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Abstract

We investigate the use of sparse coding and
dictionary learning in the context of multi-
task and transfer learning. The central as-
sumption of our learning method is that the
tasks parameters are well approximated by
sparse linear combinations of the atoms of a
dictionary on a high or infinite dimensional
space. This assumption, together with the
large quantity of available data in the multi-
task and transfer learning settings, allows a
principled choice of the dictionary. We pro-
vide bounds on the generalization error of
this approach, for both settings. Numerical
experiments on one synthetic and two real
datasets show the advantage of our method
over single task learning, a previous method
based on orthogonal and dense representa-
tion of the tasks and a related method learn-
ing task grouping.

1. Introduction

The last decade has witnessed many efforts of
the machine learning community to exploit assump-
tions of sparsity in the design of algorithms. A
central development in this respect is the Lasso
(Tibshirani, 1996), which estimates a linear predic-
tor in a high dimensional space under a regularizing
ℓ1-penalty. Theoretical results guarantee a good per-
formance of this method under the assumption that
the vector corresponding to the underlying predic-
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tor is sparse, or at least has a small ℓ1-norm, see
e.g. (Bühlmann & van de Geer, 2011) and references
therein.

In this work we consider the case where the predic-
tors are linear combinations of the atoms of a dictio-
nary of linear functions on a high or infinite dimen-
sional space, and we assume that we are free to choose
the dictionary. We will show that a principled choice
is possible, if there are many learning problems, or
“tasks”, and there exists a dictionary allowing sparse,
or nearly sparse representations of all or most of the
underlying predictors. In such a case we can exploit
the larger quantity of available data to estimate the
“good” dictionary and still reap the benefits of the
Lasso for the individual tasks. This paper gives the-
oretical and experimental justification of this claim,
both in the domain of multitask learning, where the
new representation is applied to the tasks from which
it was generated, and in the domain of learning to
learn, where the dictionary is applied to new tasks of
the same environment.

Our work combines ideas from sparse coding
(Olshausen & Field, 1996), multitask learning
(Ando & Zhang, 2005; Argyriou et al., 2008a;b;
Ben-David & Schuller, 2003; Caruana, 1997;
Evgeniou et al., 2005; Maurer, 2009) and learn-
ing to learn (Baxter, 2000; Thrun & Pratt, 1998).
There is a vast literature on these subjects and the
list of papers provided here is necessarily incomplete.
Learning to learn (also called inductive bias learning
or transfer learning) has been proposed by Baxter
(2000) and an error analysis is provided therein,
showing that a common representation which per-
forms well on the training tasks will also generalize
to new tasks obtained from the same “environment”.
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The precursors of the analysis presented here are
(Maurer & Pontil, 2010) and (Maurer, 2009). The
first paper provides a bound on the reconstruction
error of sparse coding and may be seen as a special
case of the ideas presented here when the sample
size is infinite. The second paper provides a learning
to learn analysis of the multitask feature learning
method in (Argyriou et al., 2008a).

We note that a method similar to the one presented in
this paper has been recently proposed within the mul-
titask learning setting (Kumar & Daumé III, 2012).
Here we highlight the connection between sparse cod-
ing and multitask learning and present a probabilistic
analysis which complements well with the practical in-
sights in the above work. We also address the different
problem of learning to learn, demonstrating the util-
ity of our approach in this setting by means of both
learning bounds and numerical experiments. A fur-
ther novelty of our approach is that it applies to a
Hilbert spaces setting, thereby providing the possibil-
ity of learning nonlinear predictors using reproducing
kernel Hilbert spaces.

The paper is organized in the following manner. In
Section 2, we set up our notation and introduce the
learning problem. In Section 3, we present our learning
bounds for multitask learning and learning to learn. In
Section 4 we report on numerical experiments. Section
5 contains concluding remarks.

2. Method

In this section, we turn to a technical exposition of
the proposed method, introducing some necessary no-
tation on the way.

Let H be a finite or infinite dimensional Hilbert space
with inner product 〈·, ·〉, norm ‖·‖, and fix an integer
K. We study the problem

min
D∈DK

1

T

T
∑

t=1

min
γ∈Cα

1

m

m
∑

i=1

ℓ (〈Dγ, xti〉 , yti) , (1)

where

• DK is the set of K-dimensional dictionaries (or
simply dictionaries), which means that every D ∈
DK is a linear map D : R

K → H , such that
‖Dek‖ ≤ 1 for every one of the canonical basis
vectors ek of R

K . The number K can be re-
garded as one of the regularization parameters of
our method.

• Cα is the set of code vectors γ in R
K satisfying

‖γ‖1 ≤ α. The ℓ1-norm constraint implements

the assumption of sparsity and α is the other reg-
ularization parameter. Different sets Cα could be
readily used in our method, such as those associ-
ated with ℓp-norms.

• Z = ((xti, yti) : 1 ≤ i ≤ m, 1 ≤ t ≤ T ) is a dataset
on which our algorithm operates. Each xti ∈ H
represents an input vector, and yti is a corre-
sponding real valued label. We also write Z =
(X,Y) = (z1, . . . , zT ) = ((x1,y1) , . . . , (xT ,yT ))
with xt = (xt1, . . . , xtm) and yt = (yt1, . . . , ytm).
The index t identifies a learning task, and zt are
the corresponding training points, so the algo-
rithm operates on T tasks, each of which is rep-
resented by m example pairs.

• ℓ is a loss function where ℓ (y, y′) measures the
loss incurred by predicting y when the true label
is y′. We assume that ℓ has values in [0, 1] and
has Lipschitz constant L in the first argument for
all values of the second argument.

The minimum in (1) is zero if the data is gener-
ated according to a noise-less model which postulates
that there is a “true” dictionary D∗ ∈ DK∗ with K∗

atoms and vectors γ∗1, . . . , γ
∗
T satisfying ‖γ∗t ‖1 ≤ α∗,

such that an input x ∈ H generates the label y =
〈D∗γ∗t , x〉 in the context of task t. If K ≥ K∗ and
α ≥ α∗ then the minimum in (1) is zero. In Sec-
tion 4, we will present experiments with such a gen-
erative model, when noise is added to the labels, that
is y = 〈D∗γ∗t , x〉 + ζ with ζ ∼ N (0, σ), the standard
normal distribution.

The method (1) should output a minimizing D (Z) ∈
DK as well as a minimizing γ1 (Z) , . . . , γT (Z) cor-
responding to the different tasks. Our implementa-
tion, described in Section 4.1, does not guarantee ex-
act minimization, because of the non-convexity of the
problem. Below predictors are always linear, speci-
fied by a vector w ∈ H , predicting the label 〈w, x〉
for an input x ∈ H , and a learning algorithm is a
rule which assigns a predictor A (z) to a given data set
z = ((xi, yi) : 1 ≤ i ≤ m) ∈ (H × R)

m
.

3. Learning bounds

In this section, we present learning bounds for method
(1), both in the multitask learning and learning to
learn settings, and discuss the special case of sparse
coding.

3.1. Multitask learning

Let µ1, . . . , µT be probability measures on H × R.
We interpret µt (x, y) as the probability of observ-
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ing the input/output pair (x, y) in the context of
task t. For each of these tasks an i.i.d. training
sample zt = ((xti, yti) : 1 ≤ i ≤ m) is drawn from

(µt)
m

and the ensemble Z ∼ ∏T
t=1 µ

m
t is input

to algorithm (1). Upon returning of a minimizing
D (Z) and γ1 (Z) , . . . , γT (Z), we will use the predic-
tor D (Z) γt (Z) on the t-th task. The average over all
tasks of the expected error incurred by these predictors
is

1

T

T
∑

t=1

E(x,y)∼µt
[ℓ (〈D (Z) γt (Z) , x〉 , y)] .

We compare this task-average risk to the minimal
analogous risk obtainable by any dictionary D ∈ DK

and any set of vectors γ1, . . . , γT ∈ Cα. Our first result
is a bound on the excess risk.

Theorem 1. Let δ > 0 and let µ1, . . . , µT be probabil-
ity measures on H ×R. With probability at least 1− δ
in the draw of Z ∼∏T

t=1 µ
m
t we have

1

T

T
∑

t=1

E(x,y)∼µt
[ℓ (〈D (Z) γt (Z) , x〉 , y)]

− inf
D∈DK

1

T

T
∑

t=1

inf
γ∈Cα

E(x,y)∼µt
[ℓ (〈Dγ, x〉 , y)]

≤ Lα

√

2S1 (X) (K + 12)

mT

+ Lα

√

8S∞ (X) ln (2K)

m
+

√

8 ln 4/δ

mT
,

where S1 (X) = 1
T

∑T
t=1 tr

(

Σ̂ (xt)
)

and S∞ (X) =

1
T

∑T
t=1 λmax

(

Σ̂ (xt)
)

. Here Σ̂ (xt) is the empirical

covariance of the input data for the t-th task, tr (·) de-
notes the trace and λmax(·) the largest eigenvalue.

We state several implications of this theorem.

1. The quantity S1 (X) appearing in the bound is
just the average square norm of the input data
points, while S∞ (X) is roughly the average in-
verse of the observed dimension of the data for
each task. Suppose that H = R

d and that
the data-distribution is uniform on the surface
of the unit ball. Then S1 (X) = 1 and for
m ≪ d it follows from Levy’s isoperimetric in-
equality (see e.g. (Ledoux & Talagrand, 1991))
that S∞ (X) ≈ 1/m, so the corresponding term
behaves like

√
lnK/m. If the minimum in (1)

is small and T is large enough for this term to
become dominant then there is a significant ad-
vantage of the method over learning the tasks in-
dependently. If the data is essentially low dimen-

sional, then S∞ (X) will be large, and in the ex-
treme case, if the data is one-dimensional for all
tasks then S∞ (X) = S1 (X) and our bound will
always be worse by a factor of lnK than stan-
dard bounds for independent single task learning
as in (Bartlett & Mendelson, 2002). This makes
sense, because for low dimensional data there can
be little advantage to multitask learning.

2. In the regime T < K the bound is dominated by
the term of order

√

S1 (X)K/mT >
√

S1 (X) /m.
This is easy to understand, because the dictionary
atoms Dek can be chosen independently, sepa-
rately for each task, so we could at best recover
the usual bound for linear models and there is no
benefit from multitask learning.

3. Consider the noiseless generative model men-
tioned in Section 2. If K ≥ K∗ and α ≥ α∗ then
the minimum in (1) is zero. In the bound the
overestimation of K∗ can be compensated by a
proportional increase in the number of tasks con-
sidered and an only very minor increase of the
sample size m, namely m→ (lnK∗/ lnK)m.

4. Suppose that we concatenate two sets of tasks. If
the tasks are generated by the model described
in Section 2 then the resulting set of tasks is also
generated by such a model, obtained by concate-
nating the lists of atoms of the two true dictionar-
ies D∗1 and D∗2 to obtain the new dictionary D∗ of
length K∗ = K∗1 +K∗2 and taking the union of the

set of generating vectors
{

γ∗1t

}T

t=1
and

{

γ∗2t

}T

t=1
,

extending them to R
K∗

1 +K∗

2 so that the supports
of the first group are disjoint from the supports of
the second group. If T1 = T2, K

∗
1 = K∗2 and we

train with the correct parameters, then the excess
risk for the total task set increases only by the or-
der of 1/

√
m, independent of K, despite the fact

that the tasks in the second group are in no way
related to those in the first group. Our method
has the property of finding the right clusters of
mutually related tasks.

5. Consider the alternative method of subspace
learning (SL) where Cα is replaced by an euclidean
ball of radius α. With similar methods one can
prove a bound for SL where, apart from slightly
different constants,

√
lnK above is replaced by

K. SL will be successful and outperform the pro-
posed method, whenever K can be chosen small,
with K < m and the vector γ∗t utilize the entire
span of the dictionary. For large values of K, a
correspondingly large number of tasks and sparse
γ∗t the proposed method will be superior.
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The proof of Theorem 1, which is given in Section
B.1 of the supplementary appendix, uses standard
methods of empirical process theory, but also em-
ploys a concentration result related to Talagrand’s
convex distance inequality to obtain the crucial de-
pendence on S∞ (X). At the end of Section B.1
we sketch applications of the proof method to other
regularization schemes, such as the one presented in
(Kumar & Daumé III, 2012), in which the Frobenius
norm on the dictionaryD is used in place of the ℓ2/ℓ∞-
norm employed here and the ℓ1/ℓ1 norm on the coeffi-
cient matrix [γ1, . . . , γT ] is used in place of the ℓ1/ℓ∞.

3.2. Learning to learn

There is no absolute way to assess the quality of a
learning algorithm. Algorithms may perform well on
one kind of task, but poorly on another kind. It is
important that an algorithm performs well on those
tasks which it is likely to be applied to. To formalize
this, Baxter (2000) introduced the notion of an envi-
ronment, which is a probability measure E on the set
of tasks. Thus E (τ ) is the probability of encountering
the task τ in the environment E , and µτ (x, y) is the
probability of finding the pair (x, y) in the context of
the task τ .

Given E , the transfer risk (or simply risk) of a learning
algorithm A is defined as follows. We draw a task from
the environment, τ ∼ E , which fixes a corresponding
distribution µτ on H × R. Then we draw a training
sample z ∼ µm

τ and use the algorithm to compute the
predictor A (z). Finally we measure the performance
of this predictor on test points (x, y) ∼ µτ . The cor-
responding definition of the transfer risk of A reads
as

RE (A) = Eτ∼EEz∼µm
τ

E(x,y)∼µτ
[ℓ (〈A (z) , x〉 , y)] (2)

which is simply the expected loss incurred by the use of
the algorithm A on tasks drawn from the environment
E .

For any given dictionary D ∈ DK we consider the
learning algorithm AD, which for z ∈ Zm computes
the predictor

AD (z) = D arg min
γ∈Cα

1

m

m
∑

i=1

ℓ (〈Dγ, xi〉 , yi) . (3)

Equivalently, we can regard AD as the Lasso operat-
ing on data preprocessed by the linear map D⊤, the
adjoint of D.

We can make a single observation of the environment
E in the following way: one first draws a task τ ∼ E .
This task and the corresponding distribution µτ are

then observed by drawing an i.i.d. sample z from µτ ,
that is z ∼ µm

τ . For simplicity the sample size m will
be fixed. Such an observation corresponds to the draw
of a sample z from a probability distribution ρE on
(H × R)m which is defined by

ρE (z) := Eτ∼E [(µτ )
m

(z)] . (4)

To estimate an environment a large number T of in-
dependent observations is needed, corresponding to a

vector Z = (z1, . . . , zT ) ∈ ((H × R)
m

)
T

drawn i.i.d.

from ρE , that is Z ∼ (ρE)
T
.

We now propose to solve the problem (1) with the
data Z, ignore the resulting γi (Z), but retain the dic-
tionary D (Z) and use the algorithm AD(Z) on future
tasks drawn from the same environment. The perfor-
mance of this method can be quantified as the transfer
risk RE

(

AD(Z)

)

as defined in equation (2) and again
we are interested in comparing this to the risk of an
ideal solution based on complete knowledge of the en-
vironment. For any fixed dictionary D and task τ the
best we can do is to choose γ ∈ C so as to minimize
E(x,y)∼µτ

[ℓ (〈Dγ, x〉 , y)], so the best is to choose D so
as to minimize the average of this over τ ∼ E . The
quantity

Ropt = min
D∈DK

Eτ∼E min
γ∈Cα

E(x,y)∼µτ
ℓ [(〈Dγ, x〉 , y)]

thus describes the optimal performance achievable un-
der the given constraint. Our second result is

Theorem 2. With probability at least 1 − δ in the
multisample Z = (X,Y) ∼ ρT

E we have

RE
(

AD(Z)

)

−Ropt ≤ LαK

√

2πS1 (X)

T

+4Lα

√

S∞ (E) (2 + lnK)

m
+

√

8 ln 4/δ

T
,

where S1 (X) is as in Theorem 1 and S∞ (E) :=

Eτ∼EE(x,y)∼µm
τ
λmax

(

Σ̂ (x)
)

.

We discuss some implications of the above theorem. 1.

1. The interpretation of S∞ (E) is analogous to that
of S∞ (X) in the bound for Theorem 1. The same
applies to Remark 6 following Theorem 1.

2. In the regime T ≤ K2 the result does not imply
any useful behaviour. On the other and, if T ≫
K2 the dominant term in the bound is of order
√

S∞ (E) /m.

3. There is an important difference with the mul-
titask learning bound, namely in Theorem 2 we
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have
√
T in the denominator of the first term of

the excess risk, and not
√
mT as in Theorem 1.

This is because in the setting of learning to learn
there is always a possibility of being misled by
the draw of the training tasks. This possibility
can only decrease as T increases – increasing m
does not help.

The proof of Theorem 2 is given in Section B.2 of the
supplementary appendix and follows the method out-
lined in (Maurer, 2009): one first bounds the estima-
tion error for the expected empirical risk on future
tasks, and then combines this with a bound of the ex-
pected true risk by said expected empirical risk. The
term K/

√
T may be an artefact of our method of proof

and the conjecture that it can be replaced by
√

K/T
seems plausible.

3.3. Connection to sparse coding

We discuss a special case of Theorem 2 in the limit
m → ∞, showing that it subsumes the sparse coding
result in (Maurer & Pontil, 2010). To this end, we as-
sume the noiseless generative model yti = 〈wt, xti〉 de-
scribed in Section 2, that is µ(x, y) = p(x)δ(y, 〈w, x〉),
where p is the uniform distribution on the sphere in
R

d (i.e. the Haar measure). In this case the en-
vironment of tasks is fully specified by a measure ρ
on the unit ball in R

d from which a task w ∈ R
d is

drawn and the measure µ is identified with the vector
w. Note that we do not assume that these tasks are
obtained as sparse combinations of some dictionary.
Under the above assumptions and choosing ℓ to be
the square loss, we have that E(x,y)∼µt

ℓ(〈w, x〉, y) =
‖wt − w‖2. Consequently, in the limit of m → ∞
method (1) reduces to a constrained version of sparse
coding (Olshausen & Field, 1996), namely

min
D∈DK

1

T

T
∑

t=1

min
γ∈Cα

‖Dγ − wt‖2.

In turn, the transfer error of a dictionary D is given
by the quantity R(D) := minγ∈Cα

‖Dγ − w‖2 and
Ropt = minD∈DK

Ew∼ρ minγ∈Cα
‖Dγ−w‖2. Given the

constraints D ∈ DK , γ ∈ Cα and ‖x‖ ≤ 1, the square

loss ℓ (y, y′) = (y − y′)2, evaluated at y = 〈Dγ, x〉, can
be restricted to the interval y ∈ [−α, α], where it has
the Lipschitz constant 2 (1 + α) for any y′ ∈ [−1, 1], as
is easily verified. Since S1(X) = 1 and S∞ (E) < ∞,
the bound in Theorem 2 becomes

R(D) −Ropt ≤ 2α(1 + α)K

√

2π

T
+ 8

√

ln 4/δ

T
(5)

in the limit m→ ∞. The typical choice for α is α ≤ 1,
which ensures that ‖Dγ‖ ≤ 1. In this case inequality

(5) provides an improvement over the sparse coding
bound in (Maurer & Pontil, 2010) (cf. Theorem 2 and
Section 2.4 therein), which contains an additional term
of the order of

√

(ln T )/T and the same leading term in
K as in (5) but with slightly worse constant (14 instead
of 4

√
2π). The connection of our method to sparse

coding is experimentally demonstrated in Section 4.4
and illustrated in Figure 6.

4. Experiments

In this section, we present experiments on a synthetic
and two real datasets. The aim of the experiments is
to study the statistical performance of the proposed
method, in both settings of multitask learning and
learning to learn. We compare our method, denoted as
Sparse Coding Multi Task Learning (SC-MTL), with
independent ridge regression (RR) as a base line and
multitask feature learning (MTFL) (Argyriou et al.,
2008a) and GO-MTL (Kumar & Daumé III, 2012).
We also report on sensitivity analysis of the pro-
posed method versus different number of parameters
involved.

4.1. Optimization algorithm

We solve problem (1) by alternating minimization over
the dictionary matrix D and the code vectors γ. The
techniques we use are very similar to standard meth-
ods for sparse coding and dictionary learning, see e.g.
(Jenatton et al., 2011) and references therein for more
information. Briefly, assuming that the loss func-
tion ℓ is convex and has Lipschitz continuous gradi-
ent, either minimization problem is convex and can
be solved efficiently by proximal gradient methods,
see e.g. (Beck & Teboulle, 2009; Combettes & Wajs,
2006). The key ingredient in each step is the computa-
tion of the proximity operator, which in either problem
has a closed form expression.

4.2. Toy experiment

We generated a synthetic environment of tasks as fol-
lows. We choose a d × K matrix D by sampling its
columns independently from the uniform distribution
on the unit sphere in R

d. Once D is created, a generic
task in the environment is given by w = Dγ, where
γ is an s-sparse vector obtained as follows. First, we
generate a set J ⊆ {1, . . . ,K} of cardinality s, whose
elements (indices) are sampled uniformly without re-
placement from the set {1, . . . ,K}. We then set γj = 0
if j /∈ J and otherwise sample γj ∼ N (0, 0.1). Fi-
nally, we normalize γ so that it has ℓ1-norm equal
to some prescribed value α. Using the above proce-
dure we generated T tasks wt = Dγt, t = 1, . . . , T .
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Figure 1. Multitask error (Top) and Transfer error (Bot-
tom) vs. number of training tasks T .

Further, for each task t we generated a training set
zt = {(xti, yti)}m

i=1, sampling xti i.i.d. from the uni-
form distribution on the unit sphere in R

d. We then
set yti = 〈wt, xti〉+ξti, with ξti ∼ N (0, σ2), where σ is
the variance of the noise. This procedure also defines
the generation of new tasks in the transfer learning
experiments below.

The above model depends on seven parameters: the
number K and the dimension d of the atoms, the spar-
sity s and the ℓ1-norm α of the codes, the noise level σ,
the sample size per task m and the number of training
tasks T . In all experiments we report both the multi-
task learning (MTL) and learning to learn (LTL) per-
formance of the methods. For MTL, we measure per-
formance by the estimation error 1/T

∑T
t=1 ‖wt−ŵt‖2,

where ŵ1, . . . , ŵT are the estimated task vectors (in
the case of SC-MTL, ŵt = D(Z)γ(Z)t – see the discus-
sion in Section 2. For LTL, we use the same quantity
but with a new set of tasks generated by the environ-
ment (in the experiment below we generate 100 new
tasks). The regularization parameter of each method
is chosen by cross validation. Finally, all experiments
are repeated 50 times, and the average performance
results are reported in the plots below.

In the first experiment, we fix K = 10, d = 20, s =
2, α = 10,m = 10, σ = 0.1 and study the statistical
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Figure 2. Multitask error (Top) and Transfer error (Bot-
tom) vs. number of atoms K′ used by dictionary-based
methods.

performance of the methods as a function of the num-
ber of tasks. The results, shown in Figure 1, clearly
indicate that the proposed method outperforms the
remaining approaches. In this experiment the number
of atoms used by dictionary-based approaches, which
here we denote byK ′ to avoid confusion with the num-
ber of atoms K of the target dictionary, was equal to
K = 10. This gives an advantage to both GO-MTL
and SC-MTL. We therefore also studied the perfor-
mance of those methods in dependence on K ′. Fig-
ure 2, reporting this result, is in qualitative agreement
with our theoretical analysis: the performance of SC-
MTL is not too sensitive to K ′ if K ′ ≥ K, and the
method still outperforms independent RR and MTFL
if K ′ = 4K. On the other hand if K ′ < K the per-
formance of the method quickly degrades. In the last
experiment we study performance vs. the sparsity ra-
tio s/K. Intuitively we would expect our method to
have greater advantage over MTL if s ≪ K. The
results, shown in Figure 3, confirm this fact, also in-
dicating that SC-MTL is outperformed by both GO-
MTL and MTFL as sparsity becomes less pronounced
(s/K > 0.6).
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Figure 3. Multitask error (Top) and Transfer error (Bot-
tom) vs. sparsity ratio s/K.

4.3. Learning to learn optical character

recognition

We have conducted experiments on real data to study
the performance of our method in a learning to learn /
transfer learning setting. To this end, we employed the
NIST dataset1, which is composed of a set of 14 × 14
pixels images of handwritten characters (digits and
lower and capital case letters, for a total of 52 charac-
ters).

We considered the following experimental protocol.
First, a set of 20 characters are chosen randomly as
well as n instances for each character. These are used
to learn all possibilities of 1-vs-1 train tasks, which
makes T = 190, each of which having m = 2n in-
stances. The knowledge learned in this stage is em-
ployed to learn another set of target tasks. In our
approach, the assumption that is made is that some
of the components in the dictionary learned from the
training tasks, can also be useful for representing the
target tasks. In order to create the target tasks, an-
other set of 10 characters are chosen among the re-
maining set of characters in the dataset, inducing a
set of 45 1-vs-1 classification tasks. Since we are in-
terested in the case where the training set size of the

1The NIST dataset is available at
http://www.nist.gov/srd/nistsd19.cfm
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Figure 4. Multiclassification accuracy of RR, MTFL GO-
MTL and SC-MTL vs. the number of training instances in
the transfer tasks, m.

target tasks is small, we sample only 3 instances for
each character, hence 6 examples per task.

In order to tune the hyperparameters of all compared
approaches, we have also created another set of 45 val-
idation tasks by following the process previously de-
scribed, simulating the target set of tasks. Note that
there is not overlapping between the digits associated
to the train, target and validation tasks.

We have run 50 trials of the above process for different
values of m and the average multiclass accuracy on the
target tasks is reported in Figure 4.

4.4. Sparse coding of images with missing

pixels

In the last experiment we consider a sparse coding
problem (Olshausen & Field, 1996) of optical charac-
ter images, with missing pixels. We employ the Bi-
nary Alphadigits dataset2, which is composed of a set
of binary 20 × 16 images of all digits and capital let-
ters (39 images for each character). In the following
experiment only the digits are used. We regard each
image as a task, hence the input space is the set of
320 possible pixels indices, while the output space is
the real interval [0, 1], representing the gray level. We
sample T = 100, 130, 160, 190, 220, 250 images, equally
divided among the 10 possible digits. For each of these,
a corresponding random set of m = 160 pixel values
are sampled (so the set of sample pixels varies from
one image to another).

We test the performance of the dictionary learned by
method (1) in a learning to learn setting, by choosing
100 new images. The regularization parameter for each
approach is tuned using cross validation. The results,
shown in Figure 5, indicate some advantage of the pro-

2Available at http://www.cs.nyu.edu/ roweis/data.html.
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Figure 5. Transfer error vs. number of tasks T (Top) and
vs. number of atoms K (Bottom) on the Binary Alphadig-
its dataset.

posed method over trace norm regularization. A sim-
ilar trend, not reported here due to space constraints,
is obtained in the multitask setting. Ridge regression
performed significantly worse and is not shown in the
figure. We also show as a reference the performance of
sparse coding (SC) applied when all pixels are known.

With the aim of analyzing the atoms learned by the
algorithm, we have carried out another experiment
where we assume that there are 10 underlying atoms
(one for each digit). We compare the resultant dic-
tionary to that obtained by sparse coding, where all
pixels are known. The results are shown in Figure 6.

Figure 6. Dictionaries found by SC-MTL using m = 240
pixels (missing 25% pixels) per image (top) and by Sparse
Coding employing all pixels (bottom).

5. Summary

In this paper, we have explored an application of
sparse coding, which has been widely used in unsuper-
vised learning and signal processing, to the domains of
multitask learning and learning to learn. Our learn-

ing bounds provide a justification of this method and
offer insights into its advantage over independent task
learning and learning dense representation of the tasks.
The bounds, which hold in a Hilbert space setting, de-
pend on data dependent quantities which measure the
intrinsic dimensionality of the data. Numerical simu-
lations presented here indicate that sparse coding is a
promising approach to multitask learning and can lead
to significant improvements over competing methods.

In the future, it would be valuable to study exten-
sions of our analysis to more general classes of code
vectors. For example, we could use code sets Cα which
arise from structured sparsity norms, such as the group
Lasso, see e.g. (Jenatton et al., 2011; Lounici et al.,
2011) or other families of regularizers. A concrete ex-
ample which comes to mind is to choose K = Qr,
Q, r ∈ N and a partition J = {{(q− 1)r + 1, . . . , qr} :
q = 1, . . . , Q} of the index set {1, . . . ,K} into contigu-
ous index sets of size r. Then using a norm of the
type ‖γ‖ = ‖γ‖1 +

∑

J∈J ‖γJ‖2 will encourage codes
which are sparse and use only few of the groups in J .
Using the ball associated with this norm as our set of
codes would allow to model sets of tasks which are di-
vided into groups. A further natural extension of our
method is nonlinear dictionary learning in which the
dictionary columns correspond to functions in a repro-
ducing kernel Hilbert space and the tasks are expressed
as sparse linear combinations of such functions.
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Bühlmann, P. and van de Geer, S. Statistics for High-
Dimensional Data: Methods, Theory and Applica-
tions. Springer, 2011.

Caruana, R. Multi-task learning. Machine Learning,
28:41–75, 1997.

Combettes, P.L. and Wajs, V.R. Signal recovery
by proximal forward-backward splitting. Multiscale
Modeling and Simulation, 4(4):1168–1200, 2006.

Evgeniou, T., Micchelli, C.A., and Pontil, M. Learning
multiple tasks with kernel methods. J. of Machine
Learning Research, 6:615–637, 2005.

Jenatton, R., Mairal, J., Obozinski, G., and Bach, F.
Proximal methods for hierarchical sparse coding. J.
of Machine Learning Research, 12:2297–2334, 2011.

Koltchinskii, V. and Panchenko, D. Empirical margin
distributions and bounding the generalization error
of combined classifiers. Annals of Statistics, 30(1):1–
50, 2002.
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Appendix

In this appendix, we present the proof of Theorems 1
and 2. We begin by introducing some more notation
and auxiliary results.

A. Notation and tools

Issues of measurability will be ignored throughout, in
particular, if F is a class of real valued functions on
a domain X and X a random variable with values in
X then we will always write E supf∈F f (X) to mean
sup {E maxf∈F0

f (X) : F0 ⊆ F , F0 finite}.
In the sequel H denotes a finite or infinite dimensional
Hilbert space with inner product 〈·, ·〉 and norm ‖·‖.
If T is a bounded linear operator on H its operator
norm is written ‖T ‖∞ = sup {‖Tx‖ : ‖x‖ = 1}.
Members of H are denoted with lower case italics such
as x, v, w, vectors composed of such vectors are in bold
lower case, i.e. x = (x1, . . . , xm) or v =(v1, . . . , vn),
where m or n are explained in the context.

Let B be the unit ball in H . An example is a pair z =
(x, y) ∈ B×R =: Z, a sample is a vector of such pairs
z = (z1, . . . , zm) = ((x1, y1) , . . . , (xm, ym)). Here we
also write z = (x,y), with x = (x1, . . . , xm) ∈ Hm

and y = (y1, . . . , ym) ∈ R
m.

A multisample is a vector Z = (z1, . . . , zT ) com-
posed of samples. We also write Z = (X,Y) with
X = (x1, . . . ,xT ).

For members of R
K we use the greek letters γ or

β. Depending on context the inner product and eu-
clidean norm on R

K will also be denoted with 〈·, ·〉
and ‖.‖. The ℓ1-norm ‖·‖1 on R

K is defined by

‖β‖1 =
∑K

k=1 |γk|.
In the sequel we denote with Cα the set
{

β ∈ R
K : ‖β‖1 ≤ α

}

, abbreviate C for the ℓ1-
unit ball C1. The canonical basis of R

K is denoted
e1, . . . , eK . Unless otherwise specified the summation
over he index i will always run from 1 to m, t will run
from 1 to T , and k will run from 1 to K.

A.1. Covariances

For x ∈Hm the empirical covariance operator Σ̂ (x) is
specified by

〈

Σ̂ (x) v, w
〉

=
1

m

∑

i

〈v, xi〉 〈xi, w〉 , v, w ∈ H .

The definition implies the inequality

∑

i

〈v, xi〉2 = m
〈

Σ̂ (x) v, v
〉

≤ m
∥

∥

∥Σ̂ (x)
∥

∥

∥

∞
‖v‖2

.

(6)

It also follows that tr
(

Σ̂ (x)
)

= (1/m)
∑

i ‖xi‖2.

For a multisample X ∈ HmT we will consider two
quantities defined in terms of the empirical covari-
ances.

S1 (X) =
1

T

∑

t

∥

∥

∥
Σ̂ (xt)

∥

∥

∥

1
:=

1

T

∑

t

tr
(

Σ̂ (xt)
)

S∞ (X) =
1

T

∑

t

∥

∥

∥Σ̂ (xt)
∥

∥

∥

∞
:=

1

T

∑

t

λmax

(

Σ̂ (xt)
)

where λmax is the largest eigenvalue. If all data points
xti lie in the unit ball of H then S1 (X) ≤ 1. Of course
S1 (X) can also be written as the trace of the total
covariance (1/T )

∑

t Σ̂ (xt), while S∞ (X) will always
be at least as large as the largest eigenvalue of the
total covariance. We always have S∞ (X) ≤ S1 (X),
with equality only if the data is one-dimensional for all
tasks. The quotient S1 (X) /S∞ (X) can be regarded
as a crude measure of the effective dimensionality of
the data. If the data have a high dimensional distri-
bution for each task then S∞ (X) can be considerably
smaller than S1 (X).

A.2. Concentration inequalities

Let X be any space. For x ∈ Xn, 1 ≤ k ≤ n and y ∈ X
we use xk←y to denote the object obtained from x by
replacing the k-th coordinate of x with y. That is

xk←y = (x1, . . . , xk−1, y, xk+1, . . . , xn) .

The concentration inequality in part (i) of the follow-
ing theorem, known as the bounded difference inequal-
ity is given in (McDiarmid, 1998). A proof of inequal-
ity (ii) is given in (Maurer, 2006).

Theorem 3. Let F : Xn → R and define A and B by

A2 = sup
x∈Xn

n
∑

k=1

sup
y1,y2∈X

(F (xk←y1
) − F (xk←y2

))
2

B2 = sup
x∈Xn

n
∑

k=1

(

F (x) − inf
y∈X

F (xk←y)

)2

.

Let X = (X1, . . . , Xn) be a vector of independent ran-
dom variables with values in X , and let X′ be i.i.d. to
X. Then for any s > 0

(i) Pr {F (X) > EF (X′) + s} ≤ e−2s2/A2

;

(ii) Pr{F (X) > EF (X′) + s} ≤ e−s2/(2B2).



Sparse coding for multitask and transfer learning

A.3. Rademacher and Gaussian averages

We will use the term Rademacher variables for any
set of independent random variables, uniformly dis-
tributed on {−1, 1}, and reserve the symbol σ for
Rademacher variables. A set of random variables
is called orthogaussian if the members are indepen-
dent N (0, 1)-distributed (standard normal) variables
and reserve the letter ζ for standard normal vari-
ables. Thus σ1, σ2, . . . , σi, . . . , σ11, . . . , σij etc. will
always be independent Rademacher variables and
ζ1, ζ2, . . . , ζi, . . . , ζ11, . . . , ζij will always be orthogaus-
sian.

For A ⊆ R
n we define the Rademacher and

Gaussian averages of A (Ledoux & Talagrand, 1991;
Bartlett & Mendelson, 2002) as

R (A) = Eσ sup
(x1,...,xn)∈A

2

n

n
∑

i=1

σixi,

G (A) = Eζ sup
(x1,...,xn)∈A

2

n

n
∑

i=1

ζixi.

If F is a class of real valued functions on a space X
and x = (x1, . . . , xn) ∈ Xn we write

F (x) = F (x1, . . . , xn)

= {(f (x1) , . . . , f (xn)) : f ∈ F} ⊆ R
n.

The empirical Rademacher and Gaussian complexities
of F on x are respectively R (F (x)) and G (F (x)).

The utility of these concepts for learn-
ing theory comes from the following key-
result (see (Bartlett & Mendelson, 2002;
Koltchinskii & Panchenko, 2002)), stated here in
two portions for convenience in the sequel.

Theorem 4. Let F be a real-valued function class on
a space X and µ1, . . . , µm be probability measures on X
with product measure µ =

∏

i µi on Xm. For x ∈ Xm

define

Φ (x) = sup
f∈F

1

m

m
∑

i=1

(

Ex∼µi
[f (x)] − f (xi)

)

.

Then Ex∼µ [Φ (x)] ≤ Ex∼µR (F (x)).

Proof. For any realization σ = σ1, . . . , σm of the
Rademacher variables

Ex∼µ [Φ (x)]

= Ex∼µ sup
f∈F

1

m
Ex′∼µ

m
∑

i=1

(f (x′i) − f (xi))

≤ Ex,x′∼µ×µ sup
f∈F

1

m

m
∑

i=1

σi (f (x′i) − f (xi)) ,

because of the symmetry of the measure µ ×
µ (x,x′)=

∏

i µi ×
∏

i µi (x,x′)under the interchange
xi ↔ x′i. Taking the expectation in σ and applying
the triangle inequality gives the result.

Theorem 5. Let F be a [0, 1]-valued function class on
a space X , and µ as above. For δ > 0 we have with
probability greater than 1− δ in the sample x ∼ µ that
for all f ∈ F

Ex∼µ [f (x)] ≤ 1

m

m
∑

i=1

f (xi)+Ex∼µR (F (x))+

√

ln (1/δ)

2m
.

To prove this apply the bounded-difference inequality
( part (i) of Theorem 3) to the function Φ of the previ-
ous theorem (see e.g. (Bartlett & Mendelson, 2002)).
Under the conditions of this result, changing one of
the xi will not change R (F (x)) by more than 2, so
again by the bounded difference inequality applied to
R (F (x)) and a union bound we obtain the data de-
pendent version

Corollary 6. Let F and µ be as above. For δ > 0 we
have with probability greater than 1 − δ in the sample
x ∼ µ that for all f ∈ F

Ex∼µ [f (x)] ≤ 1

m

m
∑

i=1

f (xi)+R (F (x))+

√

9 ln (2/δ)

2m
.

To bound Rademacher averages the following re-
sult is very useful (Bartlett & Mendelson, 2002;
Ando & Zhang, 2005; Ledoux & Talagrand, 1991)

Lemma 7. Let A ⊆ R
n, and let ψ1, . . . , ψn

be real functions such that ψi (s) − ψi (t) ≤
L |s− t|,∀i, and s, t ∈ R. Define ψ (A) =
{ψ1 (x1) , . . . , ψn (xn) : (x1, . . . , xn) ∈ A}. Then

R (ψ (A)) ≤ LR (A) .

Sometimes it is more convenient to work with
gaussian averages which can be used instead, by
virtue of the next lemma. For a proof see e.g.
(Ledoux & Talagrand, 1991)

Lemma 8. For A ⊆ R
k we have R (A) ≤

√

π/2 G (A).

The next result is known as Slepian’s lemma ((Slepian,
1962), (Ledoux & Talagrand, 1991)).

Theorem 9. Let Ω and Ξ be mean zero, separable
Gaussian processes indexed by a common set S, such
that

E (Ωs1
− Ωs2

)2 ≤ E (Ξs1
− Ξs2

)2 for all s1, s2 ∈ S.

Then
E sup

s∈S
Ωs ≤ E sup

s∈S
Ξs.
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B. Proofs

B.1. Multitask learning

In this section we prove Theorem 1. It is an immediate
consequence of Hoeffding’s inequality and the follow-
ing uniform bound on the estimation error.

Theorem 10. Let δ > 0, fix K and let µ1, . . . , µT

be probability measures on H × R. With probability at
least 1 − δ in the draw of Z ∼∏T

t=1 µt we have for all
D ∈ DK and all γ ∈ CT

α that

1

T

T
∑

t=1

E(x,y)∼µt
[ℓ (〈Dγt, x〉 , y)]

− 1

mT

T
∑

t=1

m
∑

i=1

ℓ (〈Dγt, xti〉 , yti)

≤ Lα

√

2S1 (X) (K + 12)

mT

+ Lα

√

8S∞ (X) ln (2K)

m
+

√

9 ln 2/δ

2mT
.

The proof of this theorem requires auxiliary results.

Fix X ∈ HmT and for γ = (γ1, . . . , γT ) ∈
(

R
K
)T

define the random variable

Fγ = Fγ (σ) = sup
D∈DK

∑

t,i

σti 〈Dγt, xti〉 . (7)

Lemma 11. (i) If γ = (γ1, . . . , γT ) satisfies ‖γt‖ ≤ 1
for all t, then

EFγ ≤
√

mTK S1 (X).

(ii) If γ satisfies ‖γt‖1 ≤ 1 for all t, then for any s ≥ 0

Pr {Fγ ≥ E [Fγ ] + s} ≤ exp

( −s2
8mT S∞ (X)

)

.

Proof. (i) We observe that

EFγ = E sup
D

∑

k

〈

Dek,
∑

t,i

σtiγtkxti

〉

≤ sup
D

(

∑

k

‖Dek‖2

)1/2

E







∑

k

∥

∥

∥

∥

∥

∥

∑

t,i

σtiγtkxti

∥

∥

∥

∥

∥

∥

2






1/2

≤
√
K







∑

k

E

∥

∥

∥

∥

∥

∥

∑

t,i

σtiγtkxti

∥

∥

∥

∥

∥

∥

2






1/2

=
√
K





∑

k,t,i

|γtk|2 ‖xti‖2





1/2

=
√
K

(

∑

t

(

∑

k

|γtk|2
)

∑

i

‖xti‖2

)1/2

≤
√

K
∑

t,i

‖xti‖2
=
√

mTK S1 (X).

(ii) For any configuration σ of the Rademacher vari-
ables let D (σ) be the maximizer in the definition of
Fγ (σ). Then for any s ∈ {1, . . . , T}, j ∈ {1, . . . ,m}
and any σ′ ∈ {−1, 1} to replace σsj we have

Fγ (σ) − Fγ

(

σ(sj)←σ′

)

≤ 2 |〈D (σ) γs, xsj〉| .

Using the inequality (6) we then obtain

∑

sj

(

Fγ (σ) − infσ′∈{−1,1} Fγ

(

σ(sj)←σ′

))2

≤ 4
∑

t,i

〈D (σ) γt, xti〉2

≤ 4m
∑

t

∥

∥

∥Σ̂ (xt)
∥

∥

∥

∞
‖D (σ) γt‖2

≤ 4m
∑

t

∥

∥

∥Σ̂ (xt)
∥

∥

∥

∞
.

In the last inequality we used the fact that for any D ∈
DK we have ‖Dγt‖ ≤ ∑

k |γtk| ‖Dek‖ ≤ ‖γt‖1 ≤ 1.
The conclusion now follows from part (ii) of Theorem
3.

Proposition 12. We have for every fixed Z =
(X,Y) ∈ (H × R)mT we have

Eσ supD∈D,γ∈(Cα)T

∑

t,i σitℓ (〈Dγt, xti〉 , yti)

≤ Lα
√

2mTS1 (X) (K + 12)+LαT
√

8mS∞ (X) ln (2K).

Proof. It suffices to prove the result for α = 1, the
general result being a consequence of rescaling. By
Lemma 7 and the Lipschitz properties of the loss func-
tion ℓ we have
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Eσ supD∈DK ,γ∈(C)T ,

∑

t,i σitℓ (〈Dγt, xti〉 , yti)

≤ LEσ sup
D∈DK ,γ∈(C)T ,

∑

t,i

σit 〈Dγt, xti〉 . (8)

Since linear functions on a compact convex set attain
their maxima at the extreme points, we have

E sup
D∈DK ,γ∈(C)T ,

T
∑

t=1

m
∑

i=1

σit 〈Dγt, xti〉 = E max
γ∈ext(C)T

Fγ ,

(9)
where Fγ is defined as in (7). Let c =

√

mKTS1 (X).
Now for any δ ≥ 0 we have, since Fγ ≥ 0,

E max
γ∈ext(C)T Fγ =

∫∞
0

Pr
{

max
γ∈ext(C)T Fγ > s

}

ds

≤ c+ δ +
∑

γ∈(ext(C))T

∫ ∞

√
mKTS1(X)+δ

Pr {Fγ > s} ds

≤ c+ δ +
∑

γ∈(ext(C))T

∫ ∞

δ

Pr {Fγ > EFγ + s} ds

≤ c+ δ + (2K)
T
∫ ∞

δ

exp

( −s2
8mTS∞ (X)

)

ds

≤ c+ δ +
4mTS∞ (X) (2K)

T

δ
exp

( −δ2
8mTS∞ (X)

)

.

Here the first inequality follows from the fact that
probabilities never exceed 1 and a union bound. The
second inequality follows from Lemma 11, part (i),
since EFk ≤

√

mKTS1 (X). The third inequality fol-
lows from Lemma 11, part (ii), and the fact that the
cardinality of ext(C) is 2K, and the last inequality fol-
lows from a well known estimate on Gaussian random

variables. Setting δ =

√

8mTS∞ (X) ln
(

e (2K)
T
)

we

obtain with some easy simplifying estimates

E max
γ∈ext(C)T Fγ ≤

√

2mT (K + 12)S1 (X)

+T
√

8mS∞ (X) ln (2K),

which together with (8) and (9) gives the result.

Theorem 10 now follows from Corollary 6.

If the set Cα is replaced by any other subset C′ of the
ℓ2-ball of radius α, a similar proof strategy can be em-
ployed. The denominator in the exponent of Lemma
11-(ii) then obtains another factor of

√
K. The union

bound over the extreme points in ext(C) in the previ-
ous proposition can be replaced by a union bound over
a cover C′. This leads to the alternative result men-
tioned in Remark 5 following the statement of Theo-
rem 1.

Another modification leads to a bound for the method
presented in (Kumar & Daumé III, 2012), where the
constraint ‖Dek‖ ≤ 1 is replaced by ‖D‖2 ≤

√
K (here

‖·‖2 is the Frobenius or Hilbert Schmidt norm) and the
constraint ‖γt‖1 ≤ α, ∀t is replaced by

∑ ‖γt‖1 ≤ αT .
To explain the modification we set α = 1. Part (i)
of Lemma 11 is easily verified. The union bound over
(ext (C))T in the previous proposition is replaced by
a union bound over the 2TK extreme points of the
ℓ1-Ball of radius T in R

TK . For part (ii) we use the
fact that the concentration result is only needed for γ
being an extremepoint (so that it involves only a single

task) and obtain the bound
∑

t

∥

∥

∥Σ̂ (xt)
∥

∥

∥

∞
‖Dγt‖2 ≤

TKS′∞ (X), leading to

Pr {Fγ ≥ E [Fγ ] + s} ≤ exp

( −s2
8mTK S′∞ (X)

)

.

Proceeding as above we obtain the excess risk bound

Lα
√

2S1(X)(K+12)
mT + Lα

√

8KS′
∞

(X) ln(2KT )
m

+

√

8 ln 4/δ

mT
,

to replace the bound in Theorem 1. The factor
√
K

in the second term seems quite weak, but it must be
borne in mind that the constraint ‖D‖2 ≤

√
K is much

weaker than ‖Dek‖ ≤ 1, and allows for a smaller
approximation error. If we retain ‖Dek‖ ≤ 1 and
only modify the γ-constraint to

∑ ‖γt‖1 ≤ αT the√
K in the second term disappears and by comparison

to Theorem 1 there is only and additional lnT and
the switch from S∞ (X) to S′∞ (X), reflecting the fact
that

∑ ‖γt‖1 ≤ αT is a much weaker constraint than
‖γt‖1 ≤ α, ∀t, so that, again, a smaller minimum in
(1) is possible for the modified method.

B.2. Learning to learn

In this section we prove Theorem 2. The basic strategy
is as follows. Recall the definition (4) of the measure
ρE , which governs the generation of a training sample
in the environment E . On a given training sample
z ∼ρE the algorithm AD as defined in (3) incurs the
empirical risk

R̂D (z) = min
γ∈Cα

1

m

m
∑

i=1

ℓ (〈Dγ, xi〉 , yi) .

The algorithm AD, essentially being the Lasso, has
very good estimation properties, so R̂D (z) will be close
to the true risk of AD in the corresponding task. This
means that we only really need to estimate the ex-
pected empirical risk Ez∼ρ

E
R̂D (z) of AD on future
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tasks. On the other hand the minimization problem
(1) can be written as

min
D∈DK

1

T

T
∑

t=1

R̂D (zt) with Z =(z1, . . . , zT ) ∼ (ρE)
T
,

with dictionary D (Z) being the minimizer. If DK is
not too large this should be similar to Ez∼ρE

R̂D(Z) (z).
In the sequel we make this precise.

Lemma 13. For v ∈ H with ‖v‖ ≤ 1 and x ∈ Hm let
F be the random variable

F =

∣

∣

∣

∣

∣

〈

v,
∑

i

σixi

〉∣

∣

∣

∣

∣

.

Then (i) EF ≤ √
m
∥

∥

∥Σ̂ (x)
∥

∥

∥

1/2

∞
and (ii) for t ≥ 0

Pr {F > EF + s} ≤ exp





−s2

2m
∥

∥

∥Σ̂ (x)
∥

∥

∥

∞



 .

Proof. (i). Using Jensen’s inequality and (6) we get

EF ≤



E

〈

v,
∑

i

σixi

〉2




1/2

=

(

∑

i

〈v, xi〉2
)1/2

≤ m
∥

∥

∥Σ̂ (x)
∥

∥

∥

∞
.

(ii) Let σ be any configuration of the Rademacher vari-
ables. For any σ′, σ′′ ∈ {−1, 1} to replace σsj we have

F
(

σ(sj)←σ′

)

− F
(

σ(sj)←σ′′

)

≤ 2 |〈v, xj〉| ,

so the conclusion follows from the bounded difference
inequality, Theorem 3 (i).

Lemma 14. For v1, . . . , vK ∈ H satisfying ‖vk‖ ≤ 1,
x ∈ Hm we have

E max
k

∣

∣

∣

∣

∣

〈

vk,
∑

i

σixi

〉∣

∣

∣

∣

∣

≤
√

2m
∥

∥

∥Σ̂ (x)
∥

∥

∥

∞

(

2 +
√

lnK
)

.

Proof. Let Fk = |〈vk,
∑

i σixi〉|. Setting c =
√

m
∥

∥

∥Σ̂ (x)
∥

∥

∥

∞
and using integration by parts we have

for δ ≥ 0

E maxk Fk

≤ c+ δ +

∫ ∞
q

m‖Σ̂(x)‖
∞

+δ

max
k

Pr {Fk ≥ s} ds

≤ c+ δ +
∑

k

∫ ∞

δ

Pr {Fk ≥ EFk + s} ds

≤ c+ δ +
∑

k

∫ ∞

δ

exp





−s2

2m
∥

∥

∥Σ̂ (x)
∥

∥

∥

∞



 ds

≤ c+ δ +
mK

∥

∥

∥Σ̂ (x)
∥

∥

∥

∞
δ

exp





−δ2

2m
∥

∥

∥Σ̂ (x)
∥

∥

∥

∞



 .

Above the first inequality is trivial, the second follows
from Lemma 13 (i) and a union bound, the third in-
equality follows from Lemma 13 (ii) and the last from
a well known approximation. The conclusion follows

from substitution of δ =

√

2m
∥

∥

∥Σ̂ (x)
∥

∥

∥

∞
ln (eK).

Proposition 15. Let SE :=

Eτ∼EE(x,y)∼µm
τ

∥

∥

∥Σ̂ (x)
∥

∥

∥

∞
. With probability at

least 1 − δ in the multisample Z ∼ ρT
E

sup
D∈DK

RE (AD) − 1

T

T
∑

t=1

R̂D (zt) (10)

≤ LαK

√

2πS1 (X)

T
(11)

+ 4Lα

√

S∞ (E) (2 + lnK)

m
+

√

ln 1/δ

2T
.

Proof. Following our strategy we write (abbreviating
ρ = ρE)

sup
D∈DK

RE (AD) − 1

T

T
∑

t=1

R̂D (zt)

≤ sup
D∈DK

Eτ∼EEz∼µm
τ

(12)

[

E(x,y)∼µτ
[ℓ (〈AD (z) , x〉 , y)] − R̂D (z)

]

+ sup
D∈DK

Ez∼ρ

[

R̂D (z)
]

− 1

T

T
∑

t=1

R̂D (zt)

and proceed by bounding each of the two terms in
turn.

For any fixed dictionary D and any measure µ on Z



Sparse coding for multitask and transfer learning

we have

Ez∼µm

[

E(x,y)∼µ [ℓ (〈AD (z) , x〉 , y)] − R̂D (z)
]

≤ Ez∼µm sup
γ∈Cα

[

E(x,y)∼µ [ℓ (〈Dγ, x〉 , y)]

− 1

m

m
∑

i=1

ℓ (〈Dγ, xi〉 , yi)

]

≤ 2

m
Ez∼µmEσ sup

γ∈Cα

m
∑

i=1

σiℓ (〈Dγ, xi〉 , yi) [Theorem 4]

≤ 2L

m
Ez∼µmEσ sup

γ∈Cα

∑

k

γk

〈

Dek,

m
∑

i=1

σixi

〉

[Lemma 7]

≤ 2Lα

m
Ez∼µmEσ max

k

∣

∣

∣

∣

∣

〈

Dek,

m
∑

i=1

σixi

〉∣

∣

∣

∣

∣

[Hölder’s ineq.]

≤ 2Lα

m
Ez∼µm

√

2mλmax

(

Σ̂ (x)
)(

2 +
√

lnK
)

[Lemma 13 (i)]

≤ 2Lα

√

√

√

√

4Ez∼µmλmax

(

Σ̂ (x)
)

(2 + lnK)

m
[Jensen’s ineq.].

This gives the bound

Ez∼µm

[

E(x,y)∼µ [ℓ (〈AD (z) , x〉 , y)] − R̂D (z)
]

≤ 4Lα

√

√

√

√

Ez∼µmλmax

(

Σ̂ (x)
)

(2 + lnK)

m
(13)

valid for every measure µ on H×R and everyD ∈ DK .
Replacing µ by µτ , taking the expectation as τ ∼ E
and using Jensen’s inequality bounds the first term on
the right hand side of (12) by the second term on the
right hand side of (10).

We proceed to bound the second term. From Corollary
6 and Lemma 8 we get that with probability at least
1 − δ in Z ∼ (ρE)

T

supD∈DK
Ez∼ρ

[

R̂D (z)
]

− 1
T

∑T
t=1 R̂D (zt)

≤
√

2π

T
Eζ sup

D∈DK

T
∑

t=1

ζtR̂D (zt) +

√

ln 1/δ

2T
,

where ζt is an orthogaussian sequence. Define two
Gaussian processes Ω and Ξ indexed by DK as

ΩD =
∑T

t=1 ζtR̂D (zt)

and

ΞD = Lα√
m

∑T
t=1

∑m
i=1

∑K
k=1 ζkij 〈Dek, xti〉,

where the ζijk are also orthogaussian. Then for
D1, D2 ∈ DK

E (ΩD1
− ΩD2

)
2

=

=

T
∑

t=1

(

R̂D1
(zt) − R̂D2

(zt)
)2

≤
T
∑

t=1

(

sup
γ∈Cα

1

m

m
∑

i=1

ℓ (〈D1γ, xti〉 , yti)

−ℓ (〈D2γ, xti〉 , yti)

)2

≤ L2
T
∑

t=1

sup
γ∈Cα

(

1

m

m
∑

i=1

〈γ, (D∗1 −D∗2)xti〉
)2

Lipschitz

≤ L2

m

T
∑

t=1

sup
γ∈Cα

m
∑

i=1

〈γ, (D∗1 −D∗2) xti〉2 Jensen

≤ L2α2

m

T
∑

t=1

m
∑

i=1

K
∑

k=1

‖(D∗1 −D∗2)xti‖2
(Cauchy-Schwarz)

=
L2α2

m

T
∑

t=1

m
∑

i=1

K
∑

k=1

(〈D1ek, xti〉 − 〈D2ek, xti〉)2

= E (ΞD1
− ΞD2

)2 .

So by Slepian’s Lemma

E supD∈DK

∑T
t=1 ζjR̂D (zt)

= E sup
D∈DK

ΩD ≤ E sup
D∈D

ΞD

=
2π

T

Lα√
m

E sup
D∈DK

T
∑

t=1

m
∑

i=1

K
∑

k=1

ζkij 〈Dek, xti〉

=
Lα√
m

E sup
D∈DK

K
∑

k=1

〈

Dek,

T
∑

t=1

m
∑

i=1

ζkijxti

〉

≤ Lα√
m

sup
D∈DK

(

∑

k

‖Dek‖2

)1/2

Eζ







∑

k

∥

∥

∥

∥

∥

∥

∑

t,i

ζtkixti

∥

∥

∥

∥

∥

∥

2






1/2

≤ Lα
√
K√
m







∑

k

Eζ

∥

∥

∥

∥

∥

∥

∑

t,i

ζtkixti

∥

∥

∥

∥

∥

∥

2






1/2

≤ Lα
√
K√
m





∑

k

∑

t,i

‖xti‖2





1/2

≤ LαK
√

mTS1 (X).

We therefore have that with probability at least 1− δ
in the draw of the multi sample Z ∼ρT
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supD∈DK
Ez∼ρ

[

R̂D (z)
]

− 1
T

∑T
i=1 R̂D

(

Ztj

)

≤ LαK

√

2πS1 (X)√
T

+

√

9 ln 2/δ

2T
. (14)

which in (12) combines with (13) to give the conclu-
sion.

Proof of Theorem 2. Let Dopt and γτ the minimizers
in the definition of Ropt, so that

Ropt = Eτ∼EE(x,y)∼µτ
ℓ [(〈Doptγτ , x〉 , y)] .

RE
(

AD(Z)

)

− Ropt can be decomposed as the sum of
four terms,

(

RE
(

AD(Z)

)

− 1

T

T
∑

t=1

R̂D(Z) (zt)

)

(15)

+

(

1

T

T
∑

t=1

R̂D(Z) (zt) −
1

T

T
∑

t=1

R̂Dopt
(zt)

)

(16)

+
1

T

T
∑

t=1

R̂Dopt
(zt) − Ez∼ρR̂Dopt

(z) (17)

+Eτ∼E

[

Ez∼µm
τ
R̂Dopt

(z)

−E(x,y)∼µτ
[ℓ (〈Doptγτ , x〉 , y)]

]

. (18)

By definition of R̂ we have for every τ that

Ez∼µm
τ
R̂Dopt

(z)

= Ez∼µm
τ

min
γ∈Cα

1

m

m
∑

i=1

ℓ [(〈Doptγ, xi〉 , yi)]

≤ Ez∼µm
τ

1

m

m
∑

i=1

ℓ [(〈Doptγτ , xi〉 , yi)]

= E(x,y)∼µτ
ℓ [(〈Doptγτ , x〉 , y)] .

The term (18) above is therefore non-positive. By
Hoeffding’s inequality the term (17) is less than
√

ln (2/δ) /2T with probability at least 1 − δ/2. The
term (16) is non-positive by the definition of D (Z).
Finally we use Proposition 15 to obtain with probabil-
ity at least 1 − δ/2 that

RE
(

AD(Z)

)

− 1
T

∑T
t=1 R̂D(Z) (zt)

≤ sup
D∈DK

RE (AD) − 1

T

T
∑

t=1

R̂D (zt)

≤ LαK

√

2πS1 (X)

T

+ 4Lα

√

S∞ (E) (2 + lnK)

m
+

√

9 ln 4/δ

2T
.

Combining these estimates on (15), (16), (17) and (18)
in a union bound gives the conclusion.


