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Abstract

We present a sparse approximation approach for dependent output Gaussian pro-
cesses (GP). Employing a latent function framework, we apply the convolution
process formalism to establish dependencies between output variables, where each
latent function is represented as a GP. Based on these latent functions, we establish
an approximation scheme using a conditional independence assumption between
the output processes, leading to an approximation of the full covariance which is
determined by the locations at which the latent functions are evaluated. We show
results of the proposed methodology for synthetic data and real world applications
on pollution prediction and a sensor network.

1 Introduction

We consider the problem of modelling correlated outputs from a single Gaussian process (GP). Ap-
plications of modelling multiple outputs include multi-task learning (see e.g. [1]) and jointly predict-
ing the concentration of different heavy metal pollutants [5]. Modelling multiple output variables is
a challenge as we are required to compute cross covariances between the different outputs. In geo-
statistics this is known as cokriging. Whilst cross covariances allow us to improve our predictions
of one output given the others because the correlations between outputs are modelled [6, 2, 15, 12]
they also come with a computational and storage overhead. The main aim of this paper is to address
these overheads in the context of convolution processes [6, 2].

One neat approach to account for non-trivial correlations between outputs employs convolution pro-
cesses (CP). When using CPs each output can be expressed as the convolution between a smoothing
kernel and a latent function [6, 2]. Let’s assume that the latent function is drawn from a GP. If
we also share the same latent function across several convolutions (each with a potentially differ-
ent smoothing kernel) then, since a convolution is a linear operator on a function, the outputs of
the convolutions can be expressed as a jointly distributed GP. It is this GP that is used to model
the multi-output regression. This approach was proposed by [6, 2] who focussed on a white noise
process for the latent function.

Even though the CP framework is an elegant way for constructing dependent output processes, the
fact that the full covariance function of the joint GP must be considered results in significant storage
and computational demands. For Q output dimensions and N data points the covariance matrix
scales as QN leading to O(Q3N3) computational complexity and O(N2Q2) storage. Whilst other
approaches to modeling multiple output regression are typically more constraining in the types of
cross covariance that can be expressed [1, 15], these constraints also lead to structured covariances
functions for which inference and learning are typically more efficient (typically for N > Q these
methods have O(N3Q) computation and O(N2Q) storage). We are interested in exploiting the
richer class of covariance structures allowed by the CP framework, but without the additional com-
putational overhead they imply.
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We propose a sparse approximation for the full covariance matrix involved in the multiple output
convolution process, exploiting the fact that each of the outputs is conditional independent of all oth-
ers given the input process. This leads to an approximation for the covariance matrix which keeps
intact the covariances of each output and approximates the cross-covariances terms with a low rank
matrix. Inference and learning can then be undertaken with the same computational complexity as
a set of independent GPs. The approximation turns out to be strongly related to the partially in-
dependent training conditional (PITC) [10] approximation for a single output GP. This inspires us
to consider a further conditional independence function across data points that leads to an approx-
imation which shares the form of the fully independent training conditional (FITC) approximation
[14, 10] reducing computational complexity to O(NQM2) and storage to O(NQM) with M rep-
resenting a user specified value.

To introduce our sparse approximation some review of the CP framework is required (Section 2).
Then in Section 3, we present sparse approximations for the multi-output GP. We discuss relations
with other approaches in Section 4. Finally, in Section 5, we demonstrate the approach on both
synthetic and real datasets.

2 Convolution Processes

Consider a set of Q functions {fq(x)}Q
q=1, where each function is expressed as the convolution

between a smoothing kernel {kq(x)}Q
q=1, and a latent function u(z),

fq(x) =

∫ ∞

−∞

kq(x − z)u(z)dz.

More generally, we can consider the influence of more than one latent function, {ur(z)}
R
r=1, and

corrupt each of the outputs of the convolutions with an independent process (which could also in-
clude a noise term), wq(x), to obtain

yq(x) = fq(x) + wq(x) =

R
∑

r=1

∫ ∞

−∞

kqr(x − z)ur(z)dz + wq(x). (1)

The covariance between two different functions yq(x) and ys(x
′) is then recovered as

cov [yq(x), ys(x
′)] = cov [fq(x), fs(x

′)] + cov [wq(x), ws(x
′)] δqs,

where

cov [fq(x), fs(x
′)] =

R
∑

r=1

R
∑

p=1

∫ ∞

−∞

kqr(x − z)

∫ ∞

−∞

ksp(x
′ − z′) cov [ur(z), up(z

′)] dz′dz (2)

This equation is a general result; in [6, 2] the latent functions ur(z) are assumed as independent
white Gaussian noise processes, i.e. cov [ur(z), up(z

′)] = σ2
ur

δrpδz,z′ , so the expression (2) is
simplified as

cov [fq(x), fs(x
′)] =

R
∑

r=1

σ2
ur

∫ ∞

−∞

kqr(x − z)ksr(x
′ − z)dz.

We are going to relax this constraint on the latent processes, we assume that each inducing function is
an independent GP, i.e. cov [ur(z), up(z

′)] = kurup(z, z′)δrp, where kurur (z, z
′) is the covariance

function for ur(z). With this simplification, (2) can be written as

cov [fq(x), fs(x
′)] =

R
∑

r=1

∫ ∞

−∞

kqr(x − z)

∫ ∞

−∞

ksr(x
′ − z′)kurur (z, z

′)dz′dz. (3)

As well as this correlation across outputs, the correlation between the latent function, ur(z), and
any given output, fq(x), can be computed,

cov [fq(x), ur(z))] =

∫ ∞

−∞

kqr(x − z′)kurur (z
′, z)dz′. (4)
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3 Sparse Approximation

Given the convolution formalism, we can construct a full GP over the set of outputs. The likelihood
of the model is given by

p(y|X,φ) = N (0,Kf ,f + Σ), (5)

where y =
[

y⊤
1 , . . . ,y⊤

Q

]⊤
is the set of output functions with yq = [yq(x1), . . . , yq(xN )]

⊤
;

Kf ,f ∈ ℜQN×QN is the covariance matrix relating all data points at all outputs, with elements

cov [fq(x), fs(x
′)] in (3); Σ = Σ ⊗ IN , where Σ is a diagonal matrix with elements {σ2

q}
Q
q=1; φ

is the set of parameters of the covariance matrix and X = {x1, . . . ,xN} is the set of training input
vectors at which the covariance is evaluated.

The predictive distribution for a new set of input vectors X∗ is [11]

p(y∗|y,X,X∗,φ) = N
(

Kf∗,f (Kf ,f + Σ)−1y,Kf∗,f∗ − Kf∗,f (Kf ,f + Σ)−1Kf ,f∗ + Σ
)

,

where we have used Kf∗,f∗ as a compact notation to indicate when the covariance matrix is evalu-
ated at the inputs X∗, with a similar notation for Kf∗,f . Learning from the log-likelihood involves

the computation of the inverse of Kf ,f + Σ, which grows with complexity O((NQ)3). Once the

parameters have been learned, prediction is O(NQ) for the predictive mean and O((NQ)2) for the
predictive variance.

Our strategy for approximate inference is to exploit the natural conditional dependencies in the
model. If we had observed the entire length of each latent function, ur(z), then from (1) we see that
each yq(x) would be independent, i.e. we can write,

p({yq (x)}Q

q=1 | {ur (z)}R

r=1 ,θ) =

Q
∏

q=1

p(yq (x) | {ur (z)}R

r=1 ,θ),

where θ are the parameters of the kernels and covariance functions. Our key assumption is that this
independence will hold even if we have only observed M samples from ur(z) rather than the whole
function. The observed values of these M samples are then marginalized (as they are for the exact
case) to obtain the approximation to the likelihood. Our intuition is that the approximation should
be more accurate for larger M and smoother latent functions, as in this domain the latent function
could be very well characterized from only a few samples.

We define u =
[

u⊤
1 , . . . ,u⊤

R

]⊤
as the samples from the latent function with ur =

[ur(z1), . . . , ur(zM )]
⊤

; Ku,u is then the covariance matrix between the samples from the latent

functions ur(z), with elements given by kurur (z, z
′); Kf ,u = K⊤

u,f are the cross-covariance ma-

trices between the latent functions ur(z) and the outputs fq(x), with elements cov [fq(x), ur(z)] in
(4) and Z = {z1, . . . , zM} is the set of input vectors at which the covariance Ku,u is evaluated.

We now make the conditional independence assumption given the samples from the latent functions,

p(y|u,Z,X,θ) =

Q
∏

q=1

p(yq|u,Z,X,θ) =

Q
∏

q=1

N
(

Kfq,uK
−1
u,uu,Kfq,fq − Kfq,uK

−1
u,uKu,fq + σ2

qI
)

.

We rewrite this product as a single Gaussian with a block diagonal covariance matrix,

p(y|u,Z,X,θ) = N
(

Kf ,uK
−1
u,uu,D + Σ

)

(6)

where D = blockdiag
[

Kf ,f − Kf ,uK
−1
u,uKu,f

]

, and we have used the notation blockdiag [G] to
indicate the block associated with each output of the matrix G should be retained, but all other
elements should be set to zero. We can also write this as D =

[

Kf ,f − Kf ,uK
−1
u,uKu,f

]

⊙M where
⊙ is the Hadamard product and M = IQ⊗1N , 1N being the N ×N matrix of ones and ⊗ being the
Kronecker product. We now marginalize the values of the samples from the latent functions by using
their process priors, i.e. p(u|Z) = N (0,Ku,u). This leads to the following marginal likelihood,

p(y|Z,X,θ) =

∫

p(y|u,Z,X,θ)p(u|Z)du = N
(

0,D + Kf ,uK
−1
u,uKu,f + Σ

)

. (7)
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Notice that, compared to (5), the full covariance matrix Kf ,f has been replaced by the low rank co-

variance Kf ,uK
−1
u,uKu,f in all entries except in the diagonal blocks corresponding to Kfq,fq . When

using the marginal likelihood for learning, the computation load is associated to the calculation of
the inverse of D. The complexity of this inversion is O(N3Q) + O(NQM2), storage of the matrix
is O(N2Q) + O(NQM). Note that if we set M = N these reduce to O(N3Q) and O(N2Q)
respectively which matches the computational complexity of applying Q independent GPs to model
the multiple outputs.

Combining eq. (6) with p(u|Z) using Bayes theorem, the posterior distribution over u is obtained
as

p(u|y,X,Z,θ) = N
(

Ku,uA
−1Ku,f (D + Σ)−1y,Ku,uA

−1Ku,u

)

(8)

where A = Ku,u + Ku,f (D + Σ)−1Kf ,u. The predictive distribution is expressed through the
integration of (6), evaluated at X∗, with (8), giving

p(y∗|y,X,X∗,Z,θ) =

∫

p(y∗|u,Z,X∗,θ)p(u|y,X,Z,θ)du

=N
(

Kf∗,uA
−1Ku,f (D + Σ)−1y,D∗ + Kf∗,uA

−1Ku,f∗ + Σ
)

(9)

with D∗ = blockdiag
[

Kf∗,f∗ − Kf∗,uK
−1
u,uKu,f∗

]

.

The functional form of (7) is almost identical to that of the PITC approximation [10]. With the
samples we retain from the latent function providing the same role as the inducing values in the
partially independent training conditional (PITC) approximation. This is perhaps not surprising
given that the nature of the conditional independence assumptions in PITC are similar to those we
have made. A key difference is that in PITC it is not obvious which variables should be grouped
together when making the conditional independence assumption, here it is clear from the structure
of the model that each of the outputs should be grouped separately. However, the similarities are
such that we find it convenient to follow the terminology of [10] and also refer to our approximation
as a PITC approximation.

We have already noted that our sparse approximation reduces the computational complexity of multi-
output regression with GPs to that of applying independent GPs to each output. For larger data sets
the N3 term in the computational complexity and the N2 term in the storage is still likely to be
prohibitive. However, we can be inspired by the analogy of our approach to the PITC approximation
and consider a more radical factorization of the outputs. In the fully independent training conditional
(FITC) [14, 13] a factorization across the data points is assumed. For us that would lead to the
following expression for conditional distribution of the output functions given the inducing variables,

p(y|u,Z,X,θ) =
∏Q

q=1

∏N

n=1 p(yqn|u,Z,X,θ) which can be briefly expressed through (6) with

D = diag
[

Kf ,f − Kf ,uK
−1
u,uKu,f

]

=
[

Kf ,f − Kf ,uK
−1
u,uKu,f

]

⊙M, with M = IQ⊗IN . Similar
equations are obtained for the posterior (8), predictive (9) and marginal likelihood distributions (7)
leading to the Fully Independent Training Conditional (FITC) approximation [14, 10]. Note that
the marginal likelihood might be optimized both with respect to the parameters associated with the
covariance matrices and with respect to Z. In supplementary material we include the derivatives of
the marginal likelihood wrt the matrices Kf ,f ,Ku,f and Ku,u.

4 Related work

There have been several suggestions for constructing multiple output GPs [2, 15, 1]. Under the
convolution process framework, the semiparametric latent factor model (SLFM) proposed in [15]
corresponds to a specific choice for the smoothing kernel function in (1) namely, kqr(x) = φqrδ(x).
The latent functions are assumed to be independent GPs and in such a case, cov [fq(x), fs(x

′)] =
∑

r φqrφsrkurur (x,x′). This can be written using matrix notation as Kf ,f = (Φ⊗I)Ku,u(Φ⊤⊗I).
For computational speed up the informative vector machine (IVM) is employed [8].

In the multi-task learning model (MTLM) proposed in [1], the covariance matrix is expressed as
Kf ,f = Kf ⊗ k(x,x′), with Kf being constrained positive semi-definite and k(x,x′) a covariance
function over inputs. The Nyström approximation is applied to k(x,x′). As stated in [1] with respect
to SLFM, the convolution process is related with MTLM when the smoothing kernel function is
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given again by kqr(x) = φqrδ(x) and there is only one latent function with covariance kuu(x,x′) =
k(x,x′). In this way, cov [fq(x), fs(x

′)] = φqφsk(x,x′) and in matrix notation Kf ,f = ΦΦ⊤ ⊗
k(x,x′). In [2], the latent processes correspond to white Gaussian noises and the covariance matrix
is given by eq. (3). In this work, the complexity of the computational load is not discussed. Finally,
[12] use a similar covariance function to the MTLM approach but use an IVM style approach to
sparsification.

Note that in each of the approaches detailed above a δ function is introduced into the integral. In the
dependent GP model of [2] it is introduced in the covariance function. Our approach considers the
more general case when neither kernel nor covariance function is given by the δ function.

5 Results

For all our experiments we considered squared exponential covariance functions for the latent pro-

cess of the form kurur (x,x′) = exp
[

− 1
2 (x − x′)

⊤
Lr (x − x′)

]

, where Lr is a diagonal matrix

which allows for different length-scales along each dimension. The smoothing kernel had the same

form, kqr(τ ) =
Sqr|Lqr|

1/2

(2π)p/2
exp

[

− 1
2τ⊤Lqrτ

]

, where Sqr ∈ R and Lqr is a symmetric positive def-

inite matrix. For this kernel/covariance function combination the necessary integrals are tractable
(see supplementary material). Code is provided with our submission for recreating all results (see
supplementary material).

We first setup a toy problem in which we evaluate the quality of the prediction and the speed of
the approximation. The toy problem consists of Q = 4 outputs, one latent function, R = 1, and
N = 200 observation points for each output. The training data was sampled from the full GP with
the following parameters, S11 = S21 = 1, S31 = S41 = 5, L11 = L21 = 50, L31 = 300, L41 = 200
for the outputs and L1 = 100 for the latent function. For the independent processes, wq (x), we

simply added white noise with variances σ2
1 = σ2

2 = 0.0125, σ2
3 = 1.2 and σ2

4 = 1. For the sparse
approximations we used M = 30 fixed inducing points equally spaced between the range of the
input and R = 1. We sought the kernel parameters through maximizing the marginal likelihood
using a scaled conjugate gradient algorithm. For test data we removed a portion of one output as
shown in Figure 1 (points in the interval [−0.8, 0] were removed). The predictions shown correspond
to the full GP (Figure 1(a)), an independent GP (Figure 1(b)), the FITC approximation (Figure 1(c))
and the PITC approximation (Figure 1(d)). Due to the strong dependencies between the signals, our
model is able to capture the correlations and predicts accurately the missing information.

Table 1 shows prediction results over an independent test set. We used 300 points to compute the
standarized mean square error (SMSE) [11] and ten repetitions of the experiment, so that we also
included one standard deviation for the ten repetitions. The training times for iteration of each model
are 1.45 ± 0.23 secs for the full GP, 0.29 ± 0.02 secs for the FITC and 0.48 ± 0.01 for the PITC.
Table 1, shows that the SMSE of the sparse approximations is similar to the one obtained with the
full GP with a considerable reduction of training times.

Method Output 1 Output 2 Output 3 Output 4

Full GP 1.07 ± 0.08 0.99 ± 0.03 1.12 ± 0.07 1.05 ± 0.07
FITC 1.08 ± 0.09 1.00 ± 0.03 1.13 ± 0.07 1.04 ± 0.07
PITC 1.07 ± 0.08 0.99 ± 0.03 1.12 ± 0.07 1.05 ± 0.07

Table 1: Standarized mean square error (SMSE) for the toy problem over an independent test set. All numbers
are to be multiplied by 10−2. The experiment was repeated ten times. Table included the value of one standard
deviation over the ten repetitions.

We now follow a similar analysis for a dataset consisting of weather data collected from a sensor net-
work located on the south coast of England. The network includes four sensors (named Bramblemet,
Sotonmet, Cambermet and Chimet) each of which measures several environmental variables [12].
We selected one of the sensors signals, tide height, and applied the PITC approximation scheme
with an additional squared exponential independent kernel for each wq (x) [11]. Here Q = 4 and
we chose N = 1000 of the 4320 for the training set, leaving the remaining points for testing. For
comparison we also trained a set of independent GP models. We followed [12] in simulating sensor
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(a) Output 4 using the full GP

−1 −0.5 0 0.5 1
−10

−8

−6

−4

−2

0

2

4

6

8

10

(b) Output 4 using an independent GP
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(c) Output 4 using the FITC approximation
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(d) Output 4 using the PITC approximation

Figure 1: Predictive mean and variance using the full multi-output GP, the sparse approximation and an inde-
pendent GP for output 4. The solid line corresponds to the mean predictive, the shaded region corresponds to
2 standard deviations away from the mean and the dash line is the actual value of the signal without noise. The
dots are the noisy training points. There is a range of missing data in the interval [−0.8, 0.0]. The crosses in
figures 1(c) and 1(d) corresponds to the locations of the inducing inputs.

failure by introducing some missing ranges for these signals. In particular, we have a missing range
of [0.6, 1.2] for the Bramblemet tide height sensor and [1.5, 2.1] for the Cambermet. For the other
two sensors we used all 1000 training observations. For the sparse approximation we took M = 100
equally spaced inducing inputs. We see from Figure 2 that the PITC approximation captures the de-
pendencies and predicts closely the behavior of the signal in the missing range. This contrasts with
the behavior of the independent model, which is not able to follow the original signal.

As another example we employ the Jura dataset, which consists of measurements of concentrations

of several heavy metals collected in the topsoil of a 14.5 km2 region of the Swiss Jura. The data is
divided into a prediction set (259 locations) and a validation set (100 locations)1. In a typical situ-
ation, referred as undersampled or heterotopic case, a few expensive measurements of the attribute
of interest are supplemented by more abundant data on correlated attributes that are cheaper to sam-
ple. We follow the experiments described in [5, p. 248,249] in which a primary variable (cadmium
and copper) at prediction locations in conjunction with some secondary variables (nickel and zinc
for cadmium; lead, nickel and zinc for copper) at prediction and validation locations, are employed
to predict the concentration of the primary variable at validation locations. We compare results of
independent GP, the PITC approximation, the full GP and ordinary co-kriging. For the PITC ex-
periments, a k-means procedure is employed first to find the initial locations of the inducing values
and then these locations are optimized in the same optimization procedure used for the parameters.
Each experiment is repeated ten times. The results for ordinary co-kriging were obtained from [5,
p. 248,249]. In this case, no values for standard deviation are reported. Figure 3 shows results of
prediction for cadmium (Cd) and copper (Cu). From figure 3(a), it can be noticed that using 50 in-

1This data is available at http://www.ai-geostats.org/
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(a) Bramblemet using an independent GP
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(b) Bramblemet using PITC
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(c) Cambermet using an independent GP
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(d) Cambermet using PITC

Figure 2: Predictive Mean and variance using independent GPs and the PITC approximation for the tide height
signal in the sensor dataset. The dots indicate the training observations while the dash indicates the testing
observations. We have emphasized the size of the training points to differentiate them from the testing points.
The solid line corresponds to the mean predictive. The crosses in figures 2(b) and 2(d) corresponds to the
locations of the inducing inputs.

ducing values, the approximation exhibits a similar performance to the co-kriging method. As more
inducing values are included, the approximation follows the performance of the full GP, as it would
be expected. From figure 3(b), it can be observed that, although the approximation is better that the
independent GP, it does not obtain similar results to the full GP. Summary statistics of the prediction
data ([5, p. 15]) shows higher variability for the copper dataset than for the cadmium dataset, which
explains in some extent the different behaviors.

6 Conclusions

We have presented a sparse approximation for multiple output GPs, capturing the correlated in-
formation among outputs and reducing the amount of computational load for prediction and opti-
mization purposes. The reduction in computational complexity for the PITC approximation is from
O(N3Q3) to O(N3Q). This matches the computational complexity for modelling with independent
GPs. However, as we have seen, the predictive power of independent GPs is lower.

Linear dynamical systems responses can be expressed as a convolution between the impulse re-
sponse of the system with some input function. This convolution approach is an equivalent way of
representing the behavior of the system through a linear differential equation. For systems involving
high amounts of coupled differential equations [4], the approach presented here is a reasonable way
of obtaining approximate solutions and incorporating prior domain knowledge to the model.

One could optimize with respect to positions of the values of the latent functions. As the input
dimension grows, it might be more difficult to obtain an acceptable response. Some solutions to this
problem have already been proposed [13].
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(a) Cadmium (Cd)
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Figure 3: Mean absolute error and standard deviation for ten repetitions of the experiment for the Jura dataset
In the bottom of each figure, IGP stands for independent GP, P(M ) stands for PITC with M inducing values,
FGP stands for full GP and CK stands for ordinary co-kriging (see [5] for detailed description).
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Supplementary Material

Sparse Convolved Gaussian Processes
for Multi-output Regression

A Convolution with Gaussian kernel functions

For the covariance matrix of the latent functions we employ

kurur (x,x
′) = exp

»

−
1

2

`

x − x
′
´⊤

Lr

`

x − x
′
´

–

and for the smoothing kernel

kqr(τ ) =
Sqr|Lqr|

1/2

(2π)p/2
exp

»

−
1

2
τ

⊤
Lqrτ

–

.

Applying successively the result for the multiplication of Gaussian distributions [3], the covariance functions
in expressions (3) and (4) are also Gaussian covariances given by

cov
ˆ

fq(x), fs(x
′)

˜

=
R

X

r=1

SqrSsr|L
−1

r |1/2

|L−1
qr + L−1

sr + L−1
r |1/2

exp

»

−
1

2

`

x − x
′
´⊤ `

L
−1

qr + L
−1

sr + L
−1

r

´−1 `

x − x
′
´

–

cov [fq(x), ur(z))] =
Sqr|L

−1

r |1/2

|L−1
qr + L−1

r |1/2
exp

»

−
1

2
(x − z)⊤

`

L
−1

qr + L
−1

r

´−1

(x − z)

–

B Matrix Derivatives

We follow the notation of [3] obtaining similar results to [7]. This notation allows us to apply the chain rule
for matrix derivation in a straight-forward manner. Let’s define G: = vecG, where vec is the vectorization
operator over the matrix G. For a function L the equivalence between ∂L

∂G
and ∂L

∂G:
is given through ∂L

∂G:
=

``

∂L

∂G

´

:
´⊤

. The log-likelihood function is given as

L(Z, θ) = −
1

2
log|D + Kf ,uK

−1

u,uKu,f | −
1

2
tr

h

`

D + Kf ,uK
−1

u,uKu,f

´−1

yy
⊤

i

+ const (10)

where we have redefined D as D =
ˆ

Kf ,f − Kf ,uK
−1

u,uKu,f

˜

⊙ M + Σ, to keep a simpler notation. Using
the matrix inversion lemma and its equivalent form for determinants, expression (10) can be written as

L(Z, θ) =
1

2
log|Ku,u| −

1

2
log|A| −

1

2
tr

h

D
−1

yy
⊤

i

+
1

2
tr

h

D
−1

Kf ,uA
−1

Ku,fD
−1

yy
⊤

i

+ const .

We can find ∂L

∂θ
and ∂L

∂Z
applying the chain rule to L obtaining expressions for ∂L

∂Kf,f
, ∂L

∂Kf,u
and ∂L

∂Ku,u
and

combining those with the relevant derivatives of the covariances wrt θ and Z,

∂L

∂G:
=

∂LA

∂A:

∂A:

∂D:

∂D:

∂G:
+

∂LD

∂D:

∂D:

∂G:
+

»

∂LA

∂A:

∂A:

∂G:
+

∂LG

∂G:

–

δGK (11)

where the subindex in LE stands for those terms of L which depend on E, G is either Kf ,f , Ku,f or Ku,u and
δGK is zero if G is equal to Kf ,f and one in other case. Next we present expressions for each partial derivative

∂LA

∂A:
= −

1

2
(C:)⊤ ,

∂A:

∂D:
= −

`

Ku,fD
−1 ⊗ Ku,fD

−1
´

,
∂LD

∂D:
= −

1

2

``

D
−1

HD
−1

´

:
´⊤

∂D:

∂Kf ,f :
= diag(M:),

∂D:

∂Ku,f :
= − diag(M:)

ˆ`

I ⊗ Kf ,uK
−1

u,u

´

+
`

Kf ,uK
−1

u,u ⊗ I
´

TD

˜

,

∂D:

∂Ku,u:
= diag(M:)

`

Kf ,uK
−1

u,u ⊗ Kf ,uK
−1

u,u

´

,
∂A:

∂Ku,f :
=

`

Ku,fD
−1 ⊗ I

´

+
`

I ⊗ Ku,fD
−1

´

TA

∂A:

∂Ku,u:
= I,

∂LKu,f

∂Ku,f :
=

““

A
−1

Ku,fD
−1

yy
⊤
D

−1

”

:
”⊤

,
∂LKu,u

∂Ku,u:
=

1

2

``

K
−1

u,u

´

:
´⊤

,

where C = A−1 + A−1Ku,fD
−1yy⊤D−1Kf ,uA

−1, H = D − yy⊤ + Kf ,uA
−1Ku,fD

−1yy⊤ +
`

Kf ,uA
−1Ku,fD

−1yy⊤
´⊤

and TD and TA are vectorized transpose matrices [3] and we have not included
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their dimensions to keep the notation clearer. We can replace the above expressions in (11) to find the corre-
sponding derivatives, so

∂L

∂Kf ,f :
=

1

2

»

((C) :)⊤
`

Ku,fD
−1 ⊗ Ku,fD

−1
´

−
1

2

``

D
−1

HD
−1

´

:
´⊤

–

diag(M:) (12a)

= −
1

2

``

D
−1

JD
−1

´

:
´⊤

diag(M:) = −
1

2

`

diag(M:)
`

D
−1

JD
−1

´

:
´⊤

(12b)

= −
1

2

``

D
−1

JD
−1 ⊙ M

´

:
´⊤

= −
1

2
(Q:)⊤ (12c)

where in (12a) J = H − Kf ,uCKu,f and Q =
`

D−1JD−1 ⊙ M
´

. We have used the property

(B:)⊤ (F ⊗ P) =
``

P⊤BF
´

:
´⊤

in (12a) and the property diag(B:)F: = (B ⊙ F):, to go from (12b)
to (12c). We also have

∂L

∂Ku,f :
=

1

2
(Q:)⊤

ˆ`

I ⊗ Kf ,uK
−1

u,u

´

+
`

Kf ,uK
−1

u,u ⊗ I
´

TD

˜

−
1

2
(C:)⊤

ˆ`

Ku,fD
−1 ⊗ I

´

+
`

I ⊗ Ku,fD
−1

´

TA

˜

+
““

A
−1

Ku,fD
−1

yy
⊤
D

−1

”

:
”⊤

(13)

=
““

K
−1

u,uKu,fQ − CKu,fD
−1 + A

−1
Ku,fD

−1
yy

⊤
D

−1

”

:
”⊤

where in (13), (Q:)⊤ (F ⊗ I)TD = (Q:)⊤ TD (I ⊗ F) =
`

T⊤

DQ:
´⊤

(I ⊗ F) = (Q:)⊤ (I ⊗ F). A similar

analysis is formulated for the term involving TA. Finally, results for ∂L

∂Ku,f :
and ∂L

∂Σ:
are obtained as

∂L

∂Ku,u:
= −

1

2

``

K
−1

u,u − C − K
−1

u,uKu,fQKf ,uK
−1

u,u

´

:
´⊤

,
∂L

∂Σ:
= −

1

2
(Q:)⊤ .

C Code Availability

We provide MATLAB code in software.zip for recreating all the results in this paper.
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