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1. Introduction

Problems with small sample sizes and a large number of unknown parame-
ters represent one of the most challenging areas of current statistical research.
Graphical models deal with these ill-posed problems by enforcing sparsity in
the conditional dependence structure among outcomes. More specifically, given
a random vector X = (X1, . . . , Xp) ∈ R

p, a graphical model for X encodes
the conditional independence relationships between its components through a
p-vertex graph G, such that vertex i represents component Xi and the lack
of an edge between nodes i and j indicates that variables i and j are con-
ditionally independent given the rest. In particular, Gaussian graphical models
(GGMs), also known as covariance selection models [13], have become extremely
popular in applications ranging from genetics [61, 11] to econometrics and fi-
nance [10, 15]. Gaussian graphical models assume that the joint distribution of
X follows a multivariate Gaussian distribution, and therefore conditional inde-
pendence among variables can be enforced by setting to zero the appropriate
off-diagonal elements of the inverse covariance (precision) matrix.

One important shortcoming of Gaussian graphical models is that they im-
plicitly assume a linear relationship between variables. Copulas have been used
in the context of graphical models to address nonlinearities. For example, [5]
decompose the joint distribution of X using pairwise copulas; however, the re-
sulting models are computationally difficult to fit, especially when p grows. An
alternative to copulas is to model non-linearities through mixtures of Gaussian
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graphical models. Countable mixture models explain nonlinearities in the con-
ditional expectations as a consequence of hetherogeneity of the population, and
can therefore be interpreted as providing adaptive local linear fits [41, 48].

As a motivation for investigating mixtures of Gaussian graphical models, con-
sider the analysis of gene expression data. Gaussian graphical models have often
been used in the context of microarray data, where the graph encoding the con-
ditional dependence structure provides information about expression pathways
[16, 22, 11]. The implicit assumptions in these models is that the expression
pathways are the same for all individuals/tissues in the sample and that expres-
sion levels on different genes are linearly related. In practice, these assumptions
might not be justified if the underlying population is heterogeneous. Similarly,
when studying the relationship between economic variables such as exchange
rates, graphical models allow us to identify groups of countries that form eco-
nomic blocks and understand how these blocks interact with each other. How-
ever, as trade patterns evolve, we expect that both the block membership and
the modes in which countries interact might change, making the constant-graph
assumption unrealistic. In both of these settings, mixtures of Gaussian graphi-
cal models not only provide us with a tool to induce sparsity in heterogeneous
samples, but also generate interpretable models.

One of the major challenges in implementing mixtures of Gaussian graphical
models is computational, and relate both to the determination of the underlying
graph associated with each component in the mixture and to the estimation of
the number of components. It is well known that the number of possible par-
titions of a sample grows exponentially with the size of the dataset, a problem
that is compounded when we desire to also estimate the number of compo-
nents in the mixture and the graphical structure corresponding to each cluster.
Work in finite mixtures of graphical models goes back at least to [55], who
fixed the number of components and developed a search algorithm that used
a modified Cheeseman-Stutz approximation to the marginal likelihood coupled
with Expectation-Maximization steps to estimate component-specific parame-
ters. To the best of our knowledge, the problem of determining the number of
components in mixtures of graphical models has not been properly addressed
before.

We present a fully Bayesian approach to inference in nonparametric mix-
tures and infinite hidden Markov models with Gaussian graphical models as
kernel/emission distributions. Using infinite mixture models provides full sup-
port in the space of continuous distributions [39, 44], and allows us to auto-
matically deal with an unknown number of components/states within a simple
computational framework. As in [59], the hidden Markov models we discuss al-
low for the graph encoding the conditional independence structure of the data
to change over time, an important feature that has been missing in other mul-
tivariate time series models employing graphical models [10, 60]. However, our
framework allows us to deal with both decomposable and nondecomposable
graphical models using collapsed Markov chain Monte Carlo algorithms that
avoid explicit representation of the unknown mixing distributions, and allow
us to identify structural changes in the underlying data-generation process. Al-
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though the paper develops models based on Gaussian graphical models, the
approaches we discuss are not restricted to multivariate continuous outcomes,
but can be extended to incorporate combinations of binary, ordinal and contin-
uous variables by introducing latent auxiliary variables.

Sparse estimation in heterogeneous samples has been a topic of recent inter-
est in the literature. For example, [26] present a penalized likelihood approach
for the joint estimation of multiple graphical models when the samples arise
from known classes. In contrast, we consider the problem of estimating multiple
graphical models when the classes are unknown and need to be inferred from
the data. In work related to ours, [27] discussed the construction of a nonpara-
metric prior that is Markov with respect to a given graph G. The main result in
the paper is that, for absolutely continuous baseline measures, a hyper Dirich-
let process with respect to G (i.e., a Dirichlet process law that is Markov with
respect to a given graph G) can be generated by choosing a baseline measure
to be itself Markov with respect to G. As an application, the hyper Dirichlet
process is used to construct a nonparametric mixture of graphical models that
uses a common graph to describe the conditional independence structure for all
components. Therefore, our model can be seen as a generalization of the hyper-
Dirichlet process mixture proposed by [27] where each component is Markov
with respect to a (potentially) different graph.

To simplify our exposition we begin by reviewing Bayesian approaches to
inference in Gaussian graphical models in Section 2 and introducing Dirichlet
process mixtures of Gaussian graphical models in Sections 3 and 4. We then
move to discuss infinite hidden Markov models whose emission distributions
correspond to Gaussian graphical models. These models are illustrated in Sec-
tion 6 using a series of simulation studies and in Section 7 by studying returns
in foreign exchange markets. Finally, we conclude in Section 8 with a discussion
of possible extensions and future research directions.

2. A Bayesian framework for Gaussian graphical models

LetX = XV be the vector of observed variables, where V = {1, 2, . . . , p}, and GV

be the space of all graphs with vertices in the set V . We assume that X follows a
multivariate Gaussian distribution p(X | µ,K) = Np(µ,K

−1) with mean vector
µ ∈ R

p and p × p precision matrix K = (Kij). The Gaussian graphical model
associated with a graph G = (V,E) ∈ GV is obtained by setting to zero the
elements of K corresponding with missing edges in G [13]. The absence of the
edge (i, j) ∈ (V × V ) \ E implies Kij = Kji = 0, which in turn implies that
Xi and Xj are conditionally independent given XV \{i,j}, i.e., the distribution
of XV is Markov with respect to the graph G. Hence, the precision matrix K
belongs to the cone PG of the symmetric positive definite matrices with entries
equal to zero for all (i, j) ∈ (V × V ) \ E [3].

The class of decomposable graphs GD
V ⊂ GV is particularly appealing from a

computational standpoint. Decomposable graphs are those graphs in GV such
that they do not contain any chordless cycles of length four or larger. Hence, if
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G is decomposable, the subgraph GC = (C,EC), EC = {(i, j) ∈ E : i, j ∈ C},
associated with a clique C ∈ C is complete, that is, there is no edge missing
from it. The dependence of the distribution of X on the graph G can be made
explicit by noting that the conditional dependence relationships implied by G
induce the following factorization of the joint distribution of X [12]:

p(X | µ,K,G) =

∏
C∈C(G) p(XC | µC ,KC)∏
S∈S(G) p(XS | µS ,KS)

(2.1)

where C(G) denotes the cliques of G and S(G) denotes separators of G. For an
index set V0 ⊂ V , µV0 is the subvector of µ corresponding to the entries in V0,
while KV0 = ((K−1)V0 )

−1.
We consider the following joint prior distribution for µ and K:

p(µ,K | G) = p(µ | K,G)p(K | G), (2.2)

where, conditional onK, the prior for the mean is p(µ | K,G) = Np(µ0, (n0K)−1)
with µ0 ∈ R

p and n0 > 0. The prior for the precision matrix p(K | G) =
WG(δ0, D0) is a G-Wishart distribution with density [50, 3, 37]

p(K | G) =
1

IG(δ0, D0)
(det K)(δ0−2)/2 exp

{
−
1

2
〈K,D0〉

}
, (2.3)

with respect to the Lebesgue measure on PG. Here 〈B,C〉 = tr(BTC) denotes
the trace inner product. Diaconnis & Ylvisaker [14] prove that the normalizing
constant IG(δ0, D0) is finite if δ0 > 2 and D−1

0 ∈ PG. If G is complete (i.e. G
is decomposable with only one clique C = {V } and no separators), WG(δ0, D0)
reduces to the Wishart distribution Wp(δ0, D0), hence its normalizing constant
is given by

IG(δ0, D0) = 2(δ0+p−1)p/2Γp {(δ0 + p− 1)/2} (det D0)
−(δ0+p−1)/2, (2.4)

where Γp(a) = πp(p−1)/4
∏p−1

i=0 Γ
(
a− i

2

)
for a > (p − 1)/2 [40]. If G is decom-

posable but not necessarily complete, Dawid & Lauritzen [12] showed that the
G-Wishart distribution WG(δ0, D0) can be factorized according to the cliques
and the separators of G, hence its normalizing constant is equal to [50]:

IG(δ0, D0) =

∏
C∈C(G) IGC

(δ0, (D0)C)∏
S∈S(G) IGS

(δ0, (D0)S)
. (2.5)

Since the subgraphs GC and GS associated with each clique and separator of G
are complete, IGC

(δ0, (D0)C) and IGS
(δ0, (D0)S) can be explicitly calculated as

in (2.4). Finally, if G is nondecomposable, there is no closed-form expression for
IG(δ0, D0), and its value needs to be approximated either through Monte Carlo
simulation or Laplace approximations [3, 36].

The joint prior (2.2) is conjugate, and the posterior distribution of (µ,K |
x(1:n), G) is again a normal/G-Wishart distribution with

p(K | x(1:n), G) =WG(δ0 + n,D0 + U +A). (2.6)

p(µ | x(1:n),K,G) = Np

(
µ̄, [(n+ n0)K]−1

)
, (2.7)
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with µ̄ = nx̄+n0µ0

n+n0
, x̄ = 1

n

∑n
i=1 x

(i), U =
∑n

i=1(x
(i) − x̄)(x(i) − x̄)T , and A =

−(n + n0)µ̄µ̄
T + nx̄x̄T + n0µ0µ

T
0 . On the other hand, the marginal likelihood

associated with a graph G ∈ GV is is given by

p(x(1:n) | G) = (2π)−
np
2

(
n0

n+ n0

)p/2
IG(δ0 + n,D0 + U +A)

IG(δ0, D0)
, (2.8)

Also, the posterior predictive distribution of a new sample x(n+1) is given by

p(x(n+1) | x(n), G) =

(2π)−
p
2

(
n+ n0

n+ 1 + n0

)p/2
IG(δ0 + n+ 1, D0 + U +A+ Ã)

IG(δ0 + n,D0 + U +A)
, (2.9)

where Ã = −(n + 1 + n0)µ̃µ̃
T + x(n+1)(x(n+1))T + (n + n0)µ̄µ̄

T and µ̃ =
x(n+1)+(n+n0)µ̄

n+1+n0
. As we discussed before, if G is assumed to be decomposable,

the posterior normalizing constant IG(δ0 + n,D0 + U + A) can be calculated
directly using a formula similar to equation (2.5), hence p(x(n+1) | G) and
p(x(n+1) | x(n), G) can also be calculated directly without any numerical approx-
imation techniques. These computations are key to a successful implementation
of the sampling algorithms we describe in Section 4.

In the sequel, we assume that the data x(1:n) have been centered and scaled to
unit variance, so that the sample mean of eachXi is zero and its sample variance
is one. Hence, we complete the prior specification by taking µ0 = 0, δ0 = 3 and
D0 = Ip, where Ip is the p-dimensional identity matrix. With this assumption,
the weight of the prior is equivalent to the weight of one observed sample.
Furthermore, this choice implies that the observed variables are independent
apriori.

3. Dirichlet process mixtures of Gaussian graphical models

Consider now a finite mixture

X | {wl}, {µ
∗
l }, {K

∗
l }, {G

∗
l } ∼

L∑

l=1

wlp(X | µ∗
l ,K

∗
l , G

∗
l ), (3.1)

where p(X | µ∗
l ,K

∗
l , G

∗
l ) is given in (2.1). In this model, draws from X come

from one of L potentially different graphical models; a realization x(i) comes
from the l-th graphical model (which is defined by the parameters µ∗

l , K
∗
l and

G∗
l ) independently with probability wl. A fully Bayesian specification of the

model is completed by eliciting a prior for the parameters {wl}
L
l=1, {µ

∗
l }

L
l=1,

{K∗
l }

L
l=1, and {G∗

l }
L
l=1. A common choice is to set w = (w1, . . . , wL) ∼ Dir(w0)

and let the component specific parameters (µ∗
l ,K

∗
l , G

∗
l ) be independent and

identically distributed samples from some common distribution M .
Finite mixtures, as the one described above, allow for additional flexibility

over regular Gaussian graphical models by allowing a heterogeneous popula-
tion to be divided into homogenous groups. However, estimating finite mixture
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models involves important practical challenges. For example, we generally do
not know how many components are present in the population. We could allow
L to be random and assign a prior distribution to it, but fitting the resulting
model involves the use of reversible-jump Markov chain Monte Carlo methods
[25], which are notoriously inefficient for high dimensional mixtures.

As an alternative, we consider Dirichlet process (DP) mixtures of Gaussian
graphical models. Note that (3.1) can be alternatively written as

X | H ∼

∫
p(X | µ,K,G)H(dµ, dK, dG) H(·) =

L∑

l=1

wlδ(µ∗

l
,K∗

l
,G∗

l
)(·) (3.2)

where δa(·) denotes the degenerate probability measure putting all of its mass on
a. Therefore, eliciting a prior on ({wl}

L
l=1, {µ

∗
l }

L
l=1, {K

∗
l }

L
l=1, {G

∗
l }

L
l=1) is equiv-

alent to defining a prior on the discrete probability measure H , one such prior
is the Dirichlet process [19, 20]. A random distribution H is said to follow a
Dirichlet process with baseline measureM and precision parameter α0, denoted
DP(α0,M), if it has a representation of the form [52]

H(·) =
∞∑

l=1

wlδθ∗

l
(·), (3.3)

where θ∗1 , θ
∗
2 , . . . are independent and identically distributed samples from the

baseline measure M and wl = vl
∏

s<l(1 − vs) where v1, v2, . . . is another inde-
pendent and identically distributed sample for which vl ∼ Beta(1, α0). We refer
to the joint distribution on (w1, w2, . . .) induced by the above construction as
a stick breaking distribution with parameter α0, denoted SB(α0). The Dirich-
let process mixture model is recovered from (3.2) when H ∼ DP(α0,M) for
appropriately chosen hyperparameters α0 and M .

Consider now an independent and identically distributed sequence θ1, . . . , θn
such that θj | H ∼ H , where H ∼ DP(α0,M). A useful feature of the Dirichlet
process prior is that the joint distribution for (θ1, . . . , θn) obtained after inte-
grating out the random H is given by a sequence of predictive distributions [7]
where θ1 ∼M and

θj+1 | θj , . . . , θ1, α0 ∼

j∑

i=1

1

α0 + j
δθi +

α0

α0 + j
M, j > 1. (3.4)

The presence of ties in the sequence θ1, . . . , θn sometimes makes it convenient
to use an alternative representation where θ∗1 , . . . , θ

∗
L denotes the set of 1 ≤

L ≤ n unique values among θ1, . . . , θn and ξ1, . . . , ξn is a sequence of indicator
variables such that θj = θ∗ξj . Under this representation, θ

∗
1 , θ

∗
2 , . . . is a sequence

of independent and identically distributed samples from M , ξ1 = 1 and

ξj+1 | ξj , . . . , ξ1, α0 ∼

Lj∑

l=1

rjl
α0 + j

δl +
α0

α0 + j
δLj+1, j > 1, (3.5)
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where Lj = maxi≤j{ξi} is the number of distinct values among θ1, . . . , θj , and

rjl =
∑j

i=1 1(ξi=l) is the number of samples among the first l with ξj = l.

Expressions (3.4) and (3.5) clearly emphasize that, for any finite sample x(1:n),
the number of non-empty components Ln = L in a Dirichlet process mixture
model is a random parameter in the model. The prior on L implied by the
Dirichlet process is given by:

p(L | α0, n) = S(n, L)n!αL
0

Γ(α0)

Γ(α0 + n)
L = 1, . . . , n, (3.6)

where S(·, ·) denotes the unsigned Stirling number of the first kind [1]. Therefore,
the mean number of non-empty components grows with α0, the concentration
parameter.

The Dirichlet process mixture model is intimately connected to the finite
mixture model in (3.1). Consider a finite mixture with N components such that

x(j) | {θ∗l }
N
l=1, {ξj}

n
j=1 ∼ p(x(j) | θ∗ξj ),

ξj | α0 ∼ Multno

(α0

N
, . . . ,

α0

N

)
, θ∗l ∼M. (3.7)

As N → ∞, the predictive distribution for x(1:n) under this model converges
to the one obtained from the DP mixture [24, 29].

In the Dirichlet process mixture of Gaussian graphical models we explore in
this paper, θ = (µ,K,G) and the baseline measure is defined by

M = p(µ,K | G)p(G), (3.8)

where p(µ,K | G) is given by (2.2) and p(G) is the prior on the graph space.
Our framework is capable of accommodating any prior p(G) on the set of

graphs. A usual choice is the uniform prior p(G) ∝ 1, but this prior is biased
toward middle size graphs and gives small probabilities to sparse graphs and to
graphs that are almost complete. Here the size of a graph G is defined as the
number of edges in G and denoted by size(G) ∈ {0, 1, . . . , p(p− 1)/2}. [16, 32]
assume that the probability of inclusion of any edge in G is constant and equal
to ψ ∈ (0, 1), which leads to the prior

p(G) ∝ ψsize(G)(1− ψ)p(p−1)/2−size(G). (3.9)

Sparser graphs can be favored with prior (3.9) by choosing a small value for ψ.
Alternatively, [2] suggested a hierarchical prior on the graph space that gives
equal probability to the size of a graph and equal probability to graphs of each
size, i.e.

p(G) = p(G | size(G) = k)p(size(G) = k) (3.10)

where p(size(G) = k) = 1/{1 + p(p − 1)/2} and p(G | size(G) = k) ∝ 1. We
note that, for the class of general graphs, the expected size of a graph under size
based prior is m/2, which is also the expected size of a graph under the uniform
prior on Gp. In what follows we will consider both the uniform prior and the
prior given by equation (3.10).
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3.1. Model properties and interpretation

The model discussed in the previous section is a natural extension of the well-
known Dirichlet process mixture of multivariate normals originally presented in
[41], but the introduction of the component-specific graphical structure allows
us to induce sparsity in the estimation of the precision matrix associated with
the mixture components. Hence, the point estimates provided by the Dirichlet
process mixture of Gaussian graphical models can be interpreted as providing
doubly-regularized estimates of the cluster-specific covariance matrices; one level
of regularization arises because of the introduction of the prior distribution on
the number of components, which introduces a penalty structure on the number
of clusters equal to the logarithm of (3.6), while the second level of regularization
arises because of the introduction of the prior p(G) on the graph encoding the
cluster-specific conditional independence structure. This is important because it
is well known that, for high dimensional problems, estimation of the covariance
matrices {K−1

l }Ll=1 can be extremely unstable and that regularized estimators
produce improved results. Similar approaches to regularization have recently
proved effective in both graphical models [56] and mixture models [21].

In the classical framework for Gaussian graphical models, the same set of
graphs characterize the associations in all the samples. However, in a Dirich-
let process mixture of Gaussian graphical models, for each sample there is a
(potentially different) ordering of all the graphs with respect to their posterior
probabilities. Hence, posterior inferences about the conditional independence
among outcomes has to be made with regard to each specific observation rather
than with respect to the whole population. This is clearer when we rewrite the
model by introducing cluster indicators ξ1, . . . , ξn, so that the Dirichlet process
mixture can be written in terms of a random partition [46], where

p(x(1:n) | ξ1, . . . , ξn) =

L∏

l=1





∫ 

∏

{i:ξi=l}

p(xi | µ
∗
l ,K

∗
l , G

∗
l )


M(dµ∗

l , dK
∗
l , dG

∗
l )





and p(ξ1, . . . , ξn), which defines the prior probability on the partition, is given
by (3.5). This representation highlights that the model groups observations into
homogeneous classes, with samples on each class being generated from a stan-
dard Bayesian Gaussian graphical model, so that when L = 1, the mixture
reduces to a standard Gaussian graphical model. Therefore, although the joint
distribution is not Markov with respect to any single graph G, the distribution
of the l-th class is Markov with respect to an (unknown) graph G∗

l (potentially
distinct for each class), which is assigned the prior p(G). The conditional inde-
pendence graph associated with sample i is then obtained by setting Gi = G∗

ξi
;

hence, uncertainty about Gi arises not only from uncertainty about the struc-
ture of the cluster-specific G∗

l , but also from the uncertainty about the cluster
indicator ξi.

Moreover, note that since observations are exchangeable under a Dirichlet
Process model, the Pólya urn representation in (3.4) immediatly shows that the
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prior marginal distribution p(Xi) = EH

{∫
N(Xi | µ,K,G)H(dµ, dK, dG)

}
, also

follows a standard Gaussian graphical model with respect to a randomly chosen
subject-specific graph Gi, which implies that our procedure generates a prior
that is Markov with respect to Gi. In addition, since the posterior distribution
of the mixing distribution for H is a mixture of Dirichlet process [1],

H | x(1:n) ∼

∫
DP

(
α0 + n,

α0

α0 + n
G0 +

1

α0 + n

n∑

i=1

δ(µi,Ki,Gi)

)

p(µi,Ki, Gi | x
(1:n))dµidKidGi

the same argument implies the posterior predictive distribution for a new ob-
servation x(n+1),

p(x(n+1) | x(1:n)) = EH|x(1:n)

{∫
N(Xn+1 | µ,K,G)H(dµ, dK, dG)

}
,

is also Markov with respect to a newly sampled graph Gn+1. This new graph
is equal to one of the previously observed graphs G∗

l with probability rl/(n +
α0), or corresponds to a newly sampled graph from the baseline measure with
probability α0/(n+ α0).

4. Posterior inference for mixtures of Gaussian graphical models

As with regular Gaussian graphical models, the posterior distribution arising
from the nonparametric mixture of Gaussian graphical models is not analyti-
cally tractable because of the sheer size of the space of partitions and accompa-
nying graphs. Therefore, we resort to Markov chain Monte Carlo algorithms to
explore the features of this complicated posterior distribution. The literature on
sampling algorithms for the Dirichlet process mixture model has grown exten-
sively in the last 15 years; in this paper we focus attention on marginal samplers
such as the ones described in [43], and the slice sampler introduced in [57].

4.1. Collapsed samplers for mixtures of decomposable Gaussian

graphical models

The structure of the baseline measure M in (3.8) is such that we can eas-
ily integrate the means {µl} and precision matrices {Kl} out of the model
and create a sampler that acts on the space of partitions and graphs directly,
which can dramatically reduce the computational burden. Given an initial state
where the data x(1:n) has been divided into L clusters through indicator vari-
ables ξ1, . . . , ξn, and where graphs G∗

1, . . . , G
∗
L are associated with each of the

components, the algorithm proceeds to sample from the joint distribution of
(L, {ξj}

n
j=1, {G

∗
l }

L
l=1, α0 | x(1:n)). As a first stage we update the sequence of in-

dicators {ξj}
n
j=1 (and, implicitly, the number of components L) by sequentially
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sampling each ξj for j = 1, . . . , n from its full conditional distribution

Pr(ξj = l | ξ−j = {ξj′}j′ 6=j , x
(1:n), {G∗

l }
L−j

l=1 ) ∝{
r−j
l p(x(j) | {x(j

′) : j′ 6= j, ξj′ = l}, G∗
l ), l ≤ L−j

α0p(x
(j) | G∗

L−j+1)δL−j+1 l = L−j + 1
(4.1)

In the previous expression, L−j is the number of clusters in the sample (ex-
cluding observation x(j)), r−j

l =
∑

j′ 6=j 1{ξ′
j
=l} is the number of observations

included in cluster l (excluding observation j if this sample currently belongs
to cluster l), p(x(j) | {x(j

′) : j′ 6= j, ξj′ = l}, G∗
l ) is the posterior predictive

distribution of sample x(j) given the samples that are currently in the l-th clus-
ter (excluding x(j) if it happens to belong to this cluster) and the graph G∗

l

associated with this cluster – see equation (2.9), and p(x(j) | G∗
L−j+1) is the

posterior predictive distribution of sample x(j) given an empty cluster, which
is calculated by setting n = 0, µ̄ = 0(p×1) and U = 0(p×p) in equation (2.9).
The graph G∗

L−j+1 is to be randomly sampled from our baseline measure on
GV , which we labeled p(G) in (3.8). If the last observations has been moved
out of a cluster, that cluster is deleted and L is decreased by 1. Similarly, if an
observation is moved to a new cluster that is currently empty, L is increased
by 1.

Once the cluster assignment has been updated, the graph G∗
l associated with

each cluster l = 1, . . . , L is also updated as follows. We let the neighborhood
of G∗

l , denoted by nbdGV
(G∗

l ), be the set of graphs that can be obtained from
G∗

l by adding or deleting one edge. These neighborhood sets connect any two
graphs in GV through a sequence of graphs that differ by exactly one edge – see,
for example, Lauritzen [34]. We draw a candidate graph G∗new

l from the uniform
distribution on nbdGV

(G∗
l ). We change the graph associated with cluster l to

G∗new
l with probability

min

{
1,
p({x(j) : ξj = l} | G∗new

l )/|nbdGV
(G∗new

l )|

p({x(j) : ξj = l} | G∗
l )/|nbdGV

(G∗
l )|

}
, (4.2)

otherwise the graph associated with cluster l remains unchanged. Here p({x(j) :
ξj = l} | G) represents the marginal likelihood of the samples currently in
cluster l given a graph G – see equation (2.8). We denote by |B| the number of
elements of a set B. To improve mixing, we update the graphs associated with
each cluster multiple times before another cluster assignment update is carried
out (in our experience, between 5 and 10 updates seem to provide adequate
mixing).

These two sequences of steps produce a sample from the posterior distribu-
tion of interest, (L, {ξj}

n
j=1, {G

∗
l }

L
l=1, α0 | x(1:n)) without any need to sample

the means {µ∗}Ll=1 or precisions {K∗}Ll=1. Therefore, if we are only interested in
inferences about the clustering structure or the graphical structure associated
with the clusters, or on predictive inference, the previous algorithm is sufficient
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and can dramatically reduce the computational burden of the algorithm. How-
ever, if needed, the mean and variances of each mixture component can be easily
sampled conditionally on {ξj}

n
j=1 using equation (2.6) and (2.7),

K∗
l | G∗

l , {x
(j) : ξj = l} ∼ WisG∗

l
(δ0 + rl, D0 + Ul +Al), (4.3)

µ∗
l | K∗

l , G
∗
l , {x

(j) : ξj = l} ∼ Np(µ̄l, [(rl + n0)K
∗
l ]

−1), (4.4)

independently of other components. As before, the subscript l denotes the cor-
responding values computed using only the observations assigned to component
l (for example, rl is the number of observations assigned to component l).

Since a graph proposed from the prior distribution p(G) is highly unlikely
to provide a good description of the conditional independence structure in a
new cluster, the algorithm described above could potentially mix very slowly,
especially in high dimensions. However, since conditional independence graphs
are seriously under-determined when the sample size is small, and our algorithm
evaluates any proposed graph on the basis of a single observation, in practice
the probability of creating a new cluster is actually relatively insensitive to the
sampled graph. Similarly, when expanding a cluster with a small number of
observations assigned to it, the quality of the graph plays a very minor role in
determining the probability of acceptance. Once a new cluster has been cre-
ated, our use of multiple Metropolis-Hastings updates for the graph on each
component tends to dramatically improve the quality of the graph, allowing the
newly created component to persist. The empirical evidence from our simula-
tions seems to support this intuitive argument.

In any case, we can improve the mixing of the algorithm by using multiple
samples from the baseline measure to improve the probability that a “good”
graph is generated; this approach is reminiscent of the multiple try methods de-
scribed in [38]. The resulting sampling scheme involves just a slight modification
of the algorithm described above, where the new component is represented by
T ≥ 1 graphs randomly sampled from the baseline measure, which we arbitrar-
ily label G∗

L−j+1, . . . G
∗
L−1+T . For l ≥ L−j+1, the full conditional probability of

creating a new component that has associated with it the graph G∗
l is then pro-

portional to α0p(x
(j) | G∗

l )/T . When T = 1 we recover our original algorithm.
In the simulation study contained in the Section 6 and in the data analysis in
Section 7 we worked with T = 1 and obtained Markov chains with excellent
mixing times.

An additional avenue for improvement that we do not explored in this pa-
per is to implement split/merge reversible jump Markov chain Monte Carlo
algorithms in conjunction with the collapsed sampler we have focused on. In
particular, since we cannot explicitly integrate G∗

i , we require an algorithm for
non-conjugate models such as the one described in [31]. This algorithm would
use restricted Gibbs sampling split-merge proposals that first sample from the
baseline measure and then perform a series of updates on the graph to improve
the quality of the proposal.

Additional flexibility can be obtained by sampling some of the hyperparame-
ters associated with the DP prior. For example, the concentration parameter α0
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controls the expected number of components, and therefore has an important
effect on the inferences generated by the model. Since eliciting values for α0 can
be difficult in practice, it is recommendable to try to infer it from the data. For
example, we can assume a vague Gam(a0, b0) prior for the precision parameter
α0, in which case the full conditional distribution can be easily sampled using an
auxiliary-variable Gibbs sampling step [18] (see Appendix). Finally, note that,
although the model and computational algorithms has been described in terms
of Dirichlet process mixtures, they can be easily extended to include any other
species sampling priors on H (for examples, see 45 and 35).

4.2. Collapsed samplers for mixtures of arbitrary Gaussian

graphical models

The sampling schemes discussed in Section 4.1 are particularly attractive for
inference with decomposable graphs. As we have discussed in Section 2, the
normalizing constant IG(δ,D) of the G-Wishart WisG(δ,D) distribution associ-
ated with a decomposable graph G can be calculated using formula (2.5), which
implies that marginal likelihood (2.8) and posterior predictive distribution (2.9)
are also calculated using formulas. Unfortunately, for a nondecomposable graph
G, the normalizing constant IG(δ,D) is no longer readily available and needs
to be numerically approximated. This problem has been studied in Lenkoski &
Dobra [36], who show that the Monte Carlo method of [3] is fast and accurate
for calculating IG(δ,D) for small values of δ and D set to the identity matrix,
but it can be slow to converge otherwise. They also discuss the Laplace approx-
imation for IG(δ,D), but point out that it is accurate only for larger values of
δ. As such, the sampling methods from Section 4 are difficult to implement for
arbitrary graphs in GV due to the numerical difficulties related to the calculation
of the normalizing constants of G-Wishart distributions.

To this end, collapsed samplers that keep track of both the precision matrix
K∗

l and graph G∗
l associated with each cluster l = 1, . . . , L can be developed

instead. Given the observations {x(j) : ξj = l} that currently belong to clus-
ter l, we update K∗

l based on the G-Wishart distribution (4.3) by employing
the Metropolis-Hastings algorithm of Dobra et al. [17]. Given the updated K∗

l ,
we can update the graph G∗

l given K∗
l is performed using the reversible jump

Markov chain method of Dobra et al. [17] instead of using equation (4.2). Once
an edge is changed in G∗

l , the corresponding element ofK∗
l must also be updated

as it either becomes constrained to zero (if the edge is deleted) or becomes free
(if the edge is added). Thus a candidate state that comprises the new graph
G∗∗

l and a precision matrix K∗∗
l in the cone defined by G∗∗

l must be generated.
The Metropolis-Hastings acceptance probability involves a change in the dimen-
sionality of the parameter space, hence the reversible jump approach of [25] is
required to decide whether the Markov chain transitions to the candidate state
(G∗∗

l ,K
∗∗
l ) or stays at the current state (G∗

l ,K
∗
l ). The calculation of this accep-

tance probability involves the calculation of a ratio of two normalizing constants
associated with G-Wishart prior distributionsWisG∗

l
(δ0, D0) and WisG∗∗

l
(δ0, D0)

which are efficiently approximated with the Monte Carlo method of [3].
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When the creation of a new component is proposed in equation (4.1), we
employ the direct sampling algorithm from the G-Wishart distribution of Wang
& Carvalho [58] to sample a new precision matrix associated with a graph ran-
domly sampled from the baseline measure on GV . Finally, the predictive distri-
butions (2.9) in the sampling scheme from Section 4 are replaced by multivariate
normal distributions p(x(j) | K∗

l ).

4.3. Slice samplers

A number of alternatives to the collapsed Gibbs sampler have been presented in
the literature. Particularly interesting are algorithms that explicitly sample the
mixing distribution H ; examples include the blocked Gibbs sampler [28], the
retrospective sampler [47], and the slice sampler [57]. In this section we focus
on the slice sampler, as it maintains the simplicity of the blocked Gibbs sampler
but allows us to adaptively select the number of mixture components that are
explicitly represented during execution.

To construct a slice sampler for the Dirichlet process mixture of Gaussian
graphical models we introduce two sets of auxiliary variables, the indicator
variables ξ1, . . . , ξn already described in the previous sections, and uniformly
distributed slice variables u1, . . . , un so that

p(x(i), ui, ξi | {µ
∗
l }

∞
l=1, {K

∗
l }

∞
l=1, {G

∗
l }

∞
l=1) = p(x(i) | µ∗

ξi ,K
∗
ξi , G

∗
ξi)1(ui ≤ wξi)

where p(x(i) | µ∗
ξi
,K∗

ξi
, G∗

ξi
) is given in equation (2.1) and 1(A) is the indicator

function on the set A. Note that integrating over ui and ξi leads to our original
mixture representation.

The algorithm is initialized by selecting the initial number of explicitly rep-
resented mixture component L∗ (this number will adaptively change as the
sampler progresses) and initializing the value of all model parameters. Given
the rest of the parameters, the component-specific parameters for the explicitly
represented components {µ∗

l }
L∗

l=1, {K
∗
l }

L∗

l=1, and {G∗
l }

L∗

l=1 can be updated using
exactly the same procedures discussed in the previous subsections. On the other
hand, conditionally on the auxiliary variables, we can easily update the weights
by first sampling the stick-breaking ratios

vl | {ξi}
n
i=1 ∼ Beta

(
1 + rl, α0 +

∑

k>l

rk

)

and letting wl = vl
∏

k<l(1−vk). In particular, note that if N∗ = max{ξi}, then
vl | {ξi}

n
i=1 ∼ Beta(1, α0) for l > N∗.

Finally, the slice variables can be updated by sampling them from ui |
{wl}

∞
l=1, ξi ∼ Uni(0, wξi), and the indicator variable ξi can be sampled by noting

that

Pr(ξi = l | ui, {wl}
∞
l=1, {µ

∗
l }

∞
l=1, {K

∗
l }

∞
l=1, {G

∗
l }

∞
l=1)

∝ p(x(i) | µ∗
l ,K

∗
l , G

∗
l )1(ui ≤ wl)
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Although in principle the normalization constant for this posterior probability
involves an infinite sum, note that in practice just a finite number of wls can
satisfy ui ≤ wl. Hence, in order to sample every ξi we only need to explicitly
represent L∗ components, where L∗ satisfies

L∗∑

l=1

wl > max
1≤i≤n

{1− ui} (4.5)

If, at a given iteration, additional mixture components need to be explicitly
represented to ensure that (4.5) is satisfied, the corresponding weights and
component-specific parameters can be simply sampled from the baseline mea-
sure. Similarly, if too many components are currently being represented, the
excess ones can be discarded.

4.4. Sampling from the baseline measure over graphs

All the algorithms described above require that we sample graphs from the
baseline measure. In the case of general graphs this is straightforward under
any of the prior in (3.9) or (3.10). However, if we restrict attention to non-
decomposable graphs, some care needs to be exercised.

To illustrate this, consider sampling graphs uniformly on GD
V (which corre-

sponds to using prior (3.9) with ψ = 1/2). For graphs with a small number of
vertices the following accept-reject algorithm works very well:

1. Sample an arbitrary graph from the uniform distribution (this is done by
independently sampling the occurrence of each edge with probability 0.5).

2. Accept the graph if it is decomposable; otherwise repeat 1 and 2.

For example, for p = 8 vertices, the ratio between the number of decompos-
able graphs and the total number of graphs is 0.12. Hence the probability of
acceptance of a graph sampled with the accept-reject algorithm is 0.12. More
generally, even though the acceptance rate declines as p → ∞, the ratio con-
verges to a non-zero constant.

For graphs with a large number of vertices, the accept-reject algorithm could
be less efficient. To this end, we devised the following Metropolis-Hastings al-
gorithm that works directly on the set of decomposable graph with p vertices.
Given a current decomposable graph G, identify the neighbors of G (denoted
nbd(G)) which comprise all the decomposable graphs that are obtained by
adding or deleting an edge in G. Uniformly sample a decomposable graph G′

from nbd(G). The chain moves to G′ with probability:

min

{
1,

|nbd(G)|

|nbd(G′)|

}

The Metropolis-Hastings sampler gives approximate samples from the uni-
form distribution on decomposable graphs. We run such a chain as a separate
program and saved a large number of graphs in a separate file. To reduce the
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dependence between two consecutive draws we discard 1000 sampled graphs
before saving the next graph. Our main code reads this output file to retrieve
sampled decomposable graphs as needed. In a more efficient parallel implemen-
tation, the Metropolis-Hastings sampler can be run as a separate process that
returns a graph as needed.

4.5. Discussion

It is important to consider the trade-offs associated with the choice of com-
putational algorithms for posterior inference on Dirichlet process mixtures of
graphical models. Generally speaking, algorithms that explicitly represent the
mixing distribution H tend to generate samples with higher autocorrelations
than collapsed samplers. In addition, they have higher memory requirements
(because of the need to explicitly represent the mean vectors and variance ma-
trices associated not only with the occupied component, but also with a poten-
tially large number of unoccupied ones). However, in the case when inference is
restricted to decomposable graphs, the slice sampler avoids the need to compute
the normalizing constants associated with the graphs, which can potentially lead
to speedups. Indeed, even though the normalizing constant for a decomposable
graph breaks down to the evaluation of many gamma functions and determi-
nants of positive definite matrices, our experience indicates these operations can
represent up to 40% of the computational effort on some datasets. These obser-
vations suggest that for relatively small sample sizes, large number of mixture
components, and sparse component-specific graphs, collapsed samplers should
be preferred. In this type of situation, the computation of the normalizing con-
stants involved in the predictive distribution is extremely efficient, and collapsed
algorithms are faster (in CPU time), and produce samples with smaller autocor-
relations. On the other hand, for problems where the data supports a relatively
small number of mixture components with dense graphs, slice samplers would
seem to be more efficient. These conclusions seem to be supported by the em-
pirical comparison carried out in the context of the simulation study included
in Section 6.

Another important issue for posterior inference in mixture models is label-
switching, i.e., the invariance of the posterior distribution to different combina-
tions of values used to label the mixture components [53]. A simple solution to
this problem is to present posterior summaries that are invariant to label switch-
ing. For example, the posterior distribution over data partitions can be summa-
rized through the pairwise incidence matrix Υ, where Υij = Pr(ξi = ξj | x

(1:n)).
This matrix can then be used to generate point estimates of cluster member-
ship (for example, see 33). Similarly, we avoid presenting inferences about the
component-specific graph G∗

k and focus instead on the observation specific graph
Gi = G∗

ξi
. This can potentially be done for any observation i = 1, . . . , n, but

in practice you would typically do it for just a few “representative” observa-
tions, which can be selected using the pairwise clustering probability matrix Υ
described above. This approach is illustrated in Section 7.
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5. Infinite hidden Markov Gaussian graphical models

Multivariate time series models that use graphical models to improve estimation
of the crosssectional covariance structure have been recently developed. Two
recent pertinent examples are [10] and [60]. These approaches rely on extensions
of the dynamic linear model [62] and assume that the graph underlying the
model is constant in time which, as the example in Section 7 illustrates, might
not be an appropriate assumption in practical applications. Also, [59] consider
time series models where the underlying conditional independence graph evolves
smoothly time. As an alternative, we develop a nonparametric version of the
popular hidden Markov model where the emission distribution corresponds to a
Gaussian graphical model. This class of models are an extension of the Dirichlet
process mixtures of Gaussian graphical models from Section 3 that explicitly
accounts for the temporal dependence among the observations.

Hidden Markov models [8] are hierarchical mixture models where

x(j) | {θ∗l }
L
l=1, {ξj}

L
j=n ∼ p(x(j) | θ∗ξj ),

ξj | ξj−1, {π
l}Ll−1 ∼ Multno(πξj−1 ), θ∗l ∼M.

and ξ0 ∼ Multno(π0). In this context the latent indicator ξj ∈ {1, . . . , L} is called
a hidden state, while the entire set of indicators {ξj}

n
j=1 is called a trajectory.

The ordering of the states is implicitly defined by the ordering of their indices;
trajectories evolve according to a Markov process with transition probabilities
Pr(ξj = l | ξj−1 = l′) = πl′

l . The initial state probabilities are Pr(ξ0 = l) = π0
l .

Conditionally on a set of states {ξj}
n
j=1, the observations x(1), . . . , x(n), are

independently distributed from state dependent distributions p(· | θ∗ξ1), . . . , p(· |
θ∗ξn).

Infinite hidden Markov models [4, 54, 23] generalize hidden Markov models to
allow for an infinite number of states, in a similar way as how Dirichlet process
mixture models generalize finite mixture. Hence, infinite hidden Markov models
allow us to treat the number of states L as a random variable that is to be
estimated from the data. More specifcally, we consider a model where

x(j) | {µ∗
l }

∞
l=1, {K

∗
l }

∞
l=1, {G

∗
l }

∞
l=1, {ξj}

n
j=1 ∼ Np(x

(j) | µ∗
ξj , (K

∗
ξj )

−1),

ξj | ξj−1, {π
l}∞l=1 ∼ Multno(πξj−1 ),

πl | α, γ ∼ DP(α, γ), γ | α0 ∼ SB(α0), and θ∗l = (µ∗
l ,K

∗
l , G

∗
l ) ∼ M , where

M is defined as in (3.8). As before, πl corresponds to the vector of transition
probabilities leaving state l and γ is the vector of average transition probabilities.
A model of this form has some distinct advantages over the dynamic linear
models with graphical structure discussed in [10] and [60]. In particular, it allows
for the graph controlling the conditional independence structure of the data
to evolve in time while still taking into account the sequential nature of the
problem.

A marginal Gibbs sampler similar to the one described in Section 3 can
be devised for the infinite hidden Markov model. To do so, note that if rl =



998 A. Rodŕıguez et al.

(rl1, rl2, . . .) with rll′ denoting the number of transitions between state l and
state l′, the posterior distribution for the vector πl = (πl

1, π
l
2, . . .) is given by

πl | rl ∼ DP

(
α+ rl·,

rl + αγ

rl· + α

)
.

Hence, we can explicitly integrate the unknown transition probabilities {πl}∞l=1

yielding

Pr(ξt = l′ | ξt−1 = l, α, γ, rl) = E
{
πl
l′ | rl

}
=
αγl + rll′

α+ rl·
,

an expression that is reminiscent of the Pólya urn in (3.4). Due to the Markovian
structure of the model, this implies that the full conditional distribution for ξt
is given by

p(ξt | ξ
−t, α, γ, {rl}

∞
l=1) ∝ p(ξt+1 | ξt, α, γ, {rl}

∞
l=1)p(ξt | ξt−1, α, γ, {rl}

∞
l=1).

In the case of decomposable GGMs, combining the full conditional prior with
the likelihood, and integrating over the mean and variance of each state, the full
conditional distribution for ξt reduces to

Pr(ξt = l | ξ−t, α, γ, x(1:n)) ∝





r
1:(j−1)
ξj−1,l

+r
(j+1):n
ξj−1,l

+αγl

r
1:(j−1)
ξj−1·

+r
(j+1):(n)
ξj−1·

+α

r
1:(j−1)
l,ξj+1

+r
(j+1):n
l,ξj+1

+αγξj+1

r
1:(j−1)
l·

+r
(j+1):n
l·

+α
×

p(x(j) | {x(j
′) : j′ 6= j, ξj′ = l}, G∗

l ) l ≤ L−j, l 6= ξt−1,

r
1:(j−1)
ξj−1,l

+r
(j+1):n
ξj−1,l

+αγl

r
1:(j−1)
ξj−1·

+r
(j+1):(n)
ξj−1·

+α

r
1:(j−1)
l,ξj+1

+r
(j+1):n
l,ξj+1

+αγξj+1
+1

r
1:(j−1)
l·

+r
(j+1):n
l·

+α+1
×

p(x(j) | {x(j
′) : j′ 6= j, ξj′ = l}, G∗

l ) l = ξj−1 = ξj+1,

r
1:(j−1)
ξj−1,l

+r
(j+1):n
ξj−1,l

+αγl

r
1:(j−1)
ξj−1·

+r
(j+1):(n)
ξj−1·

+α

r
1:(j−1)
l,ξj+1

+r
(j+1):n
l,ξj+1

+αγξj+1

r
1:(j−1)
l·

+r
(j+1):n
l·

+α+1
×

p(x(j) | {x(j
′) : j′ 6= j, ξj′ = l}, G∗

l ) l = ξj−1 6= ξj+1,

αγl

r
1:(j−1)
ξj−1·

+r
(j+1):(n)
ξj−1·

+α
γξj+1p(x

(j) | G∗
L+1) l = L−j + 1.

(5.1)

where rj1:j2ll′ denotes the number of transitions from state l to state l′ in the sub-

trajectory {ξj}
j2
j=j1

and by rj1 :j2l· the number of transitions out of state l in the
same sub-trajectory, and G∗

L+1 is a graph randomly sampled from the baseline
distribution. If a new empty cluster needs to be created, we update the number
of clusters L by setting Lnew = L+1 and the vector γ by setting γnewL+1 = uγL+1,
γnewL+2 = (1−u)γL+1 were u ∼ Beta(1, α0). To justify the update to γ, remember
that γ ∼ SB(α0) and note that γL+1 reflects the combined prior probability that
an observation is assigned to one of the (countably many) empty states. When
one of the empty components becomes active, we must split the probability of
the newly occupied state from the current estimate of the combined probability
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according to a randomly selected random variate u ∼ Beta(1, α0) (see the stick-
breaking construction in equation (3.3)). As we discussed in Section 4.2, in the
case of arbitrary graphs the sampler can be modified by explicitly representing
the precision matrices {Kl} associated with the different states, replacing p(x(j) |
G∗

L+1) and p(x(j) | {x(j
′) : j′ 6= j, ξj′ = l}, G∗

l ) by p(x(j) | K∗
L+1, G

∗
L+1) and

p(x(j) | {x(j
′) : j′ 6= j, ξj′ = l},K∗

l , G
∗
l ) in (5.1), and jointly sampling (K∗

l , G
∗
l )

for each l using the algorithm described in [17].
In any case, given a trajectory {ξj}

n
j=1, α0 and α, we sample γ by introducing

the independent auxiliary variables {mll′} for l, l′ ∈ {1, . . . , L} such that

Pr(mll′ = m) ∝ S(r
(1:n)
ll′ ,m)(αγl′ )

m, m ∈ {1, . . . , r
(1:n)
ll′ },

where S(·, ·) denotes the Stirling number of the first kind. Conditional on these
auxiliary variables we can update γ by sampling

(γ1, . . . , γL+1) ∼ Dir(m·1, . . . ,m·L, α0),

where m·l′ =
∑L

l=1mll′ . We use vague gamma priors for the precision parame-
ters α0 and α and update them as described in the Appendix. An alternative
slice sampler for this model can also be developed along the lines described
in [23].

6. Simulation studies

We consider first a small simulation that involves data arising from two Gaussian
clusters. For brevity, the results we present in this Section correspond to a
single run of the simulation, but these are representative of those obtained over
multiple runs. In the first cluster n samples are from a star graphical model
N11(µ,K

−1
1 ) with every variable Xj , j > 2, connected to X1, while the second

cluster contains n samples from an AR(2) model N11(−µ,K
−1
2 ). The non-zero

elements of the two precision matrices are

(K1)j,j = (K2)j,j = 1, j = 1, . . . , 11,

(K1)1,j = (K1)j,1 = 0.3, j = 2, . . . , 11,

(K2)j−1,j = (K2)j,j−1 = 0.3, j = 2, . . . , 11,

(K2)j−2,j = (K2)j,j−2 = 0.3, j = 3, . . . , 11.

We consider four settings of n = (50, 100, 200, 500) and four settings for
µ = (0, .1, .2, .5) and thus run 16 simulations in total. Results are shown using
the uniform graph prior. For each data set, we ran the Dirichlet Process Mixture
procedure for 5000 iterations after a burn-in of 2000 iterations. Figure 1 shows
the resulting clustering under each combination of n and µ.

Figure 1 shows that both the number of samples from each cluster as well
as the difference in mean values affects the ability of our method to separate
the two groups. When n = 50, and µ = 0 (the upper left plot) the figure shows
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Fig 1. Clustering Results from Simulation Study. Each row of results corresponds to setting
n = 50, 100, 200, 500 and each column corresponds to setting µ = 0, .1, .2, .5

that there is only a slight differentiation between the two groups. However,
even when n = 50 but µ = 0.5, the two groups are almost perfectly clustered.
By contrast, when n = 500 the method performs considerably better (though
far from perfectly) at discerning the two groups when µ = 0 and clustering is
essentially correct when µ = 0.5.

Figure 2 shows the estimated edge probabilities for each combination of n and
µ. In each plot, the lower triangle corresponds to the first n observations, while
the upper triangle corresponds to the second n observations. Figure 2 shows
several interesting features. First, even when µ is near zero and n is small, a
situation in which the model does not cluster the observations perfectly, the
structure of K1 is quickly discerned by the model. As clustering improves, the
structure of K1 continues to be recovered well. As both n and µ grow, the
method is also able to recover the structure of K2.
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Fig 2. Estimated edge probabilities from the simulation study. Each row of results corresponds
to setting n = 50, 100, 200, 500 and each column corresponds to setting µ = 0, .1, .2, .5. The
lower triangle of each plot is the edge probability associated with the first n observations,
while the upper triangle is the edge probability associated with the second n observations

6.1. Timing study

We now compare the reduced and slice samplers discussed in Section 3 of the
main report. Using the simulation study described above, we set µ = 0.1 and
considered datasets with n set to values between 50 and 500 observations at
increasing increments of 50 observations. For each setting of n we sampled 20
datasets and ran the algorithm, as above, for 5000 repetitions after a burn-in of
2000 iterations under both the reduced sampler and the slice sampler.

Table 1 shows the results of this comparison. This table shows the average
time that each algorithm took to complete the run for each value of n. In addi-
tion to the timing comparison, we also compute the effective sample size (ESS)
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Table 1

Average time to completion (seconds) and average Effective Sample Size (ESS) with
standard deviations across 20 replications for the reduced and slice sampler versions of the

DPM model.

Time ESS
n Reduced Slice Reduced Slice
50 450.31 395.61 3851.94 3725.7

(50.47) (68.96) (1451.13) (993.71)
100 866.29 415.13 4249.98 3923.88

(13.06) (59.75) (888.71) (1222.84)
150 1296.35 422.5 4495.99 3757.88

(26.36) (77.73) (497.4) (1106.85)
200 1722.39 442.9 4510.52 4067.71

(19.09) (61.85) (447.16) (1198.38)
250 2144.79 454.1 4922.04 3998.93

(12.75) (59.64) (438.91) (735.74)
300 2583.13 484.36 4658.79 4004.52

(61.87) (58.11) (903.07) (1538.46)
350 2993.49 507.94 4648.73 4237.84

(23.29) (46.72) (478.66) (1094.65)
400 3417.02 542.32 4834.01 4025.85

(16.18) (42.75) (796.26) (918.99)
450 3848.35 574 4630.43 4327.83

(43.8) (49.87) (944.87) (1091.51)
50 4300.59 614.27 4692.48 3731.38

(130.47) (40.9) (351) (1405.63)

of the parameter α that is returned from the 5000 final repetitions (thus ignor-
ing burn-in) under each algorithm. When n = 50 we see that the two methods
have essentially the same timing. As n grows, the time taken by the reduced
sampler appears to increase nearly linearly, while the slice sampler shows con-
siderably less time increase. However, the parameter α exhibits somewhat less
autocorrelation, using the reduced sampler, as show in the ESS calculation.

7. Illustration: Modeling trends in exchange rate fluctuations

We consider a dataset that follows the returns on exchange rates of 11 curren-
cies relative to the United States dollar between November 1993 and August
1996. This dataset consists of 1000 daily observations and includes three Asian
currencies – the New Zealand Dollar (NZD), the Australian Dollar (AUD), and
the Japanese Yen (JPY) – five European currencies that eventually became
part of the Euro – the Deutsch Mark (DEM), French Franc (FRF), Belgian
Franc (BEF), Netherlands Gilder (NLG) and Spanish Peso (ESP) – as well
as three additional European currencies – the British Pound(GBP), Swedish
Krona (SEK), and Swiss Franc (CHF). These data have previously been used in
a variety of contexts related to graphical models (see e.g. 9 and 10). In [9] the au-
thors present the graph shown in Figure 3, which is determined using stochastic
search methods first discussed in [32] over the final 100 timepoints. The authors
note that this graph is sensible from the standpoint of known trading relations:
the mainland European countries that join the Euro are closely linked in a sin-
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Fig 3. Graphical model presented by [9], which represents the highest probability graph found
using stochastic search methods over the last 100 timepoints of the exchange dataset, using
the author’s prior specifications. This graph has been used to show that investment strategies
based on graphical models often have lower variability and higher yield than methods based
on the full covariance matrix.

gle clique, while the British Pound, Swedish Krona and Swiss Franc connect
with only some of these counties, most notably the currencies of the largest
Euro-area countries, the Deutsch Mark and French Franc (the Swiss Franc is
also connected to the Netherlands Gilder, being more integrated with mainland
European economies). [10] then show that portfolio weights based on estimates
from this graphical model give an investment strategy with increased return and
reduced variability when compared to using an approach that does not impose
graphical structure on the estimates of Σ, evidence of the effectiveness of the
graphical models approach.

We used this dataset to explore the possibility of alternating regimes with
separate patterns of interaction during these 1000 days. Given that the data
form a natural timecourse, we employed the infinite hidden Markov model with
Gaussian graphical model emissions distributions discussed in Section 5. To
make comparisons against [10] fair, we concentrate of iHMMs of decomposable
GGMs. We ran the sampler for 100000 iterations after a burn-in period of 20000
iterations, and ran five separate instances of the algorithm from separate starting
points. On a quad-core 2.8 gHz computer with 4 GB of RAM running Linux,
each instance of the algorithm took approximately 8 hours to run for the full
dataset. We ran this example using both the uniform prior on the graph space
as well as the size-based prior given in equation (3.10). In what follows we refer
to these as iHMM-U and iHMM-S, respectively.

After completion we assessed the results from each chain and verified they
returned the same estimates. For example, Figure 4 shows the convergence in
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Fig 4. Convergence plot for α and α0 across chains by log iteration. This plot shows the
running average of these two parameters across five separate instances of the algorithm.
Their mutual agreement implies the settings used are sufficient to assure convergence.

α and α0 across chains for iHMM-U. The convergence plots for iHMM-S are
nearly identical.

When run using this model, the observations for the most part clearly fall
into one of two regimes. Figure 5 shows the posterior probabilities that two
observations belong to the same state. The upper triangle corresponds to clus-
tering probabilities from iHMM-U and the lower triangle to iHMM-S. The first
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Fig 5. Heatmap displaying the probability that two observations belong to the same cluster
for the exchange example. The Figure shows two dominant regimes, one that runs for the
most part from timepoints 1 to 251 and again roughly between timepoints 623 and 700 and
the other which is present most of the remaining time periods.

state is comprised roughly of the time points one through 251 (11/14/1993 to
7/21/1994) at which point a second regime takes over. Interestingly, the first
interaction regime arises again for a brief period roughly comprising timepoints
623 to 700 (7/29/95 to 10/14/95). As shown in the figure the graph prior has
little effect on clustering probabilities. The maximum difference between the
estimated probability of two points belonging to the same group was 3% under
the alternative graph priors.

Figure 6 shows a heatmap of the edge probabilities for timepoint 40 (belong-
ing to the first regime) and timepoint 540 (belonging to the second regime) as
well as point estimate graphical models which are assembled from those edges
that had a greater than 50% probability of inclusion for the respective observa-
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Fig 6. Edge probability heatmaps and graphical models associated with timepoint 40 (upper
row) and timepoint 540 (lower row) in the exchange rate example. In each heatmap, the upper
triangle corresponds to iHMM-U and the lower triangle to iHMM-S, though the differences
are negligible. The point estimate graphs in this figure were constructed by adding any edge
that had greater than 50% posterior inclusion probability for the respective timepoint.

tion. As with Figure 5, upper triangles correspond to estimates from iHMM-U,
and lower triangles to iHMM-S. Again, there is negligible difference between es-
timates under the two graphs prior (the largest difference was an estimate of .88
and .81 under iHMM-U and iHMM-S, respectively, for the edge between JPY
and DEM in timepoint 540). This suggests that the dataset is large enough to
negate the effect of prior graph assumptions.
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The edge probabilities associated with these two timepoints show a large
degree of similarity. In particular, the Asian currencies show edge probabilities
of 1 in both regimes as do edges between many of the European currencies.
However, there are some differences, in particular the second period places much
higher inclusion probabilities on edges between the British Pound and Euro area
currencies. These differences are easiest to see in the point estimate graphical
models.

In the first regime, an association structure broadly consistent with the graph
used in [10] is present. We see a tight grouping of the Euro adopters, but with
increased connection between the Swiss Franc and the Euro countries. A clique
amongst the Asian currencies is connected to only three of the Euro adopters.
Furthermore the British Pound is only connected to the Euro area through
the Deutsch Mark, the currency of the economic leader of this group and the
Swiss Franc. The interpretation of this graph is similar to that reported earlier:
the fluctuations in the exchange rate of mainland European currencies to the
Dollar roughly track one another. However, at this point the British Pound
was no longer part of the European Exchange Rate Mechanism, following the
Pound’s crash on “Black Wednesday”, September 16th of 1992. This reason,
along with the greater integration of trade between Britain and the United
States (as suggested by 9), leads to a separation of the Pound from the mainland
European currencies.

The second regime has a similar structure but a markedly different interpre-
tation of the interactions between the Pound and the smaller Euro adopters.
At this point, the graph is still comprised of a large group consisting of the
Euro countries, however the Pound has joined–and become a central part of–
this grouping. It connects with each member of the Euro countries (as well as
the Swiss Franc). Furthermore, the Asian countries lose several neighbors.

The greater connectedness of the Pound to the Euro area may have been a
result of the uncertainty regarding the specifics of the Euro’s implementation
in the mid-nineties. In particular, the crash of the Pound in 1992 and Britain’s
subsequent withdrawal from the European Exchange Rate Mechanism left a
looming uncertainty regarding if, and when, Britain would again agree to join
the common currency. The initial switch from a “UK-excluding” to a “UK-
inclusive” regime in the exchange rate data occurs on July 22, 1994. What
is curious about this date is that Tony Blair was elected to lead the Labour
party on July 21, 1994. Blair would eventually run a campaign based, in part,
on rejoining the Exchange Rate Mechanism and adopting the Euro, a stance he
held until the events of 2001. The graphical models displayed in Figure 6 suggest
that currency markets began integrating the possibility that Britain would adopt
the Euro by exhibiting greater covariation with mainland European countries.
This new regime was, itself, somewhat unstable, as evidenced by the return of
a “UK-exclusive” regime during the summer of 1995.

In [10], the exchange rate data is used to show that minimum variance port-
folios will yield better return when Gaussian graphical models are employed
to estimate covariances. We considered a similar analysis and used the out-
of-sample expectation over the sampled values of µT+1 and KT+1 for each T
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Fig 7. Cumulative out-of-sample returns from forming the optimal portfolio weights based
on running the full infinite hidden Markov model with Gaussian graphical model emission
distributions (iHMM-GGM) as well as the infinite hidden Markov model with full covariance
emission distribution only (iHMM only) and a Gaussian graphical model only (GGM only),
run over time periods 20 to 300. The final cumulative return was 17.2% for the iHMM-GGM,
13.5% for the GGM only and 11.2% for the iHMM only models.

between 19 and 299 as the first two moments of the predictive distribution and
calculated portfolio weights wT+1 assuming a target return ofm = 0.1% per day
(see [10] for details regarding the construction of these portfolios). The portfolio
allocation exercise reported was run out-of-sample. More specifically, for every
T = 19, . . . , 299, a separate Markov chain Monte Carlo run was conducted; the
corresponding posterior predictive distribution was used to design the portfolio
at time T + 1, and the returns computed from the observed returns at that
time point (which were not used to fit the model). Figure 7 shows that the
predictive distributions from the infinite hidden Markov model with Gaussian
graphical model emission distributions gives portfolio weights that have higher
yields than both the infinite hidden Markov model with the full covariance ma-
trix and the Gaussian graphical model only approach. This shows the ulitility of
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our framework: by considering a mixture model we are able to adapt to changing
conditions, thereby leading to better specified predictive distributions. Further-
more, by incorporating Gaussian graphical models into the model formulation,
we are able to induce spars estimates of covariation, which likewise improve
predictive performance. Results are shown using the iHMM-U model, but they
are essentially unchanged under the iHHM-S model.

8. Discussion

Although this paper has focused on two relatively simple models (nonparamet-
ric mixtures of Gaussian graphical models and infinite hidden Markov models
with Gaussian graphical model emission distributions), the basic structure can
be employed to generalize many other nonparametric models. For example, we
plan to extend the nonparametric mixture classifier developed in [49] to include
Gaussian graphical model kernels as a way to improve classification rates in
high-dimensional problems. Also, in the spirit of [41, 42] and [48], sparse non-
linear regression models can be generated by using Gaussian graphical model
mixtures as the joint model for outcomes and predictors, from which the re-
gression function can be derived by computing the conditional expectation of
the outcome given the predictors. This generalizes the work of [15] on sparse
regression to allow for adaptive local linear fits.

The implementation of Gaussian graphical model mixtures we have discussed
in this paper exploits the Pólya urn representation available for many nonpara-
metric models to construct a Gibbs sampler that updates the grouping structure
one observation at a time. In the case of decomposable models, this allowed
us to avoid the explicit representation (and the sampling) of means and covari-
ance parameters, which can be computationally intensive. However, Pólya urn
samplers can suffer from slow mixing and we plan to explore in the near future
alternative computational algorithms, in particular those employing split-merge
moves such as those developed in [30] and [31].

The data analyses in this paper suggest that implementing mixtures of Gaus-
sian graphical models using Markov chain Monte Carlo algorithms is feasi-
ble for a moderate numbers of variables. However, many interesting applica-
tions of Gaussian graphical model mixtures (e.g., gene-expression data) involve
outcomes in much higher dimensions, where previous experience suggest that
random-walk Markov chain Monte Carlo algorithms will be inefficient. We are
currently exploring other search algorithms based on heuristics, such as the
feature-inclusion [6, 51], that might allow us to identify high-probability parti-
tions and their associated graphs.

Appendix

We give a brief description of an auxiliary variable scheme for sampling from
the posterior distributions of the single concentration parameter α0 in Section
4 and the two concentration parameters α and α0 from Section 5 – see [18] and
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[54] for full details. We assume that the priors for α and α0 are Gam(a, b) and
Gam(a0, b0), respectively.

In the case of the GGM-DPM, we sample α0 by introducing an auxiliary
variable η. Conditional on α0, we have η | α0 ∼ Beta(α0 + 1, n). Conditional on
η, α0 follows a mixture distribution

α0 | η ∼ dηGam(a0 + L, b0 − log η) + (1− dη)Gam(a0 + L− 1, b0 − log η),

where dη/(1− dη) = (a0 + L− 1)/[n(b0 − log(η))].
In the case of the GGM-iHMM we additionally introduce auxiliary variables

ς1, . . . , ςL and u1, . . . , uL. Conditionally of α, ςl | α ∼ Beta(α + 1, rl·) and ul |

α ∼ Bernoulli(rl·/(α + rl·)), where rl· =
∑L

l′=1 rll′ . Then, α is sampled from its
full conditional distribution,

α | {ul}, {ςl} ∼ Gam

(
a+m·· −

L∑

l=1

ul, b−

L∑

l=1

log ςl

)

where m·· =
∑L

l=1

∑L
l′=1mll′ . To sample α0, we follow a procedure that is very

similar to the one we used for the GGM-DPM. Again, we introduce an auxiliary
variable η. Conditional on α0, we have η | α0 ∼ Beta(α0 + 1,m··). Conditional
on η, α0 follows a mixture distribution

α0 | η ∼ dηGam(a0 + L, b0 − log η) + (1− dη)Gam(a0 + L− 1, b0 − log η),

where dη/(1− dη) = (a0 + L− 1)/[m··(b0 − log(η))].
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