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Abstract. Recent advances suggest that a wide range of computer vision prob-

lems can be addressed more appropriately by considering non-Euclidean geome-

try. This paper tackles the problem of sparse coding and dictionary learning in the

space of symmetric positive definite matrices, which form a Riemannian mani-

fold. With the aid of the recently introduced Stein kernel (related to a symmetric

version of Bregman matrix divergence), we propose to perform sparse coding by

embedding Riemannian manifolds into reproducing kernel Hilbert spaces. This

leads to a convex and kernel version of the Lasso problem, which can be solved

efficiently. We furthermore propose an algorithm for learning a Riemannian dic-

tionary (used for sparse coding), closely tied to the Stein kernel. Experiments

on several classification tasks (face recognition, texture classification, person re-

identification) show that the proposed sparse coding approach achieves notable

improvements in discrimination accuracy, in comparison to state-of-the-art meth-

ods such as tensor sparse coding, Riemannian locality preserving projection, and

symmetry-driven accumulation of local features.

1 Introduction

Sparse representation (SR), the linear decomposition of a signal using a few atoms of a

dictionary, has led to notable results for various image processing and computer vision

tasks [1,2]. While significant steps have been taken towards expanding the theory of

SR, such representations in non-Euclidean spaces have received comparatively little

attention. This paper tackles the problem of sparse coding within the space of symmetric

positive definite (SPD) matrices.

SPD matrices are fundamental building blocks in computer vision and machine

learning. A notable example is the covariance descriptor [3], which offer a compact way

of describing regions/cuboids in images/videos and fusion of multiple features. Covari-

ance descriptors have been exploited in several applications, such as diffusion tensor

imaging [4], action recognition [5,6,7], pedestrian detection [3], face recognition [8,9],

texture classification [9,10], and tracking [11].

SPD matrices form a cone of zero curvature and can be analysed using the geometry

of Euclidean space. However, several studies have shown that a Riemannian structure

of negative curvature is more suitable for analysing SPD matrices [4,12]. More specifi-

cally, Pennec et al. [4] introduced the Affine Invariant Riemannian Metric (AIRM) and
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showed that the induced Riemannian structure is invariant to inversion and similarity

transforms. The AIRM is perhaps the most widely used similarity measure for SPD

matrices. Nevertheless, efficiently and accurately handling the Riemannian structure is

non-trivial as basic computations on Riemannian manifolds (such as similarities and

distances) involve non-linear operators. This not only hinders the development of opti-

misation algorithms but also incurs a significant numerical burden.

To address the above drawbacks, in this paper we propose to perform the sparse

coding of SPD matrices by embedding Riemannian manifolds into reproducing kernel

Hilbert spaces (RKHS) [13]. This is in contrast to directly embedding into Euclidean

spaces [7,6,14].

Related Work. Sra et al. [14] used the cone of SPD matrices and the Frobenius norm as

a measure of similarity between SPD matrices. While this results in a regularised non-

negative least-squares approach, it does not consider the Riemannian geometry induced

by AIRM.

Guo et al. [6] and Yuan et al. [7] separately proposed to solve sparse representation

by a log-Euclidean approach, where a Riemannian problem is converted to an Euclidean

one by embedding manifolds into tangent spaces. While log-Euclidean approaches ben-

efit from simplicity, the true geometry of the manifold is not taken into account. More

specifically, on a tangent space only distances to the pole of space are true geodesic

distances. As such, the pairwise distances between arbitrary points on the tangent space

do not represent the structure of the manifold.

Sivalingam et al. [9] used Burg divergence [15] as a metric and reformulated the

Riemannian1 SR problem as a determinant maximisation problem. This has the ad-

vantage of avoiding the explicit manifold embedding, as well as resulting in a convex

MAXDET problem [16] that can be solved by interior point methods. However, there

are two downsides: the solution is computationally very expensive, and the relations

between Burg divergence and the geometry of Riemannian manifolds were not well

established.

Contributions. With the aid of the recently introduced Stein kernel [17], which is re-

lated to AIRM via a tight bound, we propose a Riemannian sparse solver by embedding

Riemannian manifolds into RKHS. We show that the embedding leads to a convex and

kernelised version of the Lasso problem [1], which can be solved efficiently. We further-

more propose a sparsity-maximising algorithm for dictionary learning within the space

of SPD matrices, closely tied to the Stein kernel. Lastly, we show that the proposed

sparse coding approach obtains superior performance on several visual classification

tasks (face recognition, texture classification, person re-identification), in comparison to

several state-of-the-art methods: tensor sparse coding [9], log-Euclidean sparse repre-

sentation [6,7], Gabor feature based sparse representation [18], and Riemannian locality

preserving projection [10].

We continue the paper as follows. Section 2 begins with an overview of Bregman

divergence and the Stein kernel. Section 3 describes the proposed kernel solution of

Riemannian sparse coding, followed by Section 4, which covers the problem of dictio-

nary learning on Riemannian manifolds. In Section 5 we compare the performance of

1 We loosely use ‘Riemannian’ to refer to the Riemannian manifold formed by SPD matrices.
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the proposed method with previous approaches on several visual classification tasks.

The main findings and possible future directions are summarised in Section 6.

2 Background

In this section we first overview the properties of Bregman matrix divergences, includ-

ing a special case known as the symmetric Stein divergence. This leads to the Stein

kernel, which can be used to embed Riemannian manifolds into RKHS.

2.1 Bregman Matrix Divergences

The Bregman matrix divergence for two symmetric matrices X and Y is defined as [15]:

Dζ(X,Y ) � ζ(X)− ζ(Y )− 〈∇ζ(Y ),X − Y 〉 (1)

where 〈A,B〉=Tr
(

ATB
)

and ζ is a real valued, strictly convex function on symmetric

matrices. Bregman divergences are non-negative, definite, and in general asymmetric.

Among the several ways to symmetrise them, the Jensen-Shannon symmetrisation is

often used [15]:

D
JS
ζ (X ,Y ) �

1

2
Dζ

(

X ,
X + Y

2

)

+
1

2
Dζ

(

Y ,
X + Y

2

)

(2)

If ζ = − log (det (X)), then the symmetric Stein divergence is obtained from (2):

S(X,Y ) � log

(

det

(

X + Y

2

))

−
1

2
log (det (XY )) , for X ,Y ≻ 0 (3)

The space induced by AIRM on symmetric positive definite matrices of dimension

d is a Riemannian manifold Symd
+ of negative curvature. For two points X,Y ∈

Symd
+, the AIRM is defined as d2g = ‖ log

X
(Y ) ‖2X = Tr

{

log2
(

X− 1
2Y X− 1

2

)}

, where

log
X

(Y ) = X
1
2 log

(

X− 1
2Y X− 1

2

)

X
1
2 . The symmetric Stein divergence and Rieman-

nian metric over Symd
+ manifolds are related in several aspects. Two important prop-

erties are summarised below.

Property 1. Let X ,Y ∈ Symd
+, and δT (X,Y ) = max1≤i≤d{| logΛ

(

XY −1
)

|} be the

Thompson metric [19] with Λ
(

XY −1
)

representing the vector of eigenvalues of XY −1.

The following sandwiching inequality between the symmetric Stein divergence and Rie-

mannian metric exists [17]:

S(X,Y ) ≤
1

8
d
2
g(X,Y ) ≤

1

4
δT (X ,Y ) (S(X,Y ) + d log d) (4)

Property 2. The curve γ(p) � X
1
2

(

X− 1
2Y X− 1

2

)p

X
1
2 parameterises the unique

geodesic between the SPD matrices X and Y . On this curve the Riemannian geodesic

distance satisfies dg(X, γ(p)) = pdg(X,Y ); p ∈ [0, 1] [12]. The symmetric Stein diver-

gence satisfies a similar but slightly weaker result, S(X, γ(p)) ≤ pS(X,Y ).

The first property establishes a bound between the geodesic distance and Stein diver-

gence, providing motivation for addressing Riemannian problems via the divergence.

The second property reinforces the motivation by explaining that the behaviour of Stein

divergences along geodesic curves is similar to true Riemannian geometry.
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2.2 Stein Kernel

Definition 1. Let Ω = {X1,X2, · · · ,XN} be a non-empty set on Riemannian manifold
Symd

+. A function ϕ : Ω × Ω → R+ is a Riemannian kernel if ϕ is symmetric for all
X,Y ∈ Ω, ie., ϕ(X,Y ) = ϕ(Y ,X), and the following inequality is satisfied for all
ai ∈ R:

∑

i,j
aiajϕ(Xi,Xj) ≥ 0

Under a mild condition (explained afterwards), the following function forms a Rieman-

nian kernel [17]:

k(X,Y ) = e
−σS(X,Y ) = 2dσ

√

det(X)σ det(Y )σ

det(X + Y )σ
(5)

We shall refer to this kernel as the Stein kernel from here on. The following theorem

states the condition under which Stein kernel is positive definite.

Theorem 1. Let Ω = {X1,X2, · · · ,XN};Xi ∈ Symd
+ be a set of Riemannian points.

The N × N matrix Kσ = [kσ(i, j)]; 1 ≤ i, j ≤ N , with kσ(i, j) = k(Xi,Xj), defined
in (5), is positive definite iff:

σ ∈

{

1

2
,
2

2
, · · · ,

d− 1

2

}

∪

{

τ ∈ R : τ >
1

2
(d− 1)

}

(6)

Interested readers can follow the proof in [17]. For values of σ outside of the above

set, it is possible to convert a pseudo kernel into a true kernel, as discussed for exam-

ple in [20]. The determinant of an d× d SPD matrix can be efficiently computed by

Cholesky decomposition in O
(

d3
)

. As such, the complexity of computing Stein kernel

is O
(

3d3 + 3σ
)

.

3 Kernel Sparse Coding

Sparse coding on Riemannian manifolds in general means that a given query point on

a manifold can be expressed as a sparse “combination” of dictionary elements. Our

idea here is to embed the manifold into RKHS and replace the idea of “combination”

on manifolds with the general concept of linear combination in Hilbert spaces. More

specifically, given a Riemannian dictionary D = {D1,D2, · · · ,DN};Di ∈ Symd
+,

and an embedding function φ : Symd
+ → H, for a Riemannian point X we seek

for a sparse vector v ∈ R
N such that φ(X) admits the sparse representation v over

{φ(D1), φ(D2), · · · , φ(DN )}. In other words, we are interested in solving the following

kernelised version of the Lasso problem [1]:

min
v∈RN

(

∥

∥

∥φ(X)−
∑N

i=1
viφ(Di)

∥

∥

∥

2

+ λ ‖v‖1

)

(7)

The first term in (7) can be expanded as:

∥

∥

∥
φ(X)−

∑N

i=1
viφ(Di)

∥

∥

∥

2

= k(X,X)− 2
∑N

i=1
vik(X ,Di) +

∑N

i=1

∑N

j=1
vivjk(Dj ,Di)

= k(X,X)− 2vT
K(X,D) + v

T
K(D,D)v (8)
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where K = [ai]N×1; ai = k(X,Di) and K = [aij ]N×N ; aij = k(Di,Dj). This reveals

that the optimisation problem in (7) is convex and similar to its counterpart in Euclidean

space, except for the definition of K and K. Consequently, greedy or relaxation solutions

can be adapted to obtain the sparse codes [1]. To solve problem (7) we used CVX [21],

a package for specifying and solving convex programs2.

3.1 Classification Using Sparse Codes

There are two main approaches for classification based on the obtained sparse codes

(vectors) for a given query sample: (i) directly, and (ii) indirectly, with the aid of an

Euclidean-based classifier. We elucidate the two approaches below.

(i) If the atoms in sparse dictionary D have associated class labels (ie. each atom

in the dictionary is a training sample), the sparse codes can be directly used for clas-

sification. This approach is applicable only to closed-set identification tasks. Let vi =

[vi,1δ(l(1)− i), vi,2δ(l(2)− i), · · · , vi,Nδ(l(N)− i)]T be the class-specific sparse codes,

where l(j) is the class label of atom Dj and δ(x) is the discrete Dirac function [22].

An efficient way of using class-specific sparse codes is through computing residual

errors [2]. In this case, the residual error of query sample X for class i is defined as:

εi(X) =
∥

∥

∥
φ(X)−

∑N

j=1
vjφ(Dj)δ(l(j)− i)

∥

∥

∥

2

(9)

which can be computed via the use of a Riemannian kernel in a similar manner to (8).

The class with the minimum residual error is deemed to represent the query. Alterna-

tively, the similarity between query sample X to class i can be defined as Si(X)=hi(v).

The function hi(v) can be linear like
∑j=N

j=1 vjδ(l(j)− i) or even non-linear like

max (vjδ(l(j) − i)).

(ii) If the atoms in the sparse dictionary D are not labelled (eg. D is a generic dic-

tionary not tied to any particular class [23]), the generated sparse codes (vectors) for

both training and query data can be fed to Euclidean-based classifiers, such as support

vector machines [22]. The sparse code is hence interpreted as a feature vector, which in

essence means that a classification problem on a Riemannian manifold is converted to

an Euclidean classification problem. This approach is applicable to both closed-set and

open-set classification tasks.

4 Learning Riemannian Dictionaries

If the indirect classification of sparse codes is required (as elucidated in the preceding

section) a Riemannian dictionary is first required. Given a set of Riemannian points Ω =

{X1,X2, · · · ,Xm};Xi ∈ Symd
+, learning a dictionary D = {D1,D2, · · · ,DN};Di ∈

Symd
+ can be formulated as jointly minimising the energy function

J =

{

∑m

j=1

(

∥

∥

∥φ(Xj)−
∑N

i=1
vj,iφ(Di)

∥

∥

∥

2

+ λ ‖vj‖1

)}

(10)

over the dictionary and the sparse codes V = {v1,v2, · · · ,vm};vi ∈ R
N , ie., min

D,V
(J).

2 The SPAMS package can also be used: http://spams-devel.gforge.inria.fr/

http://spams-devel.gforge.inria.fr/
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Among the various solutions to the problem of dictionary learning in Euclidean

spaces, iterative methods like K-SVD have received much attention [1]. Borrowing the

idea from Euclidean spaces, we propose to minimise the energy in (10) iteratively. After

initialising the dictionary D, for example by Riemannian clustering using the Karcher

mean [4], we iterate between a sparse coding step and a dictionary update step. In the

sparse coding step, D is fixed and V is computed. In the dictionary update step, V is

fixed while D is updated, with each dictionary atom updated independently.
The derivative of (10) with respect to Dr, while V and other atoms are fixed, is:

∂J

∂Dr

=
∑m

j=1

(

−2vj,r
∂k(Xj ,Dr)

∂Dr

+
∑N

i=1
vj,ivj,r

∂k(Di,Dr)

∂Dr

)

(11)

As ∇XS(X,Y ) = (X + Y )−1 − 1
2
X−1, (11) can be further simplified to:

∂J

∂Dr

= 2β
∑m

j=1
vj,rk(Xj ,Dr)

(

(Xj +Dr)
−1 −

1

2
D

−1
r

)

− β
∑m

j=1

∑N

i=1
vj,ivj,rk(Di,Dr)

(

(Di +Dr)
−1 −

1

2
D

−1
r

)

(12)

Since (12) contains linear and non-linear terms of Dr (eg. inverse and kernel terms),

a closed-form solution for computing its root, ie., Dr, cannot be sought. As such,

we propose an alternative solution by exploiting previous values of k(·,Dr) and

(Di −Dr)
−1 in the updating step. More specifically, rearranging (12) and estimating

k(·,Dr) as well as (Di −Dr)
−1 by their previous values, atom Dr at iteration t + 1 is

updated using:

D
(t+1)
r =

2
∑m

j=1 vj,r
(

vT
j k(D,Dr)− 2k(Xj ,Dr)

)

(

F
(t)(r) +G

(t)(r)
)−1

(13)

where

F
(t)(r) =

∑m

j=1
2vj,rk

(t)(Xj ,Dr)
(

Xj +D
(t)
r

)−1

(14)

G
(t)(r) =

∑m

j=1

∑N

i=1
vj,rvj,ik

(t)(Di,Dr)
(

D
(t)
i +D

(t)
r

)−1

(15)

To avoid the degenerative case (due to numerical inconsistency), atoms are normalised

by their second norms at the end of each iteration. Algorithm 1 assembles all the above

details into pseudo-code for dictionary learning.

5 Experiments

Two sets of experiments3 are presented in this section. In the first set, we evaluate the

performance of the proposed Riemannian SR (RSR) method (as described in Section 3)

without dictionary learning. Each atom in the dictionary is a training sample. This is

to contrast RSR to previous state-of-the-art methods on several popular closed-set clas-

sification tasks. We use the residual error approach for classification, as described in

Eqn. (9).

In the second set, the performance of the RSR method is evaluated in conjunction

with dictionaries learned via three methods: random, Riemannian k-means, and the pro-

posed dictionary learning technique (as described in Section 4).

3 Matlab/Octave source code is available at http://itee.uq.edu.au/˜uqmhara1

http://itee.uq.edu.au/~uqmhara1
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Algorithm 1. Dictionary learning over Symd
+ using the Stein kernel

Input:

– training set X= {Xi}
m

i=1 from the underlying Riemannian manifold,

where each Xi ∈ Symd
+ is a SPD matrix

– Stein kernel function k(X,Y ), as defined in Eqn. (5)

– nIter, the number of iterations

Output:

– Riemannian dictionary D = {Di}
N

i=1

1: Initialise the dictionary D
(1) =

{

D
(1)

i

}N

i=1
by selecting N samples from X randomly,

or by clustering X on the manifold [24]

2: for t = 1 → nIter do

3: Compute k(t)(Xi,D
(t)

j ), 1 ≤ i ≤ m, 1 ≤ j ≤ N

4: Compute k(t)(D(t)

i ,D
(t)

j ), 1 ≤ i, j ≤ N

5: Solve min
vj∈RN

− 2vT
j K(Xj ,D

(t)) + vT
K(D(t),D(t))v + λ ‖vj‖1, ∀j,Xj ∈ X

6: for r = 1 → N do

7: Compute G(t)(r) =
∑m

j=1

∑N

i=1 vj,rvj,ik
(t)(D

(t)
i ,D

(t)
r )

(

D
(t)
i +D

(t)
r

)−1

8: Compute F (t)(r) =
∑m

j=1 2vj,rk
(t)(Xj ,D

(t)
r )

(

Xj +D
(t)
r

)−1

9: D
temp

r ← 2
∑

m
j=1

vj,r

(

vT
j
k(D(t),D

(t)
r )−2k(Xj ,D

(t)
r )

)

(

F (t)(r) +G(t)(r)
)−1

10: D
(t+1)
r ← D

temp
r

‖Dtemp
r ‖

2

11: end for

12: end for

5.1 Riemannian Sparse Representation

Synthetic Data. We first consider a multi-class classification problem over Sym3
+ using

synthetic data. We compared the proposed RSR against Tensor Sparse Coding (TSC) [9]

and log-Euclidean Sparse Representation (logE-SR) [6,7]. The data used in the exper-

iments constitutes 512 random samples from 4 classes. Half of the samples were used

for training and the rest were used as test data.

To create a Riemannian manifold, samples were generated over a particular tangent

space and then mapped back to the manifold using the exponential map [12]. The po-

sitions of tangent spaces were chosen randomly and samples in each class obeyed a

normal distribution. By fixing the mean of each class and increasing the class variance

we created two classification problems: ‘easy’ and ‘hard’. To draw useful statistics, the

data creation process was repeated 100 times.

Table 1 shows the average recognition accuracy and the total running time (in sec-

onds). All algorithms were implemented in Matlab and executed on a 3 GHz Intel CPU.

In terms of recognition accuracy, RSR obtains superior performance when compared

with previous state-of-the-art approaches. We note that by increasing the class variance,

samples from the four classes are intertwined, leading to a decrease in recognition ac-

curacy. The performance of logE-SR is higher than TSC, which might be due the to fact
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Table 1. Average recognition accuracy (in %) and wall-clock time for the synthetic classification

tasks using log-Euclidean sparse representation [6,7], tensor sparse coding [9] and the proposed

RSR approach. Run time is represented by combining the times for the easy and hard tasks.

logE-SR [6,7] TSC [9] RSR (proposed)
re

co
g
n
it

io
n

ac
cu

ra
cy

easy 68.08 ± 2.5 60.04 ± 6.8 83.05± 3.0
hard 53.67 ± 3.2 50.35 ± 4.9 66.72± 2.7

ru
n
-t

im
e

easy+hard 6 sec 11107 sec 41 sec

that the generated data can be modelled by Gaussian distribution over tangent space,

hence favouring the tangent-based solution.

Focusing on run time, Table 1 suggests that logE-SR has the lowest complexity while

TSC has the highest. The proposed RSR method is substantially faster than TSC, while

delivering the highest recognition accuracy.

Face Recognition. We used the ‘b’ subset of the FERET dataset [25], which includes

1400 images from 198 subjects. The images were closely cropped around the face and

downsampled to 64× 64. Examples are shown in Figure 1.

We performed four tests with various pose angles. Training data was composed of

images marked ‘ba’, ‘bj’ and ‘bk’ (ie., frontal faces with expression and illumination

variations). Images with ‘bd’, ‘be’, ‘bf’ and ‘bg’ labels (ie., non-frontal faces) were used

as test data. For Riemannian-based methods, a 43× 43 covariance descriptor described

a face image, using the following features:

Fx,y= [ I(x, y), x, y, |G0,0(x, y)|, · · ·, |G0,7(x, y)|, |G1,0(x, y)|, · · ·, |G4,7(x, y)| ]

where I(x, y) is the intensity value at position x, y and Gu,v(x, y) is the response of a
2D Gabor wavelet [26] centered at x, y with orientation u and scale v:

Gu,v(x, y) =
k2
v

4π2

∑

t,s
e
− k2

v
8π2 ((x−s)2+(y−t)2)

(

e
ikv((x−t)cos(θu)+(y−s)sin(θu)) − e

−2π2
)

with kv = 1√
2v−1

and θu = πu
8

.

Table 2 shows a comparison of RSR against logE-SR [6,7], TSC [9], and two purely

Euclidean sparse representations, PCA-SRC [2] and Gabor SR (GSR) [18]. In all cases

the proposed RSR method obtains the highest accuracy. Furthermore, the proposed ap-

proach significantly outperforms state-of-the-art Euclidean solutions, especially for test

images with label ‘bg’.

Texture Classification. We performed a classification task using the Brodatz texture

dataset [27]. Examples are shown in Fig. 2. We followed the test protocol devised

in [9] and generated nine test scenarios with various number of classes. This includes
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Table 2. Recognition accuracy (in %) for the face recognition task using PCA-SRC [2], Ga-

bor SR (GSR) [18], log-Euclidean sparse representation (logE-SR) [6,7], Tensor Sparse Coding

(TSC) [9], and the proposed RSR approach

PCA-SR [2] GSR [18] logE-SR [6,7] TSC [9] RSR (proposed)

bg 26.0 79.0 46.5 44.5 86.0
bf 61.0 97.0 91.0 73.5 97.5
be 55.5 93.5 81.0 73.0 96.5
bd 27.5 77.0 34.5 36.0 79.5
average 42.50 86.63 63.25 56.75 89.88

5-texture (‘5c’, ‘5m’, ‘5v’, ‘5v2’, ‘5v3’), 10-texture (‘10’, ‘10v’) and 16-texture (‘16c’,

‘16v’) mosaics. To create a Riemannian manifold, each image was first downsampled

to 256 × 256 and then split into 64 regions of size 32 × 32. The feature vector for any

pixel I (x, y) is F (x, y)=
[

I (x, y) ,
∣

∣

∂I
∂x

∣

∣ ,
∣

∣

∣

∂I
∂y

∣

∣

∣
,
∣

∣

∣

∂2I

∂x2

∣

∣

∣
,
∣

∣

∣

∂2I

∂y2

∣

∣

∣

]

. Each region is described by

a 5 × 5 covariance descriptor of these features. For each test scenario, five covariance

matrices per class were randomly selected as training data and the rest was used for

testing. The random selection of training/testing data was repeated 20 times.

Fig. 3 compares the proposed RSR method against logE-SR [6,7] and TSC [9]. The

proposed RSR approach obtains the highest recognition accuracy on all test scenarios

except for the ‘5c’ test, where it has slightly worse performance than TSC.

Person Re-identification. We used the modified ETHZ dataset [31]. The original

ETHZ dataset was captured using a moving camera [28], providing a range of variations

in the appearance of people. The dataset is structured into 3 sequences. Sequence 1 con-

tains 83 pedestrians (4,857 images), Sequence 2 contains 35 pedestrians (1,936 images),

and Sequence 3 contains 28 pedestrians (1,762 images). See Fig. 4 for examples.
We downsampled all images to 64× 32 pixels. For each subject we randomly se-

lected 10 images for training and used the rest for testing. Random selection of training
and testing data was repeated 20 times to obtain reliable statistics. To describe each
image, the covariance descriptor was computed using the following features:

Fx,y=
[

x, y, Rx,y , Gx,y , Bx,y , R
′
x,y , G

′
x,y, B

′
x,y, R

′′
x,y, G

′′
x,y, B

′′
x,y

]

where (x, y) is the position of a pixel, while Rx,y, Gx,y and Bx,y represent the corre-

sponding colour information. The gradient and Laplacian for colour C are represented

by C′
x,y= [|∂C/∂x| , |∂C/∂y|] and C′′

x,y=
[∣

∣∂2C
/

∂x2
∣

∣ ,
∣

∣∂2C
/

∂y2
∣

∣

]

, respectively.

bd be bf bg bj bk

Fig. 1. Examples of closely-cropped faces from the FERET ‘b’ subset
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Fig. 2. Examples from

the Brodatz texture

dataset [27]
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Fig. 3. Performance on the Bordatz texture dataset [27] using

log-Euclidean sparse representation (logE-SR) [6,7], Tensor Sparse

Coding (TSC) [9] and the proposed RSR approach. The black bars

indicate standard deviations.

Fig. 4. Examples of pedestrians

in the ETHZ dataset [28]

1 2 3 4 5 6 7
75

80

85

90

95

100

Rank

R
e
c
o

g
n

it
io

n
 A

c
c
u

ra
c
y
 (

%
)

 

 

RSR

RLPP

HPE

SDALF

1 2 3 4 5 6 7
75

80

85

90

95

100

Rank

R
e
c
o

g
n

it
io

n
 A

c
c
u

ra
c
y
 (

%
)

Fig. 5. Performance on Sequences 1 and 2 of the ETHZ dataset (left and right panels, respec-

tively), in terms of Cumulative Matching Characteristic curves. The proposed RSR method is

compared with Histogram Plus Epitome (HPE) [29], Symmetry-Driven Accumulation of Local

Features (SDALF) [30] and Riemannian Locality Preserving Projection (RLPP) [10].

We compared the proposed RSR method with several techniques previously used for

pedestrian detection: Histogram Plus Epitome (HPE) [29], Symmetry-Driven Accumu-

lation of Local Features (SDALF) [30], and Riemannian Locality Preserving Projection
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(RLPP) [10]. The performance of logE-SR was below HPE method and is not shown.

The results for TSC could not be generated in a timely manner, due to the heavy com-

putational load of the algorithm.

Results for Sequence 1 and 2 are shown in Fig. 5, in terms of cumulative matching

characteristic (CMC) curves. The CMC curve represents the expectation of finding the

correct match in the top n matches. The proposed method obtains the highest accuracy.

For Sequence 3 (not shown), very similar performance is obtained by SDALF, RLPP

and the proposed RSR, with HPE having the lowest performance.

5.2 Dictionary Learning

Here we compare the performance of the proposed Riemannian dictionary learning

technique (as described in Section 4), with the performances of dictionaries obtained

by random sampling and Riemannian k-means. We first use synthetic data to show

that the proposed method obtains a lower representation error in RKHS, followed by

classification experiments on texture data.

Synthetic Data. We synthesised 512 Riemannian samples from a set of 32 source

points in Sym5
+. The source points can be considered as a form of ground-truth. The

synthesised samples were then used for dictionary creation by Riemannian k-means [24]

and the proposed algorithm.

To generate each source point, an SPD matrix was created by computing the covari-

ance of 100 random samples of a 5 dimensional normal distribution. The mean and

variance of the distribution are different for each source point. To synthesise each of

the 512 Riemannian samples, we uniformly selected T = 4 source points and combined

them with random positive weights, where the weights obeyed a normal distribution

with zero mean and unit variance.

The performance is measured in terms of representation error in RKHS, ie. Eqn. (10).

Fig. 6 shows the representation error as the algorithms iterate, with the proposed algo-

rithm obtaining a lower error than Riemannian k-means.
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Fig. 6. Representation error of learned

dictionaries in RKHS, Eqn. (10), for

synthetic data. The proposed method

(Section 4) is compared with Rieman-

nian k-means [24]. The source points

can be interpreted as a form of ground-

truth.
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Table 3. Recognition accuracy (in %) for the texture classification task with dictionary learning.

In all cases the proposed RSR approach was used, coupled with a dictionary generated via three

separate methods: random dictionary generation, Riemannian k-means [24], and the proposed

learning algorithm (Section 4).

random k-means learning

46.09 ± 1.5 53.20 ± 1.1 60.65 ± 0.9

Texture Classification. Here we consider a multi-class classification problem, us-

ing 111 texture images of the Brodatz texture dataset [27]. From each image we ran-

domly extracted 50 blocks of size 32 × 32. To train the dictionary, 20 blocks from

each image were randomly selected, resulting in a dictionary learning problem with

2200 samples. From the remaining blocks, 20 per image were used as probe data and

10 as gallery samples. The process of random block creation and dictionary genera-

tion was repeated twenty times. The average recognition accuracies over probe data

are reported here. In the same manner as in Section 5.1, we used the feature vector

F (x, y)=
[

I (x, y) ,
∣

∣

∂I
∂x

∣

∣ ,
∣

∣

∣

∂I
∂y

∣

∣

∣
,
∣

∣

∣

∂2I
∂x2

∣

∣

∣
,
∣

∣

∣

∂2I
∂y2

∣

∣

∣

]

to create the covariance, where the first di-

mension is the grayscale intensity, and the remaining dimensions capture first and sec-

ond order gradients.

We used the proposed RSR approach to obtain the sparse codes, coupled with a

dictionary generated via three separate methods: random dictionary generation, Rie-

mannian k-means algorithm [24], and the proposed learning algorithm (Section 4). The

sparse codes were then classified using a nearest-neighbour classifier.

For the randomly generated dictionary case, the classification rates are averaged over

10 runs, with each run using a different random dictionary. For all methods, dictionar-

ies of size k= {8, 16, 24, · · ·, 128} were trained. The best results for each approach (ie.,

the results for the dictionary size that obtained the highest recognition accuracy) are

reported in Table 3. For the random dictionary, k = 64; for the k-means dictionary,

k = 96; for the proposed dictionary learning algorithm, k = 24. The results show that

the proposed algorithm leads to a considerable gain in accuracy.

6 Main Findings and Future Directions

With the aim of addressing sparse representation on Riemannian manifolds, proposed

to seek the solution through embedding the manifolds into RKHS, with the aid of the

recently introduced Stein kernel. This led to a relaxed and extended version of the Lasso

problem [1] on Riemannian manifolds.

Experiments on several classification tasks (face recognition, texture classification,

person re-identification) show that the proposed approach achieves notable improve-

ments in discrimination accuracy, in comparison to state-of-the-art methods such as

tensor sparse coding, Riemannian locality preserving projection, and symmetry-driven

accumulation of local features. We conjuncture that this stems from better exploita-

tion of Riemannian geometry, as the Stein kernel is related to geodesic distances via

a tight bound. The proposed sparse coding method is also considerably faster than the

state-of-the-art MAXDET reformulation used by Tensor Sparse Coding [9].
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We have furthermore proposed an algorithm for learning a Riemannian dictionary,

closely tied to the Stein kernel. In comparison to Riemannian k-means [24], the pro-

posed algorithm obtains a lower representation error in RKHS and leads to improved

classification accuracies.

Future directions include using the Stein kernel for solving large margin classifica-

tion problems on Riemannian manifolds. This translates to designing a machinery that

maximises a margin on SPD matrices based on Stein divergence, which can be consid-

ered as an extension of support vector machines [13] to tensor spaces.
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