SPARSE COMPLETE SETS FOR NP:
SOLUTION OF A CONJECTURE
BY BERMAN AND HARTMANIS *

By
Stephen R. Mahaney

TR80-417

Department of Computer Science
Cornell University
Ithaca, New York 14853

*This research has been supported in part by National
Science Foundation Grants MCS 75-09433 and MCS 78-00418.

Sparse Complete Sets for LP:
Solution of a Comjecture
by Berman and Eartmanis*

Stephen R, liahaney

Computer Science Department
Cornell University
Ithaca, lew York 14853

ABSTRACT

In this paper wve show that if XP has a sparse cormplete
set under many-one recuctions, then P = KP. The result is
extended to show that if NP is sparse reducible, then P =
KP. The mein techniques of this paper gereralize the &P
recognizer for the couplement of a sparse cozplete set with
census furction to the case where the census functica is not
known (c.f. [If]), then a many-one reduction of this
language to the sparsc set permits a polynomial time beunced
tree search as in [B], [FJ], or [1P]. Even without actual
khowledge of the census, the algorithm utilizes the proper-
ties of the true census to decide membership in SAT in poly-

nomial tine.
* This research has been supported in part by liztional

Science Foundation Grauts !ICS 75-09433 and LCS 78-00418.

April 17, 1980

April 17, 1930

Sparse Conplete Sets for HP:
Solution ofi 2 Conjecture
by Berman and Hartmanis

Stephen R. lMahaney

Computer Science Department
Cornell University
Ithaca, lew York 14853

L. Berman and J. lartmanis [DH] conjectured under the assunption
P # NP that all NP-complete sets are isomorphic; 1i.e. that there are
polynoniazl time, bijective reductions with polyromial time inverse
reductions between any two NP-complete sets. A consequence of this con-
jecture is that zll LiP-complete sets have equivalent censity; in partic-

ular, no sparse set could be KP-complete unless P = LP.

P. Berman [B] gave a partial solution to this problem by shoving
‘that if a subset of an SLA language is LiP-complete (a fortiori, sparse),
then P = LP. This result was streagthened by Fortune [F] who shoved that
if co-NP has a sparse complete set, then P = P, It was not necessary
to assume that the satisfiable formulas reduce to a sparse set since the
proof uses the conjunctive self-rcducibility of non-satisfizble formulas
and the sparse set to realize a polynomial time algorithm. Meyer and

Patterson [1P] show similar results.

Hartmanis and Mahaney [EM] extended the results of Fortune and
Meyer and Patterson by showing that if NP has a sparse complete set with
an easily coumputable census functiomn, then P = co-UP; P = I'P follows
by Fortune's theorem. The question of how easy it is to compute census

functions for NP-complete sets was left open.

In light of Fortune's obscrvation about co-iP, the original conjec-
ture by Derman and Hartmanis on reducing XP to 'a sparsc sct seems teupl-
ingly closc. However the trec scarch methods of (], [F), [1P] utilize

the conjunctive self-reducibility of the co-iP-complete problem SATC.

April 17, 1980

-9 -

In this paper we settle the conjecture by showing that if an NP-
complete set is many-one recucible to a sparse set, then P = P, Thus
determining the existence of a sparse complete set for IiP is equivalent
to solving the P = KP? problem. Ve also show that the census function

~of a sparse liP-complete set is computable in P.

Section 2 contains definitioms and an outline of the tree search
nethod for showing that sparse sets for co-MNP implies P = iiP. Section 3

contains the main results; it assumes familiarity with the tree search

methkods.

2. Preliminaries.

We will consider languages over an alphabet & with two or nore Syw~
bols. We assume familiarity with KP-complete sets (cf. [c], [K] or
[AHU]). All the reductions in thkis paper will be polynomial time many=

one reductions.

Definition: A subset S of § is sparse if there is a polynomial
p(.) so that the number of strings im § of size at most n is at most

p(n) .

We restate the following theorem (cf. [F] or [iP]) and sketch the

proof.

Theorem 1.1. If SAT® is reducible to a sparse set, then P = LP.

Proof. Let f:SAT --> S be a reduction to a sparse set, S, znd let
F be a formula whose satisfiability is to be decided. We will search a
binary trec formed from self-reductions of F as follows: F is &t the
root; a formula G with variabics Xl, vee Xn occurring in the tree will
have sons Go and G1 where Xl is replaced by false and true, respec-
tively, and trivial simplifications are perforned (e.g. true or

X. = true).
i

If the formula F has n variables, then the trec will have 2"-1
nodes. We perform a depth-first search of this tree utilicing the

sparsc set to prunc the secarch., At each node F' encountered we compute
a label f(F'). Ve infer that certain labels correspond to sAT® by the

following: -
i. When a node with foruula falsc is found, its label is assigned

“falsc."

April 17, 1980

-3 -

ii. When tvo sons of a node haveuiibels assigned "false," then the
label of that node is also assigned "false."™ (This is the conjunctive
self-reducibility of non-satisfiable formulas.)
le prune the search by stopping if a leaf has formula truc in wvhich casc
F is satisfiable by the assignments on the patr to the leaf; and by not

scarching below a node whose label has already teen assigned "false."

The folloving lemma establishes the polynomial running time of the

algorithm,

Lemma 1.2. Let F be a formula with n variables. Let p(.) bound
the density of S and let q(.) be 2 polynonial bounding the increases in

size under the reduction f. Then the algorithm above visits at most
‘n + n * p(q(IF]))

interior nodes.

Proof. [F, }P]. Observe that if a label 1is expanced more than
once, then tlie expansions are all on the same path from the root. Since
path lengtks are at most n+l (with leaf), at most n * p(q(IFl)) interior
nodes with label "false" are visited. A satisfying assigmient visits at
nost another n nodes.

QED

Note that the algorithm docs not require a sparse set of labels for
satisfiable formulas. The sparse set of labels reduces the number of

unsatisfiable formulas to be searched.

3. Solution of the Conjecture.

Initially, we establish the result for a sparse KP-complete set.
The proof will be modified for the hypothesis that KP is sparse reduci-
ble.

The outline of the proof below is as follows: We first give an FP
recognizer for a set similar to the cowmplement of the sparse set S.
lany-one reductions of this set to the sparse sct are used to prove the
existence of a sparse sct of labels for SATC;'however, the computction
of this set of labels requires kinoving the census of S. Finally, the

depth-first scarch is modified to detecrmine sctisfiability of a formula

April 17, 1980

-4 -

(vithout actually knowing the census value that will generate the sparse
set of labels for SAT®).

. . . *
For the following discussion let § € (0,1) be a sparse complete
set for HP under many-one reductioans. Let HS be a non-deterministic

polynonial time recognizer of S and let
’l

c(n) = 18 N\ A)"1 < pn)

where c(.) is the true census function of S, and p(.) is a polynomial

that bounds the size of the census.

Ve begin by coustructing 2 non-deterministic polynomial time Turing
machine to recognize a "pseudo-cozplement®™ of S. The inputs include a
padding, #%, and a potential ceasus, k. Define the non-determzinistic
recognizer M by the following procedure:

M(#%,s,1):
 Check | s | n; othervise reject.
Check k < p(n); othervise reject.

Guess Syr eee s S, SO that

~

for all i, | s; | € n.

i.
ii. for all i and j, 5.%s .

iii. for all i, check that s; is accepted by HS.

iv. check that for all i szsi .

Lerma 3.l1. Let |sl £ n ané k € p(n). Then on input (#",5,k)
the machine M will: |
a. accept if k < c(n);
b. reject if k > c(n); and

c. if k = c(u), then 1 accepts if and only if Mg rejects s.

Proof of Lerma. We show part c. If M accepts, then it will have
enumerated the elements of S up to size n, verified that they belong to
S, 2nd shown that s is distinct. Since k is the true census, M zccepts

if and only if s is not in S.
QED

Intuitively, for k = c(n), M is a recognizer of § conplenment.,
Moreover, M accepts its langucge in non-deterministic polynomial tine

(the input #" is a padding to ensure this).

April 17, 1980

-5 =

We will require labelling functions for pruning tree scarches. The
following discussion shows how to construct such functions from the

sparse set S and many-one reductions of L(1).

Since M is an NP machine and S is liP-complete, there is a P-

time many-one reduction
i

g:L(1) — S

so that for some monotonic polynomial q(.), inputs to M of size n are
reduced to strings of size at most q(n) (cf. [C] and [K]). Similarly,

for the NP-couplete problem SAT, there is a P-time many-one reduction
£:SAT -+ §

and a monotonic polynomial r(.) bounding the increase in size.

Let F of size m be a formula to be decided. Tuen zany formula F'

occurring in the tree of all self recuctiorns vill have size < r(m).

Regarding k as a possible value for c(n), we define

L, (F1) = g(# L E(F'),k)

which will be the labelling function.

Lemma 3.2. Let F be a formula of size m. Let n = r(a); i.e. n
is a polynomial upper bound on the size of f(F') where |IF'l < m.

Finally, Let k = c(n), the true census., Then the function

Ln.k(F')

for foruulas F' of size at most n satisfies:
i. F' is not satisfiable if and only if L(F') is in S;
ii. The unsztisfiable formulas of size at most m are mapped by L to

at most
p(q(2n+c'log(n))) s p(q(3n))

distinct strings of S where c' is a constant depending oaly on p(.).

Proof: Part i. is imwmediate from Lemma 2.,1. For part ii.,

April 17, 1900

-6 -

observe that 2 n + c¢' log(n) £ 3 n is a bound on the size of (#" ,
£(F'), k). Applying p o q gives the census of strings in S that the

triple could map onto.
QED

We now know that a suitable labelling function exists for k = c¢(n);
but we do mnot know c(n)! The algorithm in the folloving theorem shows

hov we can try L for all k < p(n).
nsk
Theoren 3.3. If NP has a sparsc complete set, then P = INP.

Proof: Ve give a deterministic procedure to recognize SAT. Let F

be a formula of size m. Apply the following algorithm:

begin
For k= 0 to p(f(m)) do
Ezecute the depth first search algorithn with
labelling function: L o (r")
at each node F' encountered in the pruned search tree.
If a satisfying assignment is found,
then halt; F is satisfiable.
If 2 tree search visits morc than
n +n * p(q(3 r(w))) internal nodes,
then halt the search for this k.
end;
F is not satisfiable;

end

The algorithwm clearly runs in polynomial time since the loop is executed
at most p(r(m)) times and each iterationm of the loop visits at most a

polynonial (in m) number of nodes.

The correctness of the algorithm is established in the following

lemma:

Lenma 3.4. If F is satisfiable, then for k = c(r(r)) the search

will find a satisfying assignment.

Proof: By Lemma 2.2. this k gives a labelling function that maps
the unsatisfiable formulas of size at most m to a polynowmially bounced

cct. Fortune shows that the depth first scarch will find a satisfying

April 17, 19860

assignment visiting at most
n + n * p(q(3n))

internal nodes.
QED

1

It is interesting to note here that we have not computed the
census: a satisfying assignment could be found with any nunber of k's;
similarly, if no satisfying assignment exzists, many of the trees could

be secarched but the tree with k = c(r(wm)) is not distinguished.

The method of conducting many tree searches is parallelled in the
uniforr algorithm technique by Karp and Lipton [KL]. They shou that if
NP could be accepted in P with log() advice, then P = LP. The census
function might be couwpared to a log()-advisor to the polyromial infor-

maticn in the set S.

It is not necessary to assume an lIP recognizer for the sparse set:

just that S is KP-heard.

Lenma 3.5. If S is sparse and liP-hard, then there is a set S# that
is sparse, IP-couplete, and has a P-tiue reduction: SAT --> S# that is

length increasing.

Proof. Let f: SAT --> S be a P-time reduction and let # be a nevw
symbol. Define f#: SAT --> S# by '

f2(F) = £(F)#

vhere p = max{ 0, I£(F)| - IFl }. Clecarly S# is sparsc. The napping f#
reduces SAT to S#. ilembership of s in S# is verified by guessing a
satisfiable formula thkat maps to s and verifying satisfiability.

QED

- v

Corollary 3.6. If NP is sparse reducible, them P = LP.

Lastly we remark that the census, c(n), of a sparse KP-complete set
is cowmputable in polynomial time. Indeed, assuming P = liP, the ccnsus
of any sparsc sct in NP can be computed by standard techniques. If S is

Q

sparsc and NP-complete, then P = KIP by Theorcu 3.3. so the census of S

is computable in polynounial time. Ve have proved:

Aoril 17. 1930

-8 -

Corollary 3.7. If I'P has a sparse complete set S, then the ccnsus

of § is computable in P.

4. Discussion

Although the isomorphism results [i1] are the direct ancestry of
the work ciscussed hLere, the concept of sparseness has another motiva-
tion. Can a "sparse emount of information" be used to solve IP problems
in polynomial time? The approach here assumes the information is given

as a many-one reduction to & sparse set.

For Turing reductions, the information is given as a sparse oracle.
A. leyer has shoun that a sparse oracle for LP is equivalent to the
existence of polynomial size circuits to solve NP (cf. [Bil). The
recent work by Xarp, Lipton and Sipser [KL] hes shown that if IP has
polynomial size circuits, then the polynouial time hierarchy collapses
to Eg. Their result has a weaker hypothesis than Theorem 3.3. It 1is an
important open problem to determine if polynomial size circuits for @

implies P = KP.

vledoenent.

I am greatly indebted to Juris ELartmanis and Vivian Sewelson for
numerous discussions that lent insight into the methods developed in
this paper. The uniform algorithn techriques of [KL] suggested the
methed in Theorem 3.3. I anm grateful to Richard Karp and Richard Liptom

who circulated an early version of that paper.

April 17, 19€0

References

[AHU] Aho, A., Hopcroft, J., and Ullman, J., The Design and Analysis of
Computer Algorithms, Addison-Vesley (1974).

[BE] Berman, L. and Hertmanis, J., "On Isomorphisms and Density of NP
and Other Complete Sets,®™ SIAN J. Couput., 6 (1977) pp. 305-322. Also
in Proceedings Eigth Annual ACH Symp. on Theory of Computing, (tiay
1976).

[B]) Berman, P. "Relationship Between Density and Deterministic Complex-
ity of llP-Cocplete Languages,® Fifth International Colloguium on Auto-
mata, Languages, and Programming, Udine (July 1678), Springer Lecture

lotes in Comp. Sci. 62.

- [€] Cook, S. Ae.s, "The Complexity of Theorenm Provinz Procedurcs," Proc.
P y pis

* 3rd Annuzl ACl Symposium on Theory of Computing, (1971) pp. 151-158.

[F] Fortune, S., "A Note on Sparse Complete Sets," SIAM J. Comput., 8
(1979), pp. 431-433.

[m:] Hartmanis, J. and lahaney, S. R., "On Census Complexity and Sparse-
ness of IP-Complete Sets," Cornell University Technical Report TR 850-416
(April 1680).

(K] Karp, R., "Reducibility Arong Combinatorial Problems," in Complexity
of Computer Computations (R. E. Miller and J. V. Thatcher, eds.), Ple-
num, New York (1972).

[KL] Karp, R. and Lipton, R., "Some Connections Between l'onuniform and

~

Uniform Complexity Classes,® Proc. 12th ACH Symp. on Theory of Comput-
ing, (May 1980).

[nP] Patterson, . and Meyer, A., "With Vhat Frequency are Apparently
Intractable Problems Difficult?," M.I.T. Tech Report, Feb. 1979.

April 17, 1930

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif

