
Sparse coding via thresholding and

local competition in neural circuits

Christopher J. Rozell, Don H. Johnson,

Richard G. Baraniuk, Bruno A. Olshausen

Abstract

While evidence indicates that neural systems may be employing sparse approximations to represent sensed
stimuli, the mechanisms underlying this ability are not understood. We describe a locally competitive
algorithm (LCA) that solves a collection of sparse coding principles minimizing a weighted combination
of mean-squared error (MSE) and a coefficient cost function. LCAs are designed to be implemented
in a dynamical system composed of many neuron-like elements operating in parallel. These algorithms
use thresholding functions to induce local (usually one-way) inhibitory competitions between nodes to
produce sparse representations. LCAs produce coefficients with sparsity levels comparable to the most
popular centralized sparse coding algorithms while being readily suited for neural implementation. Addi-
tionally, LCA coefficients for video sequences demonstrate inertial properties that are both qualitatively
and quantitatively more regular (i.e., smoother and more predictable) than the coefficients produced by
greedy algorithms.

1 Introduction

Natural images can be well-approximated by a small subset of elements from an overcomplete dictio-
nary (Field, 1994; Olshausen, 2003; Candès and Donoho, 2004). The process of choosing a good subset of
dictionary elements along with the corresponding coefficients to represent a signal is known as sparse approx-

imation. Recent theoretical and experimental evidence indicates that many sensory neural systems appear
to employ similar sparse representations with their population codes (Vinje and Gallant, 2002; Lewicki,
2002; Olshausen and Field, 2004, 1996; Delgutte et al., 1998), encoding a stimulus in the activity of just a
few neurons. While sparse coding in neural systems is an intriguing hypothesis, the challenge of collecting
simultaneous data from large neural populations makes it difficult to evaluate its credibility without testing
predictions from a specific proposed coding mechanism.

Unfortunately, we currently lack a proposed sparse coding mechanism that is realistically implementable
in the parallel architectures of neural systems and produces sparse coefficients that efficiently represent the
time-varying stimuli important to biological systems. Sparse approximation is a difficult non-convex opti-
mization problem that is at the center of much research in mathematics and signal processing. Existing
sparse approximation algorithms suffer from one or more of the following drawbacks: 1) they are not im-
plementable in the parallel analog architectures used by neural systems; 2) they have difficulty producing
exactly zero-valued coefficients in finite time; 3) they produce coefficients for time-varying stimuli that con-
tain inefficient fluctuations, making the stimulus content more difficult to interpret; or 4) they only use a
heuristic approximation to minimizing a desired objective function.

We introduce and study a new neurally plausible algorithm based on the principles of thresholding and
local competition that solves a family of sparse approximation problems corresponding to various sparsity
metrics. In our Locally Competitive Algorithms (LCAs), neurons in a population continually compete with
neighboring units using (usually one-way) lateral inhibition to calculate coefficients representing an input
signal using an overcomplete dictionary. Our continuous-time LCA is described by the dynamics of a system
of nonlinear ordinary differential equations (ODEs) that govern the internal state (membrane potential)
and external communication (short-term firing rate) of units in a neural population. These systems use

1

computational primitives that correspond to simple analog elements (e.g., resistors, capacitors, amplifiers),
making them realistic for parallel implementations. We show that each LCA corresponds to an optimal
sparse approximation problem that minimizes an energy function combining reconstruction mean-squared
error (MSE) and a sparsity-inducing cost function.

This paper develops a neural architecture for LCAs, shows their correspondence to a broad class of
sparse approximation problems, and demonstrates that LCAs possess three properties critical for a neurally
plausible sparse coding algorithm. First, we show that the LCA dynamical system is stable, guaranteeing
that a physical implementation is well-behaved. Next, we show that LCAs perform their primary task well,
finding codes for fixed images that have sparsity comparable to the most popular centralized algorithms.
Finally, we demonstrate that LCAs display inertia, coding video sequences with a coefficient time series
that is significantly smoother in time than the coefficients produced by other algorithms. This increased
coefficient regularity better reflects the smooth nature of natural input signals, making the coefficients much
more predictable and making it easier for higher-level structures to identify and understand the changing
content in the time-varying stimulus.

Although still lacking in biophysical realism, the LCA methods presented here represent a first step toward
a testable neurobiological model of sparse coding. As an added benefit, the parallel analog architecture
described by our LCAs could greatly benefit the many modern signal processing applications that rely on
sparse approximation. While the principles we describe apply to many signal modalities, we will focus on
the visual system and the representation of video sequences.

2 Background and related work

2.1 Sparse approximation

Given an N -dimensional stimulus s ∈ R
N (e.g., an N -pixel image), we seek a representation in terms of a

dictionary D composed of M vectors {φm} that span the space R
N . Define the ℓp norm of the vector x to be

||x||p = (
∑

m |xm|p)
1/p

and the inner product between x and y to be 〈x, y〉 =
∑

m xmym. Without loss of
generality, assume the dictionary vectors are unit-norm, ||φm||2 = 1. When the dictionary is overcomplete

(M > N), there are an infinite number of ways to choose coefficients {am} such that s =
∑M

m=1 amφm.
In optimal sparse approximation, we seek the coefficients having the fewest number of non-zero entries by
solving the minimization problem

min
a

||a||0 subject to s =

M∑

m=1

amφm, (1)

where the ℓ0 “norm”1 denotes the number of non-zero elements of a = [a1, a2, . . . , aM]. Unfortunately, this
combinatorial optimization problem is NP-hard (Natarajan, 1995).

In the signal processing community, two approaches are typically used to find acceptable suboptimal
solutions to this intractable problem. The first general approach substitutes an alternate sparsity measure
to convexify the ℓ0 norm. One well-known example is Basis Pursuit (BP) (Chen et al., 2001), which replaces
the ℓ0 norm with the ℓ1 norm

min
a

||a||1 subject to s =

M∑

m=1

amφm. (2)

Despite this substitution, BP has the same solution as the optimal sparse approximation problem (Donoho
and Elad, 2003) if the signal is sparse compared to the most similar pair of dictionary elements (e.g.,
||a||0 < minm 6=n

1
2 [1 + 1/〈φm, φn〉]). In practice, the presence of signal noise often leads to using a modi-

fied approach called Basis Pursuit De-Noising (BPDN) (Chen et al., 2001) that makes a tradeoff between

1While clearly not a norm in the mathematical sense, we will use this terminology prevalent in the literature.

2

reconstruction mean-squared error (MSE) and sparsity in an unconstrained optimization problem:

min
a




∣∣∣∣∣

∣∣∣∣∣s −
M∑

m=1

amφm

∣∣∣∣∣

∣∣∣∣∣

2

2

+ λ ||a||1



 , (3)

where λ is a tradeoff parameter. BPDN provides the ℓ1-sparsest approximation for a given reconstruction
quality. There are many algorithms that can be used to solve the BPDN optimization problem, with interior
point-type methods being the most common choice.

The second general approach employed by signal processing researchers uses iterative greedy algorithms
to constructively build up a signal representation (Tropp, 2004). The canonical example of a greedy algo-
rithm2 is known in the signal processing community as Matching Pursuit (MP) (Mallat and Zhang, 1993).

The MP algorithm is initialized with a residual r0 = s. At the kth iteration, MP finds the index of the single
dictionary element best approximating the current residual signal, θk = argmaxm |〈rk−1, φm〉|. The coeffi-
cient dk = 〈rk−1, φθk

〉 and index θk are recorded as part of the reconstruction, and the residual is updated,

rk = rk−1 − φθk
dk. After K iterations, the signal approximation using MP is given by ŝ =

∑K
k=1 φθk

dk.
Though they may not be optimal in general, greedy algorithms often efficiently find good sparse signal
representations in practice.

2.2 Sparse coding in neural systems

Recent research in neuroscience suggests that V1 population responses to natural stimuli may be the result
of a sparse approximation of images. For example, it has been shown that both the spatial and temporal
properties of V1 receptive fields may be accounted for in terms of a dictionary that has been optimized
for sparseness in response to natural images (Olshausen, 2003). Additionally, V1 recordings in response to
natural scene stimuli show activity levels (corresponding to the coefficients {am}) becoming more sparse
as neighboring units are also stimulated (Vinje and Gallant, 2002). These populations are typically very
overcomplete (Olshausen and Field, 2004), allowing great flexibility in the representation of a stimulus. Using
this flexibility to achieve sparse codes might offer many advantages to sensory neural systems, including
enhancing the performance of subsequent processing stages, increasing the storage capacity in associative
memories, and increasing the energy efficiency of the system (Olshausen and Field, 2004).

However, existing sparse approximation algorithms do not have implementations that correspond both
naturally and efficiently to plausible neural architectures. For convex relaxation approaches, a network
implementation of BPDN can be constructed (Olshausen and Field, 1996), following the common practice
of using dynamical systems to implement direct gradient descent optimization (Cichocki and Unbehauen,
1993). Unfortunately, this implementation has two major drawbacks. First, it lacks a natural mathematical
mechanism to make small coefficients identically zero. While the true BPDN solution would have many
coefficients that are exactly zero, direct gradient methods to find an approximate solution in finite time
produce coefficients that merely have small magnitudes. Ad hoc thresholding can be used on the results
to produce zero-valued coefficients, but such methods lack theoretical justification and can be difficult to
use without oracle knowledge of the best threshold value. Second, this implementation requires persistent
(two-way) signaling between all units with overlapping receptive fields (e.g., even a node with a nearly zero
value would have to continue sending inhibition signals to all similar nodes). In greedy algorithm approaches,
spiking neural circuits can be constructed to implement MP (Perrinet, 2005). Unfortunately, this type of
circuit implementation relies on a temporal code that requires tightly coupled and precise elements to both
encode and decode.

Beyond implementation considerations, existing sparse approximation algorithms also do not consider
the time-varying stimuli faced by neural systems. A time-varying input signal s(t) is represented with a set
of time-varying coefficients {am(t)}. While temporal coefficient changes are necessary to encode stimulus

2Many types of algorithms for convex and non-convex optimization could be considered “greedy” in some sense (including
systems based on descending the gradient of an instantaneous energy function). Our use of this terminology will apply to the
family of iterative greedy algorithms such as MP to remain consistent with the majority of the signal processing literature.

3

changes, the most useful encoding would use coefficient changes that reflect the character of the stimulus.
In particular, sparse coefficients should have smooth temporal variations in response to smooth changes in
the image. However, most sparse approximation schemes have a single goal: select the smallest number of
coefficients to represent a fixed signal. This single-minded approach can produce coefficient sequences for
time-varying stimuli that are erratic, with drastic changes not only in the values of the coefficients but also
in the selection of which coefficients are used. These erratic temporal codes are inefficient because they
introduce uncertainty about which coefficients are coding the most significant stimulus changes, thereby
complicating the process of understanding the changing stimulus content.

In Section 3 we develop our LCAs, in which dictionary elements continually fight for the right to represent
the stimulus. These LCAs adapt their coefficients continually over time as the input changes without having
to build a new representation from scratch at each time step. This evolution induces inertia in the coefficients,
regularizing the temporal variations for smoothly varying input signals. In contrast to the problems seen
with current algorithms, our LCAs are easily implemented in analog circuits composed neuron-like elements,
and they encourage both sparsity and smooth temporal variations in the coefficients as the stimulus changes.

2.3 Other related work

There are several sparse approximation methods that do not fit into the two primary approaches of pure
greedy algorithms or convex relaxation. Methods such as Sparse Bayesian Learning (Wipf and Rao, 2004;
Tipping, 2001), FOCUSS (Rao and Kreutz-Delgado, 1999), modifications of greedy algorithms that select
multiple coefficients on each iteration (Donoho et al., 2006; Pece and Petkov, 2000; Feichtinger et al., 1994)
and MP extensions that perform an orthogonalization at each step (Davis et al., 1994; Rebollo-Neira and
Lowe, 2002) involve computations that would be very difficult to implement in a parallel distributed ar-
chitecture. While FOCUSS can implement both ℓ1 global optimization and ℓ0 local optimization (Rao and
Kreutz-Delgado, 1999) in a dynamical system (Kreutz-Delgado et al., 2003) that uses parallel computation to
implement a competition strategy among the nodes (strong nodes are encouraged to grow while weak nodes
are penalized), it does not lend itself to forming smooth time-varying representations because coefficients
cannot be reactivated once they go to zero.

There are also several sparse approximation methods built on a parallel computational framework that
are related to our LCAs (Fischer et al., 2004; Kingsbury and Reeves, 2003; Herrity et al., 2006; Rehn and
Sommer, 2007; Hale et al., 2007; Figueiredo and Nowak, 2003; Daubechies et al., 2004; Blumensath and
Davies, 2008). These algorithms typically start the first iteration with many super-threshold coefficients and
iteratively try to prune the representation through a thresholding procedure, rather than charging up from
zero as in our LCAs. Appendix A contains a detailed comparison.

3 Locally competitive algorithms for sparse coding

3.1 Architecture of locally competitive algorithms

Our LCAs associate each element of the dictionary φm ∈ D with a separate computing node, or “neuron”.
When the system is presented with an input image s(t), the population of neurons evolves according to
fixed dynamics (described below) and settle on a collective output {am(t)}, corresponding to the short-term
average firing rate of the neurons.3 The goal is to define the LCA system dynamics so that few coefficients
have non-zero values while approximately reconstructing the input, ŝ (t) =

∑
m am(t)φm ≈ s(t).

The LCA dynamics are inspired by several properties observed in neural systems: inputs cause the mem-
brane potential to “charge up” like a leaky integrator; membrane potentials exceeding a threshold produce
“action potentials” for extracellular signaling; and these super-threshold responses inhibit neighboring units
through horizontal connections. We represent each unit’s sub-threshold value by a time-varying internal
state um(t). The unit’s excitatory input current is proportional to how well the image matches with the

3Note that for analytical simplicity we allow positive and negative coefficients, but rectified systems could use two physical
units to implement one LCA node.

4

_+
+

_ _

+
um(t) am(t) =Tλ(um(t))

Tλ(·)

Vm(t)

Vm(t) = 〈φm, s(t)〉 − P

n 6=m

Tλ(un(t)) 〈φm, φn〉

(a)

��
��

��
s(t) Φts(t)

u1(t)

u2(t)

uM (t)

a1(t)

a2(t)

aM (t)

a2(t) 〈φ2, φM 〉

a2(t) 〈φ2, φ1〉

(b)

Figure 1: (a) LCA nodes behave as a leaky integrators, charging with a speed that depends on how well
the input matches the associated dictionary element and the inhibition received from other nodes. (b) A
system diagram shows the inhibition signals being sent between nodes. In this case, only node 2 is shown as
being active (i.e., having a coefficient above threshold) and inhibiting its neighbors. Since the neighbors are
inactive then the inhibition is one-way.

node’s receptive field, bm(t) = 〈φm, s(t)〉. When the internal state um of a node becomes significantly large,
the node becomes “active” and produces an output signal am used to represent the stimulus and inhibit
other nodes. This output coefficient is the result of an activation function applied to the membrane po-
tential, am = Tλ(um), parameterized by the system threshold λ. Though similar activation functions have
traditionally taken a sigmoidal form, we consider activation functions that operate as thresholding devices
(e.g., essentially zero for values below λ and essentially linear for values above λ).

The nodes best matching the stimulus will have internal state variables that charge at the fastest rates
and become active soonest. To induce the competition that allows these nodes to suppress weaker nodes, we
have active nodes inhibit other nodes with an inhibition signal proportional to both their activity level and
the similarity of the nodes’ receptive fields. Specifically, the inhibition signal from the active node m to any
other node n is proportional to amGm,n, where Gm,n = 〈φm, φn〉. The possibility of unidirectional inhibition
gives strong nodes a chance to prevent weaker nodes from becoming active and initiating counter-inhibition,
thus making the search for a sparse solution more energy efficient. Note that unlike the direct gradient
descent methods described in Section 2 that require two-way inhibition signals from all nodes that overlap
(i.e., have Gm,n 6= 0), LCAs only require one-way inhibition from a small selection of nodes (i.e., only the
active nodes).

Putting all of the above components together, LCA node dynamics are expressed by the nonlinear ordi-
nary differential equation (ODE)

u̇m(t) =
1

τ


bm(t) − um(t) −

∑

n6=m

Gm,nan(t)


 . (4)

This ODE is essentially the same form as the well-known continuous Hopfield network (Hopfield, 1984).
Figure 1 shows a LCA node circuit schematic and a system diagram illustrating the lateral inhibition.
To express the system of coupled nonlinear ODEs that govern the whole dynamic system, we represent
the internal state variables in the vector u(t) = [u1(t) , . . . , uM (t)]

t
, the active coefficients in the vec-

tor a(t) = [a1(t) , . . . , aM (t)]t = Tλ(u(t)), the dictionary elements in the columns of the (N × M) matrix
Φ = [φ1, . . . , φM] and the driving inputs in the vector b(t) = [b1(t) , . . . , bM (t)]

t
= Φts(t). The function Tλ(·)

performs element-by-element thresholding on vector inputs. The stimulus approximation is ŝ (t) = Φa(t),

5

and the full dynamic system equation is

u̇(t) = f(u(t)) =
1

τ

[
b(t) − u(t) −

(
ΦtΦ − I

)
a(t)

]
, (5)

a(t) = Tλ(u(t)) .

The LCA architecture described by (5) solves a family of sparse approximation problems with different
sparsity measures. Specifically, LCAs descend an energy function combining the reconstruction MSE and a
sparsity-inducing cost penalty C(·),

E(t) =
1

2
||s(t) − ŝ (t)||2 + λ

∑

m

C(am(t)) . (6)

The specific form of the cost function C(·) is determined by the form of the thresholding activation function
Tλ(·). For a given threshold function, the cost function is specified (up to a constant) by

λ
dC(am)

dam
= um − am = um − Tλ(um). (7)

This correspondence between the thresholding function and the cost function can be seen by computing the
derivative of E with respect to the active coefficients, {am} (see Appendix B). Using the relationship in (7)
and letting the internal states {um} evolve according to u̇m ∝ − ∂E

∂am
yields the equation for the internal

state dynamics above in (4). Note that although the dynamics are specified through a gradient approach,
the system is not performing direct gradient descent (e.g., u̇m 6= − ∂E

∂um

). As long as am and um are related
by a monotonically increasing function, the {am} will also descend the energy function E. This method
for showing the correspondence between a dynamic system and an energy function is essentially the same
procedure used by Hopfield (Hopfield, 1984) to establish network dynamics in associative memory systems.

We focus specifically on the cost functions associated with thresholding activation functions. Thresholding
functions limit the lateral inhibition by allowing only “strong” units to suppress other units and forcing most
coefficients to be identically zero. For our purposes, thresholding functions Tλ(·) have two distinct behaviors
over their range: they are essentially linear with unit slope above threshold λ, and essentially zero below
threshold. Among many reasonable choices for thresholding functions, we start with a smooth sigmoidal
function

T(α,γ,λ)(um) =
um − αλ

1 + e−γ(um−λ)
, (8)

where γ is a parameter controlling the speed of the threshold transition and α ∈ [0, 1] indicates what
fraction of an additive adjustment is made for values above threshold. An example sigmoidal thresholding
function is shown in Figure 2a. We are particularly interested in the limit of this thresholding function as
γ → ∞, a piecewise linear function we denote as the ideal thresholding function. In the signal processing
literature, T(0,∞,λ)(·) = limγ→∞ T(0,γ,λ)(·) is known as a “hard” thresholding function and T(1,∞,λ)(·) =
limγ→∞ T(1,γ,λ)(·) is known as a “soft” thresholding function (Donoho, 1995).

3.2 Sparse approximation by locally competitive algorithms

Combining (7) and (8), we can integrate numerically to determine the cost function corresponding to
T(α,γ,λ)(·), shown in Figure 2b. For the ideal threshold functions we derive a corresponding ideal cost

function,

C(α,∞,λ)(am) =
(1 − α)2λ

2
+ α |am| . (9)

Details of this derivation are in Appendix C. Note that unless α = 1 the ideal cost function has a gap
because active coefficients cannot take all possible values, |am| /∈ [0, (1 − α)λ] (i.e., the ideal thresholding
function is not technically invertible).

6

Threshold
Function

Cost
Function

0 1 2
0

1

2

 u
m

 a
m

(a)

0 1 2
0

1

2

 a
m

C
(

a m
)

(b)

0 1 2
0

1

2

 u
m

 a
m

(c)

0 1 2
0

1

2

 a
m

C
(

a m
)

(d)

0 1 2
0

1

2

 u
m

 a
m

(e)

0 1 2
0

1

2

 a
m

C
(

a m
)

(f)

Figure 2: Relationship between the threshold function T(α,γ,λ)(·) and the sparsity cost function C(·). Only
the positive half of the symmetric threshold and cost functions are plotted. (a) Sigmoidal threshold function
and (b) cost function for γ = 5, α = 0 and λ = 1. (c) The ideal hard thresholding function (γ = ∞, α = 0,
λ = 1) and the (d) corresponding cost function. The dashed line shows the limit, but coefficients produced
by the ideal thresholding function cannot take values in this range (e) The ideal soft thresholding function
(γ = ∞, α = 1, λ = 1) and the (f) corresponding cost function.

7

0 50 100 150 200
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

co
ef

fic
ie

nt
 m

ag
ni

tu
de

coefficient number

(a)

0 50 100 150 200
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

coefficient number

co
ef

fic
ie

nt
 m

ag
ni

tu
de

(b)

Figure 3: (a) The top 200 coefficients from a BPDN solver sorted by magnitude. (b) The same coefficients,
sorted according to the magnitude ordering of the SLCA coefficients. While there is a gross decreasing trend
noticeable, the largest SLCA coefficients are not in the same locations as the largest BPDN coefficients.
While the solutions have equivalent energy functions, the two sets of coefficients differ significantly.

3.3 Special case: Soft-thresholding locally competitive algorithm (SLCA)

As we see in Section 3.2, LCAs can optimize a variety of different sparsity measures depending on the choice
of thresholding function. One special case is the soft thresholding function, corresponding to α = 1 and
shown graphically in Figures 2e and 2f. The soft-thresholding locally competitive algorithm (SLCA) applies
the ℓ1 norm as a cost function on the active coefficients,

C(1,∞,λ)(am) = |am|.

Thus, the SLCA is simply another solution method for the general BPDN problem described in Section 2,
and simulations confirm that the SLCA does indeed find solutions with values of E(t) equivalent to the
solutions produced by standard interior-point based methods. Despite minimizing the same convex energy
function, SLCA and BPDN solvers may find different sets of coefficients, as illustrated in Figure 3. This may
be due either to the non-uniqueness of a BPDN solution,4 or because the numerical approximations have
not quite converged to a global optimum in the alloted computation time. The connection between soft-
thresholding and BPDN is well-known in the case of orthonormal dictionaries (Chen et al., 2001), and recent
results (Elad, 2006) have given some justification for using soft-thresholding in overcomplete dictionaries. The
SLCA provides another formal connection between the soft-thresholding function and the ℓ1 cost function.

Though BPDN uses the ℓ1-norm as its sparsity penalty, we often expect many of the resulting coefficients
to be identically zero (especially when M ≫ N). However, most numerical methods (including direct
gradient descent and interior point solvers) will drive coefficients toward zero but will never make them
identically zero. While an ad hoc threshold could be applied to the results of a BPDN solver, the SLCA has
the advantage of incorporating a natural thresholding function that keeps coefficients identically zero during
the computation unless they become active. In other words, while BPDN solvers often start with many
non-zero coefficients and try to force coefficients down, the SLCA starts with all coefficients equal to zero
and only lets a few grow up. This advantage is especially important for neural systems that must expend
energy for non-zero values throughout the entire computation.

4With an overcomplete dictionary, it is technically possible to have a BPDN energy function that is convex (guaranteeing
all local minima are global minima) but not strictly convex (guaranteeing that a global minimum is unique).

8

0 5 10 15 20

−1

−0.5

0

0.5

1

Extra dictionary element φ
N

(a)

0 5 10 15 20

−1

−0.5

0

0.5

1

Input vector x

(b)

0 5 10 15 20

−1

−0.5

0

0.5

1

MP coefficients

a i

i

(c)

0 5 10 15 20

−1

−0.5

0

0.5

1

HLCA coefficients

a i

i

(d)

0 0.005 0.01 0.015
0

0.2

0.4

0.6

0.8

time (s)

u(
t)

HLCA time dynamics

u

M
(t)

u
1
(t)

λ

(e)

Figure 4: (a) The dictionary in this example has one “extra” element that consists of decaying combinations
of all other dictionary elements. (b) The input vector has a sparse representation in just a few dictionary
elements. (c) MP initially chooses the “extra” dictionary element, preventing it from finding the optimally
sparse representation (coefficients shown after 100 iterations). (d) In contrast, the HLCA system finds the
optimally sparse coefficients. (e) The time-dynamics of the HLCA system illustrate its advantage. The
“extra” dictionary element is the first node to activate, followed shortly by the nodes corresponding to the
optimal coefficients. The collective inhibition of the optimal nodes causes the “extra” node to die away.

3.4 Special case: Hard-thresholding locally competitive algorithm (HLCA)

Another important special case is the hard thresholding function, corresponding to α = 0 and shown graphi-
cally in Figures 2c and 2d. Using the relationship in (7), we see that this hard-thresholding locally competitive
algorithm (HLCA) applies an ℓ0-like cost function by using a constant penalty regardless of magnitude,

C(0,∞,λ)(am) =
λ

2
I(|am| > λ) ,

where I(·) is the indicator function evaluating to 1 if the argument is true and 0 if the argument is false.
Unlike the SLCA, the HLCA energy function is not convex and the system will only find a local minimum of
the energy function E(t). As with the SLCA, the HLCA also has connections to known sparse approximation
principles. If node m is fully charged, the inhibition signal it sends to other nodes would be exactly the

same as the update step when the mth node is chosen in the MP algorithm. However, due to the continuous
competition between nodes before they are fully charged, the HLCA is not equivalent to MP in general.

As a demonstration of the power of competitive algorithms over greedy algorithms such as MP, consider
a canonical example used to illustrate the shortcomings of iterative greedy algorithms (Chen et al., 2001;
DeVore and Temlyakov, 1996). For this example, specify a positive integer K < N and construct a dictionary
D with M = N + 1 elements to have the following form:

φm =

{
em if m ≤ N∑K

n=1 κen +
∑N

n=K+1 (κ/(n − K))en if m = N + 1,

9

where em is the canonical basis element (i.e., it contains a single 1 in the mth location) and κ is a constant
to make the vectors have unit norm. In words, the dictionary includes the canonical basis along with one
“extra” element that is a decaying combination of all other elements (illustrated in Figure 4, with N = 20

and K = 5). The input signal is sparsely represented in the first K dictionary elements, s =
∑K

m=1
1√
K

em.

The first MP iteration chooses φM , introducing a residual with decaying terms. Even though s has an exact
representation in K elements, MP iterates forever trying to atone for this bad initial choice. In contrast, the

HLCA initially activates the Mth node but uses the collective inhibition from nodes 1, . . . , K to suppress this
node and calculate the optimal set of coefficients. While this pathological example is unlikely to exactly occur
in natural signals, it is often used as a criticism of greedy methods to demonstrate their shortsightedness.
We mention it here to demonstrate the flexibility of LCAs and their differences from pure greedy algorithms.

4 LCA system properties

To be a physically viable sparse coding mechanism, LCAs must exhibit several critical properties: the
system must remain stable under normal operating conditions, the system must produce sparse coefficients
that represent the stimulus with low error, and coefficient sequences must exhibit regularity in response to
time-varying inputs. In this section we show that LCAs exhibit good characteristics in each of these three
areas. We focus our analysis on the HLCA both because it yields the most interesting results and because
it is notationally the cleanest to discuss. In general, the analysis principles we use will apply to all LCAs
through straightforward (through perhaps laborious) extensions.

4.1 Stability

Any proposed neural system must remain well-behaved under normal conditions. While linear systems
theory has an intuitive notion of stability that is easily testable (Franklin et al., 1986), no such unifying
concept of stability exists for nonlinear systems (Khalil, 2002). Instead, nonlinear systems are characterized
in a variety of ways, including their behavior near an equilibrium point u∗ where f(u∗) = 0 and their
input-output relationship.

The various stability analyses of Sections 4.1.1 and 4.1.2 depend on a common criterion. Define Mu(t) ⊆
[1, . . . , M] as the set of nodes that are above threshold in the internal state vector u(t), Mu(t) = {m :
|um(t)| ≥ λ}. We say that the LCA meets the stability criterion if t the set of active vectors {φm}m∈M

u(t)

is linearly independent. It makes some intuitive sense that this condition is important: if a collection of
linearly dependent nodes are active simultaneously, the nodes could have growing coefficients but no net
effect on the reconstruction.

The system is likely to satisfy the stability criterion eventually under normal operating conditions for
two reasons. First, small subsets of dictionary elements are unlikely to be linearly dependent unless the
dictionary is designed with this property (e.g., (Tropp, 2006)). Second, sparse coding systems are actively
trying to select dictionary subsets so that they can use many fewer coefficients than the dimension of the
signal space,

∣∣Mu(t)

∣∣≪ N ≪ M . While the LCA lateral inhibition signals discourage linearly dependent
sets from activating, the stability criterion can be violated when a collection of nodes becomes active too
quickly, before inhibition can take effect. In simulation, we have observed this situation when the threshold
is too low compared to the system time constant. As discussed below, the stability criterion amounts to
a sufficient (but not necessary) condition for good behavior, and we have never empirically observed the
simulated system becoming unstable even when this condition is transiently violated.

4.1.1 Equilibrium points

In a LCA presented with a static input, we look to the steady-state response (where u̇(t) = 0) to determine
the coefficients. The character of the equilibrium points u∗ (f(u∗) = 0) and the system’s behavior in
a neighborhood around an equilibrium point provides one way to ensure that a system is well-behaved.
Consider the ball around an equilibrium point Bǫ(u

∗) = {u : ||u − u∗|| < ǫ}. Nonlinear system analysis

10

typically asks an intuitive question: if the system is perturbed within this ball, does it then run away, stay
where it is, or get attracted back? Specifically, a system is said to be locally asymptotically stable (Bacciotti
and Rosier, 2001) at an equilibrium point u∗ if one can specify ǫ > 0 such that

u(0) ∈ Bǫ(u
∗) =⇒ lim

t→∞
u(t) = u∗.

Previous research (Cohen and Grossberg, 1983; Yang and Dillon, 1994; Li et al., 1988) has used the
tools of Lyapunov functions (Khalil, 2002) to study a Hopfield network (Hopfield, 1984) similar to the LCA
architecture. However, all of these analyses make assumptions that do not encompass the ideal thresholding
functions used in the LCAs (e.g., they are continuously differentiable and/or monotone increasing). In
Appendix D.1 we show that as long as the stability criterion is met, the HLCA:

• has a finite number of equilibrium points;

• has equilibrium points that are almost certainly isolated (no two equilibrium points are arbitrarily
close together); and

• is almost certainly locally asymptotically stable for every equilibrium point.

The conditions that hold “almost certainly” are true as long as none of the equilibria have components
identically equal to the threshold, (u∗

m 6= λ, ∀m), which holds with overwhelming probability. With a finite
number of isolated equilibria, we can be confident that the HLCA steady-state response is a distinct set of
coefficients representing the stimulus. Asymptotic stability also implies a notion of robustness, guaranteeing
that the system will remain well-behaved even under perturbations (Theorems 2.8 and 2.9 in (Bacciotti and
Rosier, 2001)).

4.1.2 Input-output stability

In physical systems it is important that the energy of both internal and external signals remain bounded for
bounded inputs. One intuitive approach to ensuring output stability is to examine the energy function E.
We show in Appendix D.2 that for non-decreasing threshold functions, the energy function is non-increasing
(d

dtE(t) ≤ 0) for fixed inputs. While this is encouraging, it does not guarantee input-output stability. To
appreciate this effect, note that the HLCA cost function is constant for nodes above threshold — nothing
explicitly keeps a node from growing without bound once it is active.

While there is no universal input-output stability test for general nonlinear systems, we observe that
the LCA system equation is linear and fixed until a unit crosses threshold. A branch of control theory
specifically addresses these switched systems (Decarlo et al., 2000). Results from this field indicate that
input-output stability can be guaranteed if the individual linear subsystems are stable, and the system does
not switch “too fast” between these subsystems (Hespanha and Morse, 1999). In Appendix D.2 we give a
precise mathematical statement of this input-output stability and show that the HLCA linear subsystems
are individually stable if and only if the stability criterion is met. Therefore, the HLCA is input-output
stable as long as nodes are limited in how fast they can change states. We expect that an infinitely fast
switching condition is avoided in practice either by the physical principles of the system implementation or
through an explicit hysteresis in the thresholding function.

4.2 Sparsity and representation error

Viewing the sparse approximation problem through the lens of rate-distortion theory (Berger, 1971), the
most powerful algorithm produces the lowest reconstruction MSE for a given sparsity. When the sparsity
measure is the ℓ1 norm, the problem is convex and the SLCA produces solutions with equivalent ℓ1-sparsity to
interior point BPDN solvers. Despite the analytic appeal of the ℓ1 norm as a sparsity measure, many systems
concerned with energy minimization (including neural systems) likely have an interest in minimizing the ℓ0

norm of the coefficients. The HLCA is appealing because of its ℓ0-like sparsity penalty, but this objective
function is not convex and the HLCA may find a local minimum. We will show that while HLCA cannot

11

guarantee the ℓ0 sparsest solution, it produces coefficients that demonstrate comparable sparsity to MP for
natural images.

Insight about the HLCA reconstruction fidelity comes from rewriting the LCA system equation

u̇(t) =
1

τ

[
Φt (s(t) − ŝ (t)) − u(t) + T(α,∞,λ)(u(t))

]
. (10)

For a constant input, HLCA equilibrium points (u̇(t) = 0) occur when the residual error is orthogonal to
active nodes and balanced with the internal state variables of inactive nodes.

〈φm, s(t) − ŝ (t)〉 =

{
um(t) if |um| ≤ λ

0 if |um| > λ
.

Therefore, when HLCA converges the coefficients will perfectly reconstruct the component of the input signal
that projects onto the subspace spanned by the final set of active nodes. Using standard results from frame
theory (Christensen, 2002), we can bound the HLCA reconstruction MSE in terms of the set of inactive
nodes

||s(t) − ŝ (t)||2 ≤
1

ηmin

∑

m/∈M
u(t)

|〈φm, s(t) − ŝ (t)〉|2 ≤

(
M − |Mu(t)|

)
λ2

ηmin
,

where ηmin is the minimum eigenvalue of (ΦΦt).
Though the HLCA is not guaranteed to find the globally optimal ℓ0 sparsest solution we must ensure that

it does not produce unreasonably non-sparse solutions. While the system nonlinearity makes it impossible
to analytically determine the LCA steady-state coefficients, it is possible to rule out some coefficients as
not being possible. For example, let M ⊆ [1, . . . , M] be an arbitrary set of active coefficients. Using linear
systems theory we can calculate the steady-state response ũM = limt→∞ u(t) assuming that M stays fixed.
If |ũM

m | < λ for any m ∈ M or if |ũM
m | > λ for any m /∈ M, then M cannot describe the set of active

nodes in the steady-state response and we call it inconsistent. We show in Appendix E that when the
stability criterion is met, the following statement is true for the HLCA: If s = φm, then any set of active

coefficients M with m ∈ M and |M| > 1 is inconsistent. In other words, the HLCA may use the mth node
or a collection of other nodes to represent s, but it cannot use a combination of both. This result extends
intuitively beyond one-sparse signals: each component in an optimal decomposition is represented by either
the optimal node or another collection of nodes, but not both. While not necessarily finding the optimal
representation, the system does not needlessly employ both the optimal and extraneous nodes.

We have also verified numerically that the LCAs achieve a combination of error and sparsity comparable
with known methods. We employed a dictionary consisting of the bandpass band of a steerable pyramid (Si-
moncelli and Freeman, 1995)5 with one level and four orientation bands (i.e., the dictionary is approximately
four times overcomplete with 4096 elements). Image patches (32× 32) were selected at random from a stan-
dard set of test images. The selected image patches were decomposed using the steerable pyramid and
reconstructed using just the bandpass band.6 The bandpass image patches were also normalized to have
unit energy. Each image patch was used as the fixed input to the LCA system equation (5) using either a soft
or hard thresholding function (with variable threshold values) and with a biologically plausible membrane
time constant of τ = 10 ms (Dayan and Abbott, 2001). We simulated the system using a simple Euler’s
method approach (i.e., first order finite difference approximation) (Süli and Mayers, 2003) with a time step
of 1 ms.

Figure 5 shows the time evolution of the reconstruction MSE and ℓ0 sparsity for SLCA and HLCA
responding to an individual image, and Figure 6 shows the mean steady-state tradeoff between ℓ0 sparsity
and MSE. For comparison, we also plotted the results obtained from using MP,7 a standard BPDN interior-
point solver8 followed by thresholding to enforce ℓ0 sparsity (denoted “BPDNthr”) and SLCA with the

5We used the implementation of the steerable pyramid given in the code available at
http://www.cns.nyu.edu/~eero/STEERPYR/ with the “circular” boundary handling option.

6We eliminate the lowpass band because it accounts for a large fraction of the total image energy in just a few dictionary
elements and it is unlikely that much gain could be achieved by sparsifying these coefficients.

7We iterated MP until it had the same MSE as the LCA implementation to compare the sparsity levels of the results.
8We used the implementation of a primal-dual BPDN solver given in the code available at http://sparselab.stanford.edu/.

12

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

M
S

E

HLCA MSE

γ =0.006
γ =0.0115
γ =0.0185
γ =0.025

(a)

0 0.05 0.1 0.15 0.2
0

500

1000

1500

2000

2500

3000

3500

4000

time (s)

nu
m

be
r

of
 a

ct
iv

e
co

ef
fic

ie
nt

s

HLCA sparsity

γ =0.006
γ =0.0115
γ =0.0185
γ =0.025

(b)

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

M
S

E

SLCA MSE

γ =0.006
γ =0.0115
γ =0.0185
γ =0.025

(c)

0 0.05 0.1 0.15 0.2
0

2000

4000

6000

8000

10000

12000

time (s)

nu
m

be
r

of
 a

ct
iv

e
co

ef
fic

ie
nt

s

SLCA sparsity

γ =0.006
γ =0.0115
γ =0.0185
γ =0.025

(d)

Figure 5: The time response of the HLCA and SLCA (τ = 10 ms) for a single fixed (32 × 32) image patch
with a dictionary that is four time overcomplete with 4096 elements. (a) The MSE decay and (b) the ℓ0

sparsity for HLCA. (c) The MSE decay and (d) the ℓ0 sparsity for SLCA. The error converges within 1-2
time constants and the sparsity often approximately converges within 3-4 time constants. In some cases
sparsity is reduced with a longer running time.

13

0 10 20 30 40 50 60 70
0

100

200

300

400

500

MSE (% error)

L0
 "

no
rm

"
m

ea
n

HLCA
SLCA
BPDNthr
SLCAthr
MP

(a)

0 10 20 30 40 50 60 70
0

20

40

60

80

100

MSE (% error)

L0
 "

no
rm

"
st

an
da

rd
 d

ev
ia

tio
n

HLCA
SLCA
BPDNthr
SLCAthr
MP

(b)

Figure 6: Mean tradeoff between MSE and ℓ0-sparsity for normalized (32× 32) patches from a standard set
of test images. The dictionary was four times overcomplete with 4096 elements. For a given MSE range, we
plot the mean (a) and standard deviation (b) of the ℓ0 sparsity.

same threshold applied (denoted “SLCAthr”). Most importantly, note that the HLCA and MP are almost
identical in their sparsity-MSE tradeoff. Though the connections between the HLCA and MP were pointed
out in Section 3.4, these are very different systems and there is no reason to expect them to produce the
same coefficients. Additionally, note that the SLCA is producing coefficients that are nearly as ℓ0-sparse
as what we can achieved by oracle thresholding the results of a BPDN solver even though the SLCA keeps
most coefficients zero throughout the calculation.

4.3 Time-varying stimuli

4.3.1 Inertia

Biological sensory systems are faced with constantly changing stimuli due to both external movement and
internal factors (e.g., organism movement, eye saccades, etc.). As discussed in Section 2.2, sparse codes with
temporal variations that also reflect the smooth nature of the changing stimulus would be easier for higher
level systems to understand and interpret. However, approximation methods that only optimize sparsity at
each time step (especially greedy algorithms) can produce “brittle” representations that change dramatically
with relatively small stimulus changes. In contrast, LCAs naturally produce smoothly changing outputs in
response to smoothly changing time-varying inputs. Assuming that the system time constant τ is faster than
the temporal changes in the stimulus, the LCA will evolve to capture the stimulus change and converge to
a new sparse representation. While local minima in an energy function are typically problematic, the LCAs
can use these local minima to find coefficients that are “close” to their previous coefficients even if they
are not optimally sparse. While permitting suboptimal coefficient sparsity, this property allows the LCA to
exhibit inertia that smoothes the coefficient sequences.

The inertia property exhibited in LCAs can be seen by focusing on a single node in the system equa-
tion (10):

u̇m(t) =
1

τ

{
〈φm, (s(t) − ŝ (t))〉 − um(t) when |um(t) | < λ

〈φm, (s(t) − ŝ (t))〉 − αλ when |um(t) | ≥ λ.

A new residual signal drives the coefficient higher but suffers an additive penalty. Inactive coefficients suffer
an increasing penalty as they get closer to threshold while active coefficients only suffer a constant penalty
αλ that can be very small (e.g., the HLCA has αλ = 0). This property induces a “king of the hill” effect:

14

when a new residual appears, active nodes move virtually unimpeded to represent it while inactive nodes
are penalized until they reach threshold. This inertia encourages inactive nodes to remain inactive unless
the active nodes cannot adequately represent the new input.

To illustrate this inertia, we applied the LCAs to a sequence of 144 × 144 pixel, bandpass filtered,
normalized frames from the standard “foreman” test video sequence with the same experimental setup
described in Section 4.2. The LCA input is switched to the next video frame every (simulated) 1/30 seconds.
The results are shown in Figure 7, along with comparisons to MP and BPDN applied independently on each
frame. The changing coefficient locations are nodes that either became active or inactive at each frame.
Mathematically, the number of changing coefficients at frame n is:

∣∣Mu(n−1) ⊕Mu(n)

∣∣, where ⊕ is the
“exclusive OR” operator and u(n) are the internal state variables at the end of the simulation for frame n.

This simulation highlights that the HLCA uses approximately the same number of active coefficients as
MP but chooses coefficients that more efficiently represent the video sequence. The HLCA is significantly
more likely to re-use active coefficient locations from the previous frame without making significant sacrifices
in the sparsity of the solution. This difference is highlighted when looking at the ratio of the number of
changing coefficients to the number of active coefficients,

∣∣Mu(n−1) ⊕Mu(n)

∣∣ /
∣∣Mu(n)

∣∣. MP has a ratio of
1.7, meaning that MP is finding almost an entirely new set of active coefficient locations for each frame.
The HLCA has a ratio of 0.5, meaning that it is changing approximately 25% of its coefficient locations at
each frame. SLCA and BPDNthr have approximately the same performance, with regularity falling between
HLCA and MP. Though the two systems can calculate different coefficients, the convexity of the energy
function appears to be limiting the coefficient choices enough so that SLCA cannot smooth the coefficient
time series substantially more than BPDNthr.

4.3.2 Markov state transitions

The simulation results indicate that the HLCA is producing time series coefficients that are much more
regular than MP. This regularity is visualized in Figure 9 by looking at the time-series of example HLCA
and MP coefficients. Note that though the two coding schemes produce roughly the same number of non-zero
entries, the HLCA does much better than MP at clustering the values into consecutive runs of positive or
negative values. This type of smoothness better reflects the regularity in the natural video sequence input.

We can quantify this increased regularity by examining the Markov state transitions. Specifically, each
coefficient time-series is Markov chain (Norris, 1997) with three possible states at frame n:

σm(n) =





− if um(n) < −λ

0 if −λ ≤ um(n) ≤ λ

+ if um(n) > λ.

Figure 8 shows the marginal probabilities P (·) of the states and the conditional probabilities P (·|·) of moving
to a state given the previous state. The HLCA and MP are equally likely to have non-zero states, but the
HLCA is over five times more likely than MP to have a positive coefficient stay positive (P (+|+)). Also,
though the absolute probabilities are small, MP is roughly two orders of magnitude more likely to have a
coefficient swing from positive to negative (P (−|+)) and vice-versa (P (−|+)).

To quantify the regularity of the active coefficient locations we calculate the entropy (Cover and Thomas,
1991) of the coefficient states at frame n conditioned on the coefficient states at frame (n − 1):

H(σm(n) |σm(n − 1)) = −P (+) [P (−|+) + P (0|+) + P (+|+)]

− P (0) [P (−|0) + P (0|0) + P (+|0)]

− P (−) [P (−|−) + P (0|−) + P (+|−)] , (11)

plotted in Figure 9. This conditional entropy indicates how much uncertainty there is about the status of
the current coefficients given the coefficients from the previous frame. Note that the conditional entropy for
MP is almost double the entropy for the HLCA, while SLCA is again similar to BPDNthr. The principle
contributing factor to the conditional entropy appears to be the probability a non-zero node remains in the

15

0 50 100 150 200
0

2

4

6

8

10

M
S

E
 (

%
 e

rr
or

)

frame

HLCA (3.33)
SLCA (3.31)
BPDNthr (3.73)
MP (3.33)

(a)

0 50 100 150 200
0

5000

10000

15000

nu
m

be
r

of
 a

ct
iv

e
co

ef
fic

ie
nt

s

frame

HLCA (2968)
SLCA (8304)
BPDNthr (7775)
MP (2348)

(b)

0 50 100 150 200
0

5000

1000

15000

20000

frame

nu
m

be
r

of
 c

ha
ng

in
g

co
ef

fic
ie

nt
 lo

ca
tio

ns

HLCA (1690)
SLCA (7343)
BPDNthr (7303)
MP (4006)

(c)

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3
ra

tio
 o

f c
ha

ng
in

g−
to

−
ac

tiv
e

co
ef

fic
ie

nt
s

frame

HLCA (0.55944)
SLCA (0.87394)
BPDNthr (0.93827)
MP (1.7056)

(d)

Figure 7: The HLCA and SLCA systems simulated on 200 frames of the “foreman” test video sequence.
For comparison, MP coefficients and thresholded BPDN coefficients are also shown. Average values for each
system are noted in the legend. (a) Per-frame MSE for each coding scheme, designed to be approximately
equal. (b) The number of active coefficients in each frame. (c) The number of changing coefficient locations
for each frame, including the number of inactive nodes becoming active and the number of active nodes
becoming inactive. (d) The ratio of changing coefficients to active coefficients. A ratio near 2 (such as with
MP) means that almost 100% of the coefficient locations are new at each frame. A ratio near 0.5 (such as
with HLCA) means that approximately 25% of the coefficients are new at each frame.

16

0 0.5 1

P(−) : (0.019)

P(0) : (0.959)

P(+) : (0.017)

HLCA

0 0.5 1

P(−) : (0.051)

P(0) : (0.895)

P(+) : (0.049)

SLCA

0 0.5 1

P(−) : (0.047)

P(0) : (0.902)

P(+) : (0.046)

BPDNthr

0 0.5 1

P(−) : (0.014)

P(0) : (0.967)

P(+) : (0.014)

MP

(a)

0 0.5 1

P(−|+) : (0.0001)
P(+|−) : (0.0001)
P(−|0) : (0.0055)
P(+|0) : (0.0051)
P(0|−) : (0.2826)
P(0|+) : (0.2847)
P(+|+) : (0.7152)
P(−|−) : (0.7173)
P(0|0) : (0.9895)

HLCA

0 0.5 1

P(−|+) : (0.0180)
P(+|−) : (0.0180)
P(−|0) : (0.0248)
P(+|0) : (0.0243)
P(0|−) : (0.4376)
P(0|+) : (0.4462)
P(+|+) : (0.5358)
P(−|−) : (0.5444)
P(0|0) : (0.9509)

SLCA

0 0.5 1

P(−|+) : (0.0161)
P(+|−) : (0.0160)
P(−|0) : (0.0244)
P(+|0) : (0.0241)
P(0|−) : (0.4658)
P(0|+) : (0.4733)
P(+|+) : (0.5106)
P(−|−) : (0.5182)
P(0|0) : (0.9515)

BPDNthr

0 0.5 1

P(−|+) : (0.0083)
P(+|−) : (0.0078)
P(−|0) : (0.0126)
P(+|0) : (0.0123)
P(0|−) : (0.8528)
P(0|+) : (0.8571)
P(+|+) : (0.1347)
P(−|−) : (0.1394)
P(0|0) : (0.9751)

MP

(b)

Figure 8: (a) The marginal probabilities denoting the fraction of the time coefficients spent in the three
states: negative, zero and positive (−, 0, and +). (b) The transition probabilities denoting the probability of
a node in one state transitioning to another state on the next frame. For example, P (0|+) is the probability
that a node with an active positive coefficient will be inactive (i.e., zero) in the next frame.

same state (i.e., P (+|+) and P (−|−)). To illustrate, Figure 9 shows the change in conditional entropy is
almost linear with varying P (+|+) (assuming P (−|−) = P (+|+) and all other transition probabilities are
kept fixed).

The substantial decrease in the conditional entropy for the HLCA compared to MP quantifies the in-
creased regularity in time-series coefficients due to the inertial properties of the LCAs. The HLCA in
particular encourages coefficients to maintain their present state (i.e., active or inactive) if it is possible
to find an adequate stimulus representation. While some sparsity may be sacrificed in this strategy, the
smoothness induced in the coefficients by grouping active states together in time better reflects the character
of the natural time-varying stimuli and could be useful for higher-level computations.

5 Conclusions and future work

Sparse approximation is an important paradigm in neural coding, though plausible mechanisms to achieve
these codes have remained unknown. We have proposed an architecture for a locally competitive algorithm
that solves a family of sparse approximation problems (including BPDN as a special case). These LCAs
may be readily implemented using a parallel network of simple analog circuit elements that could potentially
be mapped onto the neural circuitry of sensory cortical areas such as V1. Though these LCA systems are
nonlinear, we have shown that they are well-behaved under nominal operating conditions.

While the LCA systems (other than SLCA) are not generally guaranteed to find a globally optimal
solution to their energy function, we have proven that the systems will be efficient in a meaningful sense.
The SLCA system produces coefficients with sparsity levels comparable to BPDN solvers, but uses a natural
physical implementation that is more energy efficient (i.e., it uses fewer non-zero inhibition signals between
nodes). Perhaps most interestingly, the HLCA produces coefficients with almost identical sparsity as MP.
This is significant because greedy methods such as MP are widely used in signal processing practice because
of their efficiency, but HLCA offers a much more natural neural implementation.

LCAs are particularly appropriate for time-varying data such as video sequences. The LCA ODE not only
encourages sparsity but also introduces an inertia into the coefficient time-series that we have quantified using
both raw counts of changing coefficient location and through the conditional entropy of the coefficient states.
By allowing slightly suboptimal sparsity in exchange for more regularity in the set of active coefficients, the

17

0 50 100 150 200
−0.05

0

0.05
HLCA

0 50 100 150 200
−0.1

0

0.1
MP

frame number

(a)

HLCA SLCA BPDNthr MP
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

E
nt

ro
py

 p
er

 c
oe

ffi
ci

en
t l

oc
at

io
n

(b)

0 0.5 1
0

0.05

0.1

0.15

0.2

P(+|+)

pe
r

co
ef

fic
ie

nt
 s

ta
te

 e
nt

ro
py

(c)

Figure 9: (a) An example time-series coefficient for the HLCA and MP (top and bottom, respectively)
encodings for the test video sequence. HLCA clusters non-zero entries together into longer runs while MP
switches more often between states. (b) The empirical conditional entropy of the coefficient states (−,0,+)
during the test video sequence. (c) The conditional entropy is calculated analytically while varying P (+|+)
and equalizing all other transition probabilities to the values seen in HLCA and MP. The tendency of a
system to group non-zero states together is the most important factor in determining the entropy.

LCAs produce smoother coefficient sequences that better reflect the structure of the time-varying stimulus.
This property could prove valuable for higher levels of analysis that are trying to interpret the sensory scene
from a set of sparse coefficients. Coefficient regularity could presumably be further improved by incorporating
models of spatial dependencies from higher-level processing areas or models of temporal dynamics in the
representation of natural scenes. Note that this approach differs from previous approaches in which the
dynamics are modeled by the dictionary itself (Olshausen, 2003), as that approach also suffers from producing
erratic coefficient sequences that may be difficult to interpret.

The current limitations of neurophysiological recording mean that exploring the sparse coding hypothesis
must rely on testing specific proposed mechanisms. Though the LCAs we have proposed appear to map
well to known neural architectures, they still lack the biophysical detail necessary to be experimentally
testable. We will continue to build on this work by mapping these LCAs to a detailed neurobiological
population coding model that can produce verifiable predictions. Furthermore, the combination of sparsity
and regularity induced in LCA coefficients may serve as a critical front-end stimulus representation that
enables visual perceptual tasks, including pattern recognition, source separation and object tracking.

By using simple computational primitives, LCAs also have the benefit of being implementable in analog
hardware. An imaging system using VLSI to implement LCAs as a data collection front end has the potential
to be extremely fast and energy efficient. Instead of digitizing all of the sensed data and using digital hardware
to run a compression algorithm, analog processing would compress the data into sparse coefficients before

digitization. In this system, time and energy resources would only be spent digitizing coefficients that are a
critical component in the signal representation.

Acknowledgments

This work was funded by grants NGA MCA 015894-UCB, NSF IIS-06-25223 and CCF-0431150,
DARPA/ONR N66001-06-1-2011 and N00014-06-1-0610, ONR N00014-06-1-0769 and N00014-06-1-0829,
AFOSR FA9550-04-1-0148, and the Texas Instruments DSP Leadership University Program. The authors
would like to thank the anonymous reviewers who provided comments that improved the manuscript. The
authors are also grateful to the authors of the “SparseLab” and “matlabPyrTools” software toolboxes for
making them available for public use.

18

A Detailed comparison of LCAs to closely related methods

Several recent sparse approximation methods are closely related to a discrete time approximation of the LCA
system described in Section 3.4 when applied to a fixed stimulus. To present a detailed comparison between
these methods, we first introduce the binary thresholding function

TB(x) =

{
0 if x < 0

1 if x ≥ 0
.

Note the correspondence to the ideal hard thresholding function, T(0,∞,λ)(x) = xTB(x − λ) . To make a
direct comparison between HLCA and these iterative methods, we use this notation to write a discrete time
approximation to the HLCA system equation for a single node at the discrete time steps {tk}

um(tk+1) = (1 − ∆)um(tk) + ∆


bm −

∑

n6=m

〈φm, φn〉un(tk)TB(un(tk) − λ)


 , (12)

am(tk+1) = um(tk+1)TB(um(tk+1) − λ) ,

where ∆ is a small constant incorporating both the time constant of the dynamical system and the step size
of the discrete time approximation.

The sparse-set coding network (SSCN) in (Rehn and Sommer, 2007) uses an iterative method where the
update equation for a single node is given by

um(tk+1) = bm −
∑

n6=m

〈φm, φn〉bnTB

(
un(tk) −

λ

bn

)
, (13)

am(tk+1) = um(tk+1)TB

(
um(tk+1) −

λ

bn
dv

)
.

The SSCN can be interpreted as a network implementation of the optimized orthogonal matching pursuit
(OOMP) algorithm (Rebollo-Neira and Lowe, 2002). OOMP is a greedy method that at each iteration selects
the dictionary element that minimizes the residual error when the optimal coefficients are calculated for the
selected dictionary elements. The resulting SSCN update equation is very similar to the HLCA update term
(i.e., the bracketed term) in (12), with three notable differences:

• the HLCA uses a fixed threshold λ for every node whereas the SSCN scales the threshold for each node
by that node’s driving term λ

bn

;

• the HLCA uses a graded inhibition term for active coefficients (i.e., the magnitude of the inhibition
from node m scales with um(tk)) whereas the SSCN uses a fixed inhibition magnitude for active nodes
based on the driving term bm; and

• the HLCA uses a charging circuit approach whereas the SSCN update directly modifies the current
coefficient values.

It is not clear how the variable threshold in the SSCN or the graded inhibition in the HLCA affects the
character of the resulting coefficients. While the charging circuit approach taken by the HLCA may appear
to be a small implementational difference, it represents a different strategy for calculating coefficients. This
can be seen by considering the first step a system would take starting from a set of zero-valued coefficients,
am(0) = 0, ∀m. The HLCA would produce a small change (of magnitude ∆) based on the driving terms
bm. When some of these coefficients grow just above threshold (not all the way up to bm) they can begin to
inhibit to prevent other coefficients from becoming active. In the SSCN, the first step produces coefficient
values that are equal to the full driving values bm passed through a non-uniform hard threshold (i.e., they are
either 0 or bm). Thus, unless the threshold is initially very high, SSCN will need to prune away coefficients
from the thresholded linear projections.

19

The algorithm in (Kingsbury and Reeves, 2003) uses an iterative method where the update equation for
a single node is given by

um(tk+1) = um(tk) TB(um(tk) − λ) + ∆



bm −
∑

n6=m

〈φ̃n, φm〉un(tk) TB(un(tk) − λ)



 , (14)

am(tk+1) = um(tk) TB(um(tk) − λ) ,

where um(t0) = bm and φ̃m is the canonical dual vector for the dictionary element φm. The set of canonical
dual vectors are calculated by performing a matrix inverse and essentially capture the calculation of the
pseudoinverse operator. This update equation is also very similar to the HLCA system equation in (12),
with two distinct differences:

• the strength of the inhibition term between two nodes is modulated by the inner product of the
dictionary element with the corresponding dual vector for the other node whereas the HLCA uses the
inner product between the dictionary elements; and

• the HLCA uses a charging circuit approach whereas the update equation in (14) has a charging term
that is modulated by the binary thresholding function.

The use of the dual vectors in (14) complicates the implementation compared to the HLCA, especially in the
presence of changes to the dictionary (e.g., with the death of a node in the system the entire set of dual vectors
would change). While equation (14) appears to have a similar charging notion as is seen in the HLCA, the
presence of the binary thresholder in this term changes the strategy for calculating the coefficients. Again,
this can be seen most clearly by considering the first step each system would take starting from zero-valued
coefficients. In the system of equation (14), the update term (i.e., the bracketed term) produces a small
change based on the driving terms bm. However, if the values produced at this first step are below threshold,
they will only affect the next step through the inhibition term and will not continue to aggregate in the
coefficient values. In other words, the charging behavior only applies to the nodes that are above threshold.
This characteristic likely results in the observation by the authors that convergence is improved by efforts to
explicitly decrease the sparsity of the solution during the iterations through techniques such as scaling the
threshold (see Section 4 in (Kingsbury and Reeves, 2003)).

Several authors (Herrity et al., 2006; Hale et al., 2007; Figueiredo and Nowak, 2003; Daubechies et al.,
2004; Blumensath and Davies, 2008) have recently introduced methods based on an Iterative Thresholding
Algorithm (ITA), where the update equation for a single node is given by

um(tk+1) = bm −
∑

n6=m

〈φm, φn〉un(tk)TB(un(tk) − λ) , (15)

am(tk+1) = um(tk+1)TB(um(tk+1) − λ) .

The ITA as stated (i.e., using a hard thresholder) converges to a local minimum of the ℓ0 optimization
problem. It can also be written using a soft thresholding function to converge to a global minimum of the ℓ1

optimization problem (BPDN). The ITA is also very similar to the LCA algorithm, having the same system
equation as the LCA update term. The primary difference between (15) and the LCA system equation in (12)
is that the LCA uses a charging circuit approach whereas the ITA directly updates the coefficients. Again,
this difference can be seen most explicitly by considering the first step each system would take starting from
zero-valued coefficients. In the ITA, the first step produces coefficient values that are equal to the full driving
values bm passed through a uniform threshold. Thus, unless the threshold is initially very high, ITA also
needs to prune away coefficients from the thresholded linear projections whereas the LCA inhibition terms
work to keep many coefficients from ever becoming active. This charging circuit behavior also allows the
LCA to be easily written in terms of simple analog computational elements such as resistors, capacitors and
amplifiers.

20

An important distinction between the LCAs and all three of these systems is that the LCAs explicitly
correspond to the sparse approximation objective function (6) employing a wide variety of coefficient cost
functions. Furthermore, there is a tight and explicit connection between these cost functions and the thresh-
olding function used by the system. The SSCN minimizes an objective function that is an approximation
to (6), and it is designed specifically to use the ℓ0 norm as the coefficient cost function. The ITA has not
been derived for general cost functions, but has been derived separately for ℓ0 and ℓ1 optimization.

B Relating cost functions and threshold functions

To see the correspondence between a particular choice of a threshold function Tλ(·) and the sparsity-inducing
cost function C(·), we begin by assuming we want to minimize an energy function of the form:

E =
1

2
||s − ŝ||2 + λ

∑

m

C(am)

=
1

2

(
sts − 2bta + atΦtΦa

)
+ λ

∑

m

C(am) .

For simplicity, we suppress the time variable in the notation. To find the changes in the active coefficients
{am} that will most significantly minimize the energy function, we take the derivative of the energy function
with respect to the active coefficients,

dE

dam
= −bm +

∑

n

Gm,nan + λ
dC(am)

dam
= −bm +

∑

n6=m

Gm,nan + am + λ
dC(am)

dam
, (16)

where we assume the vectors are unit-norm ||φm||2 = 1. Looking back to the dynamic system in (4),

u̇m =
1

τ


bm − um −

∑

n6=m

Gm,nan


 ,

we can see that the dynamics on the internal state variables are proportional to the derivative of the energy
function in (16), u̇m∝ − dE

dam

, if the active coefficients are related to the internal state variables by

um = am + λ
dC(am)

dam
.

C Cost functions corresponding to ideal thresholding functions

The sigmoidal threshold function specified in (8) is invertible, meaning that active coefficients can be related
back to their underlying state variables, um = T−1

(α,γ,λ)(am), though not in closed form. For notational

simplicity and without losing generality, we will assume in this section positive coefficients (am > 0). Though
the ideal thresholding functions are not technically invertible, we can find the limit of the inverse function:

T−1
(α,∞,λ)(am) = lim

γ→∞
T−1

(α,γ,λ)(am) =

{
λ if am < (1 − α)λ

λ + am − (1 − α)λ if am ≥ (1 − α)λ.

Using the correspondence from Appendix B,

λ
dC(am)

dam
= um − am = T−1

(α,γ,λ)(am) − am,

21

we integrate to find the ideal cost function

C(am) =
1

λ

∫ am

0

(
T−1

(α,∞,λ)(x) − x
)

dx

=
1

λ

(∫ am

0

(λ − x) dx +

∫ am

(1−α)λ

(x − (1 − α)λ) dx

)

= αam +
λ (1 − α)2

2
.

D Stability of LCAs

D.1 Equilibrium points

For a given set of active and inactive coefficients the LCA system equations are linear and only change
when a node crosses threshold (from above or below). A sub-field of control theory specifically addresses
these switched systems (Decarlo et al., 2000). To express the HLCA system as a switched system, we define
M ⊆ [1, . . . , M] as the current set of active nodes (i.e., m ∈ M if |um(t)| ≥ λ). We also define a (M × M)
selection matrix SM as being all zeros except for ones on the diagonal corresponding to the active nodes,

[SM]m,n =

{
1 if m = n and m ∈ M

0 if m 6= n or m /∈ M.

Defining the system matrix AM = 1
τ [(I − ΦtΦ) SM − I], the HLCA is written as a switched linear system,9

u̇(t) =
1

τ
Φts(t) + AMu(t) .

There are only finitely many possible sets M which we further limit by only allowing sets satisfying the
stability criterion (active nodes must not form linearly dependent subdictionaries). We also assume that
a given fixed input s induces equilibrium points u∗ that do not have any components identically equal to
threshold u∗

m 6= λ. This condition appears true with overwhelming probability, and implies that there exists
r > 0 such that |u∗

m| − r ≥ λ for all m ∈ M and |u∗
m| + r ≤ λ for all m /∈ M.

For a given M, linear systems theory indicates that the system

u̇ = AMu

has a single equilibrium point (i.e., is asymptotically stable) only if AM has negative eigenvalues (Franklin
et al., 1986). The matrix AM has no positive eigenvalues, so we must show that it is full rank (AMu 6= 0, ∀u ∈
R

M). We begin by determining the nullspace N (·) of the composite matrix ΦtΦSM. The nullspace of Φt is
empty, N (Φt) = ∅, because span{φm} = R

N . Because the collection {φm}m∈M is linearly independent and
the matrix ΦSM consists of only those selected vectors on the columns, N (ΦSM) = span{em}m/∈M, where
em are the canonical basis elements. Therefore the composite matrix also has a nullspace of N (ΦtΦSM) =
span{em}m/∈M. Without losing generality, we assume that the first |M| entries are active, M = 1, . . . , |M|.
Consider first the case when all non-trivial internal state vectors only have non-zero values in the first |M|
positions, u ∈ span{e1, . . . , e|M|}. In this case, u /∈ N (ΦtΦSM), implying that AMu = −ΦtΦSu 6= 0.
Consider next the case when all non-trivial internal state vectors only have non-zero values in the last
(M − |M|) positions, u ∈ span{e|M|+1, . . . , eM}. In this case, u ∈ N (ΦtΦSM), meaning that AMu =
−u 6= 0. Taking these two cases together, we see that AMu 6= 0, ∀u ∈ R

M , implying that AM only has
negative eigenvalues so that the system in question has a single equilibrium point.

9All LCA systems can be written as a similar switched system, but the thresholding functions with additive correction terms
require a cumbersome definition of proxy state variables that we omit here.

22

Given a particular set of active nodes M, we therefore have a single equilibrium point u∗ defined by the
system matrix AM. All other points within a neighborhood of this equilibrium point correspond to the same
set of active nodes (and therefore the same system matrix). Therefore, since each system matrix has a single
equilibrium, there can be no other equilibrium points with coordinates within a neighborhood of u∗,

|u∗
m − um| < r for any m =⇒ f(u) 6= 0.

We know then that there are a finite number of equilibrium points, and each equilibrium point is isolated
because there can be no other equilibrium points infinitely close.

Finally we consider the stability of the system in the neighborhood of the equilibrium point u∗. Because
we know that the linear subsystem is asymptotically stable, we must show that there exists a ǫ > 0 such
that for any u(0) ∈ Bǫ(u

∗), the set of active nodes M never changes so AM stays fixed. We must therefore
ensure that we can specify a ǫ > 0 such that for a fixed AM the internal states never change state, |um(t) | >
λ, ∀m ∈ M and |um(t) | < λ, ∀m /∈ M. The tools of linear systems theory give this evolution (Franklin
et al., 1986):

u(t) = eAMtu(0) +

∫ t

0

e(t−τ)AMΦtsdτ

= eAMtu(0) + eAMt

(∫ t

0

e−AMτdτ

)
Φts

= eAMtu(0) + eAMt
(
−A−1e−AMt + A−1

)
Φts

= eAMtu(0) + −A−1Φts + eAMtA−1Φts

= eAMt (u(0) − u∗) + u∗,

where lim u(t) = −A−1Φts = u∗ for a linear system. From this, we bound the energy of the difference signal

||u(t) − u∗|| =
∣∣∣∣eAMt (u(0) − u∗)

∣∣∣∣ ≤ eµmaxt ||u(0) − u∗|| ≤ ||u(0) − u∗|| ≤ ǫ,

where µmax is the largest magnitude eigenvector of AM. This energy bound also serves as a crude bound on
the individual elements of the internal state vector

|um(0) − u∗
m| ≤ ||u(t) − u∗|| ≤ ǫ.

We conclude that if ǫ < r, the system will not change state and behaves as a fixed, asymptotically stable linear
system. Therefore, the system is locally asymptotically stable around each equilibrium point, u(0) ∈ Br(u

∗).

D.2 Input-output stability

Consider the time derivative of the energy computed through the chain rule,

d

dt
E(t) =

dE

da

da

du
u̇ = −

(
dE

da

)2
da

du
,

where the last equality follows from the definition of the LCA dynamics u̇ = − dE
da

. Therefore, as long as Tλ(·)

is non-decreasing, da
du

≥ 0, implying that the energy function will be non-increasing with time d
dtE(t) ≤ 0.

To assess input-output stability, define τD to be the average dwell time between changes to the set of
active nodes M. For switched linear systems, sufficient conditions for input-output stability require each
subsystem to be asymptotically stable and that the system doesn’t switch “too often” (Hespanha and Morse,
1999). Specifically, we restate here a theorem from switched system theory in language corresponding to the
LCAs.

23

Average dwell time theorem (Theorem 2 combined with Lemma 1 in (Hespanha and Morse,
1999)). Given a collection of system matrices AM and a positive constant ω0 such that AM + ω0I is

asymptotically stable for all t, then, for any ω ∈ [0, ω0], there is a finite constant τ∗
D such that as long as

τD ≥ τ∗
D, the switched system has a bounded internal state for piecewise constant input signals s(t):

(∫ t

0

e2ωτ ||u(τ)||2 dτ

)1/2

≤ κ1

(∫ t

0

e2ωτ ||s(τ)||2 dτ

)1/2

+ κ2 ||s(0)|| ,

where κ1 and κ2 are finite constants. Similar statements can be made using ℓ∞ norms instead of ℓ2 norms.

The average dwell time theorem guarantees that the LCA system will remain stable as long as each
subsystem is asymptotically stable and τD is not too small. Appendix D.1 shows that the system matrix
AM has only strictly negative eigenvalues. The modified system matrix Ã = AM + ω0I has a minimum
magnitude eigenvalue of µ̃min = µmin + ω0. Clearly there exists a ω0 > 0 such that µ̃min > 0 if and only if
µmin > 0. In other words, there exists ω0 > 0 so that Ã is asymptotically stable (thus satisfying the average
dwell time theorem) if the stability criterion is met for every subsystem of the switched system.

E Steady-state sparsity of LCA systems

The LCA at steady-state looks like a fixed linear system. If we know a priori the set of active nodes
corresponding to the steady-state response M then the steady-state internal state variables are given by

ũ = lim
t→∞

u(t) = −
1

τ
A−1

MΦts,

where AM is defined as in Appendix D. While we cannot determine the set of active nodes in the limit, we
can distinguish sets of nodes that cannot be active. When calculating the steady-state values ũ assuming a
fixed M, if a node not in M is above threshold in ũ (or a node in M is below threshold), the system matrix
would have changed. In this case we call M inconsistent. It is important to note a subtle point: finding an
inconsistency does not indicate the correct steady-state active set, but only indicates that it cannot be M.

Given a set of candidate active nodes M, we assume (without losing generality) the active nodes are
indexed consecutively from the beginning, M = 1, . . . , |M|. We employ the usual canonical basis elements
em ∈ R

M that contain a single non-zero entry in the mth position (e.g., e1 = [1, 0, . . . , 0]
t
). We will

also employ what we call the Grammian basis elements vm ∈ R
M that contain the inner products of one

dictionary element with all the others, vm = [〈φ1, φm〉, 〈φ2, φm〉, . . . , 〈φM , φm〉]t = [G1,m, G2,m, . . . , GM,m]
t
.

The system matrix can be expressed entirely in terms of these basis elements,

AM =
1

τ

[(
I − ΦtΦ

)
SM − I

]
= −

1

τ

[
v1, . . . , v|M|, e|M|+1, . . . , eM

]
,

where SM is the corresponding selection matrix (defined in Appendix D.1). The inverse of this system matrix
has several important properties. First, for inactive nodes m /∈ M, the corresponding canonical basis vector
is an eigenvector of the inverse system matrix A−1em = −τem. Similarly, for active nodes m ∈ M, the
inverse system matrix transforms the corresponding Grammian basis vector into the canonical basis vector,

A−1vm = −τem. We also note that the set
(
{vm}

|M|
m=1

⋃
{em}M

m=|M|+1

)
is a basis for the space R

M .

For now, let the input signal be proportional to a single dictionary element, s = αφn, meaning that
Φts = αvn. We will assume that the scaling coefficient is greater than the chosen threshold, α > λ, so the
signal strength is considered significant. There exists a unique set of coefficients {βm} such that

αvn = β1v1 + · · · + β|M|v|M| + β|M|+1e|M|+1 + · · · + βMeM .

24

Looking at each element of this expression in turn is illuminating:

α [vn]1 = 〈φ1, αφn〉 = 〈φ1,
(
β1φ1 + · · · + β|M|φ|M|

)
〉

...

α [vn]|M| = 〈φ|M|, αφn〉 = 〈φ|M|,
(
β1φ1 + · · · + β|M|φ|M|

)
〉

α [vn]|M|+1 = 〈φ|M|+1, αφn〉 = 〈φ|M|+1,
(
β1φ1 + · · · + β|M|φ|M| + β|M|+1φ|M|+1

)
〉

...

α [vn]M = 〈φM , αφn〉 = 〈φM ,
(
β1φ1 + · · · + β|M|φ|M| + βMφM

)
〉.

The coefficients β1, . . . , β|M| correspond to the best approximation of s in the subspace spanned by {φm}
|M|
m=1.

Consider first the case when n ∈ M. The coefficients are optimal: βn = 1 and βm = 0 for all m 6= n.
Assuming the fixed system matrix AM, the steady-state internal state variables are given by

ũ = −
1

τ
A−1

MΦts = −
1

τ
A−1

Mαvn = αen.

If the LCA selects the optimal set of nodes, the coefficient values are optimal. Now consider the case when
the vector is not part of the active set, n /∈ M. The coefficients {βm} correspond to the steady-state values:

−
1

τ
A−1

MΦts = β1e1 + · · · + β|M|e|M| + β|M|+1e|M|+1 + · · · + βMeM .

Looking at the entries of αvn, each index not in the active set, m /∈ M, has the coefficient

βm = α〈φm, φn〉 −
(
β1〈φ1, φ|M|+1〉 + · · · + β|M|〈φ|M|, φ|M|+1〉

)
.

The set M is consistent only if βm > λ for all m ∈ M, and βm > λ for all m /∈ M.
These results lead us to several observations that help qualify the sparsity of the LCA solutions:

1. When n ∈ M, ũm = 0 < λ for all m 6= n means that if the LCA finds the optimal node, it will not
include any extraneous nodes.

2. When n ∈ M, ũn = α means that if the optimal node is correctly selected by the LCA in the steady
state, the system will find the optimal coefficient for that node.

3. When n /∈ M, βm > λ for all m ∈ M and βm < λ for all m /∈ M means that the input signal can be

represented by dictionary elements {φm}
|M|
m=1 so the residual projection onto any other vector is less

than λ. Any set of active nodes that cannot represent the input signal to this accuracy is inconsistent.

To minimize notation, we have only discussed one-sparse input signals. However, the analysis performed
here is entirely linear and the same principles apply to input signals containing more than one dictionary
component. In particular, a set of active nodes is inconsistent if: it cannot represent every component of the
input signal so that the residual projection onto every other dictionary element is less than λ; or it contains
every component of the input signal in addition to other extraneous components. Also, if the active set
recovers the correct indices, the LCA steady-state coefficients will find the optimal coefficients.

References

Bacciotti, A. and Rosier, L. (2001). Liapunov functions and stability in control theory. Springer, New York.

Berger, T. (1971). Rate Distortion Theory. Prentice Hall, Englewood Cliffs, NJ.

25

Blumensath, T. and Davies, M. (2008). Iterative thresholding for sparse approximations. The Journal of Fourier
Analysis and Applications. In Press.

Candès, E. and Donoho, D. (2004). New tight frames of curvelets and optimal representations of objects with
piecewise C

2 singularities. Communications on Pure and Applied Mathematics, 57(2):219–266.

Chen, S., Donoho, D., and Saunders, M. (2001). Atomic decomposition by basis pursuit. SIAM Journal on Scientific
Computing, 43(1):129–159.

Christensen, O. (2002). An Introduction to Frames and Riesz Bases. Birkhauser, Boston, MA.

Cichocki, A. and Unbehauen, R. (1993). Neural Networks for Optimization and Signal Processing. Wiley.

Cohen, M. and Grossberg, S. (1983). Absolute stability of global pattern formation and parallel memory storage by
competitive neural networks. IEEE Transactions on Systems, Man, and Cybernetics, 13(5):815–825.

Cover, T. and Thomas, J. (1991). Elements of Information Theory. John Wiley & Sons, Inc., New York, NY.

Daubechies, I., M. Defrise, M., and De Mol, C. (2004). An iterative thresholding algorithm for linear inverse problems
with a sparsity constraint. Communications on Pure and Applied Mathematics, 57(11):1413–1457.

Davis, G., Mallat, S., and Zhang, Z. (1994). Adaptive time-frequency decompositions with matching pursuit. Optical
Engineering, 33(7).

Dayan, P. and Abbott, A. (2001). Theoretical Neuroscience. MIT Press, Cambridge, MA.

Decarlo, R., Cranicky, M., Pettersson, S., and Lennartson, B. (2000). Perspectives and results on the stability and
stabilizability of hybrid systems. Proceedings of the IEEE, 88(7):1069–1082.

Delgutte, B., Hammond, B., and Cariani, P. (1998). Psychophysical and Physiological Advances in Hearing, chapter
Neural coding of the temporal envelope of speech: Relation to modulation transfer functions, pages 595–603. Whurr
Publishers, Ltd.

DeVore, R. and Temlyakov, V. (1996). Some remarks on greedy algorithms. Advances in Computational Mathematics,
5:173–187.

Donoho, D. (1995). Denoising by soft-thresholding. IEEE Transactions on Information Theory, 41(3):613–627.

Donoho, D. and Elad, M. (2003). Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ
1

minimization. Proceedings of the National Academy of Sciences of the United States of America, 100(5):2197–2202.

Donoho, D., Tsaig, Y., Drori, I., and Starck, J. (2006). Sparse solution of underdetermined linear equations by
stagewise orthogonal matching pursuit.

Elad, M. (2006). Why simple shrinkage is still relevant for redundant representations? IEEE Transactions on
Information Theory, 52(12):5559–5569.

Feichtinger, H., Türk, A., and Strohmer, T. (1994). Hierarchical parallel matching pursuit. In Proceedings of SPIE,
volume 2302, pages 222–232, San Diego, CA.

Field, D. (1994). What is the goal of sensory coding? Neural Computation, 6:559–601.

Figueiredo, M. and Nowak, R. (2003). An EM algorithm for wavelet-based image restoration. IEEE Transactions on
Image Processing, 12:906–916.

Fischer, S., Cristóbal, G., and Redondo, R. (2004). Sparse overcomplete Gabor wavelet representation based on local
competitions. IEEE Transactions on Image Processing, 15(2):265–272.

Franklin, G., Powell, J., and Emami-Naeini, A. (1986). Feedback Control of Dynamic Systems. Addison-Wesley
Publishing Company, Reading, MA.

26

Hale, E., Yin, W., and Zhang, Y. (2007). A fixed-point continuation method for l1-regularized minimization with
applications to compressed sensing. Technical Report TR07-07, Department of Computational and Applied Math-
ematics, Rice University.

Herrity, K., Gilbert, A., and Tropp, J. (2006). Sparse approximation via iterative thresholding. In Proceedings of the
2006 IEEE International Conference on Acoustics, Speech, and Signal Processing, Toulouse, France.

Hespanha, J. and Morse, A. (1999). Stability of switched systems with average dwell time. In Proceedings of the 38th
Conference on Decision and Control.

Hopfield, J. (1984). Neurons with graded response have collective computational properties like those of two-state
neurons. Proceedings of the National Academy of Sciences of the United States of America, 81(10):3088–3092.

Khalil, H. (2002). Nonlinear Systems. Prentice Hall, Upper Saddle Tiver, NJ, third edition.

Kingsbury, N. and Reeves, T. (2003). Redundant representation with complex wavelets: How to achieve sparsity. In
Proceedings of the International Conference on Image Processing (ICIP).

Kreutz-Delgado, K., Murray, J., Rao, B., Engan, K., Lee, T., and Sejnowski, T. (2003). Dictionary learning algorithms
for sparse representation. Neural Computation, 15:349–396.

Lewicki, M. (2002). Efficient coding of natural sounds. Nature Neuroscience, 5:356–363.

Li, J., Michel, A., and Porod, W. (1988). Qualitative analysis and synthesis of a class of neural networks. IEEE
Transactions on Circuits and Systems, 35(8):976–986.

Mallat, S. and Zhang, Z. (1993). Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal
Processing, 41(12):3397–3415.

Natarajan, B. (1995). Sparse approximate solutions to linear systems. SIAM Journal on Computing, 24(2):227–234.

Norris, J. (1997). Markov Chains. Cambridge University Press, New York.

Olshausen, B. (2003). Principles of image representation in visual cortex. In Chalupa, L. and Werner, J., editors,
The Visual Neurosciences, pages 1603–1615. MIT Press.

Olshausen, B. and Field, D. (1996). Emergence of simple cell receptive properties by learning a sparse code for
natural images. Nature, 381:607–609.

Olshausen, B. and Field, D. (2004). Sparse coding of sensory inputs. Current Opinion in Neurobiology, 14:481–487.

Pece, A. and Petkov, N. (2000). Fast atomic decomposition by the inhibition method. In In Proceedings of the 15th
International Conference on Pattern Recognition.

Perrinet, L. (2005). Efficient source detection using integrate-and-fire neurons. In Artificial Neural Networks: Bio-
logical Inspirations? ICANN 2005, volume 3696/2005 of Lecture Notes in Computer Science, pages 167–172.

Rao, B. and Kreutz-Delgado, K. (1999). An affine scaling methodology for best basis selection. IEEE Transactions
on Signal Processing, 47(1):187–200.

Rebollo-Neira, L. and Lowe, D. (2002). Optimized orthogonal matching pursuit approach. IEEE Signal Processing
Letters, 9(4):137–140.

Rehn, M. and Sommer, T. (2007). A network that uses few active neurones to code visual input predicts the diverse
shapse of cortical receptive fields. Journal of Computational Neuroscience, 22(2):135–146.

Simoncelli, E. and Freeman, W. (1995). The steerable pyramid: A flexible architecture for multi-scale derivative
computation. In IEEE Second International Conference on Image Processing.

Süli, E. and Mayers, D. (2003). An introduction to numerical analysis. Cambridge University Press, New York.

Tipping, M. (2001). Sparse bayesian learning and the relevance vector machine. The Journal of Machine Learning
Research, 1:211–244.

27

Tropp, J. (2004). Greed is good: Algorithmic results for sparse approximation. IEEE Transactions on Information
Theory, 50(10):2231–2242.

Tropp, J. (2006). Random subdictionaries of general dictionaries. Preprint.

Vinje, W. and Gallant, J. (2002). Natural stimulation of the nonclassical receptive field increases information trans-
mission efficiency in V1. Journal of Neuroscience, 22:2904–2915.

Wipf, D. and Rao, B. (2004). Sparse Bayesian learning for basis selection. IEEE Transactions on Signal Processing,
52(8):2153–2164.

Yang, H. and Dillon, T. (1994). Exponential stability and oscillation of Hopfield graded response neural network.
IEEE Transactions on Neural Networks, 5(5):719–729.

28

