basis Pursuit (BP). Numerical
simulation and experimental data of an OFDM block-by-block
receiver are used to evaluate the proposed algorithms in compar-
ison to the conventional least-squares (LS) channel estimator. We
observe that subspace methods can tolerate small to moderate
Doppler effects, and outperform the LS approach when the
channel is indeed sparse. On the other hand, compressed sensing
algorithms uniformly outperform the LS and subspace methods.
Coupled with a channel equalizer mitigating intercarrier inter-
ference, the compressed sensing algorithms can handle channels
with significant Doppler spread.

Index Terms—OFDM, Doppler spread, ICI, MUSIC, ESPRIT,
OMP, BP.

I. INTRODUCTION

Underwater acoustic (UWA) channels have large delay
spread and significant Doppler effects [1], and hence fall into
the category of doubly (time- and frequency-) spread channels.
One approach is to use a basis expansion model (BEM)
to approximate the time-varying UWA channels, so that the
number of unknowns in channel estimation can be reduced;
see e.g., [2]–[4]. The other approach is to directly exploit the
fact that UWA channels are naturally sparse, meaning that
most channel energy is concentrated on a few delay and/or
Doppler values [5], [6].

Sparse channel estimation has been extensively studied for
frequency selective radio channels based on, e.g., subspace
fitting [7], model order fitting using a generalized Akaike
information criterion [8], zero-tap detection [9], or Monte
Carlo Markov Chain methods [10]. More recently, advances in
the new field of compressive sensing [11] have led to numerous
applications on sparse channel estimation, e.g., [12]–[19].
Specifically on UWA channels, the matching pursuit (MP)
algorithm and its variants have been used both in [5] for a
single carrier system and in [20] for a multicarrier system.
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As sparsity of the channel hinges on choosing an appropriate
representation, we suggest to use a path-based representation.
Specifically, we model the UWA channel based on a number of
distinct paths, each characterized by a triplet of delay, Doppler
rate, and path attenuation. When the channel has small Doppler
spread, where the residual intercarrier interference (ICI) can
be ignored after proper Doppler compensation, we show that
subspace methods such as MUSIC and ESPRIT from the array
processing literature [21] can be directly applied for sparse
channel estimation. For channels with large Doppler spread,
we adopt compressed sensing algorithms for sparse channel
estimation, specifically in the from of Orthogonal Matching
Pursuit (OMP) and Basis Pursuit (BP).

We use numerical simulation and experimental data to test
the performance of the proposed sparse channel estimators,
where the experimental data was recorded as part of the
SPACE’08 experiment off the coast of Martha’s Vineyard,
MA, from Oct. 14 to Nov. 1, 2008. We find that on channels
with small to moderate Doppler effects, Root-MUSIC and
ESPRIT channel estimators outperform the conventional least-
squares (LS) scheme on sparse channels, but perform worse
when most energy arrives as “diffuse” multipath. On the other
hand, both OMP and BP can well handle sparse and diffuse
multipath, performing uniformly the best, with BP having
a slight edge over OMP. For channels with larger Doppler
spread, BP and OMP algorithms continue to perform very
well, as they can accommodate different Doppler scales on
distinct paths. Drastic performance improvement is observed
relative to the conventional LS method in channels with large
Doppler spread.

The rest of this paper is as follows. In Section II we
introduce the signal model. In Sections III and IV we present
the subspace and compressed sensing algorithms, respectively.
Sections V and VI contain simulation and experimental results,
respectively. Conclusions are drawn in Section VII.

II. SYSTEM MODEL

We consider zero-padded (ZP) orthogonal frequency divi-
sion multiplexing (OFDM) as in [22]. Let T denote the OFDM
symbol duration and Tg the guard interval for the ZP. The



total OFDM block duration is T ′ = T +Tg and the subcarrier
spacing is 1/T . The kth subcarrier is at frequency

fk = fc + k/T, k = −K/2, . . . ,K/2 − 1, (1)

where fc is the carrier frequency and K subcarriers are
used so that the bandwidth is B = K/T . Let s[k] denote
the information symbol to be transmitted on the kth subcar-
rier. The non-overlapping sets of data subcarriers SD, pilot
subcarriers SP, and null subcarriers SN satisfy SD ∪ SP ∪
SN = {−K/2, . . . , K/2− 1}; the null subcarriers are used to
facilitate Doppler compensation at the receiver (see [22]).

The transmitted signal is given by

x̃(t) = Re

{[ ∑
k∈SD∪SP

s[k]ej2π k
T tq(t)

]
ej2πfct

}

t ∈ [0, T + Tg], (2)

where q(t) describes the zero-padding operation, i.e.,

q(t) =

{
1 t ∈ [0, T ],
0 otherwise.

(3)

A. Channel Model

The underwater acoustic (UWA) time-varying channel
model is often defined as

c(τ, t) =
∑

p

Ap(t)δ (τ − τp(t)) . (4)

The time varying delays are caused by motion of the trans-
mitter/receiver as well as scattering off of the moving sea
surface or refraction due to sound speed variations. The path
amplitudes change with the delays as the attenuation is related
to the distance traveled as well as the physics of the scattering
processes.

For the duration of an OFDM symbol, the time variation of
the path delays can be reasonably approximated by a Doppler
rate as,

τp(t) = τp − apt, (5)

and the path amplitudes are assumed constant Ap(t) ≈ Ap.
Furthermore we assume that the UWA channel can be well
approximated by Np dominant discrete paths. With this, the
channel model can be simplified to

c(τ, t) =
Np∑
p=1

Apδ (τ − [τp − apt]) , (6)

where we specifically keep the path dependent Doppler rates
ap. The received passband signal is then

ỹ(t) =
Np∑
p=1

Apx̃([1 + ap] t − τp) + ñ(t), (7)

where ñ(t) is additive noise.

B. Receiver Processing

A two-step approach to mitigating the channel Doppler
effect was proposed in [22].

1) The first step is to resample ỹ(t) in passband with a
resampling factor â that corresponds to a rough Doppler
estimate, leading to z̃(t), c.f. (9).

2) The second step is to perform fine Doppler shift com-
pensation on z̃(t) to obtain z̃(t)e−j2πεt, where ε is the
estimated residual mean Doppler shift.

The resampling can be written as the following:

z̃(t) =
Np∑
p=1

Apx̃

((
1 + ap

1 + â

)
t − τp

)
+ ñ(t), (8)

=
Np∑
p=1

Apx̃
(
(1 + bp)

(
t − τ ′

p

))
+ ñ(t). (9)

To simplify notation, we define the new residual Doppler rates
and scaled delays

1 + bp = 1 +
(

ap − â

1 + â

)
=

1 + ap

1 + â
, (10)

τ ′
p =

τp

1 + bp
. (11)

Comparing (7) with (9), we see that the received waveform
after resampling is equivalent to one that passed through a
channel with Doppler rates bp. In channels with a single
dominant Doppler, e.g. from platform motion, this can reduce
the channel to an ICI free system. In practice this operation
will let us assume that the Doppler spread is centered around
zero, as a non-zero mean of the ap is removed by the
resampling. The scaled delays only exchange the order of
scaling and delaying.

Performing ZP-OFDM demodulation, the output zm on the
mth subchannel is

zm =
1
T

∫ T+Tg

0

z(t)e−j2πεte−j2π m
T tdt, (12)

where z(t) is the baseband version of z̃(t). Plugging in z(t)
and carrying out the integration, we simplify zm to

zm =
Np∑
p=1

Ape
−j2π(fm+ε)τ ′

p

∑
k∈SD∪SP

�
(p)
m,ks[k] + vm, (13)

where vm is the additive noise and

�
(p)
m,k =

sin
(
πβ

(p)
m,kT

)
πβ

(p)
m,kT

ejπβ
(p)
m,kT , (14)

β
(p)
m,k = (k − m)

1
T

+
bpfm − ε

1 + bp
. (15)

Defining a stacked received vector z, data vector s, and
noise vector v across all subcarriers, we can write the follow-
ing input-output relationship:

z = Hs + v. (16)



where the channel mixing-matrix H has entries

[H]m,k =
Np∑
p=1

Ape
−j2π(fm+ε)τ ′

p�
(p)
m,k. (17)

The channel estimation methods in this paper use a base-
band formulation where each path has a complex path gain.
Specifically, the mixing matrix H is now expressed as

H =
Np∑
p=1

ξpΛpΓp, (18)

where the complex path gain for the pth path is

ξp = Ape
−j2π(fc+ε)τ ′

p , (19)

the matrix Γp has an (m, k)th entry as [Γp]m,k = �
(p)
m,k, and

the matrix Λp is a diagonal matrix with

[Λp]m,m = e−j2π m
T τ ′

p . (20)

The formulation in (18) clearly specifies the contribution from
each discrete path with delay τ ′

p and Doppler scale bp towards
the channel mixing matrix.

III. SUBSPACE METHODS

When all the paths have similar Doppler scales, proper
choices of â and ε can render H close to diagonal, which is
the rationale for the receiver design in [22]. Specifically, the
residual ICI is ignored, and Γp in (18) is approximated by an
identity matrix. Let us now relate this simplified setup to the
direction finding problem from the array processing literature.
Dividing the measurements, zm, by the transmitted symbol on
each subcarrier, s[m], (in practice, only pilot subcarriers are
considered, as will be clear later on), the estimated frequency
responses can be collected into a vector, where we ignore the
noise at this moment.

Collecting the diagonal entries of H into a vector h̃, we
obtain

h̃ =
Np∑
p=1

ξpw
(
τ ′
p

)
, (21)

where w(τ ′
p) has the mth entry e−j2π m

T τ ′
p . The formulation

in (21) is thus equivalent to a direction finding problem in
the array processing literature; each arrival from a certain
direction has a steering vector in a similar form to w(τ ′

p).
Hence, subspace methods from array processing can be applied
to identify the distinct path arrivals. Specifically, from the
collected measurements, one needs to estimate the covariance
matrix

Rh̃ = E
[
h̃h̃H

]
=

Np∑
p=1

E
[
|ξp|2

]
w

(
τ ′
p

)
w

(
τ ′
p

)H
. (22)

The delays {τ ′
p}, corresponding to the directions in array

processing, are identified based on eigen-decomposition of the
covariance matrix Rh̃,

Usually, a number of OFDM symbols (let’s say I) need
to be observed to approximate the covariance matrix, Rh̃ ≈

1
I

∑I
i=1 h̃ih̃H

i . In our work, we assume a block-by-block
receiver as in [22]. Hence, we need to estimate the covariance
matrix based on one OFDM symbol only. This is possible
via spatial smoothing (see e.g. [23] or [21]). In a nutshell, as
long as the steering vectors w

(
τ ′
p

)
exhibit a shift invariance

property, we can exchange the observations of a large array
for multiple “independent” observations of a smaller array, but
generated by the same τ ′

p.
Specifically, let us assume that the pilots are spaced uni-

formly within each OFDM symbol, i.e., m = Δ, 2Δ, . . . and
introduce a partial vector h̃b

a, which includes pilots a through
b of the original vector. With that,

h̃b+δ
a+δ =

Np∑
p=1

ξpwb+δ
a+δ

(
τ ′
p

)
(23)

=
Np∑
p=1

(
ξpe

−j2πδ Δ
T τ ′

p

)
wb

a

(
τ ′
p

)
(24)

which can be interpreted as a second observation of h̃b
a with

new amplitudes ξpe
−j2πδ Δ

T τ ′
p . We therefore approximate the

covariance matrix of size NC = b − a as,

RNC

h̃
≈ 1

I

I∑
i=1

h̃i+NC
i

(
h̃i+NC

i

)H

(25)

where I = K/Δ−NC +1 depends on the number of available
observations (pilots). Clearly there is a trade off: a larger
NC leads to better resolution of the τ ′

p, while a larger I
approximates the covariance matrix better. In any case both
dimensions have to be larger than the assumed maximum
number of paths, as the rank of the covariance matrix limits
the maximum number of identifiable components.

A. Root-MUSIC

We choose the unitary implementation of Root-MUSIC, to
reduce computational complexity (for details see [21]). The
order selection problem is solved in the following way: after
matrix decomposition of the covariance matrix, we choose all
eigenvectors corresponding to eigenvalues less than twice the
noise variance to compose the noise space.

Once the {τ ′
p} are estimated, the channel response on the

data subcarriers are estimated by using the LS solution to
(21) based on the channel frequency responses on the pilot
subcarriers.

B. ESPRIT

As for Root-MUSIC, we choose the unitary implementation
for ESPRIT, following the details in [24] or [21]. The signal
space is determined complementary to the noise subspace
in MUSIC; we choose all eigenvectors corresponding to
eigenvalues larger or equal to twice the noise variance. To
improve robustness against model mismatch (especially caused
by Doppler), we solve for the unknown delay parameters
τ ′
p using a total-least-squares (TLS) formulation. Then the

channel response on the data subcarriers is determined as in
Sec. III-A.



IV. COMPRESSED SENSING

Although H has K2 entries, it is defined by Np triples
of (ξp, bp, τ

′
p). Since UWA channels are sparse, the value of

Np is small, hence, it is possible that those Np paths can be
identified by compressed sensing methods based on only a
limited number of measurements.

To facilitate implementation, we rewrite z as

z =
[
Λ1Γ1s · · · ΛNp

ΓNp
s
]
⎡
⎢⎣

ξ1

...
ξNp

⎤
⎥⎦ + v. (26)

If the parameters
(
bp, τ

′
p

)
were available, we could construct

the (K × Np)-matrix in (26) and solve for the ξp using the
least-squares solution.

A. Non-Linear Estimation via Compressed Sensing

A brute force approach to solve (26) would be to try
all possible combinations of

{(
bp, τ

′
p

)}Np

p=1
and choose the

solution with the best fit. Of course the fit always improves
as a function of Np, which is unknown. Similar estimation
problems have been solved using compressed sensing [11],
where a problem, given as a linear combination of an unknown
number of signals defined by an equivalent number of param-
eters (sets), is solved by constructing a so-called dictionary,
made of the signals parameterized by a representative selection
of possible parameter sets. In this model, parameter sets not
part of the solution will be assigned a zero weight coefficient.
Since a large number of such sets is necessary to construct an
accurate dictionary, most weights will be zero and the problem
is sparse.

We follow this approach and choose representative sets of
(b, τ ′) as,

τ ′ ∈
{

0,
T

λK
,

2T

λK
, · · · , Tg

}
, (27)

b ∈ {−bmax,−bmax + Δb, · · · , bmax} . (28)

The discretization in τ ′ is based on the assumption that after
synchronization all arriving paths fall into the guard interval,
where we choose the time resolution as a multiple, λ, of the
baseband sampling time T/K, leading to Nτ = λKTg/T
tentative delays. For the residual Doppler rates, we assume
that they are spread around zero after compensation by â, and
bmax can be chosen based on the assumed Doppler spread,
with resolution 2bmax/(Δb)+1 = Nb. Hence, a total of NτNb

candidate paths will be searched, and we expect Np � NτNb

significant paths due to the channel sparsity.
With this, we form vectors x(i)

A = [ξ(i)
1 , . . . , ξ

(i)
Nτ

]T , cor-
responding to all delays associated with Doppler scale bi,
and form a vector x = [(x(1)

A )T , . . . , (x(Nb)
A )T ]T . The linear

formulation of the problem is that

z =
[
Λ1Γ1s · · · ΛNτ Nb

ΓNτ Nb
s
]
x + v

:= Ax + v
(29)

where A is a fat matrix with NτNb columns, and most of
entries of x are assumed to be zeros due to channel sparsity.

B. BP and OMP Algorithms

To solve the sparse estimation problem with the measure-
ment model in (29), there are two popular algorithms (and
variants of them):

1) Basis Pursuit, for an efficient implementation see [25].
2) (Orthogonal) Matching Pursuit, see e.g., [5].

Due to the lack of space, we skip the implementation details.
For implementations of these algorithms, it is important to
consider that multiplying by the matrix A can be done
efficiently using FFTs.

To reduce the complexity of computing the dictionary set
with a large size, we choose to retain only D off diagonals
on the templates Γp, (therefore also on H). This means that
only ICI from D directly neighboring subcarriers on each
side are considered. The symbol vector s contains known
pilot symbols, and zeros, but also unknown data symbols. The
unknown data symbols are set to zero to compute the matrix
A.

Once the channel mixing matrix is constructed, a zero-
forcing receiver is applied for data demodulation followed by
channel decoding for data recovery. The special case of D = 0
corresponds to an ICI-ignorant receiver.

V. SIMULATION RESULTS

In simulation, we approximate the continuous time opera-
tions in (12) with a sampling rate being twice the bandwidth.
The channel model uses Np = 15 discrete paths, with
the inter-arrival times distributed exponentially with mean
E [τp+1 − τp] = 1 ms. Hence, the average channel delay
spread is about 15 ms. The amplitudes are Rayleigh distributed
with the average power decreasing exponentially with delay,
where the difference between the beginning and the end of
the guard time of 24.6 ms is 20 dB. Each path has a Doppler
rate drawn from a zero mean uniform distribution. With the
velocity standard deviation σv , the maximum possible Doppler
is

√
3σvfc/c (the sound speed is set to c = 1500 ms). We

choose a zero-mean Doppler distribution, because a non-zero
mean could be removed through the resampling operation.

The carrier frequency is set to fc = 13 kHz and the
bandwidth is B = 9.77 kHz. The total number of subcarriers is
K = 1024, which leads to a subcarrier spacing of Δf = 9.54
Hz and a symbol interval of T = 104.86 ms. A guard time of
Tg = 24.6 ms is inserted between consecutive OFDM blocks.

A. ICI-Ignorant Receiver

We first compare the performance of different receivers
assuming that the residual ICI after proper Doppler com-
pensation can be ignored, as in [22], [26], [27]. We adopt
the subcarrier allocation from [27]. Out of the K = 1024
subcarriers, there are |SP| = 256 subcarriers carrying pilot
symbols, distributed on every fourth subcarrier, and |SN| = 96
zeros, half at the band edges and half inserted randomly
between the data. The remaining 672 data subcarriers are
encoded using a rate 1/2 nonbinary LDPC code (see [27] for
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Fig. 1. Perfect channel knowledge, but only D off-diagonals from each side
are kept in the channel matrix for data demodulation. The channel has a mild
Doppler spread with σv = 0.1 m/s.
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Fig. 2. Performance comparisons for ICI-ignorant receivers with different
channel estimation methods.

details). With a 16-QAM constellation, the spectral efficiency
α and the data rate R are

α =
T

T + Tg
· 672
1024

· 1
2
· log2 16 = 1.1 bits/s/Hz, (30)

R = αB = 10.4 kb/s. (31)

Each simulation uses 500 OFDM symbols.

Test Case 1): We first assume that the receiver has perfect
knowledge of all path amplitudes, delays, and Doppler rates.
However, the channel mixing matrix H in (16) will be ap-
proximated with a banded structure keeping D off-diagonals to
each side (i.e., a total of 2D+1 diagonals are retained). Fig. 1
shows the block error rate (BLER) performance for different
D, where the channel has mild Doppler spread with σv = 0.1
m/s. We observe that the ICI ignorant receiver (D = 0) works
well, being about 2 dB away from the full matrix case. Most
of the ICI can be captured by a banded matrix approximation
with D = 3.
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Fig. 3. Perfect channel knowledge, but only D off-diagonals from each
side are kept in the channel matrix for data demodulation. The channel has a
severe Doppler spread with σv = 0.25 m/s.
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Fig. 4. Performance comparisons for ICI aware receivers, where the channel
mixing matrix is assumed to have D off diagonals from each side.

Test Case 2): In Fig. 2, we compare the ICI-ignorant receivers
(D = 0) with channels estimated from the five considered
methods. We find that all receivers achieve a low BLER, but at
different levels of SNR. Clearly all sparse channel estimation
schemes outperform the simple least-squares (LS) channel
estimator (see [22] for details), gaining about 2 dB. Between
the sparse channel estimators, the compressed sensing based
algorithms outperform the subspace algorithms slightly. An-
other drawback of the subspace based algorithms is that they
occasionally seem to fail, noticeable by a fluctuating error
floor.

B. ICI-Aware Receiver

We now consider channels with more severe Doppler
spreads. To improve the channel estimation performance in
the presence of severe ICI, we convert 96 data subcarriers
into additional pilots by assuming that 96 data symbols are
known a priori. The additional pilots are grouped in clusters



TABLE I
EXAMPLES OF CHANNEL RESPONSES FROM THE SPACE’08 EXPERIMENT, TAKEN FROM THE LS ESTIMATE.
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between zero subcarriers and existing pilots, creating groups
of five consecutive known subcarriers. Adjacent observations
are needed as to effectively estimate the Doppler rate bp of
each path by observing the ICI.

Since 96 coded symbols are assumed known while the
same LDPC code structure is used, this leads to an equivalent
coding rate of (336 − 96)/(672 − 96) ≈ 0.4. With 16-QAM
constellation, the spectral efficiency and the data rate are

α =
T

T + Tg
· 336 − 96

1024
· log2 16 = 0.76 bits/s/Hz, (32)

R = αB = 7.4 kb/s. (33)

Test Case 3): We first assume that the channel is known.
The numerical simulation results are depicted in Fig. 3. where
σv = 0.25 m/s. Clearly ICI-ignorant receivers (D = 0) have
very poor performance, which indicates the need for ICI-aware
receivers. We also notice that in the full CSI case, once we
remove sufficient levels of ICI the performance is about 1 dB
better than in Fig. 1(a), due to the change in coding rate.

Test Case 4): The channel with significant Doppler spread
can only be handled by the compressed sensing based estima-
tors. In addition to delay, we introduce dictionaries that also
consider fifteen different Doppler rates uniformly distributed
within [−bmax, bmax], where bmax = vmax/c = 5 · 10−4. As
comparison we include the LS and the OMP/BP algorithms
that assume no Doppler as previously (D = 0), but benefit
from the increased number of pilots. Simulation results are in
Fig. 4. We observe that performance significantly improves
by considering ICI explicitly through the increase of D.
For channels with large Doppler spread, we notice that the
improvement of BP over OMP increases.

VI. EXPERIMENTAL RESULTS

The experimental data was recorded as part of the
SPACE’08 experiment off the coast of Martha’s Vineyard,
MA, from Oct. 14 to Nov. 1, 2008. The water depth was
about 15 meters. We consider three receivers, labeled as S1,
S3, and S5, which were 60 m, 200 m, and 1,000 m from

the transmitter, respectively. Each receiver array has at least
twelve hydrophones. We plot the performance combining an
increasing number of phones to increase the effective SNR
and show performance differences. We always combine the
phones starting from phone one, then one and two, and so
on. We consider recorded data from two different days, Julian
Dates 297 and 300, where one day has rather calm sea and one
day has more wind activity, respectively. There are between
one hundred and two hundred of OFDM symbols per day, used
to generate the performance plots.

A. ICI-Ignorant receivers

The OFDM parameters are identical to those in Sec. V-A;
hence, the achieved spectral efficiency and the data rate are in
(30) and (31), respectively.

In this subsection, we test ICI-ignorant receivers. The sam-
ple channel responses based on the LS estimators at different
receiver locations are shown in Table I.

1) S1 Data (60 m): At a short distance of only 60 m and
considering the shallow water depth, we expect rich multipath
and significant Doppler variation due to the geometry. This
makes this receiver the most challenging in terms of channel
response, but the easiest in terms of received signal strength
or SNR. From Table I, we notice that there are three to four
significant clusters of similar strength.

In Fig. 5 we see the BLER performance for Julian Dates
297 and 300. As in the numerical simulation the order of
compressed sensing, subspace, LS stays the same, although
MUSIC and ESPRIT switch places, and LS outperforms the
subspace methods initially. In general this setup is challenging
and we notice error floors.

2) S3 Data (200 m): The middle distance might be the
best tradeoff between channel difficulty and received SNR.
The example channel responses in Table I seem to be more
contained, with a more dominating first cluster. The BLER
performance in Fig. 5 is much better compared to the S1 re-
ceiver, where in the calm day (Julian Date 297) LS surprisingly
outperforms the subspace methods. This could be connected
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Fig. 5. Performance results using ICI-ignorant receivers at there different locations (S1, S3, and S5) on two Julian dates.

to the subspace methods assuming discrete tones and being
more keyed towards detecting them instead of recreating the
effect of possibly diffuse components.

3) S5 Data (1000 m): At the 1 km distance only one
significant cluster can be spotted in the channel estimates,
and at the stormy day (Julian Date 300) the received energy
seems to be vanishingly small, c.f. Table I. Accordingly the
trend of the LS channel estimator closing in on the compressed
sensing algorithms continues, with the subspace methods not
able to handle this diffuse multipath. On the stormy day
the performance is generally bad, with the best being BP
successfully recovering little more than half of the OFDM
blocks.

B. ICI-Aware Receivers

We saw that on the stormy day (Julian Date 300), the
performance was limited, most likely due to ICI caused by
significant Doppler spread that cannot be handled by the ICI-
ignorant receivers. We now focus on Julian Date 300 to test
the effectiveness of ICI-aware receivers based on compressed
sensing.

The OFDM parameters are identical to those in Section V-B;
hence, the achieved spectral efficiency and the data rate are in
(30) and (31), respectively.

As shown in Fig. 6, the performance improvement of the
ICI-aware receivers (D = 3) relative to ICI-ignorant receivers
(D = 0) is evident. Comparing Fig. 6 with Fig. 5, we also
notice that the LS algorithm benefits from the additional
pilots and coding, but its performance is much worse than
the BP/OMP alternatives.

VII. CONCLUSION

We considered sparse channel estimation using subspace
methods and compressed sensing on channels with small
to moderate Doppler effects, and extended the compressed
sensing receivers to handle channels with different Doppler
scales on different paths. In comparison to the LS receiver we
found that the subspace methods show significant performance
increase on channels that are sparse, but perform worse if most
received energy comes from diffuse multipath. Compressed
sensing algorithms, namely OMP and BP, do not suffer this
drawback. When accounting for different Doppler scales on
different paths, BP and OMP can handle channels in very
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Fig. 6. Performance results using the ICI-aware receivers, Julian date 300, (dashed lines D = 0, solid lines D = 3).

challenging conditions.
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Sep. 2008.

[3] S.-J. Hwang and P. Schniter, “Efficient multicarrier communication for
highly spread underwater acoustic channels,” IEEE J. Select. Areas
Commun., vol. 26, no. 9, pp. 1674–1683, Dec. 2008.

[4] G. Leus and P. A. van Walree, “Multiband OFDM for covert acoustic
communications,” IEEE J. Select. Areas Commun., vol. 26, no. 9, pp.
1662–1673, Dec. 2008.

[5] W. Li and J. C. Preisig, “Estimation of rapidly time-varying sparse
channels,” IEEE J. Ocean. Eng., vol. 32, no. 4, pp. 927–939, Oct. 2007.

[6] M. Stojanovic, “OFDM for underwater acoustic communications: Adap-
tive synchronization and sparse channel estimation,” in Proc. of Intl.
Conf. on Acoustics, Speech and Signal Proc., Las Vegas, NV, Apr. 2008.

[7] C.-J. Wu and D. W. Lin, “Sparse channel estimation for OFDM trans-
mission based on representative subspace fitting,” in Proc. of Vehicular
Technology Conference, Stockholm, Sweden, May 2005.

[8] M. R. Raghavendra and K. Giridhar, “Improving channel estimation in
OFDM systems for sparse multipath channels,” IEEE Signal Processing
Lett., vol. 12, no. 1, pp. 52–55, Jan. 2005.

[9] C. Carbonelli, S. Vedantam, and U. Mitra, “Sparse channel estimation
with zero tap detection,” IEEE Trans. Wireless Commun., vol. 6, no. 5,
pp. 1743–1763, May 2007.

[10] O. Rabaste and T. Chonavel, “Estimation of multipath channels with
long impulse response at low SNR via an MCMC method,” IEEE Trans.
Signal Processing, vol. 55, no. 4, pp. 1312–1325, Apr. 2007.

[11] R. Baraniuk, “Compressive sensing,” IEEE Signal Processing Magazine,
vol. 24, no. 4, pp. 118–121, Jul. 2007.

[12] S. F. Cotter and B. D. Rao, “Sparse channel estimation via matching
pursuit with application to equalization,” IEEE Trans. Commun., vol. 50,
no. 3, pp. 374 – 377, Mar. 2002.

[13] G. Z. Karabulut and A. Yongacoglu, “Sparse channel estimation using
orthogonal matching pursuit algorithm,” in Proc. of Vehicular Technol-
ogy Conference, Los Angeles, CA, Sep. 2004.

[14] C. Carbonelli and U. Mitra, “A simple sparse channel estimator for
underwater acoustic channels,” in Proc. of MTS/IEEE OCEANS Conf.,
Vancouver, Canada, Oct. 2007.

[15] C.-J. Wu and D. W. Lin, “A group matching pursuit algorithm for sparse
channel estimation for OFDM transmission,” in Proc. of Intl. Conf. on
Acoustics, Speech and Signal Proc., Toulouse, France, May 2006.

[16] N. Richard and U. Mitra, “Sparse channel estimation for cooperative
underwater communications: A structured multichannel approach,” in
Proc. of Intl. Conf. on Acoustics, Speech and Signal Proc., Las Vegas,
NV, Apr. 2008.

[17] B. Friedlander, “Random projections for sparse channel estimation and
equalization,” in Proc. of Asilomar Conf. on Signals, Systems, and
Computers, Pacific Grove, CA, Oct. 2006.

[18] W. U. Bajwa, J. Haupt, G. Raz, and R. Nowak, “Compressed channel
sensing,” in Proc. of Conf. on Information Sciences and Systems (CISS),
Princeton, NJ, Mar. 2008.

[19] M. Sharp and A. Scaglione, “Application of sparse signal revocery to
pilot-assisted channel estimation,” in Proc. of Intl. Conf. on Acoustics,
Speech and Signal Proc., Las Vegas, NV, Apr. 2008.

[20] T. Kang and R. A. Iltis, “Iterative carrier frequency offset and channel
estimation for underwater acoustic OFDM systems,” IEEE J. Select.
Areas Commun., vol. 26, no. 9, pp. 1650–1661, Dec. 2008.

[21] H. Van Trees, Optimum Array Processing, 1st ed., ser. Detection,
Estimation, and Modulation Theory (Part IV). New York: John Wiley
& Sons, Inc., 2002.

[22] B. Li, S. Zhou, M. Stojanovic, L. Freitag, and P. Willett, “Multicarrier
communication over underwater acoustic channels with nonuniform
Doppler shifts,” IEEE J. Ocean. Eng., vol. 33, no. 2, Apr. 2008.

[23] T.-J. Shan, M. Wax, and T. Kailath, “On spatial smoothing for direction-
of-arrival estimation of coherent signals,” IEEE Trans. Signal Process-
ing, vol. 33, no. 4, pp. 806–811, Aug. 1985.

[24] M. Pesavento, A. B. Gershman, and M. Haardt, “Unitary root-MUSIC
with a real-valued eigendecomposition: A theoretical and experimental
performance study,” IEEE Trans. Signal Processing, vol. 48, no. 5, pp.
1306–1314, May 2000.

[25] S.-J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, “An interior-
point method for large-scale l1-regularized least squares,” IEEE J. Select.
Topics Signal Proc., vol. 1, no. 4, pp. 606–617.

[26] S. Mason, C. R. Berger, S. Zhou, and P. Willett, “Detection, synchro-
nization, and doppler scale estimation with multicarrier waveforms in
underwater acoustic communication,” IEEE J. Select. Areas Commun.,
vol. 26, no. 9, Dec. 2008.

[27] J. Huang, S. Zhou, and P. Willett, “Nonbinary LDPC coding for
multicarrier underwater acoustic communication,” IEEE J. Select. Areas
Commun., vol. 26, no. 9, pp. 1684–1696, Dec. 2008.


