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Abstract 

Sparse coding is a method for finding a representation of data in 

which each of the components of the representation is only rarely 

significantly active. Such a representation is closely related to re

dundancy reduction and independent component analysis, and has 

some neurophysiological plausibility. In this paper, we show how 

sparse coding can be used for denoising. Using maximum likelihood 

estimation of nongaussian variables corrupted by gaussian noise, we 

show how to apply a shrinkage nonlinearity on the components of 

sparse coding so as to reduce noise. Furthermore, we show how to 

choose the optimal sparse coding basis for denoising. Our method 

is closely related to the method of wavelet shrinkage, but has the 

important benefit over wavelet methods that both the features and 

the shrinkage parameters are estimated directly from the data. 

1 Introduction 

A fundamental problem in neural network research is to find a suitable representa

tion for the data. One of the simplest methods is to use linear transformations of the 

observed data. Denote by x = (Xl, X2, ... , Xn)T the observed n-dimensional random 

vector that is the input data (e.g., an image window), and by s = (81,82 , . .. , 8 n )T 

the vector of the linearly transformed component variables. Denoting further the 

n x n transformation matrix by W, the linear representation is given by 

s=Wx. (1) 
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We assume here that the number of transformed components equals the number of 

observed variables, but this need not be the case in general. 

An important representation method is given by (linear) sparse coding [1 , 10], in 

which the representation of the form (1) has the property that only a small number 

of the components Si of the representation are significantly non-zero at the same 

time. Equivalently, this means that a given component has a 'sparse' distribution. 

A random variable Si is called sparse when Si has a distribution with a peak at zero, 

and heavy tails, as is the case, for example, with the double exponential (or Laplace) 

distribution [6]; for all practical purposes , sparsity is equivalent to supergaussianity 

or leptokurtosis [8]. Sparse coding is an adaptive method, meaning that the matrix 

W is estimated for a given class of data so that the components Si are as sparse as 

possible; such an estimation procedure is closely related to independent component 

analysis [2J. 

Sparse coding of sensory data has been shown to have advantages from both phys

iological and information processing viewpoints [1] . However, thorough analyses of 

the utility of such a coding scheme have been few. In this paper, we introduce and 

analyze a statistical method based on sparse coding. Given a signal corrupted by 

additive gaussian noise, we attempt to reduce gaussian noise by soft thresholding 

('shrinkage') of the sparse components. Intuitively, because only a few of the com

ponents are significantly active in the sparse code of a given data point, one may 

assume that the activities of components with small absolute values are purely noise 

and set them to zero, retaining just a few components with large activities. This 

method is closely connected to the wavelet shrinkage method [3]. In fact, sparse 

coding may be viewed as a principled way for determining a wavelet-like basis and 

the corresponding shrinkage nonlinearities, based on data alone. 

2 Maximum likelihood estimation of sparse components 

The starting point of a rigorous derivation of our denoising method is the fact that 

the distributions of the sparse components are nongaussian. Therefore, we shall 

begin by developing a general theory that shows how to remove gaussian noise from 

nongaussian variables, making minimal assumptions on the data. 

Denote by S the original nongaussian random variable (corresponding here to a 

noise-free version of one of the sparse components Si), and by v gaussian noise of 

zero mean and variance a 2 • Assume that we only observe the random variable y : 

y=S+v (2) 

and we want to estimate the original s. Denoting by p the probability density of s, 

and by f = -logp its negative log-density, the maximum likelihood (ML) method 

gives the following estimator for s: 

§ = argmin ~(y - u)2 + f(u). 
u 2a 

(3) 

Assuming f to be strictly convex and differentiable, this can be solved [6] to yield 

§ = g(y), where the function g can be obtained from the relation 

(4) 

This nonlinear estimator forms the basis of our method. 
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Figure 1: Shrinkage nonlinearities and associated probability densities. Left: Plots 

of the different shrinkage functions. Solid line: shrinkage corresponding to Laplace 

density. Dashed line: typical shrinkage function obtained from (6). Dash-dotted 

line: typical shrinkage function obtained from (8). For comparison, the line x = y is 

given by dotted line. All the densities were normalized to unit variance, and noise 

variance was fixed to .3. Right: Plots of corresponding model densities of the sparse 

components. Solid line: Laplace density. Dashed line: a typical moderately super

gaussian density given by (5). Dash-dotted line: a typical strongly supergaussian 

density given by (7). For comparison, gaussian density is given by dotted line. 

3 Parameterizations of sparse densities 

To use the estimator defined by (3) in practice, the densities of the Si need to 

be modelled with a parameterization that is rich enough. We have developed two 

parameterizations that seem to describe very well most of the densities encountered 

in image denoising. Moreover, the parameters are easy to estimate, and the inversion 

in (4) can be performed analytically. Both models use two parameters and are thus 

able to model different degrees of supergaussianity, in addition to different scales, 

i.e. variances. The densities are here assumed to be symmetric and of zero mean. 

The first model is suitable for supergaussian densities that are not sparser than the 

Laplace distribution r6], and is given by the family of densities 

p(s) = C exp( -as2 12 - bls!), (5) 

where a, b > 0 are parameters to be estimated, and C is an irrelevant scaling 

constant . The classical Laplace density is obtained when a = 0, and gaussian 

densities correspond to b = o. A simple method for estimating a and b was given 

in [6]. For this density, the nonlinearity g takes the form: 

g(u) = 1 2 sign(u) max(O, lui - ba2 ) (6) 
1 +a a 

where a2 is the noise variance. The effect of the shrinkage function in (6) is to 

reduce the absolute value of its argument by a certain amount, which depends on 

the parameters, and then rescale. Small arguments are thus set to zero. Examples 

of the obtained shrinkage functions are given in Fig. l. 

The second model describes densities that are sparser than the Laplace density: 

1 (a: + 2) [a: (a: + 1)/2](a/Hl) 

p(s) = 2d [Va: (a: + 1)/2 + I sid 1](a+3)· 
(7) 
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When a -+ 00, the Laplace density is obtained as the limit. A simple consistent 

method for estimating the parameters d, a > 0 in (7) can be obtained from the 

relations d = JE{S2} and a = (2 - k + Jk(k + 4))/(2k - 1) with k = d2Ps(O)2, 

see [6]. The resulting shrinkage function can be obtained as [6] 

lui - ad 1 ,..,---,-----,--::-------:,....,----
g(u) = sign(u)max(O, 2 + "2 J (l u l + ad)2 - 4a2(a + 3)) (8) 

where a = Ja(a + 1)/2, and g(u) is set to zero in case the square root in (8) is 

imaginary. This is a shrinkage function that has a certain hard-thresholding flavor, 

as depicted in Fig. 1. 

Examples of the shapes of the densities given by (5) and (7) are given in Fig. 1, 

together with a Laplace density and a gaussian density. For illustration purposes, 

the densities in the plot are normalized to unit variance, but these parameterizations 

allow the variance to be choosen freely. 

Choosing whether model (5) or (7) should be used can be based on moments of 

the distributions; see [6]. Methods for estimating the noise variance a2 are given in 

[3,6]. 

4 Sparse code shrinkage 

The above results imply the following sparse code shrinkage method for denoising. 

Assume that we observe a noisy version x = x + v of the data x, where v is gaussian 

white noise vector. To denoise x, we transform the data to a sparse code, apply the 

above ML estimation procedure component-wise, and then transform back to the 

original variables. Here, we constrain the transformation to be orthogonal; this is 

motivated in Section 5. To summarize: 

1. First, using a noise-free training set of x, use some sparse coding method 

for determining the orthogonal matrix W so that the components Si in 

s = Wx have as sparse distributions as possible. Estimate a density model 

Pi(Si) for each sparse component, using the models in (5) and (7). 

2. Compute for each noisy observation x(t) of x the corresponding noisy sparse 

components y(t) = Wx(t). Apply the shrinkage non-linearity gi(') as de

fined in (6), or in (8), on each component Yi(t), for every observation index 

t. Denote the obtained components by Si(t) = gi(Yi(t)). 

3. Invert the relation (1) to obtain estimates of the noise-free x, given by 

x(t) = WT§(t) . 

To estimate the sparsifying transform W, we assume that we have access to a noise

free realization of the underlying random vector. This assumption is not unrealistic 

on many applications: for example, in image denoising it simply means that we 

can observe noise-free images that are somewhat similar to the noisy image to be 

treated, i.e., they belong to the same environment or context. This assumption can 

be, however, relaxed in many cases, see [7]. The problem of finding an optimal 

sparse code in step 1 is treated in the next section. 
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In fact , it turns out that the shrinkage operation given above is quite similar to 

the one used in the wavelet shrinkage method derived earlier by Donoho et al [3] 

from a very different approach. Their estimator consisted of applying the shrinkage 

operator in (6) , with different values for the parameters, on the coefficients of the 

wavelet transform. There are two main differences between the two methods. The 

first is the choice of the transformation. We choose the transformation using the 

statistical properties of the data at hand, whereas Donoho et al use a predetermined 

wavelet transform. The second important difference is that we estimate the shrink

age nonlinearities by the ML principle, again adapting to the data at hand, whereas 

Donoho et al use fixed thresholding operators derived by the minimax principle. 

5 Choosing the optimal sparse code 

Different measures of sparseness (or nongaussianity) have been proposed in the lit

erature [1, 4, 8, 10]. In this section, we show which measures are optimal for our 

method. We shall here restrict ourselves to the class of linear, orthogonal transfor

mations. This restriction is justified by the fact that orthogonal transformations 

leave the gaussian noise structure intact, which makes the problem more simply 

tractable. This restriction can be relaxed, however, see [7]. 

A simple, yet very attractive principle for choosing the basis for sparse coding is 

to consider the data to be generated by a noisy independent component analysis 

(ICA) model [10, 6, 9] : 

x = As+v, (9) 

where the Si are now the independent components, and v is multivariate gaussian 

noise. We could then estimate A using ordinary maximum likelihood estimation 

of the ICA model. Under the restriction that A is constrained to be orthogonal, 

estimation of the noise-free components Si then amounts to the above method of 

shrinking the values of AT x, see [6]. In this ML sense, the optimal transformation 

matrix is thus given by W = AT. In particular, using this principle means that 

ordinary ICA algorithms can be used to estimate the sparse coding basis. This 

is very fortunate since the computationally efficient methods for ICA estimation 

enable the basis estimation even in spaces of rather high dimensions [8, 5]. 

An alternative principle for determining the optimal sparsifying transformation is 

to minimize the mean-square error (MSE). In [6], a theorem is given that shows that 

the optimal basis in minimum MSE sense is obtained by maximizing 2:~=1 IF(wTx) 
where IF(s) = E{[P'(s)jp(s)J2} is the Fisher information of the density of s, and 

the wT are the rows of W . Fisher information of a density [4] can be considered as 

a measure of its nongaussianity. It is well-known [4] that in the set of probability 

densities of unit variance, Fisher information is minimized by the gaussian density, 

and the minimum equals 1. Thus the theorem shows that the more nongaussian 

(sparse) S is, the better we can reduce noise. Note, however, that Fisher information 

is not scale-invariant. 

The former (ML) method of determining the basis matrix gives usually sparser 

components than the latter method based on minimizing MSE. In the case of image 

denoising, however, these two methods give essentially equivalent bases if a percep

tually weighted MSE is used [6]. Thus we luckily avoid the classical dilemma of 

choosing between these two optimality criteria. 
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6 Experiments 

Image data seems to fulfill the assumptions inherent in sparse code shrinkage: It is 

possible to find linear representations whose components have sparse distributions, 

using wavelet-like filters [10]. Thus we performed a set of experiments to explore the 

utility of sparse code shrinkage in image denoising. The experiments are reported 

in more detail in [7]. 

Data. The data consisted of real-life images, mainly natural scenes. The images 

were randomly divided into two sets. The first set was used in estimating the 

matrix W that gives the sparse coding transformation, as well as in estimating the 

shrinkage nonlinearities. The second set was used as a test set. It was artificially 

corrupted by Gaussian noise, and sparse code shrinkage was used to reduce the 

noise. The images were used in the method in the form of subwindows of 8 x 8 

pixels. 

Methods. The sparse coding matrix W was determined by first estimating the 

ICA model for the image windows (with DC component removed) using the FastICA 

algorithm [8, 5], and projecting the obtained estimate on the space of orthogonal 

matrices. The training images were also used to estimate the parametric density 

models of the sparse components. In the first series of experiments, the local vari

ance was equalized as a preprocessing step [7]. This implied that the density in 

(5) was a more suitable model for the densities of the sparse components; thus the 

shrinkage function in (6) was used. In the second series, no such equalization was 

made, and the density model (7) and the shrinkage function (8) were used [7]. 

Results. Fig. 2 shows, on the left, a test image which was artificially corrupted 

with Gaussian noise with standard deviation 0.5 (the standard deviations of the 

original images were normalized to 1). The result of applying our denoising method 

(without local variance equalization) on that image is shown on the right. Visual 

comparison of the images in Fig. 2 shows that our sparse code shrinkage method 

cancels noise quite effectively. One sees that contours and other sharp details are 

conserved quite well, while the overall reduction of noise is quite strong, which in 

is contrast to methods based on low-pass filtering. This result is in line with those 

obtained by wavelet shrinkage [3]. More experimental results are given in [7]. 

7 Conclusion 

Sparse coding and ICA can be applied for image feature extraction, resulting in a 

wavelet-like basis for image windows [10]. As a practical application of such a basis, 

we introduced the method of sparse code shrinkage. It is based on the fact that in 

sparse coding the energy of the signal is concentrated on only a few components, 

which are different for each observed vector. By shrinking the absolute values of the 

sparse components towards zero, noise can be reduced. The method is also closely 

connected to modeling image data with noisy independent component analysis [9]. 

We showed how to find the optimal sparse coding basis for denoising, and we de

veloped families of probability densities that allow the shrinkage nonlinearities to 

adapt accurately to the data at hand. Experiments on image data showed that the 

performance of the method is very appealing. The method reduces noise without 

blurring edges or other sharp features as much as linear low-pass or median filtering. 

This is made possible by the strongly non-linear nature of the shrinkage operator 

that takes advantage of the inherent statistical structure of natural images. 


