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Chapter 1

Introduction

1.1 Motivation

The design and analysis of telecommunication networks has become an impor-
tant application area for graph theory. In this section we give an informal intro-
duction to the problems studied in this thesis, formulated in terms of telecom-
munication applications. In the subsequent sections the problems will be defined
more formally. Our examples do not necessarily reflect the way these problems
are applied in practice, but illustrate in a simple way some relationships with
practical network design problems.

A (telecommunication) network consists of a number of nodes, that need to
communicate with each other through links between node pairs. In general,
communication should be possible between every pair of nodes, but it is often
inefficient or too costly to add direct links between every node pair. So only
between certain pairs (direct) links are added. A node a joined by a link to the
node b is called a neighbor of b. Neighbors communicate through their common
link. If a node a needs to communicate with a node b that is not one of its
neighbors, the message is sent to a neighbor of a, which in turn sends it to a
neighbor, and so on, until the message reaches node b. So the message follows
a path through the network. The intermediate nodes on this path are called
relay nodes. If every node pair can communicate in this direct or indirect way,
the network is called connected. The choice of which links to create determines
many properties of the network, and is an important part of the design of the
network. For this choice, considerations like costs and reliability are important.
We will come back to this later.

To model networks mathematically, graphs can be used. A graph consist of
a set of vertices, and a set of edges joining certain pairs of vertices. When used
to model networks, the vertices correspond to the network nodes, and the edges
correspond to the links.

Communication networks as described above occur in many forms: the links
can be metal wires, optical fibers or wireless links, the nodes can vary from

1



2 CHAPTER 1. INTRODUCTION

simple, tiny sensors to supercomputers, and the scale of the network can vary
from multiple chips communicating in a single computer, to computer networks
in a building, to optical networks the size of a continent. Every variant leads
to different cost models and to new questions, which in turn lead to a wealth
of graph theoretic problems. We will describe three of them in more detail, as
well as their relation to the results in this thesis.

Max-Leaf Spanning Tree Suppose the locations of nodes are known, and
it is known between which pairs links may be added (e.g. only between nodes
that are spatially close to each other, because of link cost or signal strength
considerations). See Figure 1.1(a) for an example showing nodes and possible
links between them. Since adding links is costly, we want to add a minimum
number of links, such that all nodes can communicate with each other. This
will lead to a spanning tree shape, as shown in Figure 1.1(b). In this network,
no links need to be added, since there is a path between every node pair. No
links can be removed without destroying this property. Nodes with precisely one
neighbor in this network are called leaves, and the other nodes are called routing
nodes. Unlike the leaves, routing nodes will be used to relay messages from other
nodes. Implementing this added functionality to the nodes adds another cost.
Hence we want to minimize the number of routing nodes, or alternatively, to
maximize the number of leaves. The corresponding graph theoretic problem is
known as the Max-Leaf Spanning Tree problem.

(b)(a)

: node
: possible link

: node

: link
: leaf

Figure 1.1: Link possibilities, and a corresponding connected network with min-
imum number of links

A closely related problem is the following (for more details see [47]): small
sensor nodes are distributed through a space, for instance an office building.
These nodes make measurements (smoke detection, temperature, etc.), and can
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communicate wirelessly with nearby nodes. The measured data has to be sent
to a central node that collects the data, though not every node can reach this
central node directly. So some nodes will only make measurements and send
their data periodically, but other nodes need to ‘listen’ to these transmissions
and relay them. Because of this, nodes of the latter type consume much more
energy, and therefore we want to minimize the number of nodes of this type.
So we want to select a small subset of the nodes as relay nodes, such that all
other nodes can send to at least one of these nodes (the set is dominating), and
such that every relay node can reach the central node via other relay nodes
(the set is connected). The corresponding graph theoretic problem is known
as the Minimum Connected Dominating Set problem. This problem is closely
related to Max-Leaf Spanning Tree; the non-leaf nodes in a spanning tree form
a connected dominating set. Even though for Minimum Connected Dominating
Set it is not important how the links are established, both problems are equally
hard to solve from an algorithmic viewpoint.

In Chapter 5 and Chapter 6 we present new methods for finding spanning
trees with many leaves, and small connected dominating sets.

TS

: node
: link
: link failure

Figure 1.2: An isolated set of failures determining the weakest part of the net-
work

Sparse cuts and matching-cuts Another important aspect in designing
telecommunication networks is reliability. Elements of the network (nodes or
links) can fail, and it is desirable to design the network in such a way that the
most likely failures have little impact on the global performance of the network.
There are many ways to express the reliability of networks. We explain one of
those that is related to the results in this thesis.

Consider a subset M of links. Let xM denote the number of node pairs
that cannot communicate anymore, if all the links in M fail simultaneously.
We say that the set M that has the highest ratio xM/|M | between the number
of disconnected node pairs and the number of links in the set, determines the
weakest part of the network. This is because for larger numbers of links, it is
less likely that they all fail simultaneously. It can be shown that the set M that
determines this weakest part, always separates the network into two connected
parts. The node sets of these parts will be called S and T . See Figure 1.2 for an
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example of a network and a set of three links that determines its weakest part,
and the corresponding sets S and T . The partition {S, T} that maximizes the
ratio between the number of disconnected pairs (which is |S||T | when the two
parts are connected) and the number of links between S and T is called a sparsest
cut of the network. So according to our criteria, a sparsest cut determines the
weakest part of the network. In Chapter 2, we show where the sparsest cuts
occur for some special classes of graphs. One of these classes is the class of
product graphs, which are frequently used as a structure for telecommunication
networks [5, 19]. In Chapter 2, it is also shown that sparsest cuts are closely
related to all-to-all flows in the graph, another important application of graph
theory to telecommunication.

A set of failing links is called an isolated set if no node is directly linked by
more than one of these failing links. The set of failing links illustrated in Fig-
ure 1.2 is an example of an isolated set. A network is called immune to isolated
link failures if there is no isolated set that can disconnect the network [25]. The
graph theoretic concept that corresponds to an isolated set is a matching. A
matching that disconnects the graph when removed is called a matching-cut.
A graph without matching-cuts is called matching immune. In Chapter 3 we
discuss the problem of deciding whether a given graph is matching immune.
Another relevant question is how to construct networks that are immune to iso-
lated link failures, using a minimum number of links (and thus with minimum
costs). In [26], a class of matching immune graphs is defined, with minimum
number of edges, for each number of vertices. In Chapter 4 we show that this
definition characterizes all such graphs.

1.2 Notation and terminology

In this section we give definitions and notations that will be used often, or that
are non-standard. For standard graph theoretic terminology not defined here
we refer to [9] or [20]. For more on complexity of algorithms, we refer to [31].

Our basic mathematical notations are fairly standard. We distinguish be-
tween ⊆ and ⊂; these symbols denote subset resp. proper subset. We write S−x
instead of S\{x}, and S + x instead of S ∪ {x}, when this is needed to improve
the readability. A set S is minimal for a property φ if S satisfies φ, and has
no proper subset satisfying φ. S ⊆ X is minimum for property φ if it satisfies
φ and there is no set T ⊆ X with |T | < |S| that also satisfies φ. Maximal and
maximum are defined analogously.

Graphs There are two main ways to define graphs, depending on whether
edge labels are used. Since we consider multi-graphs and use contractions in
some of the chapters, we need to introduce the more detailed definition using
edge labels: a (multi-) graph is a triple (V,E, ψ), where V and E are disjoint
finite sets called resp. the vertex set and edge set, and ψ is an incidence function
that maps the edges to multi-sets of exactly two vertices. If ψ(e) = {v, v}, then
e is called a loop. If there are distinct e ∈ E and f ∈ E with ψ(e) = ψ(f), then
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e and f are called parallel edges. If parallel edges exist between a vertex pair,
then the set of all of these edges is called a multi-edge. A multi-edge consisting
of two edges is also called a double edge. Instead of {u, v} we will often write
uv or equivalently vu for edges. Instead of ψ(e) = uv we will write e = uv for
short. If a graph has no multi-edges or loops, it is called a simple graph. Note
that the graphs we defined are undirected.

Consider the multi-set E′ = ∪e∈Eψ(e). If edge labels do not matter, a graph
can alternatively be denoted by (V,E ′). In this case, E′ is called the edge set.
In most cases we will use the latter notation for graphs (also for multi-graphs),
and thus denote edges by their end vertices, as long as there is no cause for
confusion. Note that if the graph is simple, E ′ is a set, and its elements are also
sets.

For a graph G, V (G) denotes its vertex set, and E(G) denotes its edge set.
The order of G is |V (G)|, and the size of G is |E(G)|. If e = uv, u and v are
called the end vertices of e, and e is an edge between u and v. Then u and v
are called adjacent, and u is called a neighbor of v (and vice versa). Edge e is
incident with u and v, and vice versa. If two edges e and f are both incident
with the same vertex, e and f are adjacent. For a vertex v ∈ V (G), NG(v)
denotes the set of all neighbors of v in graph G. If it is clear which graph is
considered, we write N(v) instead; the same holds for other notations using
graphs as a subscript. We use dG(v) = |NG(v)| to denote the degree of v. A
vertex with degree 0 is called an isolated vertex, and a vertex with degree 1 a
leaf. L(G) denotes the set of leaves of G. δ(G) = min{dG(v) : v ∈ V (G)} is
the minimum degree of G, and similarly ∆(G) = max{dG(v) : v ∈ V (G)} is the
maximum degree of G. If there is no cause for confusion, we write δ resp. ∆
instead. A graph with δ = ∆ = k is called k-regular. A 3-regular graph is also
called a cubic graph.

Graphs are often represented by a drawing. Formally, in a drawing of a graph,
vertices are mapped to distinct points in the plane, and edges are mapped to
curves between the points corresponding to their end vertices. If different curves
only meet in common end points, the drawing is called a planar embedding of
the graph. A graph that allows a planar embedding is called planar.

The graph obtained by adding an edge e to a graph G (and in case of labeled
edges, updating the incidence function such that the result remains a graph) is
denoted by G + e. Similarly, G − e denotes the deletion of edge e. The graph
obtained by adding a vertex v is denoted by G + v. The operation of deleting
a vertex v from G consists of removing v from the vertex set, and removing all
edges incident with v from the edge set. The resulting graph is denoted by G−v.
Similarly, we write G−S (G + S) for the graph obtained by removing (adding)
a vertex or edge set S from (to) the graph. The operation of subdividing an
edge uv consists of removing uv, adding a new vertex w, and adding edges uw
and vw. Suppressing a vertex w of degree two is the inverse of this operation.

To define contractions and related operations we use the incidence function
again. The identification of vertices u1 and u2 consists of the following steps:
introduce a new vertex u, and in every image of ψ replace u1 and u2 by u.
Delete u1 and u2. Occasionally we will use the label u1 or u2 also for the new



6 CHAPTER 1. INTRODUCTION

vertex. The contraction of an edge e with ψ(e) = {u1, u2} consists of removing
e and identifying u1 and u2. The contraction of e in G is denoted by G · e. A
contraction in a simple graph may result in parallel edges, and a contraction
in a graph with parallel edges may result in loops. A contraction of a loop
corresponds to the deletion of this loop (and relabeling the vertex). An edge
expansion can be seen as the reverse of a contraction. So the edge expansion
of u into u1u2 consists of the following steps: introducing new vertices u1 and
u2, introducing an edge e with ψ(e) = u1u2, replacing every occurrence of u in
images of ψ by u1 or u2, and deleting u. Note that there is only one way to
contract a particular edge of a graph (apart from the resulting vertex label), but
in general there are many ways to expand a vertex into an edge since we may
choose whether to replace u by u1 or by u2. An edge expansion of u into u1u2

is called a non-trivial edge expansion if d(u1) ≥ 2 and d(u2) ≥ 2 in the resulting
graph. We defined these operations using the incidence function to make clear
that edges in G · e correspond uniquely to edges in G, even though the labels of
their end vertices may change. The remaining definitions are again formulated
in terms of graphs without edge labels.

(V ′, E′) is a subgraph of the graph G = (V,E) if it is a graph and V ′ ⊆ V
and E′ ⊆ E. It is a spanning subgraph if V ′ = V . If M ⊆ E, then

G[M ] = ({v ∈ V : ∃uv ∈ M},M)

is the subgraph of G induced by M . If S ⊆ V , then

G[S] = (S, {uv ∈ E : u ∈ S ∧ v ∈ S})

is the subgraph of G induced by S. A graph H is called an induced subgraph of
G if H = G[S] for some S ⊆ V , and an edge induced subgraph of G if H = G[M ]
for some M ⊆ E. A graph G is minimal for a property φ if G satisfies φ, and has
no subgraph satisfying φ, other than G itself. Maximal is defined analogously.

The graph with an empty vertex set is called the empty graph. A graph is
called complete if between every pair of vertices one edge is present, and it has
no loops. Kn denotes a complete graph of order n. K3 is also called a triangle.
A diamond is a graph that can be obtained by deleting an edge from a K4. A
cycle is a minimal 2-regular graph. Cn denotes a cycle of order n, also called an
n-cycle. (C1 and C2 are not simple.) The wheel Wn is obtained by adding a new
vertex v to Cn−1, and one edge between v and u, for all vertices u 6= v. A path
is a graph (V,E) of the form V = {v0, v1, . . . , vk}, E = {v0v1, v1v2, . . . , vk−1vk},
with all vi distinct, for k ≥ 0. Here v0 and vk are called the end vertices of the
path, and the other vertices the internal vertices. A path with end vertices u
and v is also called a (u, v)-path. Note that K1 is also a path. Pn denotes a path
of order n. The length of a path or cycle is its number of edges. In simple graphs,
paths and cycles can be characterized by an ordered list of their vertices, such
that successive vertices in the list are adjacent. Paths and cycles will sometimes
be denoted by such a list, and proofs will use this natural vertex order. A graph
G = (V,E) is bipartite if there is a partition {A,B} of V such that G[A] and
G[B] contain no edges. Then {A,B} is called a bipartition of G. Km,n denotes
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a complete bipartite graph, which is a simple graph with bipartition {A,B} such
that |A| = m, |B| = n, and if u ∈ A and v ∈ B, then uv ∈ E. K1,n is also called
a star, and K1,3 is called a claw.

The Cartesian product graph or product graph G × H of two graphs G and
H is defined as follows: G × H has vertex set V (G) × V (H), and an edge set
containing all edges of the form

{(u, x), (v, x)}

if uv ∈ E(G) and x ∈ V (H), and

{(u, x), (u, y)}

if xy ∈ E(H) and u ∈ V (G). The n-cube Qn is defined as follows: Q1 = K2,
and Qn = K2 × Qn−1 (with possibly different vertex labels).

G is connected if for every pair of vertices u and v, G has a (u, v)-path (as
a subgraph), and disconnected otherwise. A tree is a connected graph without
cycles. S ⊆ V (G) is called a connected set if G[S] is connected. A component
of a graph G is a maximal connected subgraph of G. S ⊂ V (G) is a vertex cut
of G if G − S is disconnected; if |S| = k, S is also called a k-vertex cut. G is
k-connected if k < |V (G)| and G has no l-vertex cut with l < k. If {v} is a
vertex cut, then v is called a cut vertex of G.

For two disjoint non-empty sets S ⊂ V and T ⊂ V , [S, T ] denotes the set of
edges of G with one end vertex in S and one end vertex in T . An edge cut of G
is a set M ⊆ E such that M = [S, S] for some S ⊂ V , S 6= ∅, where S denotes
V \S. If {e} is an edge cut, e is called a bridge. If a set S ⊆ V exists such that
M = [S, S] and A ⊆ S and B ⊆ S (u ∈ S and v ∈ S), then the edge cut M
is said to separate A and B (u and v). Both vertex cuts and edge cuts will be
called cuts if there is no cause for confusion.

M ⊆ E(G) is a matching if no two edges in M are adjacent. A matching
M saturates A ⊆ V (G) if every vertex of A is incident with an edge in M . A
matching M in a graph G is perfect if all vertices of G are saturated by M .
S ⊆ V (G) is a dominating set if all vertices in G are either in S, or adjacent to a
vertex in S. A spanning path of G is also called a Hamilton path, and a spanning
cycle a Hamilton cycle. A graph with a Hamilton cycle is called Hamiltonian.
The girth of a graph is the minimum length of a cycle in the graph.

Algorithms An algorithm is a well-defined procedure that, given an input
satisfying certain rules, will terminate and return an output. We consider al-
gorithms for two types of problems, which we will now introduce in a slightly
informal way.

An optimization problem consists of a set of instances, a set of feasible so-
lutions for each instance, an objective function that assigns a real value (the
objective value) to a combination of an instance and a feasible solution, and a
goal which is either minimization or maximization. An optimal solution for an
instance of an optimization problem with minimization (maximization) as its
goal is a feasible solution with minimum (maximum) objective value among all
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feasible solutions. (All problems we study are non-degenerate and have opti-
mal solutions.) Algorithms for optimization problems can do different things:
ideally, when given an instance to the problem, the algorithm outputs an opti-
mal solution, or the objective value of an optimal solution. But since execution
speed is also an important consideration in algorithm design, often other types
of algorithms are studied. Some algorithms output a feasible solution x such
that the ratio between the objective value of x and the objective value of an
optimal solution is bounded in some way (approximation algorithms). In this
thesis we study algorithms that output a feasible solution of which the objective
value is bounded by a function on the instances. (The value of this function is
closely related to the size of the instance.)

A decision problem consists of a set of instances, and a YES/NO question
about these instances. An instance is a YES-instance (NO-instance) for the
problem if the answer to the question is YES (NO). Two instances are called
equivalent if they are both YES-instances or both NO-instances. This notion is
important since often we are able to prove that instances are equivalent without
knowing whether they are YES-instances or NO-instances. An algorithm is
an algorithm for the decision problem if given an instance for the problem, the
output is the correct answer to the question. A special kind of decision problems
exists that is closely related to optimization problems: here the question is
whether a given set of feasible solutions is non-empty. Given an optimization
problem, we obtain such a decision problem by asking the question ‘does the
instance have a feasible solution with objective value at most (at least) x?’.

For an introduction to complexity of algorithms (instance encodings, poly-
nomial time algorithms, the problem class NP, NP-completeness), we refer
to [31].

1.3 An overview of the results

In Chapter 2 sparsest cuts are studied. The density of an edge cut [S, S] is

defined as d(S, S) = |[S,S]|

|S||S|
. An edge cut with minimum density among all edge

cuts of the graph is called a sparsest cut. The density of a sparsest cut of a
graph G is denoted by d(G). Sparsest cuts were studied in [43]. In [43], it was
shown that finding a sparsest cut is NP-hard. In Chapter 2 we characterize
sparsest cuts for three graph classes. For product graphs G×H, we show that a
sparsest cut exists that corresponds directly to a sparsest cut of G or a sparsest
cut of H.

Theorem If MG ⊆ E(G) is a sparsest cut of a graph G, and MH ⊆ E(H) is a
sparsest cut of a graph H, then one of the following edge sets is a sparsest cut
of G × H:

{{(u, x), (v, x)} : uv ∈ MG, x ∈ V (H)},

{{(u, x), (u, y)} : xy ∈ MH , u ∈ V (G)}.
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The sparsest cut density of G×H is d(G×H) = min{d(G)/|V (H)|, d(H)/|V (G)|}.

A graph G is a unit interval graph if a function I : V (G) → R exists such
that uv ∈ E(G) if and only if I(u) − 1 ≤ I(v) ≤ I(u) + 1. I is called a unit
interval representation of G. We prove the following result for sparsest cuts in
unit interval graphs.

Theorem Every unit interval graph G with unit interval representation I has
a sparsest cut [S, S] such that for all u ∈ S, v ∈ S, I(u) ≤ I(v).

This result immediately leads to a polynomial time algorithm to find a sparsest
cut for these graphs. The third graph class we study is the class of complete
bipartite graphs.

Theorem Let m ≤ n and n ≥ 2. The density of a sparsest cut of Km,n is
min{ 1

2 , m
n+m−1}.

If n > m then a sparsest cut can be obtained by separating one vertex on
the larger side of the bipartition from the rest of the vertices. If n = m it can
be obtained by separating two vertices, one from either side of the bipartition,
from the rest of the vertices. When m ≤ n ≤ m + 1, in addition to these cuts
many other sparsest cuts exist.

To prove these three results, entirely different techniques are used, which to-
gether give a good overview of the techniques that are available to prove results
of this kind. To prove the result for product graphs, a well-known duality result
between sparsest cuts and concurrent flows is used.

A matching-cut is an edge cut that is also a matching. In Chapter 3, the
Matching-Cut problem is studied, which is the problem of deciding whether a
given graph has a matching-cut. Chvátal [17] studied this problem under the
name of the Decomposable Graph Recognition problem, and proved the problem
to be NP-complete for graphs with maximum degree four, and gave a polyno-
mial time algorithm for graphs with maximum degree three. Patrignani and
Pizzonia [48] also proved the NP-completeness of the problem using a different
reduction, unaware of Chvátal’s result. They also posed the question whether
the Matching-Cut problem is NP-complete for planar graphs. In Chapter 3 an
affirmative answer is given, that generalizes Chvátal’s result:

Theorem Matching-Cut is NP-complete for planar graphs with maximum de-
gree four, and for planar graphs with girth five.

The reduction is from Planar Graph 3-Colorability and differs from the re-
ductions used to prove the earlier results. In addition, for certain graph classes
polynomial time algorithms to find matching-cuts are described. These classes
include claw-free graphs, co-graphs, graphs with fixed bounded treewidth, in
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particular outerplanar graphs, and planar graphs with girth at least six. (For
definitions of these classes, see Chapter 3.)

In Chapter 4, graphs without a matching-cut are studied, which are called
(matching) immune. Farley and Proskurowski [26] proved that for all immune
graphs G = (V,E), |E| ≥ ⌈3(|V |−1)/2⌉, and constructed a large class of immune
graphs attaining this lower bound for every value of |V |, called ABC graphs. In
Chapter 4, we prove their conjecture:

Theorem Every immune graph G = (V,E) with |E| = ⌈3(|V | − 1)/2⌉ is an
ABC graph.

In Chapter 5 we present two lower bounds for the maximum number of leaves
over all spanning trees of a graph.

Theorem Every connected graph G on n vertices without triangles with
δ(G) ≥ 3, has a spanning tree with at least ⌈(n + 4)/3⌉ leaves.

Theorem Every connected graph G on n vertices with δ(G) ≥ 3, that contains
D diamonds induced by vertices of degree three, has a spanning tree with at least
⌈(2n − D + 12)/7⌉ leaves.

The proofs use the fact that spanning trees with many leaves correspond to
small connected dominating sets. Both of these lower bounds are best possible
for their respective graph classes. For both bounds simple polynomial time al-
gorithms are given that find spanning trees satisfying the bounds.

In Chapter 6, the second bound above is used to find a new algorithm for the
decision version of the Max-Leaf Spanning Tree problem. This problem asks
whether a connected graph G on n vertices has a spanning tree with at least k
leaves.

Theorem The Algorithm in Chapter 6 is an algorithm for Max-Leaf Spanning
Tree, and has time complexity g(n)+f(k), where g is a polynomial of low degree,
and f(k) ∈ O(8.12k).

Note that for instances with fixed k, the time complexity of this algorithm
is bounded by a polynomial in the input size, with degree independent of k.
When we view k as the parameter of the problem, such an algorithm is called a
Fixed Parameter Tractable (FPT) algorithm. A more formal definition can be
found in Chapter 6. This is the current best FPT algorithm for the problem.

The five chapters can be read independently. A part of Chapter 2 has pre-
viously been published in [11]. The results in Chapter 3 have been published
in [10]. Chapter 6 is based on joint research with Gerhard Woeginger and Tobias
Brueggemann [12].



Chapter 2

Characterizations of

sparsest cuts in various

graph classes

2.1 Introduction

The density of an edge set [S, T ] is defined as

d(S, T ) =
|[S, T ]|
|S||T | .

This can be interpreted as the ratio between the number of edges between S
and T , and the maximum number of edges between S and T when edges may
be added to the graph. An edge cut [S, S] of G with minimum density is called
a sparsest cut of G. d(G) denotes the density of a sparsest cut of G.

Finding a sparsest cut or the density of a sparsest cut is NP-hard [43].
Accordingly, it is unlikely that there are straightforward methods to prove that
a cut is a sparsest cut.

In this chapter, we characterize sparsest cuts for four graph classes: Carte-
sian product graphs, unit interval graphs, cactus graphs (for definitions see
below) and complete bipartite graphs. These are very restricted and well-
structured graph classes, but surprisingly, three of these proofs are still non-
trivial, even for the complete bipartite graphs.

For each of these graph classes, we use entirely different techniques to prove
that the cuts we construct are sparsest cuts. Together this gives a good overview
of techniques that are available for proving this type of results.

In Section 2.2 we show that every Cartesian product graph G × H has a
sparsest cut that can be derived directly from a sparsest cut of G or of H. We
prove that the constructed cut is a sparsest cut using a flow problem (max-
imum uniform concurrent flow) that is an ‘approximate dual’ to the sparsest

11
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cut problem. By this we mean that firstly, the value of a maximum uniform
concurrent flow in G is a lower bound for the density of a sparsest cut in G.
Secondly, the ratio between the maximum flow value and the minimum cut den-
sity is bounded [3, 4, 40]. Thirdly, for certain graphs, the maximum flow value
is equal to the minimum cut density, and since it is also an lower bound, a flow
construction can be used to prove that a cut is a sparsest cut. Graphs for which
these values are equal are called bottleneck graphs [43]. Examples of bottleneck
graphs are: cycles Cn, trees (paths Pn in particular), complete graphs Kn and
n-cubes Qn [44]. Examples of non-bottleneck graphs are expanders [40]. Since
not every product graph G×H is a bottleneck graph (we show that this depends
on whether G and H are bottleneck graphs), we cannot directly prove that the
cut we construct is a sparsest cut using a flow construction. Therefore, for an
arbitrary product graph we construct an auxiliary graph that has similar cut
densities, and that is a bottleneck graph. Using a flow construction we deter-
mine the sparsest cut for this graph, which can be used to prove that the cut
we construct in the product graph is a sparsest cut.

Since our cut construction for G × H makes use of a sparsest cut of G or
H, this does not lead to a polynomial time algorithm to construct sparsest cuts
for all product graphs. It does however lead to a polynomial time sparsest cut
algorithm when G and H are part of a class for which polynomial time sparsest
cut algorithms exist.

In Section 2.3 we study unit interval graphs. A graph G is a unit interval
graph if a function I : V (G) → R exists such that uv ∈ E(G) if and only if
I(u) − 1 ≤ I(v) ≤ I(u) + 1. I is called a unit interval representation of G.
We show that every unit interval graph G with unit interval representation I
has a sparsest cut [S, S] such that for all u ∈ S, v ∈ S, I(u) ≤ I(v). Since
a unit interval representation can be found in polynomial time (see e.g. [18],
or [37] for a more general algorithm that recognizes all interval graphs), this
yields a polynomial time algorithm to find sparsest cuts for this graph class. To
prove this result, we develop some basic but useful techniques and lemmas for
comparing densities in a graph. Using these techniques, we show that for every
cut not of the aforementioned type, a different cut can be found with lower or
equal density. These techniques are also used to show that a sparsest cut in a
cactus always contains one or two edges. Cactus graphs are connected graphs
in which every edge is part of at most one cycle (cactus graphs generalize trees
and cycles).

Finally, in Section 2.4 we study complete bipartite graphs Km,n with m ≤ n
and n ≥ 2. For every cut we define two integer variables, such that we can
express the density of the cut using only these two variables. We then give the
integer values for which this expression is minimum. So basically, we prove that
the cut we choose is a sparsest cut by comparing its density with the densities
of all other cuts. This way we show that d(Km,n) = min{ 1

2 , m
m+n−1}. Using this

result, we can prove that Km,n is not a bottleneck graph when m ≥ 2, n ≥ 3.
For complete graphs and disconnected graphs finding a sparsest cut is trivial.

To summarize, our results show that we can find a sparsest cut in polynomial
time for complete graphs, disconnected graphs, complete bipartite graphs, cac-
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tus graphs, unit interval graphs, and products of (products of) these, etc.

2.2 Sparsest cuts in Cartesian product graphs

2.2.1 Preliminaries

For the proofs in this section, it is more convenient to consider the reciprocal

of the edge density of a cut. This is denoted by d−1(S, S) = |S||S|

|[S,S]|
. Simi-

larly, d−1(G) denotes the maximum value of d−1(S, S) over all [S, S]. Also the
flow problem mentioned in the introduction will be stated as a congestion min-
imization problem instead of a flow maximization problem. In addition, our
definitions have to be generalized for edge-weighted graphs. The definitions in
this section will use a capacity function c : E(G) → R

+ − 0 on the edges of G.
For unweighted graphs, these definitions should be read as having c(e) = 1 for
every e.

The sum of the capacities of edges in the cut S is denoted by c[S, S].

d−1(S, S) =
|S||S|
c[S, S]

.

Note that if c(e) = 1 for every edge e, then this definition coincides with our
previous definition of d−1(S, S), so this definition is indeed a generalization.
The definitions of d−1(G) and sparsest cut are generalized in the same way to
edge weighted graphs.

A flow (P, f) on G is a set of paths P of G and a function f : P → R
+.

If P is a set of paths, Puv is the subset of P consisting of all (u, v)-paths for
u, v ∈ V (G). (Because we consider undirected flows, Puv = Pvu.) Pe is the
subset of P consisting of all paths that contain edge e ∈ E(G). A flow (P, f) is
called a uniform flow if

∑

p∈Puv
f(p) = 1 for all vertices u 6= v. The edge-load

(also called edge-congestion) λ(e) of an edge e ∈ E(G) is defined as

λ(e) =

∑

p∈Pe
f(p)

c(e)
.

The network load λ(P, f) of a flow is equal to the maximum edge-load: λ(P, f) =
maxe∈E(G) λ(e). The goal of the uniform concurrent flow problem is to find a
uniform flow that minimizes λ(P, f). λ(G) denotes the minimum network load
over all uniform flows in G. A uniform flow (P, f) with λ(P, f) = λ(G) is called
an optimal flow.

Observe that for any cut [S, S], d−1(S, S) is a lower bound for λ(G), so
d−1(G) ≤ λ(G). Bottleneck graphs are the graphs G for which d−1(G) = λ(G).

Not every graph is a bottleneck graph, so we can not always use the value
d−1(G) to show that a certain flow is optimal, and vice versa. But the uniform
concurrent flow problem can be formulated as a linear program (LP), so we
can use its dual problem for this purpose. (For more information on linear
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programming and duality we recommend [16].) The following LP describes the
problem of finding an optimal flow in G = (V,E):

min λ
s.t.

∑

p∈Puv
f(p) ≥ 1 ∀u, v ∈ V

c(e)λ − ∑

p∈Pe
f(p) ≥ 0 ∀e ∈ E

λ ≥ 0
f(p) ≥ 0 ∀p ∈ P

For the description of the dual problem we need the following notations: Let
t : E → R

+ be a distance function on the edges of G (0 ∈ R
+). A distance

function is called a normalized distance function if
∑

e∈E c(e)t(e) = 1. We will
only consider normalized distance functions. dt(u, v) denotes the length of a
shortest path between u and v measured over this distance function. The value
of a distance function t is defined as

∑

u,v∈V dt(u, v). The distance bound D(G)
of G is the maximum of these values:

D(G) = max
t:E→R+

∑

u,v∈V

dt(u, v).

A corresponding distance function is called an optimal distance function. The
following LP describes the problem of finding an optimal distance function:

max
∑

u,v dt(u, v)

s.t.
∑

e c(e)t(e) ≤ 1
dt(u, v) − ∑

e:p∈Pe
t(e) ≤ 0 ∀u, v ∈ V (G),∀p ∈ Puv

dt(u, v) ≥ 0 ∀u, v ∈ V (G)
t(e) ≥ 0 ∀e ∈ E(G)

It can be checked that the second LP is the dual of the first LP. Note that to
ensure that solving the first LP gives the value of λ(G), and that solving the
second LP gives the value of D(G), we have to choose P to be the set of all
possible paths on the graph. This set is clearly not polynomially bounded by
the size of the input, and therefore the number of variables resp. inequalities of
the two LPs are not polynomially bounded. We remark that there are other,
more complicated LP-formulations of the problems without this problem [51].
However, for our purposes, this large number of variables resp. inequalities does
not matter.

The set of all possible paths P is finite. Also, since we assume G to be
connected, Puv 6= ∅ for every u and v, and in that case a feasible solution
for the first LP is easily found. Clearly, the value of the first LP is bounded.
Therefore, since these two LPs are duals, it follows from the theorem of strong
linear programming duality [16] that λ(G) = D(G).

Note also that for every cut [S, S], there is a corresponding distance function
with value d−1(S, S): assign a weight of t(e) = 1/c[S, S] to every edge e, and
then

∑

u,v∈V dt(u, v) = (|S||S|)/c[S, S], since there are |S||S| vertex pairs that

have distance 1/c[S, S], and the other vertex pairs have distance 0.
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To summarize, we have shown that the following relations hold between these
three values:

Lemma 2.1 d−1(G) ≤ D(G) = λ(G).

An alternative proof of this result can be found in [51].
The product graph G×H of two graphs G and H is defined as follows: G×H

has vertex set V (G) × V (H), and an edge set containing all edges of the form

((u, x), (v, x))

if (u, v) ∈ E(G) and x ∈ V (H), and

((u, x), (u, y))

if (x, y) ∈ E(H) and u ∈ V (G). Edges of the first type are called horizontal
edges and edges of the second type are called vertical edges. If G and H have
edge weights c, then the capacity of edges in G×H is equal to c(u, v) for edges
of the first type and c(x, y) for edges of the second type. The subgraph of G×H
induced by the vertices (u, x) for a certain fixed x ∈ V (H) and all u ∈ V (G) is
called the G-layer corresponding to x. H-layers corresponding to vertices in G
are defined analogously.

2.2.2 Results

For convenience, the theorems are only formulated for products of two graphs
G and H. We will also assume G and H have uniform capacities, and there-
fore write |[S, S]| instead of c[S, S]. It can be verified that the results which
will be established can be generalized to graphs with non-uniform capacities.
Throughout this section, n = |V (G)| and m = |V (H)|.

In the first theorem we construct a uniform flow and a normalized distance
function in G × H using optimal flows and distance functions in G and H.
Lemma 2.1 will show that the network load of the constructed flow and value
of the distance function are equal and thus optimal.

Uniform concurrent flow in product graphs and generalizations of product
graphs was previously studied in [52]. In [52], also an optimal flow in a product
graph is constructed using flows in the factors, but the construction is different
from our construction below.

Theorem 2.2 For any two graphs G and H,

D(G × H) = max{mD(G), nD(H)} =

max{mλ(G), nλ(H)} = λ(G × H).

Proof: To prove these equalities we first show that

D(G × H) ≥ max{mD(G), nD(H)}



16 CHAPTER 2. SPARSEST CUTS

and
λ(G × H) ≤ max{mλ(G), nλ(H)}.

To prove the first inequality, consider the following argument: if t is an optimal
normalized distance function on the edges of G we can define a distance function
t′ on the edges of G × H, that is not normalized, as follows.

t′((u, x), (v, x)) = t(u, v)

for every horizontal edge of G × H, and

t′((u, x), (u, y)) = 0

for every vertical edge of G×H. Because a distance of 0 is assigned to vertical
edges, the distance in G×H between (u, x) and (v, y) is the same as the distance
in G from u to v, regardless of the choice of x and y (if u = v then the length
is 0). Therefore a vertex pair u and v in G corresponds to m2 vertex pairs in
G × H with the same distance. This way, all vertex pairs in G × H have been
considered and we have shown that

∑

p,q∈V (G×H)

dt′(p, q) = m2
∑

u,v∈V (G)

dt(u, v) = m2D(G).

The total distance assigned to edges in G × H is m times the total distance
assigned to edges in G, so to normalize the distance function we can divide
all edge distances by m. Then the value of the constructed distance function
becomes mD(G). A similar construction can be done using an optimal distance
function on H, and D(G × H) ≥ max{mD(G), nD(H)} follows.

To prove the second inequality, a uniform flow in G × H is constructed from
optimal flows in G and H.

The path set Puv in an optimal flow (P, f) of G can be used to construct a
corresponding path set in a G-layer of G × H from (u, x) to (v, x). For a flow
from (u, x) to (u, y), we use the path set P ′

xy from an optimal flow (P ′, f ′) in
H.

To construct a path set from (u, x) to (v, y) with a total flow of 1, first we
use the path set from (u, x) to (v, x) with a total flow of 1

2 , then we use the
path set from (v, x) to (v, y) with a total flow of 1

2 . These path sets can be
combined (in an arbitrary manner) to form a path set from (u, x) to (v, y) with
a total flow of 1

2 . Then the same is done using (u, y) as the connection point,
and together these path sets give the desired path set with a total flow of 1.
Note that if u = v or x = y, then the flow is not actually split into two path
sets.

In every G-layer corresponding to a fixed x ∈ V (H) of G × H, the path set
from (u, x) to (v, x) is used:

• m − 1 times for a flow of 1
2 , once for every vertex pair (u, y) and (v, x)

with y 6= x.
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• m − 1 times for a flow of 1
2 , once for every vertex pair (u, x) and (v, y)

with y 6= x.

• Once for a flow of 1 from (u, x) to (v, x).

So in every G-layer every path set is used for a total flow of 1
2 (m− 1) + 1

2 (m−
1) + 1 = m. Using this flow construction the maximum load of the horizontal
edges is equal to mλ(G). Similarly, the maximum load of the vertical edges is
equal to nλ(H), so λ(G × H) ≤ max{mλ(G), nλ(H)}.

Now we have, using Lemma 2.1 for G, H resp. G × H:

D(G × H) ≥ max{mD(G), nD(H)} =

max{mλ(G), nλ(H)} ≥ λ(G × H) = D(G × H).

Therefore all inequalities must be equalities and the optimality of the con-
structed distance function and flow follows. ✷

The following lemma is a similar statement for the sparsest cut density d(G×H),
and will be proved by a construction using sparsest cuts of G and H.

Lemma 2.3 For any two graphs G and H,

d−1(G × H) ≥ max{md−1(G), nd−1(H)}.

Proof: We will show that each cut [S, S] in G corresponds to a cut [S ′, S′] in
G×H with value d−1(S′, S′) = md−1(S, S). S′ is defined as follows: (u, x) ∈ S ′

if and only if u ∈ S. Therefore |S ′| = m|S| and |S′| = m|S|. If (u, v) ∈ [S, S],
then ((u, x), (v, x)) ∈ [S′, S′] for every x ∈ V (H), so |[S′, S′]| = m|[S, S]|. It

follows that d−1(S′, S′) = m2

m
d−1(S, S) = md−1(S, S). Thus d−1(G × H) ≥

md−1(G). Analogously, d−1(G × H) ≥ nd−1(H). ✷

Combining the above theorem and lemmas leads to the following result.

Corollary 2.4 If G and H are bottleneck graphs, then G × H is a bottleneck
graph.

Proof: Using Lemma 2.3, the fact that G and H are bottleneck graphs, Theo-
rem 2.2 and Lemma 2.1 respectively, we have

d−1(G × H) ≥ max{md−1(G), nd−1(H)} = max{mλ(G), nλ(H)} =

λ(G × H) ≥ d−1(G × H).

Therefore λ(G × H) = d−1(G × H), and G × H is a bottleneck graph. ✷

We can also conclude that if G and H are bottleneck graphs, then the cut
constructed in Lemma 2.3 is a sparsest cut. The next theorem states that
this is true in general, which allows a corollary similar to Corollary 2.4 to be
formulated about non-bottleneck graphs.
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Figure 2.1: An example of the construction of G′ and S′ from G × H and S.

Theorem 2.5 d−1(G × H) = max{md−1(G), nd−1(H)}.

Proof: It suffices to show that d−1(S, S) ≤ max{md−1(G), nd−1(H)} holds for
every S ⊂ V (G×H), which together with Lemma 2.3 proves our claim. This is
done by constructing a new graph G′ with non-uniform edge capacities. First
it is shown that d−1(G′) = max{md−1(G), nd−1(H)}. To conclude the proof it
is shown that every cut [S, S] in G × H corresponds to a cut [S ′, S′] in G′ with
d−1(S, S) ≤ d−1(S′, S′). For an example of the construction in this proof see
Figure 2.1.

For the construction of G′, take two paths Pn and Pm. Label the vertices
of Pn (Pm) along the path with labels 1, . . . , n (1, . . . ,m). Set edge capacities
in Pn to c(i, i + 1) = i(n − i)/d−1(G) for i = 1, . . . , n − 1. Set edge capac-
ities in Pm to c(i, i + 1) = i(m − i)/d−1(H) for i = 1, . . . ,m − 1. Now it
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can be verified that d−1(Pn) = d−1(G) and d−1(Pm) = d−1(H) (and that ev-
ery edge in Pn (Pm) gives a sparsest cut). Define G′ = Pn × Pm. Note that
|V (G′)| = |V (G × H)| = nm. Using the fact that paths are bottleneck graphs,
Corollary 2.4 and Theorem 2.2 imply that d−1(G′) = max{md−1(G), nd−1(H)}.

Now we consider a cut [S, S] in G × H. We will construct a cut [S ′, S′] in
G′ with |S′| = |S| (and thus |S′| = |S|) and c[S′, S′] ≤ |[S, S]|.

Using S, we can define a cut X(v) in G for every vertex v ∈ V (H):

X(v) = {u ∈ V (G) : (u, v) ∈ S}.

Number the vertices V (H) = {v1, . . . , vm} such that i < j ⇒ |X(vi)| ≥ |X(vj)|.
Now we write Xi instead of X(vi).

These cuts are now defined such that
∑m

i=1 |[Xi,Xi]| is equal to the number
of horizontal edges in the cut [S, S].

Next we define a set of n cuts in H using S:

Yk = {vi : k ≤ |Xi|}.

Because |Xi| is decreasing, Yk = {v1, . . . , vp} for some p.
We will prove that

∑n
k=1 |[Yk, Y k]| does not exceed the number of vertical

edges in [S, S] by constructing a mapping of the edges in these cuts to the
vertical edges in [S, S] that is an injection.

Consider an edge (vi, vj) ∈ E(H), and suppose i < j and therefore |Xi| ≥
|Xj |. Between the G-layer in G × H corresponding to vi and the one corre-
sponding to vj , there are at least |Xi| − |Xj | vertical edges in [S, S]. Label an
arbitrary subset of |Xi|−|Xj | of these edges with the numbers |Xj |+1, . . . , |Xi|.
This labeling of vertical edges is done for every edge in H. The mapping is as
follows: if (vi, vj) ∈ [Yk, Y k], then w.l.o.g. |Xi| ≥ k and |Xj | < k, so this edge
can be mapped to the edge ((u, vi), (u, vj)) that was labeled with label k. Now
for every edge in ∪k=1,...,n[Yk, Y k] a unique edge in [S, S] is assigned, which
proves our claim.

Next we will construct a cut [S ′, S′] in G′:

S′ = {(k, i) : k ≤ |Xi|},

so the horizontal edges in [S ′, S′] (corresponding to edges of Pn) are of the form
((|Xi|, i), (|Xi| + 1, i)). Using the definition of Yk, we can rewrite S′ as:

S′ = {(k, i) : vi ∈ Yk},

and using the fact that Yk = {v1, . . . , vp} for some p, we know that the vertical
edges in [S′, S′] (corresponding to edges of Pm) are of the form ((k, |Yk|), (k, |Yk|+
1)). Now we have

[S′, S′] = {((|Xi|, i), (|Xi| + 1, i)) : |Xi| 6= 0 ∧ |Xi| 6= n} ∪
{((k, |Yk|), (k, |Yk| + 1)) : |Yk| 6= 0 ∧ |Yk| 6= m}.
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The capacity of the cut [S′, S′] is equal to:

c[S′, S′] =

m
∑

i=1

|Xi|(n − |Xi|)/d−1(G) +

n
∑

k=1

|Yk|(m − |Yk|)/d−1(H) ≤

m
∑

i=1

|[Xi,Xi]| +
n

∑

k=1

|[Yk, Y k]| ≤ |[S, S]|.

The first equality follows from the definition of the capacities in G′, the first

inequality follows from the fact that d−1(G) ≥ |Xi|(n−|Xi|)

|[Xi,Xi]|
for any i, and a

similar statement for d−1(H), and the last inequality follows from the proofs
above.

Now we have proved that for any cut [S, S] in G × H, there is a cut [S ′, S′]
in G′ with

d−1(S, S) =
|S||S|
|[S, S]| ≤

|S′||S′|
c[S′, S′]

≤ max{md−1(G), nd−1(H)},

so d−1(G) ≤ max{md−1(G), nd−1(H)}. ✷

This proves that the cut constructed in Lemma 2.3 is a sparsest cut of G × H.
So every graph G×H has a sparsest cut that consists only of horizontal or only
of vertical edges. We also have the following corollary.

Corollary 2.6 If G and H are not bottleneck graphs, then G × H is not a
bottleneck graph.

In view of Corollaries 2.4 and 2.6, there is one question left: what if one graph
(say G) is a bottleneck graph and the other graph (H) is not? Interestingly,
the answer only depends on the values of D(G) and D(H), not on d−1(G) and
d−1(H).

Corollary 2.7 If G is a bottleneck graph and H is not a bottleneck graph, then
G × H is a bottleneck graph if and only if nD(H) ≤ mD(G).

Proof: If nD(H) > mD(G), then

D(G × H) = max{mD(G), nD(H)} =

nD(H) > max{md−1(G), nd−1(H)} = d−1(G × H),

so G × H is not a bottleneck graph.
If nD(H) ≤ mD(G), then we know that nd−1(H) < nD(H) ≤ mD(G) =

md−1(G), so

d−1(G × H) = max{md−1(G), nd−1(H)} = md−1(G) =

mD(G) = max{mD(G), nD(H)} = D(G × H),

and G × H is a bottleneck graph. ✷
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2.3 Sparsest cuts in unit interval graphs

2.3.1 Results

In this section we characterize sparsest cuts of unit interval graphs. In order
to give a short expression for the form of a sparsest cut, we use the following
definition.

Definition 2.8 Let I : V (G) → R be a unit interval representation for the
graph G. If A and B are disjoint non-empty subsets of V (G), we write A ≺I B
if for all u ∈ A and v ∈ B, I(u) ≤ I(v) holds.

Let G be a unit interval graph with unit interval representation I. We show
that G has a sparsest cut [S, S] such that S ≺I S. This is done by considering
an arbitrary cut [S, T ], and partitioning S and T into S1, . . . , Sk resp. T1, . . . , Tl

with k − 1 ≤ l ≤ k such that S1 ≺I T1 ≺I S2 ≺I . . . ≺I Tk−1 ≺I Sk, and in
addition Sk ≺I Tk if l = k. For a given cut [S, T ] and unit interval representation
I of G, a partition of S and T into non-empty subsets with this property is
called an I-partition of S and T . Observe that w.l.o.g. we can always find an
I-partition. See Figure 2.2 for an example.

S

S1 S2

S3

T

T1 T2

G:

Figure 2.2: An I-partition for S and T

We show that if k > 1, then we can reassign these subsets into disjoint non-
empty subsets S′ and T ′ with S′ ∪ T ′ = V (G), such that d(S′, T ′) ≤ d(S, T ).
For this purpose, we need to express the density between S and T as a weighted
average of densities between subsets of S and T .

Observation 2.9 If A, B and C are disjoint non-empty subsets of V (G), then

d(A,B ∪ C) = d(A,B)|B|+d(A,C)|C|
|B|+|C| .
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Proof:

d(A,B ∪ C) =
|[A,B ∪ C]|
|A|(|B| + |C|) =

|[A,B]| + |[A,C]|
|A|(|B| + |C|) =

|[A,B]|
|A||B| |B| + |[A,C]|

|A||C| |C|
|B| + |C| =

d(A,B)|B| + d(A,C)|C|
|B| + |C|

✷

The following definition is introduced to improve the readability of our proofs.
Since we mainly compare densities with the density of a sparsest cut, it makes
sense to normalize densities in the following way.

Definition 2.10 Let G be a graph with sparsest cut [S, S] and d = d(S, S). Let
A,B ⊆ V (G) with A ∩ B = ∅. The normalized density between A and B is
e(A,B) = d(A,B) − d.

Note that if A∪B 6= V (G), then e(S, T ) may be negative. Normalized densities
can also be expressed as weighted averages:

Observation 2.11 If A, B and C are disjoint non-empty subsets of V (G), then

e(A,B ∪ C) = e(A,B)|B|+e(A,C)|C|
|B|+|C| .

Proof:

e(A,B ∪ C) = d(A,B ∪ C) − d =
d(A,B)|B| + d(A,C)|C|

|B| + |C| − d =

e(A,B)|B| + d|B| + e(A,C)|C| + d|C|
|B| + |C| − d =

e(A,B)|B| + e(A,C)|C|
|B| + |C| .

✷

The following simple lemma is the key to our approach.

Lemma 2.12 If [A ∪ B,C] is a sparsest cut of G, with A and B disjoint and
non-empty, then e(A,B) ≥ 0. If e(A,B) = 0, then [A,B ∪ C] or [B,A ∪ C] is
also a sparsest cut of G.

Proof: [A∪B,C] is a sparsest cut so e(A∪B,C) = 0. Since this is a weighted
average of e(A,C) and e(B,C) (Observation 2.11), we may assume e(A,C) ≤ 0
and e(B,C) ≥ 0. If e(A,B) < 0, then

e(A,B ∪ C) =
e(A,B)|B| + e(A,C)|C|

|B| + |C| < 0,

a contradiction with the fact that [A ∪ B,C] is a sparsest cut. This shows
that e(A,B) ≥ 0. If e(A,B) = 0, then similarly we get e(A,B ∪ C) ≤ 0. So
0 = e(A ∪ B,C) ≤ e(A,B ∪ C) ≤ 0, and therefore [A,B ∪ C] is also a sparsest
cut.

If instead we assume e(B,C) ≤ 0 and e(A,B) = 0, then we find in the same
way that [B,A ∪ C] is also a sparsest cut. ✷
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Corollary 2.13 If [S, T ] is a sparsest cut in a connected graph G, then G[S]
and G[T ] are connected.

Alternatively, the above corollary states that every sparsest cut is a minimal
edge cut. Before we continue with unit interval graphs, we demonstrate the
usefulness of Corollary 2.13 by characterizing sparsest cuts for cactus graphs.
Recall that a graph is a cactus if it is connected and every edge is part of at
most one cycle.

Proposition 2.14 If M is a sparsest cut of a cactus G, then |M | ≤ 2.

Proof: Let M = [S, S]. Since G is connected and M is a sparsest cut, G[S]
and G[S] are connected (Corollary 2.13). Suppose |M | ≥ 3. Let e, f and g
be distinct edges in M . Because G[S] and G[S] are connected, a cycle C1 ex-
ists that contains e and f , and no other edges of M . Similarly, a cycle C2

exists that contains e and g, and no other edges of M . So C1 and C2 are differ-
ent cycles, but both contain e, a contradiction with the fact that G is a cactus.✷

It follows that for cactus graphs, a sparsest cut can be found in polynomial
time by considering all possible sets of one or two edges.

The property that is stated in the next lemma is the only property of unit
interval graphs we will use in the proof of our main result (Theorem 2.16).

Lemma 2.15 Let I : V (G) → R be a unit interval representation for the graph
G. If A,B,C ⊆ V (G) with A ≺I B ≺I C, then d(B,A ∪ C) ≥ d(A,C).

Proof: Let A1 ⊆ A be the vertices in A that have at least one neighbor in C.
Similarly, C1 ⊆ C are the vertices in C that have at least one neighbor in A.
Let α = |A1|/|A|, and γ = |C1|/|C|.

d(A,C) =
|[A,C]|
|A||C| ≤ |A1||C1|

|A||C| = αγ ≤ min{α, γ}.

Now we will show that min{α, γ} is a lower bound for d(B,A ∪ C). Suppose
a ∈ A and c ∈ C are adjacent, so I(a) + 1 ≥ I(c). Consider b ∈ B. I(a) ≤ I(b)
(since A ≺I B), and I(b) ≤ I(c) (since B ≺I C). It follows that I(a)+1 ≥ I(b),
so a and b are adjacent, and I(b)+1 ≥ I(c), so b and c are adjacent. This proves
that if a vertex a ∈ A has a neighbor in C, then every vertex in B is adjacent
to a, and a similar statement holds for vertices in C. Now we write

d(B,A ∪ C) =
|[B,A ∪ C]|
|B|(|A| + |C|) ≥ |B|(|A1| + |C1|)

|B|(|A| + |C|) =
α|A| + γ|C|
|A| + |C| ,

which is a weighted average of α and γ, so

d(B,A ∪ C) ≥ min{α, γ}.

✷
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Theorem 2.16 Let I : V (G) → R be a unit interval representation for the
graph G. G has a sparsest cut [S, T ] such that S ≺I T .

Proof: Consider a sparsest cut [S, T ] and I-partition {S1, . . . , Sk} and
{T1, . . . , Tl} of S and T , that has k + l minimum, among all such sparsest cuts
and I-partitions. We use the following shorthand notation: Si...j = Si∪ . . .∪Sj ,
and Ti...j = Ti ∪ . . . ∪ Tj .

If k = 1, then S = S1 ≺I T1 = T , and we have found the desired sparsest
cut. Otherwise, we distinguish two cases: l = k − 1, and l = k ≥ 2.

Case 1: l = k − 1.
For all 1 ≤ t ≤ k − 1, e(S1...t, St+1...k) ≥ 0 (Lemma 2.12). If this is an equality,
then [S1...t, St+1...k ∪ T1...k−1] or [St+1...k, S1...t ∪ T1...k−1] is also a sparsest cut
(Lemma 2.12). The first cut has an I-partition with 2t < 2k− 1 = k + l classes,
and the second cut has an I-partition with 2(k−t) < 2k−1 = k+ l classes, both
contradictions with our choice of [S, T ]. We conclude that e(S1...t, St+1...k) > 0
for every 1 ≤ t ≤ k − 1.

Since S1...t ≺ Tt ≺ St+1...k and S1...t∪St+1...k = S, it follows from Lemma 2.15
that e(Tt, S) ≥ e(S1...t, St+1...k) > 0, for all 1 ≤ t ≤ k − 1. Since

e(S, T ) =
e(T1, S)|T1| + . . . + e(Tk−1, S)|Tk−1|

|T1| + . . . + |Tk−1|
,

we have e(S, T ) > 0, a contradiction with the fact that [S, T ] is a sparsest cut.
This concludes the case l = k − 1.

Case 2: l = k ≥ 2.
We again have e(Tt, S) > 0 for all 1 ≤ t ≤ k − 1 (see the previous case), but it
is possible that e(Tk, S) < 0, so we cannot immediately obtain a contradiction
this way.

First we show that for every 2 ≤ t ≤ k,

e(St, T ) > e(T1...t−1, S)
|S|
|T | , (2.1)

and for every 1 ≤ t ≤ k − 1,

e(Tt, S) > e(St+1...k, T )
|T |
|S| . (2.2)

For a fixed t with 2 ≤ t ≤ k, we denote TL = T1...t−1 and TH = Tt...k. We
showed that e(Ti, S) > 0 for all i < k, so we have e(TL, S) = α > 0 (e(TL, S) is
a weighted average of e(Ti, S) for i = 1, . . . , t − 1). Since

0 = e(TL ∪ TH , S) =
α|TL| + e(TH , S)|TH |

|TL| + |TH | ,

we have e(TH , S) = −α |TL|
|TH | . Now we consider the cut [TH , V (G)\TH ]. Since

0 ≤ e(TH , V (G)\TH) =
e(TH , S)|S| + e(TH , TL)|TL|

|S| + |TL|
,
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we have e(TH , TL) ≥ −e(TH , S) |S|
|TL| = α |S|

|TH | . Finally, using Lemma 2.15 and

TL ≺I St ≺I TH we obtain e(St, T ) ≥ e(TL, TH) ≥ α |S|
|TH | > e(TL, S) |S|

|T | . By

symmetry (since l = k), (2.2) can be proved the same way.
Using (2.1) and (2.2), we now prove by induction on i that for all 1 ≤ i ≤

k − 1,

e(T1...i, S) > e(Si+1...k, T )
|T |
|S| . (2.3)

If i = 1, then (2.3) is equal to (2.2) for t = 1.

If i > 1 then our induction hypothesis is that e(T1...i−1, S) > e(Si...k, T ) |T |
|S| .

When we combine this with (2.1) we get

e(Si, T ) > e(T1...i−1, S)
|S|
|T | > e(Si...k, T ).

Since e(Si...k, T ) is a weighted average of e(Si, T ) and e(Si+1...k, T ), it follows
that

e(Si...k, T ) > e(Si+1...k, T )

We combine this with the induction hypothesis:

e(T1...i−1, S) > e(Si...k, T )
|T |
|S| > e(Si+1...k, T )

|T |
|S|

From (2.2) we see that e(Si+1...k, T ) |T |
|S| is also a lower bound for e(Ti, S). Since

e(T1...i, S) is a weighted average of e(T1...i−1, S) and e(Ti, S), it follows that

e(T1...i, S) > e(Si+1...k, T )
|T |
|S| ,

which concludes the induction proof.
Using (2.3) resp. (2.1), we obtain a contradiction for the case l = k:

e(T1...k−1, S) > e(Sk, T )
|T |
|S| > e(T1...k−1, S).

We showed that both cases with k > 1 lead to a contradiction, so with our
choice of S and T , k must be 1, and thus S ≺I T . ✷

Unit interval graphs can be recognized in polynomial time, and a unit inter-
val representation can be found in polynomial time [18]. It follows that for unit
interval graphs sparsest cuts can be found in polynomial time.

Corollary 2.17 There exists a polynomial time algorithm that for any graph
G, returns a sparsest cut of G if G is a unit interval graph.

Proof: The algorithm is as follows. First decide whether G is a unit interval
graph. If so, construct a unit interval representation I. Note that I can be
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Figure 2.3: A non-interval graph and order satisfying the property from
Lemma 2.15

constructed such that I(u) 6= I(v) for every u and v. Start with S = {v1} such
that S ≺I S, and calculate d(S, S). Successively, add the unique vertex to S
that maintains S ≺I S, and calculate d(S, S). After this is exhausted, choose
the cut with the lowest density.

Only |V (G)| − 1 cuts are considered, and since these are all of the cuts with
S ≺I S, by Theorem 2.16, one of these cuts is a sparsest cut. ✷

2.3.2 Discussion

Since Lemma 2.15 is the only property of unit interval graphs that we used to
prove Theorem 2.16, our result actually holds for a larger graph class. Namely
the class of graphs for which a complete order ≺ on V (G) exists, and correspond-
ing partial order ≺ subsets of V (G) (deduced from the vertex order the same way
as ≺I is deduced from I), such that A ≺I B ≺I C implies d(B,A∪C) ≥ d(A,C).
We can show that this graph class contains more than only unit interval graphs;
consider for instance graphs consisting of a number of 4-cycles joined in a path
structure, as illustrated in Figure 2.3. The illustrated graph G satisfies the afore-
mentioned property: consider the vertex order given by the the vertex labels.
For all choices A ≺ B ≺ C, either |[A,C]| = 0, or |[A,C]| = 1, |[B,A ∪ C]| = 2
and |B| = 1. It can now be checked that d(B,A∪C) ≥ d(A,C). In addition, G
is clearly not a unit interval graph.

We do not know if the generalization of unit interval graphs defined above
contains or is equal to a known generalization of unit interval graphs, or how
many non-unit interval graphs satisfy the above property.

An obvious question is whether these results can be generalized to all interval
graphs G. We will show that this is not true in a strong sense. G is an interval
graph if we can assign intervals of the real line to the vertices such that two
vertices are adjacent if and only if their intervals overlap. Formally, this means
that there are functions Il : V (G) → R and Ih : V (G) → R with Il(v) ≤ Ih(v),
such that uv ∈ E(G) if and only if Il(u) ≤ Ih(v) and Il(v) ≤ Ih(u). This is
called an interval representation of G. If G has an interval representation with
Ih(u) = Il(u) + 1 for all u, note that this corresponds to our previous definition
of a unit interval representation.

So for a straightforward generalization of Theorem 2.16 to all interval graphs,
we can for instance ask the following question. For all interval graphs, can we
describe a non-trivial (partial) order ≺ on the vertices, based on an interval
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Figure 2.4: An interval graph with an unexpected sparsest cut

representation, such that we can prove that there is a sparsest cut [S, S] with
u ∈ S, v ∈ S ⇒ u ≺ v? Such a cut is called a cut that satisfies ≺.

For a connected unit interval graph, a unit interval representation leads to a
complete vertex order that is unique apart from direction, and interchangability
of vertices u and v that have N(u)−v = N(v)−u. Note that for general interval
graphs it is not possible to define a meaningful complete order this way, since
one interval can be contained in another interval. However we can at least define
a useful partial order on the vertices, when an interval representation is given:
u ≺ v if Il(u) ≤ Iv(v) and Ih(u) ≤ Ih(v). But also when we want to use this
partial order to generalize Theorem 2.16, this leads to problems since this order
depends on the chosen representation (consider e.g. connected interval graphs
with a cut vertex v such that G− v has many components). So we may want to
study an even weaker statement: for all interval graphs G, does there exist an
interval representation that leads to a partial order on the vertices, such that
there is a sparsest cut satisfying this partial order? Figure 2.4 shows an example
that shows that even this statement is not true: the graph shown has in essence
a unique interval representation, and we will show that it has a single sparsest
cut that is obtained by separating the single vertex ‘in the middle’ from the rest
of the vertices.

The graph in Figure 2.4 has 2n + 2m − 2 vertices, and consists of two Kn

blocks, two Km blocks and one K2 block (m ≥ 2, n ≥ 2). Consider the three
cuts illustrated in the figure. The first cut has |[A,A]| = 1, and |A| = 1. The
second has |[B,B]| = n− 1 and |B| = m+n− 2. The third has |[C,C]| = m− 1
and |C| = m−1. Observe that regardless of the choice of n and m, one of these
is a sparsest cut. These cuts have densities resp.

d(A,A) =
1

2n + 2m − 3
≈ 1

2(n + m)
,

d(B,B) =
n − 1

(m + n)(m + n − 2)
≈ n

(n + m)2
,
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d(C,C) =
m − 1

(m − 1)(2n + m − 1)
=

1

2n + m − 1
≈ 1

2n + m
.

Now it can be checked that when m ≥ 3 and n ≥ m + 2, [A,A] is the unique
sparsest cut, even though this cut does not satisfy any partial order correspond-
ing to a representation. We conclude that a straightforward generalization of
Theorem 2.16 to all interval graphs does not exist.

2.4 Sparsest cuts in complete bipartite graphs

In this section we give an explicit expression for the density of a sparsest cut
of Km,n, and in the proof of Theorem 2.18 construct all corresponding cuts.
We prove these are sparsest cuts by comparing this density with all other cut
densities in an efficient way. The expression for the sparsest cut density will
show that Km,n is not a bottleneck graph when m ≥ 2 and n ≥ 3.

Theorem 2.18 If [S, S] is a sparsest cut of Km,n with m ≤ n and n ≥ 2, then
d(S, S) = min{ 1

2 , m
n+m−1}.

Proof: First we give an expression for the density of an arbitrary edge cut [S, S]
of Km,n. Let {A,B} be a bipartition of the vertices, with |A| = m, |B| = n. If
|S ∩ A| = x and |S ∩ B| = y, then

d(S, S) =
|[S ∩ A,S ∩ B]| + |[S ∩ B,S ∩ A]|

|S||S| =
x(n − y) + y(m − x)

(x + y)(n + m − x − y)
.

We denote this function by d(x, y). We want to find the minimum of d(x, y)
over all integer values of x and y with 0 ≤ x ≤ m, 0 ≤ y ≤ n, and 1 ≤ x + y ≤
n + m − 1. Because of the symmetry, we only have to consider values of x and
y with 1 ≤ x + y ≤ (n + m)/2 (otherwise we switch S and S). First we analyze
d(x, y) without considering the integrality constraints for x and y.

Consider combinations of x and y with x + y = c for a constant c. For fixed
values of n, m and c we will denote this function as dc(x) = d(x, c − x). The
denominator of dc(x) is a constant, so dc(x) is minimum when the numerator
is minimum. Substituting y = c − x gives

x(n − c + x) + (c − x)(m − x) = 2x2 + (n − m − 2c)x + mc.

This is minimum when 4x + n − m − 2c = 0, so when x = c
2 − n−m

4 and
y = c

2 + n−m
4 . If n−m

4 ≥ c
2 , then this value for x is negative, so within our range

the minimum of dc(x) occurs at x = 0 and y = c (since dc(x) is a polynomial of
degree two).

We substitute these values of x and y into d(x, y), to find the value of c
with 1 ≤ c ≤ (n + m)/2 for which the minimum is attained. First suppose
(n − m)/2 ≤ 1, and write d = c

2 and e = n−m
4 . so for all values of c with
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1 ≤ c ≤ (n + m)/2, we can substitute x = d − e and y = d + e.

d(x, y) =
(d − e)(n − d − e) + (d + e)(m − d + e)

2d(n + m − 2d)
=

dn − d2 − de − en + de + e2 + dm − d2 + de + em − de + e2

2d(n + m − 2d)
=

d(n + m − 2d) − e(n − m) + 2e2

2d(n + m − 2d)
=

d(n + m − 2d) − 4e2 + 2e2

2d(n + m − 2d)
=

z − 2e2

2z
,

with z = d(n + m − 2d), or alternatively, z = c(n + m − c)/2. Note that z is
strictly positive for our choices of c. If (n − m)/4 = e = 0, then the minimum
of d(x, y) is 1

2 , which occurs for all x = c
2 and y = c

2 , with 1 ≤ c ≤ (n + m)/2.

If e 6= 0, then we conclude from the expression above that d(x, y) attains its
minimum when c(n + m − c)/2 is as small as possible, so c = 1. We conclude
that if 0 < n − m ≤ 2, d(x, y) is minimum for x = 1

2 − n−m
4 and y = 1

2 + n−m
4 .

Now suppose (n−m)/2 ≥ 1. The same reasoning as above shows that when
c ≥ (n − m)/2, d(x, y) is minimum when c is minimum, so c = (n − m)/2, and
x = 0 and y = c. When 1 ≤ c ≤ (n − m)/2, we showed that dc(x) is minimum
when x = 0 and y = c. For all such pairs,

d(x, y) =
cm

c(n + m − c)
=

m

n + m − c
.

This function is minimum when c is minimum, so c = 1. We conclude that when
(n − m) ≥ 2, d(x, y) is minimum for x = 0, y = 1. Now we will consider the
integrality constraints for x and y.

If n ≥ m + 2, the minimum occurs at integer values of x and y (x = 0, y = 1),
so the best density is m/(n + m − 1).

If n = m, then the minimum occurs at all x = y, and the best density is 1
2 .

(Here we need our assumption that n ≥ 2, otherwise no integral solutions with
x = y exist within our range.)

Now consider the case n = m + 1. For fixed c = x + y, we know that
dc(x) = (2x2 + (n − m − 2c)x + mc)/f for some constant f , and that this
function is minimum at x = c

2 − 1
4 . Rounding to the closest values of x and

y with x + y = c gives x = c
2 and y = c

2 when c is even, and x = c
2 − 1

2 and
y = c

2 + 1
2 when c is odd. Since dc(x) is a polynomial of degree two, this way of

rounding gives the best integer values of dc(x). Now we calculate the densities
for these integer values. If x = y, then

d(x, y) =
x(n − x) + x(n − 1 − x)

2x(2n − 1 − 2x)
=

2n − 1 − 2x

2(2n − 1 − 2x)
=

1

2
.
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If y = x + 1, then

d(x, y) =
x(n − x − 1) + (x + 1)(n − 1 − x)

(2x + 1)(2n − 1 − 2x − 1)
=

(2x + 1)(n − x − 1)

2(2x + 1)(n − x − 1)
=

1

2
.

We conclude that 1
2 is the minimum density, and that it is attained by many

combinations of x and y, one for every value of x + y. ✷

In the following proof we use the notations from section 2.2.1.

Corollary 2.19 Let m ≤ n. Km,n is not a bottleneck graph if and only if m ≥ 2
and n ≥ 3.

Proof: If m = 1, then Km,n is a star. If m = n = 2, then Km,n = C4. In both
cases it can easily be verified that Km,n is a bottleneck graph.

Now suppose m ≥ 2 and n ≥ 3. We uniformly assign distances t to the edges
of Km,n, so every edge e has t(e) = 1/mn. Now there are nm vertex pairs with
distance 1/mn, and n(n− 1)/2 + m(m− 1)/2 vertex pairs with distance 2/mn.
We have

D(G) =
∑

u,v∈V (G)

dt(u, v) =
nm + n(n − 1) + m(m − 1)

mn
.

If m = n, then d−1(G) = 2 (Theorem 2.18), and D(G) = 3n2−2n
n2 . Since n ≥ 3,

n2 > 2n, so D(G) > 2n2

n2 = d−1(G), and Km,n is not a bottleneck graph.
If m < n, then d−1(G) = m+n−1

m
(Theorem 2.18), and

D(G) =
nm + n(n − 1) + m(m − 1)

mn
>

nm + n(n − 1)

nm
= d−1(G),

so Km,n is again not a bottleneck graph. ✷



Chapter 3

The complexity of the

Matching-Cut problem for

planar graphs and other

graph classes

3.1 Introduction

A matching-cut is an edge cut that is also a matching. The Matching-Cut prob-
lem is the problem to decide whether a given graph has a matching-cut:

Matching-Cut:
Instance: A graph G = (V,E).
Question: Does G have a matching-cut?

Previous results Chvátal [17] studied the Matching-Cut problem under the
name of the Decomposable Graph Recognition problem, and showed that the
problem is NP-complete for graphs with maximum degree four (using the 3-
uniform Hypergraph Bicolorability problem), and gave a polynomial time al-
gorithm to solve the problem for graphs with maximum degree at most three.
Moshi [46] gave polynomial time algorithms for this problem for line graphs
and quadrangulated graphs. Unaware of Chvátal’s result, Patrignani and Piz-
zonia [48] also proved the NP-completeness of the problem for graphs with
maximum degree four using a different reduction, though from nearly the same
problem (Not-All-Equal-3-Satisfiability). In addition they presented a linear
time algorithm for series-parallel graphs. They also posed the question whether
the problem is NP-complete for the class of planar graphs.

A problem closely related to Matching-Cut is the problem of deciding whether
a graph has a stable cutset. This is a vertex cut that contains no adjacent ver-
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tices. The line graph L(G) of G = (V,E) has E as the vertex set, where e ∈ E
and f ∈ E are adjacent in L(G) if they are adjacent in G. Brandstädt et al. [14]
observed the following.

Observation 3.1 (Brandstädt et al.) If L(G) has a stable cutset, then G
has a matching-cut. If G has a matching-cut and has minimum degree at least
two, then L(G) has a stable cutset.

In order to prove that the stable cutset problem is NP-complete for line graphs
with maximum degree five, Le and Randerath [39] adapted Chvátal’s construc-
tion to prove the NP-completeness of Matching-Cut for bipartite graphs in
which all vertices in one class of the bipartition have degree three and all ver-
tices in the other class have degree four.

Other results on matching-cuts appear in [25] and [26]: in [25] matching-
cuts are studied in the context of network applications, and [26] contains an
extremal result regarding matching cuts (see Section 3.5 and Chapter 4 for
more details). In [50] a generalization of matching-cuts is studied: a matching-
cut can alternatively be defined as a set M = [S, S] such that G[M ] contains no
P3. In [50], the complexity of the problem is studied when P3 is replaced by a
number of other (bipartite) graphs.

New results In this chapter the Matching-Cut problem is shown to be NP-
complete for planar graphs, using a reduction from Planar Graph 3-Colorability.
This answers the question from Patrignani and Pizzonia [48]. This is done in
Section 3.3. An observation by Moshi [46] then immediately shows that the
problem is also NP-complete for planar bipartite graphs, where one class of the
bipartition contains only vertices of degree two. By changing the components
used in the transformation, in Section 3.4 the NP-completeness of the problem
is proved for the classes of planar graphs with maximum degree four and planar
graphs with girth five. The girth cannot be increased in this result; all planar
graphs with girth six have a matching-cut.

Next, in Section 3.5, for some graph classes positive results for Matching-
Cut are described. First for claw-free graphs a polynomial time algorithm for
Matching-Cut is given. This generalizes the algorithm by Moshi [46] for line
graphs. In addition, we give a short characterization of co-graphs that have a
matching-cut, even though this is a subset of the quadrangulated graphs studied
in [46]. We also observe that for any fixed k, a linear time algorithm can be
constructed for Matching-Cut for graphs with treewidth bounded by k. Such an
algorithm generalizes the algorithm for series-parallel graphs from [48] (series-
parallel graphs have treewidth at most two [7]). Because of the focus of this
chapter on planar graphs, for the class of outerplanar graphs an additional
simple linear time algorithm is described, even though this is also a graph class
with treewidth at most two [7].
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3.2 Preliminaries

For an explanation of the notions related to planarity, we refer to [20]. In this
chapter we will briefly use directed graphs: in a directed graph the edges are
2-tuples of vertices, instead of sets. For an edge (u, v), u is the tail of the
edge, and v is the head. This is also called an edge from u to v. A directed
graph D is an orientation of (multi) graph G if D and G have the same vertex
set, and if there exists a bijection f from the edge set of D to the edge set of
G, such that f((u, v)) = {u, v}. A (vertex) k-coloring of graph G is a function
f : V (G) → {1, . . . , k} such that adjacent vertices receive different values. These
values are also called colors. A graph for which a k-coloring exists is called k-
colorable. Cycles will also be denoted by their edge set.

A graph without a matching-cut is called immune (which is short for match-
ing immune). The following two trivial observations will be used to analyze the
possible matching-cuts of the graphs we use in our constructions.

Observation 3.2 If edge e is part of a triangle of G, then there is no matching-
cut [S, S] in G with e ∈ [S, S].

Observation 3.3 If e and f are two edges of an induced C4 of G that do not
share an end vertex and [S, S] is a matching-cut in G, then e ∈ [S, S] ⇐⇒ f ∈
[S, S].

3.3 The NP-completeness of Matching-Cut for

planar graphs

In this section, the NP-completeness of the Matching-Cut problem is proved
when instances are restricted to the class of planar graphs. This problem will
be called Planar Matching-Cut. The NP-completeness proof is by a polynomial
transformation from the following graph coloring problem:

Planar Graph 3-Colorability
Instance: A planar graph G = (V,E)
Question: Is G 3-colorable?

Theorem 3.4 (Garey, Johnson and Stockmeyer) Planar Graph 3-Color-
ability is NP-complete.

This has been shown in [32]. In order to prove the NP-completeness of Planar
Matching-Cut, two intermediate problems will be used which are shown to be
NP-complete. For all problems we consider, membership of the class NP is
obvious. First we show that Graph 3-Colorability is still NP-complete when
restricted to a smaller set of instances:

Planar Hamiltonian Graph 3-Colorability:
Instance: A planar graph G = (V,E) with a Hamilton cycle H ⊆ E.
Question: Is G 3-colorable?
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Edge in path set

u

y

x x

y

uw w

Other edges

Figure 3.1: Removing a crossing

Lemma 3.5 Planar Hamiltonian Graph 3-Colorability is NP-complete.

Proof: Let G = (V,E) be a planar graph. We use G to construct a planar
Hamiltonian graph G′ = (V ′, E′) such that G is 3-colorable if and only if G′ is
3-colorable. Using Theorem 3.4, this proves the NP-completeness.

First observe that a graph G with a vertex v with d(v) < 3 is 3-colorable
if and only if G − v is 3-colorable. To construct G′ = (V ′, E′), we will start
with an embedding of G = (V,E) (it is well-known that such an embedding can
be found in polynomial time). First, edges will be added to make the graph
Hamiltonian. If this introduces crossings, these are replaced by the crossing
components that are defined below, restoring planarity. This replacement does
not remove vertices, so V ⊆ V ′. We then proceed by showing that any 3-coloring
of G can be extended to a 3-coloring of G′ and any 3-coloring of G′ restricted
to V is a 3-coloring of G.

Let Q1, . . . , Qk be a set of paths of G such that {V (Q1), . . . , V (Qk)} is a
partition of V (G). Note that such a path set always exists (paths may consist
of one vertex), and can easily be found in polynomial time. Now choose an end
vertex u of Q1, and an end vertex v of Qk. Add a new vertex w, and edges uw
and vw. Connect the paths Q1 and Qk using w. If k > 1, then this decreases
the number of paths in the path set. In that case, repeat this procedure (with
new vertices in the role of w) until k = 1. If k = 1, then the procedure gives
a Hamilton cycle. So this procedure constructs a graph with a given Hamilton
cycle in polynomial time. Because d(w) = 2, in each step the addition of a
vertex w has no influence on the 3-colorability of the graph.

Adding the edges uw and vw may not be possible without destroying pla-
narity. Therefore, each addition is done as follows: in the embedding of G, the
edges of the paths Q1, . . . , Qk do not divide the plane in more than one region.
Therefore an edge uv can be drawn such that it does not cross any edges used
in the paths, and crosses each of the other edges at most once. Subdivide uv
using w, creating uw and vw. This subdivision can be done in such a way that
on vw there are no crossings. Iteratively remove crossings on uw as follows: if
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uw crosses an edge xy, replace this crossing with the crossing component shown
in Figure 3.1 (without introducing new crossings). This crossing component
has the following two properties: in a 3-coloring, u and w can have any color
assigned to them, independent of the color assigned to the other vertex and the
vertices x and y. Furthermore, x and y will be colored differently. Note that all
new vertices in the crossing component are part of the new path from u to w
and that xy was not part of the path set, so we still have a vertex disjoint set
of paths containing all vertices. Repeating this procedure removes all crossings.

Let G′′ be the graph obtained after adding edges uw and vw and removing
all crossings in the described way. Then any 3-coloring of G can be extended
to a 3-coloring of G′′, because the new neighbors of u and v have degree two.
Any 3-coloring of G′′ is a 3-coloring of G when restricted to V , because in a
3-coloring of a crossing component different colors are assigned to x and y.

So if this (polynomial time) procedure of adding edges and removing cross-
ings is repeated until a planar graph G′ with a Hamilton cycle is constructed,
G′ is 3-colorable if and only if G is 3-colorable. This completes the NP-
completeness proof. ✷

Before we can use Graph 3-Colorability to prove the NP-completeness of Planar
Matching-Cut, we transform the problem into an artificial, but more suitable
vertex coloring problem in which every vertex is incident with only one vertex
that has to be colored with a different color, and at most two that have to be
colored with the same color:

Segment 3-Colorability
Instance: A set of vertices V and three disjoint edge sets A, B and C such
that G = (V,A ∪ B ∪ C) is a 3-regular planar multigraph with Hamilton cycle
A ∪ B.
Question: Can we find a color function f : V → {1, 2, 3} such that if uv ∈ A
then f(u) = f(v) and if uv ∈ C then f(u) 6= f(v)?

An instance of Segment 3-Colorability will be denoted by the tuple
G = (V,A,B,C). Note that G = (V,A ∪ B ∪ C) is a multigraph, so if for
instance B and C both contain an edge between vertices u and v, in G these
are considered to be different edges. Still, we will denote such an edge as uv
if no confusion is possible. Edges in the sets A, B and C will be called re-
spectively A-edges, B-edges and C-edges. If G = (V,A,B,C) is an instance of
Segment 3-Colorability, the components of the graph (V,A) are called segments.
All vertices of one segment receive the same color in a solution of this problem,
and therefore the problem is called segment coloring. Note that C is a perfect
matching in G.

Using lemma 3.5, we can prove the NP-completeness of Segment 3-Colorabil-
ity:

Lemma 3.6 Segment 3-Colorability is NP-complete.
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Other edges

Edge in Hamilton cycle

Edges in G: Edges in G′:

A-edge

B-edge

C-edge

Figure 3.2: An example of the transformation in the proof of Lemma 3.6

Proof: We will construct an instance G′ of Segment 3-Colorability from an
instance G of Planar Hamiltonian Graph 3-Colorability such that:

• the vertices of G correspond to the segments of G′,

• the edges of G correspond to the edge set C of G′: G′ has a C-edge between
vertices of segments x and y if and only if there is an edge between the
vertices of G corresponding to x and y, and

• the vertex ordering given by the Hamilton cycle H in G is the same as the
segment ordering given by the Hamilton cycle A ∪ B in G′.

Using the first two properties above, it is easy to see that Segment 3-Colorability
on G′ is equivalent with Planar Hamiltonian Graph 3-Colorability on G. An
example of this transformation is shown in Figure 3.2.

Consider a planar embedding of G (this can be found in polynomial time).
The transformation uses the following steps, which are shown in Figure 3.3:

1. For each vertex i in G, we can use the embedding to number the incident
edges clockwise from 1 to d(i) (such that edge j and edge j + 1 are on the
boundary of the same face). For every incident edge j, subdivide it using
vertex vij . Add edges vijvi(j+1) (j = i, . . . , d(i) − 1) and vidvi1, where
d = d(i). Delete vertex i. The edges corresponding to the edges of G form
the edge set C, and the new edges form the edge set A.

2. Double every edge in C that corresponds to an edge in G that is used in
the Hamilton cycle H. The new edges form the edge set B.

3. For every i, suppose w.l.o.g. that vi1 and vij are the two vertices on
the cycle that are incident with edges in B. Let d = dG(i). Now delete
the edges vi(j−1)vij and vi1vid and add an edge vi(j−1)vid. The new edge
belongs to the edge set A. Now the edges of A form a Hamilton path from
vi1 to vij in the subgraph induced by vi1, . . . , vid.
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Figure 3.3: The transformation steps in the proof of Lemma 3.6
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This transformation yields a 3-regular graph G′. All steps used in the trans-
formation preserve planarity so G′ is planar. (These steps are: subdivision of
edges, doubling edges, adding edges between vertices that are on the boundary
of the same face and deleting vertices and edges.)

For every i, vertices vij (j = 1, . . . , dG(i)) induce a component of (V (G′), A)
and therefore receive the same color in a feasible solution of Segment 3-Colorabil-
ity. If (and only if) an edge ij is present in G, a C-edge vixvjy is present in
G′ for some x and y, so segments i and j receive different colors in a feasible
Segment 3-Colorability solution for G′. We conclude that a vertex 3-coloring
of G can be transformed into a segment 3-coloring of G′ and vice versa. So
Segment 3-Colorability is NP-complete. ✷

Now, using Lemma 3.6 we can prove the NP-completeness of Planar Matching-
Cut.

Theorem 3.7 Planar Matching-Cut is NP-complete

Proof: Let (V,A,B,C) be an instance of Segment 3-Colorability with G =
(V,A ∪ B ∪ C). We will transform this instance into an instance G′ of Planar
Matching-Cut. For every vertex in V we will introduce a vertex component
in G′. (Throughout this proof, we do not use the graph theoretical meaning
of the word component.) If two vertices in V are joined by an A-edge, the
corresponding vertex components will be connected using a vertex connection
component. If two vertices in V are joined by a B-edge, the corresponding vertex
components will be connected using a segment connection component. In order
to properly label the components that will be introduced, first label the vertices
of G with labels 1, . . . , k1. Label the edges in A with labels k1 +1, . . . , k2. Label
the edges in B with k2 + 1, . . . , k3. Note that for C-edges no components will
be introduced.

Consider an embedding of G. Orient all edges of the Hamilton cycle A ∪ B
anticlockwise with regard to the embedding. Orient all edges of C arbitrarily.
Since the edge set A ∪ B gives a Hamilton cycle, in the embedding of G, this
Hamilton cycle divides the plane into two regions. So we can divide the edges of
C into two categories using this Hamilton cycle: inside edges and outside edges.
Because every vertex i in G (i = 1, . . . , k1) is incident with exactly one edge
e ∈ C, we can use this to define four variants of vertex components:

1. If e is an inside edge and i is incident with the tail of e, introduce a vertex
component as shown in Figure 3.4(a).

2. If e is an inside edge and i is incident with the head of e, introduce a
vertex component as shown in Figure 3.4(b).

3. If e is an outside edge and i is incident with the tail of e, introduce a
vertex component as shown in Figure 3.4(c).

4. If e is an outside edge and i is incident with the head of e, introduce a
vertex component as shown in Figure 3.4(d).
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Figure 3.4: Four variants of vertex components for G′
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Figure 3.5: The three possible matching-cuts through a vertex component



40 CHAPTER 3. THE COMPLEXITY OF MATCHING-CUT

li3

li2

li1

li4

ri1

ri2

ri3

ri4

Figure 3.6: A vertex connection component and vertex connection

There are at least three possible matching-cuts through these components, which
are shown in Figure 3.5. We use the two observations from Section 3.2 to show
that these are the only possible matching-cuts: if one edge of a matching-cut
through a vertex component is given, the other edges in the matching-cut can
be derived, because all edges are on a (facial) 4-cycle. Observe that if one of
the edges that is not part of the three given matching-cuts is in a matching-cut,
this will imply that an edge of one of the triangles is part of the matching-
cut, a contradiction. Therefore these are the only three possible matching-cuts
through a vertex component. Note that no two of these sets can be part of the
same matching-cut.

If edge lij li(j+1) is in the matching-cut, we will say that this vertex compo-
nent is cut by cut j (j = 1, 2, 3). Below, this will correspond to a coloring of
vertex i in G with color j. Observe that in this case, rijri(j+1) is also in the
matching-cut, and vertex cij is incident with one of the edges in the matching-
cut, whereas cik for k 6= j is not.

For each edge i in A (i = k1 + 1, . . . , k2), we introduce a vertex connection
component as shown on the left in Figure 3.6. It is easy to see that there are
exactly three possible matching-cuts through these components. Observe that
if edge lij li(j+1) is in the matching-cut, then edge rijri(j+1) also is.

If in G, there is an A-edge k directed from i to j, the two vertex components
i and j will be connected by vertex connection component k as follows (see
Figure 3.6 for an example): identify ril with lkl for l = 1, 2, 3, 4. This new
vertex is called ril again. Now, for l = 1, 2, 3 there are two edges from ril to
ri(l+1). Delete one of these. Next, identify rkl with ljl for l = 1, 2, 3, 4 and call
the new vertices ljl. Also delete one of all the double edges introduced here.
Such a vertex connection has the following property:

Property 3.8 If two vertex components i and j are connected by a vertex con-
nection component, then for any matching-cut: i is cut by cut l if and only if j
is cut by cut l (l = 1, 2, 3).

Clearly, to achieve this property, vertex components can also be connected with-
out using a vertex connection component, but for the alternative constructions
in the next section, vertex connection components are useful.
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Figure 3.7: A segment connection component and the nine possible matching-
cuts

For each edge i in B (i = k2 + 1, . . . , k3), we introduce a segment connection
component as shown in Figure 3.7.

Because the edges in triangles cannot be part of a matching-cut, there are
nine possible matching-cuts through these components, all of which cut exactly
one edge lij li(j+1) and one edge rikri(k+1). There is one cut for every combina-
tion of j and k (j = 1, 2, 3, k = 1, 2, 3).

If in G there is a B-edge from i to j, we can connect the vertex components i and
j using a segment connection component in the same way as described above
for vertex connection components. This segment connection has the following
property:

Property 3.9 If two vertex components i and j are connected by a segment
connection component, then for any matching-cut: i is cut by this matching-cut
if and only if j is cut by this matching-cut. Any combination of cuts through i
and j is possible.

The C-edges of G determine the last type of connection between vertex compo-
nents: if ij ∈ C, identify cil with cjl (l = 1, 2, 3). This connection is called an
edge connection. We know that if vertex component i is cut by cut l, then cil

is incident with an edge of this matching-cut. So because a matching-cut is a
matching, this connection has the following property:

Property 3.10 If two vertex components i and j are connected by an edge
connection, then for any matching-cut and l = 1, 2, 3: it is not possible that i is
cut by cut l and j is cut by cut l.

Let G′ be the graph that is constructed by introducing vertex components for
every vertex in G and connecting them with vertex connection components,
segment connection components and edge connections for every edge in respec-
tively A, B and C as described above. Using the observed properties of these
connections, G′ has the following properties:

• Because A∪B gives a Hamilton cycle in G, and the fact that the different
components have no matching-cuts other than the indicated cuts, we use
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Property 3.8 and Property 3.9 to conclude that if G′ has a matching-cut,
this matching-cut cuts every vertex component.

• Property 3.8 shows that if G′ has a matching-cut, all vertex components
that correspond to vertices in the same segment of G are cut by the same
cut l.

• By Property 3.10, in any matching-cut, two vertex components that cor-
respond to vertices in segments that are joined by a C-edge are cut by
different cuts.

• Property 3.9 shows that segment connection components do not impose
additional constraints on the possible combinations of cuts through vertex
components.

Now it is easy to see how any matching-cut in G′ corresponds to a proper
segment 3-coloring of G and vice versa.

The only thing left to prove is that G′ is indeed an instance for Planar
Matching-Cut. Therefore, we show that G′ is planar.

|V | vertex components, |A| vertex connection components and |B| segment
connection components can be drawn in the plane, with inner faces as shown
in the figures, and all sharing outer face F . Because A ∪ B is a Hamilton cycle
in G, we can one by one make the vertex connections and segment connections
without destroying the planarity: we can maintain an embedding where all inner
faces of the components remain the same. Here we use the orientation of the
Hamilton cycle A ∪ B: every vertex is the tail of one edge on this cycle, and
the head of one other edge. So for every vertex component i, one vertex or
segment connection is made using the vertices lij , and one vertex or segment
connection is made using the vertices rij . Since all except the last of these
connection operations join two disconnected parts of the graph, making these
connections does not change the number of faces. Only the last connection that
‘closes the cycle’ splits face F into two faces: F1 and F2. Assume w.l.o.g. that
every vertex li1 and ri1 is on the boundary of F1, and every vertex li4 and ri4

is on the boundary of F2.

If a C-edge ij is present, then vertex components i and j are either of type
(a) and (b) as shown in Figure 3.4, or of type (c) and (d) as shown in this figure.
Therefore either cik and cjk (k = 1, 2, 3) are all on the boundary of F1, or they
are all on the boundary of F2. Also, edges of C do not cross in the embedding
of G. Because of this, all such vertex pairs can be identified without destroying
the planarity. This gives an embedding of G′.

It can be checked that G′ is a simple graph. Since the given transformation
is polynomial, and Planar Matching-Cut is within NP, Planar Matching-Cut
is NP-complete. ✷
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Figure 3.8: Two vertex components form an edge component

3.4 The NP-completeness of Matching-Cut for

more restricted graph classes

3.4.1 Planar graphs with maximum degree four

As Chvátal proved the Matching-Cut problem to be NP-complete for graphs
with maximum degree four, the question arises whether the problem is also
NP-complete for planar graphs with maximum degree four. To prove that
this is indeed the case, we outline how the construction used in the proof of
Theorem 3.7 should be altered such that the resulting graph G′ is a planar
graph with maximum degree four, and still has the properties needed in the
proof.

For this alteration, in the graph G′ from the proof of Theorem 3.7, we
will replace all segment connection components by new segment connection
components. The vertex components will be replaced pairwise: in G′, every
vertex component occurs in a pair as shown in Figure 3.8 (this pair corresponds
to an inside C-edge in the Segment 3-Colorability instance. For outside edges the
labeling is different, but this is not important). Call this subgraph, composed
of vertex components i and j, edge component ij.

Theorem 3.11 Matching-Cut is NP-complete when restricted to planar graphs
with maximum degree four.

Proof: Consider the graph H shown in Figure 3.9. H is obviously planar
and has maximum degree four. Furthermore, the vertices lik, rik, ljk and rjk

(k = 1, 2, 3, 4) have smaller degree such that further connections are possible.
With a little effort it can be checked (using the observations in Section 3.2) that
the possible combinations of matching-cuts through H are similar to the possible
combinations of matching-cuts through the edge component in Figure 3.8. There
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Figure 3.9: Part of an edge component with maximum degree four
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(c)

(a) (b)

Figure 3.12: Constructing an immune graph with girth five

is one difference: the matching-cuts are ‘reversed’, so for instance the matching-
cut that contains the edge li1li2 also contains the edge ri3ri4 and the matching-
cut that contains the edge li3li4 also contains the edge ri1ri2. Therefore we
replace edge components in G′ by a pair of these H-graphs, connected by vertex
connection components as illustrated in Figure 3.10. Note that this does not
increase the maximum degree of the resulting component above four.

Replace each segment connection component (Figure 3.7) in G′ by the com-
ponent shown in Figure 3.11. This component is again planar, has maximum
degree four and has a set of matching-cuts equivalent to the nine matching-cuts
of the original segment connection component. Vertex connection components
do not have to be replaced.

If we replace all subgraphs of G′ exactly as described, then next to edge
components corresponding to outside edges, vertices of degree five will occur.
This problem can easily be solved by inserting extra vertex connection compo-
nents (with a triangle between ll4 and rl4 instead of between ll1 and rl1) and/or
deleting vertex connection components.

This shows how the construction can be altered such that the resulting graph
has maximum degree four and still has all the necessary properties. ✷

3.4.2 Planar graphs with large girth

After we observe that the immune graphs that we have seen all contain small
cycles (triangles), the question arises whether the Matching-Cut problem is still
NP-complete for graphs with large girth. First consider simple graphs without
triangles or, for a stronger result, bipartite simple graphs. Moshi [46] observed
that if in a Matching-Cut instance G every edge is replaced by two parallel edges
and both of those edges are subdivided with one vertex, this gives a bipartite
Matching-Cut instance G′ that is equivalent with G. This operation does not



46 CHAPTER 3. THE COMPLEXITY OF MATCHING-CUT

�✁�✂✁✂
✄✁✄
✄✁✄
☎✁☎
☎✁☎

✆✁✆✁✆
✆✁✆✁✆
✝✁✝✁✝
✝✁✝✁✝

✞✁✞
✞✁✞
✟✁✟
✟✁✟

✠✁✠
✠✁✠
✡✁✡
✡✁✡☛✁☛✁☛

☛✁☛✁☛
☞✁☞✁☞
☞✁☞✁☞

✌✁✌✁✌
✌✁✌✁✌
✍✁✍✁✍
✍✁✍✁✍ ✎✁✎✁✎

✎✁✎✁✎
✏✁✏✁✏
✏✁✏✁✏

✑✁✑✁✑✒✁✒✁✒

✓✁✓✁✓
✓✁✓✁✓
✔✁✔✁✔
✔✁✔✁✔ ✕✁✕

✕✁✕
✖✁✖
✖✁✖

✗✁✗✁✗✁✗✁✗
✗✁✗✁✗✁✗✁✗
✗✁✗✁✗✁✗✁✗
✘✁✘✁✘✁✘✁✘
✘✁✘✁✘✁✘✁✘
✘✁✘✁✘✁✘✁✘

✙✁✙✁✙✁✙✁✙
✙✁✙✁✙✁✙✁✙
✙✁✙✁✙✁✙✁✙
✚✁✚✁✚✁✚✁✚
✚✁✚✁✚✁✚✁✚
✚✁✚✁✚✁✚✁✚

✛✁✛✁✛
✛✁✛✁✛
✛✁✛✁✛
✜✁✜✁✜
✜✁✜✁✜
✜✁✜✁✜

✢✁✢✁✢✁✢✁✢✁✢
✢✁✢✁✢✁✢✁✢✁✢
✢✁✢✁✢✁✢✁✢✁✢
✣✁✣✁✣✁✣✁✣✁✣
✣✁✣✁✣✁✣✁✣✁✣
✣✁✣✁✣✁✣✁✣✁✣

✤✁✤
✤✁✤
✥✁✥
✥✁✥✦✁✦

✦✁✦
✧✁✧
✧✁✧★✁★✁★

★✁★✁★
✩✁✩✁✩
✩✁✩✁✩✪✁✪✁✪✁✪✁✪

✪✁✪✁✪✁✪✁✪
✫✁✫✁✫✁✫✁✫
✫✁✫✁✫✁✫✁✫

✬✁✬✁✬✁✬✁✬
✬✁✬✁✬✁✬✁✬
✭✁✭✁✭✁✭✁✭
✭✁✭✁✭✁✭✁✭

✮✁✮✁✮✁✮✁✮
✮✁✮✁✮✁✮✁✮
✯✁✯✁✯✁✯✁✯
✯✁✯✁✯✁✯✁✯

✰✁✰✁✰✁✰✁✰
✰✁✰✁✰✁✰✁✰
✱✁✱✁✱✁✱✁✱
✱✁✱✁✱✁✱✁✱

ri1

lj1

ri2

ri3

ri4

lj2

lj4

rj3

rj2

rj1

li1

li2

li3

rj4

li4
(a) Edge component

lj3
lk1

lk2

lk3

lk4

rk1

rk2

rk3

rk4

(b) Segment connec-
tion component

Figure 3.13: Components for the construction with girth five

destroy planarity, so Matching-Cut is NP-complete for planar bipartite graphs,
where one side of the bipartition contains only vertices with degree two.

Before we can prove that the Matching-Cut problem is NP-complete for
planar graphs with girth five, we must find such a graph that is immune. In
Figure 3.12(a), a planar graph with girth five is shown. It can be checked that
none of the bold edges can be part of a matching-cut. A different embedding of
this graph is shown in Figure 3.12(b). If we draw this second embedding into
two of the faces of the first embedding, we obtain the planar graph with girth
five in Figure 3.12(c). Again, the bold edges can not be part of a matching-cut.
Using this observation it can be checked that this graph has no matching-cuts.
In a similar way, for any d ≥ 5, embeddings of immune planar graphs with girth
five can be constructed such that the outer face has degree d.

Theorem 3.12 Matching-Cut is NP-complete when restricted to planar graphs
with girth five.

Proof: We will outline how to change the proof of Theorem 3.7 such that the
resulting graph is a planar graph with girth five. Consider the components in
Figure 3.13 (the role of the shaded faces will be explained below). Replace
edge components and segment connection components in the graph G′ from the
proof of Theorem 3.7 by these new components. Recall that vertex connection
components do not have to be used. Now, edges on the boundary of the shaded
faces can be subdivided until all 2-cycles, 3-cycles and 4-cycles are removed
(observe that in the graph obtained from G′, all these small cycles contain such
an edge). To ensure that none of the edges around the shaded faces can be
part of a matching-cut, insert in every shaded face of degree d an embedded
immune planar graph with outer face degree d, as constructed above. By this
‘insert’ operation we mean the operation we also used to obtain the graph in Fig-
ure 3.12(c). It can be checked that the resulting graph again has girth five. This
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yields a planar graph of girth five that has the desired matching-cut properties.✷

In this result, the girth cannot be increased; we will show that all planar graphs
with girth at least six have a matching-cut. In [26] it is shown that for every
immune graph on n vertices with m edges, m ≥ ⌈3(n − 1)/2⌉, and that this
bound is best possible. For an embedding of a planar graph G with girth at
least six we have m ≥ 3k, where k is the number of faces in the embedding.
Euler’s formula states that n − m + k = 2 for every embedding. This gives
n − 2

3m ≥ 2, or m ≤ 3(n − 2)/2, so G has a matching-cut.

3.5 Graph classes for which Matching-Cut is easy

3.5.1 Overview

For some graph classes the Matching-Cut problem can be solved efficiently:
Chvátal [17] described an algorithm for graphs with maximum degree at most
three, and Patrignani and Pizzonia [48] described an algorithm for series-parallel
graphs. Moshi [46] gave algorithms for line graphs and quadrangulated graphs.
Quadrangulated graphs are graphs without induced cycles of length five or more.
Farley and Proskurowski [26] showed that all graphs G with |E(G)| < ⌈3(|V (G)|−
1)/2⌉ have a matching-cut. In Chapter 4, we show that for graphs with |E(G)| =
⌈3(|V (G)| − 1)/2⌉, the Matching-Cut problem can be solved efficiently (Corol-
lary 4.72). Below a few other positive results on the Matching-Cut problem are
described.

3.5.2 Claw-free graphs

A claw is a K1,3. A claw-free graph is a graph without induced claws. The
following characterization of claw-free graphs that have a matching-cut leads
to a polynomial time decision algorithm for Matching-Cut for these graphs.
The theorem below is only formulated for non-trivial instances. A non-trivial
component is a component that contains at least one edge.

Theorem 3.13 Let G = (V,E) be a connected claw-free graph with minimum
degree at least two. Let M ⊆ E be the set of edges that are not part of a triangle.
G has a matching-cut if and only if

• One of the components of G[M ] is a path with length at least three or a
cycle, or

• G − M contains multiple non-trivial components.

Proof: Since G is claw-free, G[M ] has maximum degree at most two, and thus
all of its components are paths or cycles. Vertices with degree two in G[M ] also
have degree two in G, again because G is claw-free.

First consider the case that G[M ] contains a cycle C. By definition of M ,
C has length at least four. All of the vertices of C have degree two in G, so
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C is a component of G. Since G is connected, G = C. Now G clearly has a
matching-cut, which proves the statement when G[M ] contains a cycle.

From now on we may assume that G[M ] contains no cycles, so every com-
ponent of G[M ] is a path. If one of the components of G[M ] is a path P with
length at least three, then consider two non-adjacent edges of P . Since all in-
ternal vertices of P have degree two in G, these two edges form a matching-cut
in G.

If G−M has multiple non-trivial components, then construct an edge set M ′

by choosing one edge from each component of G[M ]. This is clearly a matching.
Choose two vertices u and v that are part of different non-trivial components
of G − M . Every (u, v)-path contains at least one edge of M . Since internal
vertices of paths in G[M ] have degree two in G, an (u, v)-path that contains
one edge from a component of G[M ], contains all edges of this component, and
thus at least one edge of M ′. We conclude that M ′ disconnects the graph, and
therefore contains an edge cut, which is a matching-cut.

Finally we argue that if G has a matching-cut M ′ = [S, S], then one of the
two conditions is satisfied. First observe that M ′ ⊆ M . If the matching M ′

contains multiple edges of one component of G[M ], then clearly this component
is a path with length at least three (recall that G[M ] contains no cycles). If not,
then there is a component in G[M ] that is a path with end vertices u ∈ S and
v ∈ S. Since u and v both have degree at least two in G, u and v are both part
of a non-trivial component of G−M . u and v are part of different components
of G − M ′, and therefore part of different components of G − M . We conclude
that G − M contains multiple non-trivial components. ✷

We remark that in the NP-completeness proof of Chvátal [17] a K1,4-free
graph is constructed, so for K1,4-free graphs the Matching-Cut problem is NP-
complete. Line graphs are claw-free, so this generalizes the result in [46].

3.5.3 Co-graphs

Co-graphs are graphs without an induced P4. This is a subset of quadrangu-
lated graphs, for which in [46] a polynomial time for Matching-Cut algorithm
is given. The following characterization of immune co-graphs clearly leads to a
polynomial time Matching-Cut algorithm for co-graphs.

Theorem 3.14 Connected co-graphs with minimum degree at least two that are
not equal to C4 are immune.

Proof: Let G = (V,E) be a connected co-graph with δ(G) ≥ 2. Let M ⊆ E
be the set of edges that are not part of a triangle. If M = ∅, then G does not
have a matching-cut. Otherwise consider xy ∈ M . If d(x) ≥ 3, then x has two
neighbors u and v which are not a neighbor of y. Also, y has a neighbor w which
is not a neighbor of x. Because G is P4-free, uw ∈ E and vw ∈ E. If [S, S] is
a matching-cut and xy ∈ [S, S], then by Observation 3.3, {uw, vw} ⊆ [S, S], in
which case it is not a matching. So only edges xy with d(x) = 2 and d(y) = 2
that are not part of a triangle can be part of a matching-cut; in this case there
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are v, w ∈ V with vx ∈ E and wy ∈ E such that vw is also in the matching-cut.
This shows that a connected co-graph G with δ(G) ≥ 2 has a matching-cut if
and only if G = C4. ✷

3.5.4 Graphs with fixed bounded treewidth

For an introduction to treewidth, we refer to [7]. In [2] it is shown that all
graph properties definable in monadic second-order logic (MSOL) can be de-
cided in linear time for classes of graphs with bounded treewidth, when a tree-
decomposition is given. In addition, in [8] a linear time algorithm to find such
a tree-decomposition is described. Combining these results, in order to show
that Matching-Cut can be solved in linear time for graphs with fixed bounded
treewidth, it suffices to show that the graph property of having a matching-cut
can be expressed in MSOL.

MSOL is a logical language for graph problems in which formulas can be
built using the following constituents:

• The logical connectives ¬, ∧, ∨, ↔, →.

• Quantification over vertices, edges, sets of vertices and sets of edges (e.g.
∃v ∈ V (G), ∀M ⊆ E(G)).

• Adjacency tests for vertex pairs and incidence tests for a vertex and an
edge.

• Tests whether a vertex is member of a vertex set and whether an edge is
member of an edge set.

Theorem 3.15 Matching-Cut can be solved in linear time for any graph class
with bounded treewidth.

Proof: We show that the property of having a matching-cut can be expressed
in MSOL. Graph G = (V,E) has a matching-cut of the form [V1, V2] if and only
if:

∃V1 ⊆ V : ∃V2 ⊆ V : (V1 ∩ V2 = ∅) ∧ (V1 ∪ V2 = V ) ∧ ¬(V1 = ∅) ∧ ¬(V2 = ∅)∧

¬(∃u ∈ V1 : ∃v ∈ V2 : ∃w ∈ V2 : (uv ∈ E) ∧ (uw ∈ E))∧
¬(∃u ∈ V2 : ∃v ∈ V1 : ∃w ∈ V1 : (uv ∈ E) ∧ (uw ∈ E)).

The first four predicates can be rewritten as follows:

V1 ∩ V2 = ∅ ⇐⇒ ¬∃v ∈ V : v ∈ V1 ∧ v ∈ V2,

V1 ∪ V2 = V ⇐⇒ ∀v ∈ V : v ∈ V1 ∨ v ∈ V2,

V1 = ∅ ⇐⇒ ∀v ∈ V ¬(v ∈ V1).

Quantified formulas like ∃v ∈ V1 : P (v) can be rewritten as ∃v ∈ V : v ∈
V1 ∧ P (v). Formulas of the form ∃u ∈ V1 : ∃v ∈ V2 : (uv ∈ E) can also be
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rewritten in MSOL. Therefore the property of having a matching-cut can be ex-
pressed in MSOL. From the aforementioned results in [2] and [8], it now follows
that Matching-Cut is decidable in linear time for graphs with fixed bounded
treewidth. ✷

Examples of graph classes with bounded treewidth are outerplanar graphs, Halin
graphs and series-parallel graphs, which have treewidth at most two, three, resp.
two [7]. So this contains the result of Patrignani and Pizzonia on series-parallel
graphs [48], though the algorithm that follows from this MSOL problem descrip-
tion is not nearly as practical. However, it is probably tedious but not hard to
generalize the method described in [48] to graphs with fixed bounded treewidth,
which gives a more practical algorithm.

3.5.5 Outerplanar graphs

In the previous section, it was shown that a linear time algorithm for Matching-
Cut for outerplanar graphs exists, though the method used in the previous
section will probably not give a practical algorithm. In this section a practical
algorithm is described.

A graph is outerplanar if it is planar and has an embedding such that every
vertex is on the boundary of the outer face (an outerplanar embedding). Let
boundary edges be the edges on the boundary of the outer face. Let internal
edges be all other edges. A graph without bridges has a matching-cut if and
only if one of the maximal 2-connected subgraphs has a matching-cut, so we will
only consider 2-connected graphs. Checking whether a graph has bridges and
finding all maximal 2-connected subgraphs can be done in linear time [54], so
the linear time algorithm below for 2-connected outerplanar graphs translates
to a linear time algorithm for all outerplanar graphs.

Theorem 3.16 Algorithm 1 is a linear time algorithm for Matching-Cut for
2-connected outerplanar graphs.

Proof: We will first show that the steps of the algorithm can be implemented
(e.g. in Step 2, such a face F can be chosen), and then deduce the time com-
plexity of the algorithm. Finally, we will prove the correctness; we will show
that the conclusions drawn in Step 3 and 4 are correct, and that the algorithm
terminates with an answer.

For outerplanar graphs G it can be checked that if D is the dual graph of
an outerplanar embedding of G, and v ∈ V (D) corresponds to the outer face of
G, then D − v is a tree. Therefore in step 2, a face F can always be chosen. (F
corresponds to an end vertex of D− v.) Observe that after step 6, the resulting
graph is again 2-connected, outerplanar and has all boundary edges marked and
all internal edges unmarked.

We will now prove that the algorithm is a linear time algorithm. In linear
time, outerplanar graphs can be recognized, and an outerplanar embedding can
be found [45]. We need a data structure where for each face, the facial cycle is
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Algorithm 1 Outerplanar Matching-Cut

Input: A 2-connected outerplanar graph G.

1. Start with an outerplanar embedding of G. Mark all boundary edges with
1.

2. Choose a face F incident with at most one internal (unmarked) edge, that
is not equal to the outer face.

3. If F is incident with two non-adjacent edges marked with 1, then return
YES. Stop.

4. If there are no unmarked edges around F , then return NO. Stop.

5. Let e be the unique unmarked edge around F .
If there is an edge f around F , non-adjacent to e, and marked with 1,
then mark e with 1, else mark e with 0.

6. Delete all vertices on the boundary of F not incident with e, and goto
step 2.

stored, and for each edge, the two incident faces are returned in constant time.
In addition, the number of internal edges around a face has to be stored, and
a list of faces incident with at most one internal edge has to be maintained.
Observe that this data structure can be built in linear time. This shows that
Step 1 can be implemented in linear time.

Let k be the number of faces of the input graph, and let m be the number
of edges. In every iteration of the algorithm (Steps 2–6), the number of faces
decreases by one, so at most k iterations are done. Using the list of faces
incident with at most one internal edge, Step 2 can be implemented such that
it takes constant time. The same holds for Step 6; the vertices are only deleted
to facilitate the correctness proof below. Steps 3–5 cannot be implemented in
constant time. However, using the facial cycles, an O(d) implementation exists,
where d is the degree of the face F . In addition, every edge is considered at most
twice during these steps: boundary edges of the input graph are considered at
most once, and internal edges are considered at most twice. We conclude that
the time complexity of the algorithm is O(k + m), hence it is a linear time
algorithm.

Now we will prove that if the algorithm terminates in step 3, then a matching-
cut exists. When the algorithm terminates here, a face F incident with two
non-adjacent edges g and h, both marked with 1, is considered. Start with
M = {g, h}. Now for every edge e ∈ M marked with 1, it is either on the
boundary of the outer face of G, or it is marked with 1 in step 5. In the second
case, also add the edge f referred to in step 5 to M . Repeat this for every edge
in M . Now we have constructed M = {e1, . . . , ek}, such that e1 and ek are the
only edges on the boundary of the outer face, and ei and ei+1 are non-adjacent
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and on the boundary of the same face Fi, for every i = 1, . . . , k−1. (g = ei and
h = ei+1 for some i.) So we can draw a closed curve in the plane that crosses
only these edges, and thus M is an edge cut.

Now we will argue that M is a matching. Clearly, for every i, ei and ei+1

are not adjacent. Observe that for every 2 ≤ i ≤ k − 1, ei = uv is an internal
edge, incident with the faces Fi and Fi+1, but both u and v are incident with
the outer face. Fi and Fi−1 are in turn incident with ei+1 and ei−1, which are
not adjacent to ei. It follows that a curve from u to v through the outer face
can be combined with edge uv such that a closed curve is obtained. This curve
has edges e1, . . . , ei−1 in one of its two regions, and the edges ei+1, . . . , ek in
the other region (note that this does not yet rule out edges touching the curve
in u or v). Edge ei−1 does not touch the curve, so ei−1 is not adjacent to any
of the edges ei+1, . . . , ek. This can be done for every 2 ≤ i ≤ k − 1, so M is a
matching.

Now we will prove that if a matching-cut exists, the algorithm will terminate
in step 3: if M is a matching cut in G, and e ∈ M , then we argue that at every
step of the algorithm, e is unmarked or marked with 1. This is clearly true after
step 1. The next time an edge e ∈ M is marked in the algorithm (in step 5),
a face F is considered. Since M is a matching-cut, this face is incident with
one other edge f ∈ M such that e and f are not adjacent. By induction, f is
marked with 1 (since it is marked at this stage), so e will be marked with 1.

So whenever a face is considered that is incident with (at least) two edges
from M , either a new edge of M will be marked with 1, or in step 3 it will
be concluded that a matching-cut is found. Since at every step the graph is
2-connected with the internal edges unmarked, an internal face only has all
incident edges marked when there is only one internal face. We conclude that
the matching-cut will be found before in step 4 it is concluded that no matching-
cut exists. If no matching-cut is found, the algorithm will end in step 4 when
the last face is considered. ✷



Chapter 4

A characterization of

extremal graphs without

matching-cuts

4.1 Introduction

Throughout this chapter we allow graphs to have multi-edges. An edge set is
called a matching-cut if it is both an edge cut and a matching. If a graph has
no matching-cut, it is called (matching) immune. Motivated by a question on
economic, reliable network design, Farley and Proskurowski studied immune
graphs with minimum number of edges, for any given number of vertices [25].
Immune graphs represent networks that are more reliable than graphs with
matching-cuts. Therefore we want to find an immune (connected) graph on a
given set of vertices, such that the the number of edges (the cost of the network)
is minimized. A natural question is how many edges are needed to construct
an immune graph on a given number of vertices, and what is the structure of a
graph that minimizes this number?

Farley and Proskurowski [26] proved the following extremal result on immune
graphs.

Theorem 4.1 (Farley and Proskurowski) If G = (V,E) is immune, then

|E| ≥ 3(|V | − 1)/2.

In addition, they constructed a large class of multi-graphs which we will call
ABC graphs, that have the following properties:

• ABC graphs are immune.

• If G = (V,E) is an ABC graph, then |E| = ⌈3(|V | − 1)/2⌉.

53
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For every integer n ≥ 1, an ABC graph exists. For every integer n ≥ 1, n 6= 2 a
simple ABC graph exists. This shows that the lower bound from Theorem 4.1
is tight. It also inspires the following definition.

Definition 4.2 An immune graph G = (V,E) is called extremal immune if
|E| = ⌈3(|V | − 1)/2⌉.

Instead of ‘G is an ABC graph’ we will often say ‘G is ABC’. Farley and
Proskurowski stated the following conjecture.

Conjecture 4.3 (Farley and Proskurowski) Every extremal immune graph
is ABC.

We present a proof of Conjecture 4.3. The rest of the chapter is organized as
follows. We will start with some general definitions and results from [26] in
Section 4.2. In Section 4.3 we give an overview of the proof. Definitions related
to ABC graphs are stated in Section 4.4. Then in Section 4.5 the structure of
ABC graphs is studied, and some properties are stated. In Section 4.6 a few
types of matching-cuts that we will often use in the proof are introduced. In
Section 4.7 the first part of the proof of the conjecture is given. In Section 4.8 and
Section 4.9 two important cases of the proof are considered, and in Section 4.10
the proof of the conjecture is completed. In Section 4.11, a fast recognition
algorithm for ABC graphs is presented.

A similar problem is studied in [49]. In this paper, Rose establishes a lower
bound on the size of connected graphs of given order that cannot be disconnected
by removing a stable vertex set, instead of a matching. Matching-cuts have
been studied under many different names (e.g. simple cuts, stable cutsets in
line graphs, disconnecting matchings). In [13] and [33], primitive graphs are
studied, which are immune graphs that have no immune subgraphs. For results
regarding the complexity of finding matching-cuts for different graph classes,
see Chapter 3.

4.2 Preliminaries

4.2.1 Blocks

A connected graph is 2-connected if it has no cut vertices and is not a K1 or K2.
A block of a graph is a maximal connected subgraph without cut vertices. So
a block is 2-connected unless it is a K1 or K2. The edge sets of all blocks of a
graph partition the edge set of the graph. It is well-known that another way to
characterize the edge partition given by the blocks of a graph is the following:

Observation 4.4 The edges e and f are part of the same block of G if and
only if there is a cycle containing both e and f .

In this chapter observations denote statements that are well-known or easy to
prove, and will be stated without proof.
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Observation 4.5 If M ⊆ E(H) is an edge cut for a graph H, and H is a block
of G, then M is an edge cut for G.

Definition 4.6 Let H be a subgraph of G, and v ∈ V (H). If dH(v) = dG(v)
then v is called an internal vertex of H, otherwise v is called a connection vertex
of H. H is called an i-connection subgraph of G if H has at most i connection
vertices.

This definition will be used often for induced triangles and 4-cycles. Note that if
G is immune and an induced C4 is a 2-connection subgraph of G with connection
vertices u and v, then u and v cannot be neighbors. In this case the C4 is called
a 2-connection 4-cycle between u and v.

Observation 4.7 If G 6= K1,K2 is connected but not 2-connected, then G has
at least two 1-connection blocks.

4.2.2 Contraction and expansion operations

In this chapter we make extensive use of contraction operations and their inverse,
edge expansion operations. Recall that these are defined for edge-labeled graphs
(Chapter 1) that consist of a vertex set, edge set, and incidence function on the
edges. Therefore if a graph G′ can be obtained from G by a series of edge
contractions and edge deletions, then all edges of G′ correspond to edges of G,
even though they may have different end vertices in both graphs (the incidence
function has changed). We will often consider one particular edge set M and
study its properties both in G′ and in G. For instance, M can be a matching
in G but not in G′.

However, to improve the readability of our proofs, we use the usual notations
throughout: we denote edges by their end vertices, and graphs with just their
vertex and edge sets and omit the incidence function. It is important to keep
in mind that if for instance G′ is obtained from G by the contraction of u1u2

into u, edges u1v ∈ E(G) and uv ∈ E(G′) are considered to be the same edge.

Suppose G′ can be obtained from G by a series of edge contractions and
edge deletions. So G can be constructed from G′ by a series of edge expansions
and edge additions. In this case the following definition is useful:

Definition 4.8 Suppose G can be obtained from G′ be a series of edge expan-
sions and edge additions. Then we say that an edge set M ⊆ E(G′) is split
if G′[M ] and G[M ] are not isomorphic. In this case, the subgraph G′[M ] is
also said to be split. Similarly, we say that two edges e, f ∈ E(G′) are split if
G′[{e, f}] and G[{e, f}] are not isomorphic.

In Figure 4.1, an example is shown: G′ is obtained from G by an edge expansion
of u into u1u2; G[M1] is split but G[M2] is not.

The following two observations are essential for our matching-cut construc-
tions.
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Figure 4.1: An example of splitting
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Figure 4.2: The four reduction operations

Observation 4.9 Let G be obtained from G′ by a series of edge expansions
and edge additions. If M is a matching in G′, then M is a matching in G. If
e, f ∈ M share one end vertex v in G′, no other edge pairs in M are adjacent
in G′, and e and f are split, then M is a matching in G.

Observation 4.10 Let G be obtained from G′ by a series of edge expansions,
and additions of edges parallel to existing edges. If M is an edge cut in G′, and
no edges parallel to edges in M are added, then M is an edge cut in G.

For their proof of Theorem 4.1, Farley and Proskurowski [26] introduced four
graph operations, named after the structure they reduce. The four operations
are illustrated in Figure 4.2. Below are formal definitions, which show that all
of these operations can be expressed by edge deletions and contractions.

C2 Let the vertices u and v induce a C2 in the graph G. The C2 operation
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consists of deleting one of the edges of this C2 and contracting the other.

C3 Let the vertices u, v and w induce a C3 in G. The C3 operation consists of
deleting uv and contracting vw and wu.

C4 Let subgraph C of G be a 4-cycle with edge set {uv, vw,wx, ux}. The C4
operation consists of deleting uv and contracting ux and vw. Note that
for one C4 subgraph the C4 operation can have two different results.

Originally this operation was only defined for induced 4-cycles, but we
remark that Lemma 4.11 below also holds when C is not induced. In this
case, the resulting graph will have a multi-edge between the two resulting
vertices.

P2 Let the vertices u and v be neighbors in G with d(u) = 3 and d(v) = 2. Let
v have another neighbor w 6= u, and let u have another neighbor x 6= v.
The P2 operation consists of deleting uv and contracting ux and vw.

It is clear that these operations consist of series of edge deletions and contrac-
tions, so Definition 4.8 of split subgraphs can be used for these operations. For
instance we will say ‘G′ is obtained from G with a C4 operation, such that the
subgraph H of G′ is split (when reconstructing G from G′)’.

It can be checked that these four operations have the following properties.

Lemma 4.11 (Farley and Proskurowski) Suppose G′ can be obtained from
G by a C2, C3, C4 or P2 operation. Then the following statements hold:

• If G is immune, then G′ is immune.

• If |E(G)| = ⌈3(|V (G)| − 1)/2⌉, then |E(G′)| ≤ ⌈3(|V (G′)| − 1)/2⌉. This
inequality is always an equality for the C3, C4 and P2 operation.

To prove Theorem 4.1, the following lemma was used.

Lemma 4.12 (Farley and Proskurowski) If G 6= K1 is an extremal im-
mune graph, then one of the operations C2, C3, C4 or P2 can be applied to
G.

Our proof of Conjecture 4.3 is based on this lemma.

4.3 An overview of the proof

The proof of Conjecture 4.3 is by contradiction, so first we assume an extremal
immune graph exists that is not an ABC graph. Then we consider a graph
G with minimum number of vertices among all such graphs. This is called a
minimum counterexample. We first consider the case that a minimum coun-
terexample G contains a C2, so a C2 operation can be applied, resulting in
vertex v. After applying this C2 operation, another extremal immune graph G′

is obtained (Lemma 4.11, Theorem 4.1). By our choice of G, G′ must be an
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Figure 4.3: The construction of an ABC graph and corresponding edge partition

ABC graph. We consider a number of cases for G′, for the choice of v ∈ V (G′)
and for the possible graphs G that can correspond to this, and in every case we
obtain one of the following contradictions: G has a matching-cut, G is also an
ABC graph, or a smaller counterexample exists.

If a minimum counterexample G contains a triangle, we can apply operation
C3 and find a contradiction in a similar way. If G contains a C4, applying a C4
operation leads to a contradiction. Finally, we can show that if a P2 operation
can be applied resulting in ABC graph G′, then there always is a triangle or C4

in G′ that corresponds to a triangle or C4 in G, so the previous cases can be
applied. Since every operation leads to a contradiction, Lemma 4.12 shows that
no counterexamples for the conjecture can exist.

Before we can state the proof, we need to study the structure of ABC graphs,
which is done in the following three sections.

4.4 ABC Graphs: preliminaries

4.4.1 Definition and basic properties

In [26] a set of graphs is defined which we will call ABC graphs. ABC graphs
are named after the three graph operations that can be used to construct them,
which are defined below. See Figure 4.3 for an example of these operations.

Definition 4.13 An A operation on a vertex u introduces two new vertices v
and w and the edges uv, uw and vw. G′ = A(G,u, v, w) is used to denote that
G′ is obtained by an A operation on a vertex u of G, introducing v and w.
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Definition 4.14 A B operation on the edge uv introduces two new vertices
w and x and the edges uw, vw, ux and vx, and removes the edge uv. G′ =
B(G,uv,w, x) is used to denote that G′ is obtained by a B operation on the edge
uv of G, introducing w and x.

Definition 4.15 A C operation on the vertices u and v (u = v is allowed)
introduces a new vertex w and the edges uw and vw. G′ = C(G,u, v, w) is used
to denote that G′ is obtained by a C operation on the vertices u and v of G,
introducing w.

We say that a vertex v is used in operation x if x is an A or C operation on
v, or a B operation on an edge incident with v. Note that the C operation is
the only operation that can introduce parallel edges.

Definition 4.16 An AB graph is a graph that can be obtained from a K1 by a
sequence of A and B operations. An ABC graph is a graph that can be obtained
from a K1 by a sequence of A and B operations and at most one C operation.

If G is an AB(C) graph, a sequence of operations that constructs G is
called a decomposition of G. Formally, a decomposition is a list of the form
G0 = ({u}, ∅), G1 = A(G0, u, v, w), G2 = B(G1, vw, x, y) etc. (In this example,
G2 is a K2,3.) G0, . . . , Gi−1 are called intermediate graphs in this particular
decomposition of Gi. In general, an ABC graph can have different decomposi-
tions, even decompositions where the intermediate graphs are not isomorphic.
In the top part of Figure 4.3 an example of a decomposition of an ABC graph
is shown.

Observation 4.17 Suppose that in a decomposition of the ABC graph G, oper-
ation x and operation y are applied consecutively, x first. Now unless operation
x introduces vertices that are used in operation y, the order in which x and y
are applied can be reversed, giving another decomposition of G.

The above observation will be used implicitly in a lot of proofs, just like the
next observations.

Observation 4.18 In a decomposition of the ABC graph G that does not start
with vertex v, d(v) = 2 if and only if v is not used in any operation in the
decomposition.

For applying Observation 4.18 it is useful to note that for every vertex v in an
ABC graph G 6= K1, G has a decomposition that does not start with v.

Observation 4.19 AB graphs are simple. In an ABC graph, only between
one pair of vertices u and v parallel edges can exist. In this case, in every
decomposition, the C operation is on u introducing v or on v introducing u, and
no B operations are applied to these edges between u and v. There are at most
two parallel edges between u and v.

It can be checked that for ABC graphs the following two properties hold [26].
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Theorem 4.20 (Farley and Proskurowski) If G is an AB graph on n ver-
tices with m edges, then n is odd, m = 3(n − 1)/2 and G is immune.

Theorem 4.21 (Farley and Proskurowski) If G is an ABC graph on n ver-
tices with m edges but G is not an AB graph, then n is even, m = (3n − 2)/2
and G is immune.

So ABC graphs are extremal immune graphs.

Observation 4.22 Let f : n → ⌈3(n− 1)/2⌉. f(n + 1) = f(n) + 1 if n is even,
and f(n + 1) = f(n) + 2 if n is odd.

4.4.2 Partitions of ABC graphs into H-components

In the next definition G represents a (vertex) labeled graph, but H is an unla-
beled graph.

Definition 4.23 A graph G that can be obtained from a graph H by assigning
vertex labels and applying B operations is called an H-component.

For an H-component G, the sequence of B operations that constructs G from
a labeled graph isomorphic to H is called a decomposition of G from H (or
starting with H). Note that G does not have to be an ABC graph, but it is an
ABC graph if H is an ABC graph.

The following graphs will often be used for H in the context of H-components:

K2: a K2-component is also called an edge component. If we consider a decom-
position starting with a K2 on vertices u and v, then this is called an edge
component between u and v.

K3: a K3-component is also called a triangle component. If we consider a de-
composition starting with a specific labeled copy of K3, then the vertices
of this K3 are called the triangle vertices of this triangle component.

P3: the end vertices of the P3 are called the end vertices of the P3-component.

C2: both C2 and P3-components are associated with the C operation in a de-
composition.

Next we prove the useful property that we can partition the edges of ABC
graphs into edge induced subgraphs that are all H-components for H = K3, C2

or P3.

Claim 4.24 For every decomposition of an ABC graph G, we can partition the
edges of G into sets A1, . . . , Ak and at most one set C such that for every i,
G[Ai] is a triangle component, and G[C] is a C2 or P3-component.

Proof: By induction on the number of operations. Observe that if G can be
made from the ABC graph G′ by an A or C operation, and the edge set M
induces a graph H in G′, then M induces the same graph H in G. The edges
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introduced by an A operation induce a K3 (a triangle component), and the
edges introduced by a C operation induce a P3 or a C2 (a P3 or C2-component).
If G can be made from the ABC graph G′ by a B operation, the statement is
trivial. ✷

Triangle components that correspond to a decomposition of G in this way are
called A-components, and the C2 or P3-component that corresponds to the C
operation is called the C-component. See the bottom part of Figure 4.3 for an
example of a partition of edges into two A-components and one C-component,
corresponding to the given decomposition. For this graph it can be checked that
any decomposition will give the same partition into A and C-components, but
in general such a partition depends on the chosen decomposition.

Observation 4.25 For any decomposition of an H-component G from a labeled
copy of H, we can partition E(G) into sets {Euv : uv ∈ E(H)} such that G[Euv]
is an edge component between u and v. u and v are the only vertices of G[Euv]
that can be connection vertices in G.

The edge components G[Euv] from this observation will be denoted as F (uv).
For instance, for a triangle component with triangle vertices a, b and c (so a
particular decomposition is chosen), we will often consider the subgraphs F (ab),
F (ac) and F (bc). F (ab) is a 2-connection edge component with connection
vertices a and b. Similarly, C2 and P3-components will be partitioned into two
edge components.

Now that the main terminology and notations are defined, we will proceed
by stating a large number of properties of ABC graphs, which we need in order
to prove Conjecture 4.3 in Sections 4.7-4.10.

4.5 The structure of ABC graphs

4.5.1 Blocks in ABC graphs

We characterize the block structure of ABC graphs. In Figure 4.4, this block
structure is illustrated by three graphs from a decomposition. G1 is an AB
graph, in which the blocks are exactly the A-components (this holds for every
decomposition). All blocks of G1 have odd order. Then a C operation is applied
on the vertices x and y. In G2, the two new edges become part of an even order
new block, that contains exactly those blocks from G1 that contain edges from
an (x, y)-path P (the choice of P does not matter). Then further A and B
operations are applied to obtain G3: A operations introduce new blocks and B
operations change blocks, but the essence of the block structure is not changed
by these operations. The following lemma describes the block structure of ABC
graphs formally.

Lemma 4.26 An ABC graph G is connected and consists of odd order blocks
and at most one even order block. For every decomposition of G, the odd order
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Figure 4.4: The block structure of ABC graphs

blocks are A-components, and the even order block B has the following structure:
it contains the C-component C, and either B = C and C is a C2-component,
or C is a P3-component with end vertices x and y such that

1. There are k ≥ 1 A-components T1, . . . , Tk such that E(B) = E(C) ∪
E(T1) ∪ . . . ∪ E(Tk).

2. There are k − 1 vertices v1, . . . , vk−1 such that V (Ti) ∩ V (Ti+1) = {vi},
and no other A-components in B share vertices.

3. If k = 1 then V (T1) ∩ V (C) = {x, y}. If k ≥ 2 then V (T1) ∩ V (C) = {x}
and V (Tk) ∩ V (C) = {y}. No other A-components in B share vertices
with C.

Proof: Let G be an ABC graph. G is obviously connected. The proof is by
induction on the number of operations in a decomposition of G. Consider a
decomposition of G.

Suppose G is obtained by a B operation from an ABC graph G′. Observe that
B operations do not change the block structure. This means that if E ′ ⊆ E(G)
induces a block and e ∈ E′, then a B operation on e will result in four edges
that together with E′ − e form a block in the new graph, and all other blocks
remain the same. Also all other properties in the lemma are maintained when B
operations are applied: by definition an H-component is still an H-component
after applying a B operation on one of its edges, all other H-components remain
the same, the parity of the order of blocks does not change, and the vertices
that two H-components have in common are unchanged by B operations.

Suppose G is obtained by an A operation from an ABC graph G′. Every
A operation introduces a new block, consisting of the three new edges, and
does not change the block structure of the rest of the graph. Again all other
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properties in the lemma are maintained by A operations. This already proves
the statement for AB graphs.

Now we only have to prove the lemma for the case G = C(G′, x, y, z). For
G′ we know that the blocks correspond to A-components. Let C = G[{xz, yz}].
If x = y, then vertex x is a cut vertex in G, and the two new edges induce a
new block in G. All other blocks remain the same. It is easy to check that the
lemma holds.

If x 6= y, then consider a path P from x to y in G′. P contains edges
from A-components T1, . . . , Tk, numbered along P . Note that P does not visit
the same A-component twice, since in that case a cycle can be constructed
in G′ containing edges of multiple blocks (A-components) of G′, which is a
contradiction.

The edges of P together with xz and yz form a cycle in G, so these edges
are part of the same block B in G. Existing cycles in G′ are not changed by
the C operation, so E(T1) ∪ . . . ∪ E(Tk) ∪ {xz, yz} ⊆ E(B) (Observation 4.4).
Suppose B contains more edges, so there is a cycle K in G containing at least one
edge from E(T1)∪ . . .∪E(Tk)∪{xz, yz} and at least one edge from another A-
component of G′. K then contains a path Q with two end vertices in V (T1)∪. . .∪
V (Tk), but no internal vertices in this set. Using P , Q can be extended to a cycle
that does not contain xz or yz, but contains edges from different A-components,
which is a contradiction with the block structure from G′. We conclude that
the block containing xz and yz is induced by E(T1) ∪ . . . ∪ E(Tk) ∪ E(C).

Ti and Ti+1 clearly share a vertex (1 ≤ i ≤ k − 1). Since they are blocks
in G′, they share at most one vertex. We call this vertex vi. If Ti and Tj

with j > i + 1 share a vertex, then P can be used to construct a cycle through
Ti, Ti+1, . . . , Tj in G′, a contradiction.

If Ti with 1 < i < k contains x or y, then we can use P to construct a cycle
through multiple A-components in G′, a contradiction.

Finally, it can be verified that the number of vertices in the new block B is
even, and that the C operation does not change parity of other blocks, or the
fact that the other blocks are A-components. This concludes the proof. ✷

Note that there is an even order block in an ABC graph G if and only if G
has even order.

We remark that a C2-component that is not equal to a C2 can be viewed
as a combination of a triangle component and a P3-component (consider the
first B operation), so in this case the characterization of the even order block in
Lemma 4.26 can be applied in two ways (see also Claim 4.34). But other than
this case, the number of A-components is always the same in any decomposition
of an ABC graph.

We state some immediate corollaries of this lemma (without proofs). These
will be used later, while referring to the above lemma:

• If an AB graph is 2-connected, it contains exactly one A-component.

• If the C operation is applied to two distinct vertices x and y of the same
A-component, then the even order block has only one A-component.
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• If the C operation is applied to x and y, then x is incident with only one
A-component that is part of the even order block, and the same holds for
y.

• If G is a 2-connected ABC graph such that the C operation is applied on x
and y, then x and y are the only connection vertices of the C-component.

Corollary 4.27 Let G be an even order ABC graph with a decomposition such
that the C operation is applied on x and y. If M1 is an edge cut for the C-
component that separates x from y, and M2 is an edge cut for an A-component
T , then either M2 or M2 ∪ M1 is an edge cut for G.

Proof: We use the notation from Lemma 4.26, but use the notation v0 and vk

for x resp. y. If T is a block, the result follows directly from Observation 4.5.
Otherwise, T is part of the even order block B, so T = Ti for some i. If M2

is not an edge cut for G, then M2 = [S2, V (Ti)\S2] for some S2 ⊂ V (Ti), with
vi−1 ∈ S2, vi 6∈ S2 (Lemma 4.26). We know that M1 = [S1, V (C)\S1] for some
S1 ⊂ V (C), with v0 ∈ S1, vk 6∈ S1. Consider S = S1∪V (T1)∪ . . .∪V (Ti−1)∪S2.
By Lemma 4.26, [S, V (B)\S] = M1 ∪M2, and therefore M1 ∪M2 is an edge cut
for G, since B is a block. ✷

The following corollary follows directly from Lemma 4.26 in combination with
Observation 4.7.

Corollary 4.28 Let G 6= K1 be an ABC graph that is not 2-connected. Then
G contains a 1-connection A-component. If G is an AB graph, then it contains
at least two 1-connection A-components.

We will also use the following observation about 2-connected ABC graphs.

Observation 4.29 If G is a 2-connected ABC graph, then in any decomposition
no A operation is applied after the C operation.

4.5.2 Decompositions of triangle components

In this section we show that triangle components have many different decom-
positions. In particular, if edge uv is an edge in triangle component T , then T
has a decomposition that starts with a triangle that contains edge uv. This is
shown in Corollary 4.32. A similar statement appears in Claim 4.33.

Claim 4.30 If an ABC graph G contains a 2-connection 4-cycle C, then a C4
operation on C yields another ABC graph G′. Moreover, if G is a triangle
component, then G′ is a triangle component.

Proof: Consider a 2-connection 4-cycle C. As the main step in the proof, we
first determine a decomposition of G such that all edges of C are introduced by
the same B operation.

Consider a decomposition of G. If G is a triangle component, this decompo-
sition starts with G0 which is a triangle. Let Gi be the first intermediate graph
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that contains all edges of C (note that i > 0). Let operation a be the operation
that is used to obtain Gi from Gi−1. So some of the edges of C are introduced
by operation a.

Clearly, operation a is not an A operation.
Now suppose operation a is a B operation, say Gi = B(Gi−1, uv, w, x). If

E(C) = {uw, vw, ux, vx}, then the desired decomposition is found. Other-
wise, C contains exactly two edges introduced by this operation, and w.l.o.g.
E(C) = {uw, vw, uy, vy} for some vertex y. Since NGi

(x) = NGi
(y) = {u, v},

we can switch the labels x and y throughout the decomposition of Gi, to get
a decomposition of Gi where all edges of C are introduced by the B operation.
Then continue with the rest of the decomposition (without changing any la-
bels). Apart from possibly the vertex labels, G0 is still the same in the new
decomposition.

If operation a is a C operation, then w.l.o.g. it is a C operation on u and
v that introduces w, and E(C) = {uw, vw, ux, vx}. If x is introduced by a B
operation that also introduces y, then this must be a B operation on uv since
d(x) = 2 (Observation 4.18). Now instead let this B operation introduce w and
x and immediately apply a C operation on u and v introducing y. Now proceed
with the rest of the decomposition, which gives the desired decomposition. If
x is introduced by an A operation, then w.l.o.g. this must be an A operation
on u introducing x and v. Instead apply a C operation only on u introducing
v, and immediately apply a B operation on one of the edges between u and v,
introducing w and x. Observe that we always can find a decomposition where
x is not the starting vertex, so this covers all cases for x.

In all cases we have determined a decomposition of G such that all edges of C
are introduced by a B operation that introduces w and x. Since d(w) = d(x) = 2,
by Observation 4.17 and Observation 4.18 we can assume that this is the last
operation applied. So the graph G′ obtained by a C4 operation on C is one of
the intermediate graphs in this decomposition, and therefore is an ABC graph.
In addition, if all operations in the original decomposition are B operations,
then the initial graph G0 is the same in our new decomposition, so if G is a
triangle component, then G′ is a triangle component. ✷

Claim 4.31 If T is a triangle component with at least 5 vertices, then for every
edge e ∈ E(T ), T contains a 2-connection 4-cycle that does not contain e.

Proof: Observe that every triangle component on 5 vertices is a K2,3, and for
this graph the property holds. Now consider a triangle component T with at
least 7 vertices, and a decomposition of T . For an edge e that is not one of
the edges introduced by the last B operation, the statement is obvious. Oth-
erwise, consider the triangle component T ′ from which T was constructed by
a B operation on an edge e′ (so T ′ does not contain e). By induction, T ′ con-
tains a 2-connection 4-cycle C that does not contain e′. After the B operation
on e′, C still is a 2-connection 4-cycle in T , which proves the statement for T .
Since triangle components have odd order, this proves the claim by induction. ✷

By combining the previous two claims, we obtain a useful corollary.
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Corollary 4.32 If u is a vertex in a triangle component T , then a decomposi-
tion of T exists that starts with the single vertex u. If uv is an edge in a triangle
component T , then a decomposition of T exists where u and v are triangle ver-
tices.

Proof: We first prove the statement for the edge uv by induction. For
T = K3, the statement is clearly true. Otherwise, T contains a 2-connection 4-
cycle K that does not contain edge uv (Claim 4.31). A C4 operation on K gives
another triangle component T ′ (Claim 4.30), from which T can be constructed
(assuming proper vertex labeling in T ′). By induction, T ′ has a decomposition
where u and v are triangle vertices.

The statement for the single vertex u follows immediately. ✷

Claim 4.33 For a triangle component T and any two vertices u, v ∈ V (T ),
a decomposition exists with triangle vertices u, a and b (and edge component
F (ab)) such that v ∈ V (F (ab)) (v = a or v = b is possible).

Proof: If T = K3, then the statement is obvious. Now suppose T 6= K3.
If a 2-connection 4-cycle K exists such that a C4 operation on K does

not remove u or v, then apply this C4 operation. This gives another triangle
component (Claim 4.30) with vertices u and v, and the statement follows by
induction.

If no such 2-connection 4-cycle exists, then either u or v, say u, is a degree
two vertex on a 2-connection 4-cycle. Choose an edge ua incident with u. By
Corollary 4.32, a decomposition exists such that u, a and another vertex b are
triangle vertices. Since d(u) = 2, both edge component F (ua) and F (ub) are
single edges, so v ∈ V (F (ab)). ✷

4.5.3 Decompositions of ABC graphs

Claim 4.34 If an ABC graph G is simple, then a decomposition of G exists
such that every intermediate graph is simple.

Proof: Consider a decomposition of a simple ABC graph G. The only way
that parallel edges can be introduced is with a C operation on x = y, introduc-
ing z (Observation 4.19). Since G is simple, one of the edges between x and z
must be used in a B operation, that introduces v and w. Now instead of the
C operation, use an A operation on x that introduces v and z. Instead of the
B operation, use a C operation on x and z that introduces w. This gives the
desired decomposition of G. ✷

Claim 4.34 implies that for every ABC graph G there is a decomposition where
the C-component is a P3-component, unless the C-component consists of two
parallel edges.

Claim 4.35 If an ABC graph G contains a 1-connection A-component T with
connection vertex u, then G has a decomposition in which G[E(G)\E(T )] is an
intermediate graph.
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Proof: Consider a decomposition of G and a 1-connection A-component T with
connection vertex u.

If T is introduced by an A operation on a vertex other than u, this is an
isolated vertex, so this A operation is the first operation in the decomposition.
Therefore w.l.o.g. we can consider a decomposition in which T is introduced by
an A operation on u.

Since u is the only connection vertex of T in G, there is a decomposition
of G that ends with this A operation and a number of B operations on this
A-component (Observation 4.17). In this decomposition, G[E(G)\E(T )] is an
intermediate graph. ✷

Claim 4.36 If T is an A-component of an AB graph G, then a decomposition
of G exists in which T is an intermediate graph or T = G.

Proof: We use induction on the number of A-components. If G has only one
A-component, then the statement is trivial. Otherwise, G has a cut vertex
(Lemma 4.26), and therefore at least two 1-connection A-components (Corol-
lary 4.28). So there is a 1-connection A-component T ′ = G[E′] that is not
equal to T . By Claim 4.35, G can be constructed from the AB graph G′ =
G[E(G)\E(T ′)]. G′ has fewer A-components than G (in any decomposition).
By induction G′ has a decomposition in which T is an intermediate graph, which
proves the claim. ✷

Note that a similar statement is not true for ABC graphs: consider the ABC
graph from Figure 4.3. Apply an A operation on the vertex introduced by the
C operation. It can be checked that there is no decomposition of the resulting
ABC graph in which the A-component introduced by the last A operation is an
intermediate graph.

From Claim 4.36 and Corollary 4.32, the following corollary follows imme-
diately.

Corollary 4.37 For an AB graph G and v ∈ V (G), a decomposition exists that
starts with the single vertex v.

Claim 4.38 If an ABC graph G contains a C-component P between x and y
such that x and y are the only connection vertices of P in G, then G has a
decomposition in which G[E(G)\E(P )] is an intermediate graph.

Proof: In the decomposition we consider, the C-component P is introduced
by a C operation on vertices x and y. Since x and y are the only connection
vertices of P in G, there is a decomposition of G that ends with this C operation
and a number of B operations on this C-component (Observation 4.17). In this
decomposition, G[E(G)\E(P )] is an intermediate graph. ✷

Claim 4.39 If an ABC graph G contains a triangle T , then a decomposition
exists in which T is an A-component.
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Proof: We consider a decomposition of G such that G is obtained from ABC
graph G′ with a single operation a, such that G′ is simple if G is simple
(Claim 4.34). Clearly, for every triangle in G that is also a triangle in G′

the statement is true by induction. So if suffices to consider triangles in G that
use edges introduced by operation a.

If operation a is an A operation, then for the new triangle the statement is
true. (Note that no new edges combine with old edges to form a triangle.)

If G = B(G′, uv, w, x), and there is a triangle in G that contains edges
from C = G[u, v, w, x], then w.l.o.g. this triangle is equal to G[u, v, w]. This
means that in G′, two parallel edges exist between u and v, but G is simple
(by Observation 4.19 there are at most two parallel edges between u and v
and no other parallel edges exist in G′), a contradiction with our choice of the
decomposition.

Finally consider the case that G = C(G′, x, y, z), and there is a triangle K in
G that contains edge xz or yz. Then K = G[x, y, z], and xy ∈ E(G′). xy is part
of an A-component T of G′ (since G′ is an AB graph). By Claim 4.36, there is a
decomposition of G′ that starts with the construction of T . By Corollary 4.32,
there is a decomposition of T that has x and y as triangle vertices. Let z ′ be the
third triangle vertex in this decomposition. So a decomposition of G′ exists that
starts with a triangle with vertices x, y and z′. Now instead start with a triangle
with vertices x, y and z, and apply a C operation on x and y introducing z ′.
Proceed with the rest of the decomposition of G′. This is a decomposition of G
such that the triangle K is introduced by an A operation. ✷

4.6 Edge components and matching-cuts

In this section, we show various ways to find matching-cuts for edge components,
and for graphs deduced from edge components, triangle components and P3-
components by an expansion operation.

Throughout this section, we use Guv to denote an edge component with
which we associate a decomposition from a copy of K2 with vertex labels u
and v. In the following proofs we use the fact that every edge component Guv

not equal to a single edge has at least one 2-connection 4-cycle C such that
a C4 operation on C yields again an edge component between u and v. In a
decomposition of Guv, the edges introduced by the last B operation correspond
to such a 2-connection 4-cycle. A C4 operation on this 2-connection 4-cycle
allows us to use induction.

Claim 4.40 For every edge component Guv and every edge e ∈ E(Guv), there
is a matching-cut M that separates u from v with e ∈ M .

Proof: If E(Guv) = {uv} then the statement is true. Otherwise, consider a
2-connection 4-cycle C between x and y. A C4 operation on C gives another
edge component G′

uv. If e ∈ E(G′
uv), then consider a matching-cut M for G′

uv

that contains e and separates u from v (induction). M can be turned into a
matching-cut in Guv with the desired properties, also if xy ∈ M . If e 6∈ E(G′

uv),
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Figure 4.5: A matching-cut in a split edge component that is not incident with
v

then consider a matching-cut M for G′
uv that separates u from v with xy ∈ M

(induction). M can be turned into a matching-cut M ′ in Guv that separates u
from v with e ∈ M ′. ✷

Claim 4.41 For every edge component Guv and every vertex w ∈ V (Guv)\{v},
there is a matching-cut M that separates {u,w} from {v}.

Proof: If E(Guv) = {uv} then the statement is true. Otherwise, a 2-connection
4-cycle C between x and y exists such that a C4 operation on C yields another
edge component G′

uv. If w ∈ V (G′
uv), then start with a matching-cut M for G′

uv

that separates {v} from {u,w} (induction). M can be turned into a matching-
cut for Guv with the desired properties, also if xy ∈ M . If w 6∈ V (G′

uv), consider
a matching-cut M for G′

uv that separates u from v with xy ∈ M (Claim 4.40).
This can be made into a matching-cut in Guv with the desired properties. ✷

The proof of the following claim is illustrated in Figure 4.5. In the claim we
consider the same edge set M in two different graphs, that can be obtained from
each other by contractions resp. edge expansions (see Section 4.2.2).

Claim 4.42 If a graph G′ can be made from an edge component Guv by a non-
trivial edge expansion of u, then there is an edge cut M in Guv that separates
u from v, is not incident with v, and is a matching-cut in G′.

Proof: Since G′ is obtained by a non-trivial edge expansion, in Guv we have
d(u) ≥ 2. So in a decomposition of Guv at least one B operation is applied.
Let the first B operation introduce two vertices w and x. So the edges of Guv

can be partitioned into 2-connection edge components F (uw), F (ux), F (vw)
and F (vx). Since the edge expansion is non-trivial, we can find e ∈ E(F (uw))
and f ∈ E(F (ux)) such that e and f are split by the edge expansion. Let
M1 = [S1, T1] be a matching-cut for F (uw) with u ∈ S1, w ∈ T1 and e ∈ M1

(Claim 4.40). Let M2 = [S2, T2] be a matching-cut for F (ux) with u ∈ S2,
x ∈ T2 and f ∈ M2. The only adjacent edges in M1 ∪ M2 are e and f , so
M1 ∪M2 becomes a matching in G′ (Observation 4.9). Considering the vertices
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that the four edge components have in common, we see that M1 ∪ M2 = [S1 ∪
S2, T1 ∪ T2 ∪ V (F (vw) ∪ V (F (vx))] is an edge cut in Guv and therefore also an
edge cut in G′ (Observation 4.10). ✷

Claim 4.43 If the graph G′ can be made from the edge component Guv by a
non-trivial edge expansion of u, then for any two vertices w, x ∈ V (Guv)\{u, v}
an edge cut for Guv exists that separates u from v, does not separate w from x
and is a matching-cut in G′.

Proof: Consider a decomposition of Guv. If the first B operation in this de-
composition introduces both w and x, then we can construct the same edge cut
as in the proof of the previous claim (see Figure 4.5). This edge cut separates
{u} from {v, w, x}.

Otherwise, we can actually construct a matching-cut in Guv (instead of in
G′) that separates u and v but does not separate w and x. The proof is again
by induction. Let C be the 2-connection 4-cycle in Guv that corresponds to the
last B operation in the decomposition. A C4 operation on C yields an edge e in
an edge component G′

uv. Since the first B operation does not introduce both w
and x, we know that Guv is not equal to a 4-cycle and therefore G′

uv does not
consist of a single edge. W.l.o.g. we can consider three cases:

1. The C4 operation removes w, but not x. Consider a matching-cut M =
[S, S] for G′

uv that separates u from v and includes e (Claim 4.40). M can
be made into a matching-cut [S ′, S′] of Guv by replacing e by two edges
from C. This can be done such that w ∈ S ′ or such that w ∈ S′, so we
can construct the desired matching-cut regardless of x.

2. The C4 operation removes both w and x. In G′
uv, let f be an edge that

is adjacent to the edge e. Consider a matching-cut M for G′
uv such that

f ∈ M (Claim 4.40). Now e 6∈ M , so M is also a matching-cut for Guv,
and has the desired properties.

3. The C4 operation neither removes w nor x. Recall that in the decom-
position of G′

uv we consider, w and x are not introduced by the first B
operation. So by induction, G′

uv has a matching-cut M that separates
u from v but does not separate w from x. M is easily turned into a
matching-cut in Guv with the same properties.

Note that if G′
uv is a C4, then case 1 or 2 applies since we assume that w and

x are not introduced by the first B operation. This proves the induction base.

All matching-cuts constructed above are also matching-cuts in G′ (Observa-
tion 4.9, Observation 4.10). ✷

The following two lemmas are useful for determining matching-cuts in graphs
made from ABC graphs by an expansion operation. Lemma 4.44 is illustrated
in Figure 4.6.
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Figure 4.6: A matching-cut in a split triangle component
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Figure 4.7: A matching-cut in a split P3-component

Lemma 4.44 Let T ′ be a graph that can be made from a triangle component
T with triangle vertices u, v and w by a non-trivial edge expansion of v. There
is an edge cut M in T that is not incident with any vertex in V (F (uw))\{u,w}
and that is a matching-cut in T ′.

Proof: The edges of T can be partitioned into 2-connection edge components
F (uv), F (uw) and F (vw) (Observation 4.25). Since the edge expansion is non-
trivial, we can find e ∈ E(F (uv)) and f ∈ E(F (vw)) such that e and f are
split by the expansion. Let M1 = [S1, T1] be a matching-cut for F (uv) with
v ∈ S1, u ∈ T1 and e ∈ M1 (Claim 4.40). Similarly, let M2 = [S2, T2] be a
matching-cut for F (vw) with v ∈ S2, w ∈ T2 and f ∈ M2. The only adjacent
edges in M1 ∪M2 are e and f , so the edges of M1 ∪M2 form a matching in T ′.
It can be checked that M1 ∪M2 = [S1 ∪ S2, T1 ∪ T2 ∪ V (F (uw))] is an edge cut
in T and therefore also an edge cut in T ′. Since M1 and M2 contain only edges
from F (uv) and F (vw), for every a ∈ V (F (uw))\{u,w}, a is not incident with
edges from M1 ∪ M2. ✷

Lemma 4.45 is illustrated in Figure 4.7. Recall that if {x, y} ∈ S, we say
that the edge cut M = [S, S] does not separate x and y, even though there may
not be an (x, y)-path in G − M .

Lemma 4.45 Let P ′ be a graph that can be made from a P3-component P with
end vertices x and y by a non-trivial edge expansion of x, and possibly an edge
expansion of y. In P an edge cut M exists that does not separate x and y and
that is a matching-cut in P ′.

Proof: The edges of P can be partitioned into 1-connection edge components
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F (xz) and F (yz) that only have z in common. Since x is only incident with edges
from F (xz), the edge expansion of P corresponds to a non-trivial edge expansion
of F (xz) into F ′. Now let M1 be an edge cut for F (xz) that separates x from
z, contains no edges incident with z, and that is a matching in F ′ (Claim 4.42).
Let M2 be any matching-cut for F (yz) that separates y from z. M1 ∪M2 forms
the desired edge cut. Since M1 is a matching in F ′ and contains no edges
incident with z, this is a matching-cut in P ′. Clearly, it stays a matching-cut if
in addition y is expanded. ✷

4.7 A proof by contradiction: properties of min-

imum counterexamples

We want to prove that every extremal immune graph is an ABC graph. Our
proof is by contradiction, so first we assume an extremal immune graph exists
that is not an ABC graph. Then we consider a graph with minimum size among
all such graphs, and derive a contradiction by exploring the properties of this
possible counterexample. This explains the following definition.

Definition 4.46 A graph G is a minimum counterexample if it is extremal
immune, it is not an ABC graph, and has minimum size among all such graphs.

Claim 4.47 A minimum counterexample G contains no 2-connection 4-cycle.

Proof: If there is a 2-connection 4-cycle C, apply a C4 operation on C. This
yields an extremal immune graph G′ (Lemma 4.11). If G′ is ABC, then G is
ABC (use a B operation). Otherwise, G is not a minimum counterexample. ✷

In Figure 4.8 the following claim and proof are illustrated.

a

b

v
a

b

w
u x x

Figure 4.8: The operation from the proof of Claim 4.48

Claim 4.48 A minimum counterexample G contains no vertices u, v and w
with N(u) = {a, b}, N(v) = {a, b, w} and d(w) = 2.

Proof: Consider G′ = G − u − v − w + ab. If ab ∈ E(G) then G′ will have two
parallel edges between a and b. |V (G′)| = |V (G)| − 3 and |E(G′)| ≤ |E(G)| − 5.
Therefore |E(G′)| ≤ 3(|V (G′)| − 1)/2 and this inequality is strict if |V (G′)|
is even (Observation 4.22). It can be checked that G′ is immune again, so
|E(G′)| ≥ 3(|V (G′)| − 1)/2 (Theorem 4.1). We conclude that |V (G′)| is odd
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and G′ is an extremal immune graph. Since G is a minimum counterexample,
G′ is an ABC graph, and since |V (G′)| is odd it is an AB graph. In G, let
N(w) = {v, x} (x = a or x = b is possible). In G′, apply a B operation on
the new edge between a and b, introducing u and v. Now a C operation can
be applied on v and x introducing w. This way G is obtained, so G is ABC, a
contradiction. ✷

Claim 4.49 A minimum counterexample G contains no i-connection subgraph
H that is an AB graph with |V (H)| > 3 and i ≤ 3.

Proof: Suppose G contains such a subgraph H.
Choose three vertices u, v and w in V (H) such that y ∈ V (H)\{u, v, w}

implies that y is only incident with edges in H (y is not a connection vertex of
H).

Replace H with a triangle T with vertices u, v and w, such that none of
the edges outside of H are destroyed. Call the new graph G′. (Formally G′ =
((V (G)\V (H)) ∪ {u, v, w}, (E(G)\E(H)) ∪ {uv, vw, uw}).) It can be checked
that G′ is again extremal immune (|V (G)| − |V (G′)| = 2k for some k, and
|E(G)| − |E(G′)| = 3k). Since G is a minimum counterexample, G′ is an ABC
graph. By Claim 4.39, a decomposition of G′ exists such that all edges of T
are introduced by the same A operation. W.l.o.g., this is an A operation on u
introducing v and w. By Corollary 4.37, H has a decomposition that starts with
u (without C operations). In the decomposition of G′, use this decomposition
of H instead of the A operation introducing T . This is a decomposition of G,
so G is an ABC graph, a contradiction. ✷

Claim 4.50 A minimum counterexample G is simple.

Proof: If G has vertices u and v with at least three parallel edges between
them, then one of these edges can be deleted and the resulting graph is still
immune, contradicting Theorem 4.1.

Now suppose there are two parallel edges between u and v. Suppose that
a C2 operation on u and v gives an ABC graph G′ with vertex u resulting
from the contraction. Since G′ is immune (Lemma 4.11), G′ has odd order
(Observation 4.22, Theorem 4.1) and thus is an AB graph.

First assume that two edges e and f that are part of the same A-component
T are split in the construction of G from G′. Then a matching-cut for G can
be obtained: consider an edge set M ⊂ E(T ) that is an edge cut in T and a
matching in G (Lemma 4.44). Since T is a block in G′ (Lemma 4.26), M is also
an edge cut in G′ (Observation 4.5), and therefore an edge cut in G.

So now we may assume that no A-component is split. We complete the proof
by showing how an ABC decomposition of G can be obtained: by Corollary 4.37,
G′ has a decomposition that starts with u. Now first apply a C operation on
u introducing v, and proceed with the rest of the decomposition. If an A-
component T is introduced by an A operation on u, then G[E(T )] is a triangle
component that is incident with only one of u or v in G, since T is not split.
Apply an A operation on either u or v instead in this new decomposition. Note
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that every A-component T that is incident with u in G′ is introduced by an A
operation on u in the chosen decomposition of G′, so by changing the operations
this way, we obtain an ABC decomposition of G. ✷

Claim 4.51 A minimum counterexample G is 2-connected.

Proof: Suppose G has a cut vertex v. Let Q1, . . . , Qk be the components of
G − v. Define G1 = G[V (Q1) ∪ {v}] and G2 = G[V (Q2) ∪ . . . ∪ V (Qk) ∪ {v}].
Let n = |V (G)|, n1 = |V (G1)|, n2 = |V (G2)|, m = |E(G)|, m1 = |E(G1)|
and m2 = |E(G2)|. Observe that n = n1 + n2 − 1, m = m1 + m2. Let
f : n → ⌈3(n− 1)/2⌉. Then m = f(n), and clearly m1 ≥ f(n1) and m2 ≥ f(n2)
(Theorem 4.1).

m = m1 + m2 ≥ ⌈3(n1 − 1)/2⌉ + ⌈3(n2 − 1)/2⌉ ≥

⌈3(n1 − 1)/2 + 3(n2 − 1)/2⌉ = ⌈3(n − 1)/2⌉ = m.

We conclude that both inequalities are equalities, and therefore m1 = f(n1) and
m2 = f(n2), so both G1 and G2 are smaller extremal immune graphs. Hence
both are ABC. Since the second inequality above is also an equality, we know
that at least one of n1 and n2 is odd (otherwise both terms are rounded up).
W.l.o.g. n1 is odd, so G1 is an AB graph. By Corollary 4.37, a decomposition
of G1 can start with any vertex. Now consider a decomposition of G2, and add
a decomposition of G1 that starts with v. Together this is a decomposition of
G, a contradiction. ✷

4.8 A minimum counterexample contains no C4

In this section, we prove the following lemma:

Lemma 4.52 A minimum counterexample G contains no C4.

The proof is by contradiction. Suppose subgraph C of G is a 4-cycle with edge
set {u1u2, u2v1, v1v2, v2u1}. W.l.o.g., assume that d(u1) ≥ 3 and d(v1) ≥ 3,
for if two neighbors on C have degree two then a matching-cut is immediate.
Applying operation C4 on C gives a new graph G′. The resulting edge in G′ will
be called uv (vertex u results from the contraction of u1u2, and v results from
the contraction of v1v2). G′ is extremal immune (Lemma 4.11), and therefore
G′ is an ABC graph.

Consider a decomposition of G′ such that edge sets E1, . . . , Ek induce the A-
components T1, . . . , Tk, and if the order of G′ is even, let the edge set F induce
the C-component P . These edge sets correspond to edge sets E ′

1, . . . , E
′
k and F ′

of G such that if uv ∈ Ei (or F ), then E(C) ⊆ E′
i (resp. F ′). {E1, . . . , Ek, F}

partitions E(G′) (Claim 4.24), and {E′
1, . . . , E

′
k, F ′} partitions E(G). These

edge sets induce subgraphs T ′
1, . . . , T

′
k and P ′ of G.

At first it may be confusing that parts of G′ are denoted without primes
and parts of G are denoted with primes, but note that G′ is deduced from G,
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Figure 4.9: Three different ways to reverse a C4 operation

E1, . . . , Ek and F are a natural partition of the edges of ABC graph G′, and
E′

1, . . . , E
′
k and F ′ are deduced from these sets.

Since the C4 operation consists of two edge contractions and one edge dele-
tion, we can use the notion of splitting from Section 4.2.2 for edge induced
subgraphs of G′. However, note that the edge in G that corresponds to uv in
G′ can be u1v2 or u2v1, and on this arbitrary choice it can depend whether a
subgraph G′[M ] with uv ∈ M is split. Therefore we will slightly abuse the defi-
nition in this section, and say that G′[M ] is split if G′[M−uv] is not isomorphic
to G[M − uv].

In Figure 4.9, some examples are shown. Only in case (b) the triangle com-
ponent is split. Observe that it is possible that a triangle component G′[M ] is
not split, while G[M ] is not isomorphic to a triangle component (Figure 4.9(c)).
We argue that in this case we may assume w.l.o.g. that the case in Figure 4.9(c)
holds: if a triangle component Ti with triangle vertices u, v and w is not split,
then in G no edges of edge component F (uw) are incident with u1 or none are
incident with u2, and a similar statement is true for F (vw). Suppose no edges
of F (uw) are incident with u2 (u1) in G, and no edges of F (vw) are incident
with v2 (v1) in G (Figure 4.9(a)). Then T ′

i can be obtained from Ti by a B
operation on uv, and renaming the resulting vertices. Thus if Ti is not split and
T ′

i is not a triangle component, then edges of F (uw) are not incident with u2

(u1) in G, and edges of F (vw) are not incident with v1 (v2) in G, so w.l.o.g. the
case in Figure 4.9(c)) holds.

If the order of G′ is even, one C operation is used in every decomposition
of G′. In the decomposition we consider, x and y will denote the vertices in G′
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on which the C operation is applied, and z will denote the vertex introduced
by the C operation. The notation F (xz) and F (yz) will be used to denote the
edge components between x and z resp. between y and z of which P consists.

Note that vertices in G′ directly correspond to vertices in G, except for u
and v. So if for instance u = x, then there is not necessarily a unique vertex in
G that corresponds to x. However, if uv 6∈ F and no edges of F (xz) are incident
with u2 (u1) in G (so F (xz) is not split), then u1 (u2) is called vertex x in G.
For the cases x = v, y = u and y = v the notation is similar.

With G, G′, u, v etc. defined as above, we first state a number of claims
before Lemma 4.52 can be proved.

Claim 4.53 G′ has a decomposition with at least one A-component.

Proof: We consider a decomposition of G′ such that every intermediate graph
is simple if G′ is simple (Claim 4.34). Suppose no A operations are applied in
the decomposition. So a decomposition of G′ starts with a C operation on x = y.
If at least one B operation is applied, then G′ is simple (Observation 4.19), a
contradiction with our choice of the decomposition. We conclude that G′ =
C2. Now it is easy to check that G either is ABC, or has a matching-cut, a
contradiction. ✷

Claim 4.54 If an A-component Ti of G′ is split then the order of G′ is even,
and Ti contains both x and y and x 6= y. In addition, if G′ is 2-connected then
Ti is the only A-component of G′.

Proof: Let Ti be an A-component that is split. W.l.o.g. u ∈ V (Ti). First we
construct a matching-cut M in T ′

i .
If v 6∈ V (Ti), then T ′

i can be obtained from Ti by a non-trivial edge expansion
of u into u1u2, and deleting u1u2. By Lemma 4.44, an edge cut M can be
constructed in Ti that is a matching-cut in T ′

i .
If v ∈ V (Ti) then uv ∈ E(Ti). Ti has a decomposition such that u, v and

another vertex w are triangle vertices (Corollary 4.32). So Ti − uv can be seen
as a P3-component. This P3-component is split, so an edge cut M can be
constructed in Ti that is a matching-cut in T ′

i (Lemma 4.45).
In both cases an edge cut M in Ti is constructed that is a matching-cut in

T ′
i , and that does not contain uv. If Ti is a block of G′, then M is an edge cut

in G′ (Observation 4.5). Note that an edge cut in G′ that does not contain uv
is an edge cut in G, since the C4 operation can be reversed by adding a parallel
edge to uv and expanding u and v, and edge expansions do not destroy edge
cuts (Observation 4.10). So of Ti is a block of G′, M is a matching-cut in G.
Thus Ti is part of an even order block, and therefore the order of G′ is even and
x 6= y (Lemma 4.26).

If x 6∈ V (Ti), then consider any matching-cut M ′ for F (xz) that separates
x from z. Because of the block structure of G′, either M or M ∪M ′ is an edge
cut in G′ (Corollary 4.27). This edge cut in G′ is also an edge cut in G. Since
x 6∈ V (Ti), we know that V (Ti) ∩ V (F (xz)) = ∅ (Lemma 4.26), so M ∪ M ′ is a
matching in G, and we have found a matching-cut in G.
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G′: G:

uv u1v2

v1 u2

Figure 4.10: An example where G′ has a cut vertex

If x ∈ V (Ti) but y 6∈ V (Ti), the matching-cut construction is similar. So
since G is immune, the order of G′ is even, x ∈ V (Ti) and y ∈ V (Ti). If G′ is
2-connected, then Ti is the only A-component in G′ (Lemma 4.26). ✷

Claim 4.55 G′ is 2-connected, has even order and x 6= y. G′ has a decomposi-
tion where G′[E1 ∪ . . . ∪ Ek] is an intermediate AB graph.

Proof: Suppose G′ has a cut vertex. Since G does not have a cut vertex
(Claim 4.51), this cut vertex is u or v. W.l.o.g., u is a cut vertex in G′.
G′ contains a 1-connection A-component (Corollary 4.28). If G′ contains a 1-
connection A-component that does not contain uv, let Ti be this A-component,
otherwise let Ti be the only 1-connection A-component.

If Ti is split, then it contains x and y, and x 6= y (Claim 4.54). In this
case x and y are two different connection vertices of Ti, a contradiction. So Ti

is not split. Then if uv 6∈ E(Ti), then the connection vertex of Ti in G′ also
corresponds to a cut vertex in G, a contradiction (Claim 4.51).

So uv ∈ E(Ti), and because of our choice of Ti, we conclude that Ti is the
only 1-connection A-component. Since u is the only cut vertex in G′ in this
case, G′ consist of two blocks: Ti and an even order block B (Lemma 4.26).
Note that B is an ABC graph (Claim 4.35), and therefore extremal immune.

If T ′
i is again a triangle component (see Figure 4.9(a)), then G contains a

triangle component subgraph on at least five vertices with at most two connec-
tion vertices, a contradiction with Claim 4.49. So since Ti is not split, w.l.o.g.
u2 and v1 have degree two in T ′

i (see Figure 4.9(c)). B is split, otherwise u1

or u2 is a cut vertex in G. Consider B′ = G[E(B) ∪ {u1u2}]. This case is
illustrated in Figure 4.10, where B and B′ are shown by the bold edges. If B′

has a matching-cut M , then M or M ∪ {v1v2} is a matching-cut in G, so B′

is immune. B′ has one more vertex and one more edge than B, and the order
of B is even, so B′ is also extremal immune. Since B′ has odd order and is
smaller than G, B′ is an AB graph. If |V (B′)| > 3, then Claim 4.49 leads to a
contradiction. So B′ is a triangle on vertices u1, u2 and another vertex w.

Now we can show that G is ABC. Start with a decomposition of Ti. Rename
u as u1, and v as v2. Apply an A operation on u1 introducing w and u2. Apply
a C operation on u2 and v2 introducing v1. Now graph G is obtained.

In every case a contradiction is obtained, so we conclude that G′ is 2-
connected. Suppose that the order of G′ is odd. Then G′ consists of only
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one triangle component T1 (Lemma 4.26). If T ′
1 is again a triangle component,

then G is an ABC graph, a contradiction. But T1 is not split (Claim 4.54), so
w.l.o.g. d(u1) = d(v2) = 2, and G has a matching-cut (see Figure 4.9(c)). We
conclude that the order of G′ is even, and since there is at least one A-component
(Claim 4.53), it follows that x 6= y (Lemma 4.26).

It follows that a decomposition of G′ exists where G′[E1 ∪ . . . ∪ Ek] is an
intermediate AB graph: since G′ is 2-connected, x and y are the only connection
vertices of the C-component (Lemma 4.26), and Claim 4.38 can be applied. ✷

Note that since x 6= y, G′ must be simple (Observation 4.19), so we can conclude
that C is an induced 4-cycle in G.

For the following claim recall that P is the C-component of G′.

Claim 4.56 If uv 6∈ E(P ) then P consists only of the edges xz and yz.

Proof: Assume the C-component P is split. We know that x and y are the
only connection vertices of P (Claim 4.55, Lemma 4.26). Since we assume that
uv is not part of P , w.l.o.g. u = x, and the C-component is split at x. So P ′ can
be obtained from a P3-component with end vertices x and y by a non-trivial
edge expansion of x (and deletion of the resulting edge), and possibly also an
edge expansion of y if y = v. By Lemma 4.45, an edge cut M for P exists
that does not separate x and y and that is a matching-cut in P ′. Since x and
y are the only connection vertices of P , M is also an edge cut in G′ and a
matching-cut in G.

So the C-component is not split. Now if at least one B operation is applied to
P , then G′ contains a 2-connection 4-cycle which is also a 2-connection 4-cycle
in G, a contradiction with Claim 4.47. ✷

So if uv 6∈ E(P ), the C-component is not split, and therefore we can unam-
biguously identify two vertices x and y in G corresponding to x and y in G′.

Claim 4.57 If an A-component Ti of G′ is not split, then T ′
i in G is also a

triangle component.

Proof: Suppose this is not true. Note that since at least one A-component is
not split, no A-component is split (Claim 4.54, Claim 4.55). If uv 6∈ E(Ti) and
Ti is not split then T ′

i is isomorphic to Ti by definition, and therefore a triangle
component. So uv ∈ E(Ti). Consider a decomposition of Ti with triangle
vertices u, v and w (Corollary 4.32). Suppose Ti is not split and T ′

i is not a
triangle component. Then w.l.o.g. in G no edges of edge component F (uw) are
incident with u2 in G, and no edges of F (vw) are incident with v1 in G (see
Figure 4.9(c)).

Observe that in T ′
i , M = {u1u2, v1v2} is an edge cut that separates S1 =

{u2, v1} from S2 = V (T ′
i )\{u2, v1}. We will show that M is also an edge cut

in G′′ = G[E′
1, . . . , E

′
k], using the fact that no A-components are split. Suppose

this is not true, so in G′′ −M there is a path R with one end vertex in S1, one
end vertex in S2, and no internal vertices in V (T ′

i ). Since M is an edge cut for
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Figure 4.11: A decomposition of G from Ti

T ′
i , R only uses edges from A-components other than Ti. Ti shares at most one

vertex with every Tj , j 6= i (Lemma 4.26), and no A-components are split, so
T ′

i shares at most one vertex with T ′
j . Therefore R contains edges from at least

two A-components. In G′, the edges from R are a cycle, or can be extended
to a cycle using edges from Ti. This is a cycle through multiple A-components
of G′, that does not use edges of the C-component. Since G′[E1 ∪ . . . ∪ Ek]
is an AB graph (Claim 4.55), this is a contradiction with the block structure
(Lemma 4.26). We conclude that such a path does not exist, and therefore
{u1u2, v1v2} is an edge cut in G[E′

1, . . . , E
′
k].

Let {S, T} be the partition of the vertices of G[E ′
1, . . . , E

′
k] such that [S, T ] =

{u1u2, v1v2}. Since G is immune, these edges are not part of a matching-cut
in G. There is a decomposition of G′ that ends with a C operation on vertices
x and y in the AB graph G′[E1, . . . , Ek] (Claim 4.56). We conclude that in G,
w.l.o.g. x ∈ S and y ∈ T and x and y are incident with [S, T ]. Since x 6= y in
G′, w.l.o.g. x = u1 and y = v1 in G. This implies that x = u and y = v in G′,
and therefore Ti is the only A-component of G′ (Lemma 4.26).

Consider the following decomposition (see Figure 4.11). Start with a decom-
position of triangle component Ti, and rename u as u1 and v as v2. Apply a
C operation on u1 and v2 introducing v1. Apply a B operation on u1v1, intro-
ducing z and u2. This is an ABC decomposition of G. This final contradiction
proves the claim. ✷

Claim 4.58 There is a decomposition of G′ such that uv is part of an A-
component.

Proof: Suppose G′ only has decompositions for which uv is part of the C-
component.

Consider the case where there is an A-component T1 that has a decom-
position such that x and y are triangle vertices. Because G′ is 2-connected
(Claim 4.55), T1 is the only A-component (Lemma 4.26). Let z′ be the third
triangle vertex in this decomposition of T1. Now there is a decomposition of G′

that starts with a triangle on x, y and z′, then applies a C operation on x and y
introducing z, and ends with a number of B operations. Now if instead we start
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with a triangle on x, y and z and apply a C operation on x and y introducing
z′, a decomposition of G′ is obtained such that uv is part of an A-component,
a contradiction. So there is no A-component that has a decomposition where x
and y are triangle vertices.

Now suppose that an A-component Ti is split. In this case, w.l.o.g. u = x and
u ∈ V (Ti) since x and y are the only connection vertices of P . By Claim 4.54,
{x, y} ∈ V (Ti). Now T ′

i can be obtained with a non-trivial edge expansion of u
and deleting the resulting edge. Consider a decomposition of Ti with u, a and b
as triangle vertices such that y ∈ V (F (ab)) (Claim 4.33). We have shown that
y 6= a, b. By Lemma 4.44, an edge cut M1 exists in Ti that is a matching-cut in
T ′

i such that y is not incident with edges from M1. If y is separated from u by
M1 (in fact this is always true), M1 can be made into an edge cut for G′ and
G by adding the edges of a matching-cut M2 for F (yz) that separates y from
z. M1 ∪ M2 is a matching in G since none of the vertices in F (yz) are incident
with edges of M1.

This contradiction shows that we may assume that no A-component is split.
At least one A-component exists (Claim 4.53). If G′ has a single A-component
and this is a triangle, then x and y are triangle vertices of the same A-component,
a contradiction. Therefore, G′′ = G′[E1∪. . .∪Ek] has at least five vertices, and is
an AB graph (Claim 4.55). In G′, the subgraph G′′ has two connection vertices
(x and y). No A-component is split, and x and y are both incident with exactly
one A-component (Lemma 4.26). It follows that G′′ is also a 2-connection AB
subgraph of G, a contradiction (Claim 4.49). ✷

Claim 4.59 At least one A-component of G′ is split.

Proof: Assume no A-components are split. Then if Ti is the A-component
containing uv (such an A-component exists by Claim 4.58), T ′

i can be obtained
from Ti with a B operation (Claim 4.57). The C-component consists only of
edges xz and yz (Claim 4.56), so G′ − z is an AB graph (Claim 4.55). uv is
part of the A-component Ti in G′ − z. By Claim 4.36, there is a decomposition
of G′ − z that starts with the construction of Ti. There is a decomposition of
Ti that starts with a triangle on u, v and another vertex w (Corollary 4.32).
Instead of starting only with this triangle, start with this triangle and apply
a B operation on edge uv, introducing u2 and v2, and rename u and v as u1

resp. v1. Continue with the rest of the decomposition. If an A-component Tj

is introduced by an A operation on u, then T ′
j is only incident with u1 or u2 in

G, since Tj is not split. So apply an A operation on u1 resp. u2 instead. This
is similar for v and for the C-component. This gives an ABC decomposition of
G. ✷

We summarize the above results in the following Corollary.

Corollary 4.60 G′ consists of a single split A-component containing uv and a
C-component consisting only of the edges xz and yz.

Proof: Consider a decomposition such that uv is part of an A-component
(Claim 4.58). At least one A-component Ti must be split (Claim 4.59). A split
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Figure 4.12: An example of G− z and matching-cuts for three different choices
of x and y

A-component Ti contains both x and y and x 6= y (Claim 4.54). So because of
the block structure and the 2-connectedness of G′ (Lemma 4.26, Claim 4.55), Ti

is the only A-component, so uv is part of Ti. By Claim 4.56, the C-component
consists only of edge xz and yz. ✷

Claim 4.61 In G, either d(v2) = 2 or d(u2) = 2.

Proof: Let T be the only A-component of the decomposition of G′ we consider,
and let uv ∈ E(T ) (Corollary 4.60). Consider a decomposition of T with u and
v as triangle vertices (Corollary 4.32), and let the third triangle vertex be w.
Let F ′(uw) and F ′(vw) denote the subgraphs of G induced by the edge sets of
F (uw) resp. F (vw). Let T ′ = G − z. See Figure 4.12(a) for an example of T ′.

The outline of the proof is as follows: we will first assume that both F (uw)
and F (vw) are split. Then, for every choice of x and y we will point out a
matching-cut M in T ′ such that either M does not separate x from y, or x and
y are not both incident with M . In the first case M is also a matching-cut in G,
and in the second case M ∪{xz} or M ∪{yz} is a matching-cut in G. Hence we
may conclude that F (uw) or F (vw) is not split and the statement will follow.

Assume that both F (uw) and F (vw) are split. Now we construct matching-
cuts for F ′(uw) and F ′(vw) similar to the previous matching-cuts for a P3-
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component (see Lemma 4.45), but this time taking the position of x and y into
consideration.

First, suppose that x ∈ V (F (vw))\{v, w}, y 6∈ V (F (vw))\{v, w}. See Fig-
ure 4.12(b) for an example. Since F (uw) is split at u, we can find an edge
cut [S1, S2] for F (uw) with u ∈ S1 and w ∈ S2, that is not incident with
w and is a matching-cut in F ′(uw) (Claim 4.42). Also add v to S1. Since
y 6∈ V (F (vw))\{v, w}, either y ∈ S1 or y ∈ S2. Suppose y ∈ S1. Now for F (vw)
a matching-cut [S′

1, S
′
2] exists with {x, v} ⊆ S′

1 and w ∈ S′
2 (Claim 4.41). Since

none of the edges in [S1, S2] are incident with vertices in F (vw), together these
edge sets form a matching in G. These edge sets form an edge cut in T , since
[S′

1, S
′
2] ∪ [S1, S2] = [S′

1 ∪ S1, S
′
2 ∪ S2]. Since y ∈ S1 and x ∈ S′

1 this is also an
edge cut in G′ that does not contain uv, and therefore an edge cut in G. If
y ∈ S2, the matching-cut construction is similar.

This construction can easily be generalized to prove that if one of x and y
is an internal vertex of one of the edge components and the other vertex is not
an internal vertex of the same edge component, then a matching-cut in G can
be found.

Now consider the case that both x and y are internal vertices of the same
edge component, w.l.o.g. {x, y} ⊆ V (F (vw))\{v, w}. See Figure 4.12(c). Since
F (vw) is split at v, for F ′(vw) a matching-cut [S1, S2] exists with {v1, v2} ⊆ S1

and w ∈ S2, and either {x, y} ⊆ S1 or {x, y} ⊆ S2 (Claim 4.43). Similar to the
previous case, we can combine this with a matching-cut [S ′

1, S
′
2] for F ′(uw) such

that w is not incident with edges of [S ′
1, S

′
2] (Claim 4.42), and a matching-cut

in G is found.
Finally, if x and y are both not internal vertices of any of the two edge

components, then in G, {x, y} ⊂ {u1, u2, v1, v2, w}. Considering the previously
constructed matching-cuts, it is clear that w.l.o.g. x = w. See Figure 4.12(d).
Now let M1 = [S1, S2] be a matching-cut for F ′(uw) such that {u1, u2} ∈ S1,
w ∈ S2 and w is not incident with edges in M1 (Claim 4.42). Let M2 = [S′

1, S
′
2]

be a matching-cut for F ′(vw) such that {v1, v2} ∈ S′
1, w ∈ S′

2 and w is not
incident with edges in M2. Let S = S1∪S′

1∪{z}. Now [S, S] = M1∪M2∪{xz}
is a matching-cut in G.

We have found matching-cuts for G in all cases, so this shows that not
both F (uw) and F (vw) can be split. W.l.o.g. F (uw) is split but F (vw) is not,
and edges of F ′(vw) are not incident with v2, only with v1. In this case we
prove v2 6= x, y. Consider a matching-cut [S1, S2] for the split P3-component
G[E(F ′(uw))∪E(F ′(vw))] with {u1, u2, v1} ⊆ S1 (Lemma 4.45). v2 is not part
of F ′(uw) or F ′(vw), and therefore not incident with M . If y = v2 (x = v2) then
either M or M ∪{yz} (M ∪{xz}) is a matching-cut in G. Therefore dG(v2) = 2.
✷

Now we are ready to finish the proof of Lemma 4.52.

Proof of Lemma 4.52: Corollary 4.60 shows that in the decomposition of
G′ we consider, there is only one A-component T , uv ∈ E(T ), and T is split.
We also know that G′ − z = T . By Claim 4.61, w.l.o.g. d(v2) = 2 in G. T ′ is
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Figure 4.13: Disjoint 2-connection 4-cycles lead to disjoint matching-cuts

the subgraph of G that corresponds to T (T ′ = G − z). Throughout this proof
we use the fact that if [S, S] is a matching-cut in T ′, it is easily extended to a
matching-cut in G unless w.l.o.g. x ∈ S, y ∈ S and x and y are both incident
with edges from [S, S].

Consider a decomposition of T such that u, v and another vertex w are
triangle vertices (Corollary 4.32). We make the following observations:

1. Every 2-connection 4-cycle C in T that does not contain uv is split. If
not, then in G there is also a 2-connection 4-cycle (a contradiction with
Claim 4.47), unless w.l.o.g. x is equal to one of the degree 2 vertices of C.
If this is the case, and y is not equal to the other degree 2 vertex of C,
then the forbidden structure from Claim 4.48 is present, a contradiction.
If y is the other degree 2 vertex, then in G a 2-connection K2,3 is present,
which is a 2-connection AB graph on 5 vertices, again a contradiction
(Claim 4.49).

2. Since every 2-connection 4-cycle in T that does not contain uv is split,
every 2-connection 4-cycle is incident with u. This is because dG(v2) = 2
(Claim 4.61). Therefore edge component F (vw) consists of a single edge.

3. In a decomposition of edge component F (uw) (this decomposition follows
from the decomposition of T ), every B operation is applied on an edge
incident with u, otherwise in F (uw) 2-connection 4-cycles will exist that
are not incident with u (consider the last such B operation).

4. Therefore, if in a decomposition of T a B operation is applied to ua, then
dT (a) = 3.

5. In an edge component, no triangles or multi-edges are present. Therefore,
if C is a 2-connection 4-cycle in F (uw), then in any decomposition of
F (uw), all edges of C are introduced by the same B operation, so 2-
connection 4-cycles correspond to B operations. (Observe that this is not
necessarily true for 2-connection 4-cycles in T .) So a C4 operation on any
2-connection 4-cycle in F (uw) yields again an edge component.
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6. In F (uw), no two edge disjoint 2-connection 4-cycles exist. The following
proof of this statement is illustrated in Figure 4.13. Suppose in F (uw) two
edge disjoint 2-connection 4-cycles C1 and C2 exist. In F (uw), if we apply
C4 operations on C1 and C2, the resulting graph has no multi-edges since
it is again an edge component. Therefore C1 and C2 have at most one
vertex in common, and V (C1)∩V (C2) = {u}. Let V (C1) = {u, a1, a2, a3}
and V (C2) = {u, b1, b2, b3}, such that ua1 6∈ E(T ) and ub1 6∈ E(T ). When
we consider again the edge component resulting from the C4 operations
on these two cycles, and the fact that this edge component does not have
triangles, we can also deduce that a1 and b1 are not neighbors. Since
dT (a1) = dT (b1) = 3 and both 2-connection 4-cycles are split, vertex sets
A = {a1, a2, a3} and B = {b1, b2, b3} both yield a matching-cut in T ′.
Since [A,A] does not extend to a matching-cut in G, w.l.o.g. x ∈ A. In
this case, x is not incident with edges from M = [B,B] (since a1 and b1

are not adjacent), and therefore either M or M ∪ {xz} is a matching-cut
in G, a contradiction.

7. Consider a decomposition of F (uw). If in any intermediate graph two edge
disjoint 2-connection 4-cycles exist, then in F (uw) at least two edge dis-
joint 2-connection 4-cycles exist. So in this decomposition, a B operation
is always applied to an edge introduced by the previous B operation.

These observations narrow down the possibilities for T considerably: T is ob-
tained from the triangle on u, v and w by first applying a B operation on uw (at
least one B operation is used since T is split) and then, for an arbitrary number
of steps, applying a B operation on one of the two edges that is part of the
single 2-connection 4-cycle in edge component F (uw) and that is incident with
u. So, because of the symmetry, T is completely characterized by the number of
B operations that are applied. See Figure 4.14(a). We use the vertex labeling as
shown in this figure. w is given the label a0. B operations are applied on edge
uai, introducing vertices a′

i and ai+1. So uan is an edge if and only if exactly n
B operations are applied. Let n be the number of B operations that are applied.
In T , N(u) = {v, an, a′

n−1, a
′
n−2, .., a

′
0}. W.l.o.g., in T ′ vertex a′

n−1 has u1 as
neighbor and vertex an has u2 as neighbor. See Figure 4.14(b) for an example
of a graph T ′ that corresponds to T .

The first matching-cut we consider in T ′ is M1 = [S1, S1] with S1 = {an, an−1,
a′

n−1} (See Figure 4.15(a)). The second matching-cut we consider in T ′ is

M2 = [S2, S2] with S2 = {v2, u1} ∪ {a′
i : u1a

′
i ∈ E(T ′)} (See Figure 4.15(b)).

Observe that M1 ∩ M2 = ∅. Furthermore, M1 ∪ M2 is a set of isolated edges
plus the edge set of a path P of length five or six (depending on whether a′

n−2

is adjacent to u1 or u2 in T ′) (see Figure 4.15(c)). Since x and y are incident
with both M1 and M2, x and y are internal vertices of P . Also, if P ′ is the
subpath of P from x to y, P ′ contains an odd number of edges from M1 and an
odd number of edges from M2. Since the edges alternate and P has length at
most six and x and y are internal vertices of P , P ′ has exactly two edges. Now
if x = u1 and y = an−1, then G has a 2-connection 4-cycle. Therefore, only two
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Figure 4.14: Examples of T and a corresponding T ′
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Figure 4.15: Two matching-cuts in T ′

possibilities for x and y remain: either x = u2 and y = a′
n−1 or x = a′

n−1 and
y = an−2 (or y = v if n = 1). Consider these two cases:

• Suppose x = u2 and y = a′
n−1. If at least one vertex a′

i is adjacent to u1 in

T ′ (i 6= n−1), then [S, S] with S = {a′
i, ai, ai+1, . . . , an} is a matching-cut

in G (see Figure 4.16(a)). Therefore, in T ′ all vertices a′
i are adjacent to

u2 (except for a′
n−1). See Figure 4.16(b). So dG(u1) = 3. In this case, the

forbidden structure from Claim 4.48 is present in G, which is shown by
the bold edges in Figure 4.16(b), a contradiction.

• Suppose x = a′
n−1 and y = an−2 (or y = v if n = 1). If at least one vertex

a′
i is adjacent to u2 in T ′, then [S, S] with S = {a′

i, ai, ai+1, .., an−1, a
′
n−1, z}

is a matching-cut in G (see Figure 4.17(a)). Therefore, every vertex a′
i

is adjacent to u1 in T ′. Now dG(u2) = 3, and the forbidden structure
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Figure 4.16: Two examples of G if x = u′ and y = a′
n−1
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Figure 4.17: Two examples of G if x = a′
n−1 and y = an−2
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from Claim 4.48 is again present, as indicated by the bold edges in Fig-
ure 4.17(b), a contradiction (recall that dG(v2) = 2, also if y = v in G′).

So in every case a contradiction is obtained, which shows that G cannot contain
a C4. ✷

4.9 A minimum counterexample contains no C3

In this section, we prove the following lemma:

Lemma 4.62 If G is a minimum counterexample, G does not contain a C3.

The proof is by contradiction. Suppose C is a triangle in G on vertices v1, v2

and v3. We may assume w.l.o.g. that d(v1) ≥ 3 and d(v2) ≥ 3, otherwise a
1-connection triangle is present, which leads to a contradiction with Claim 4.51.

Applying operation C3 on C such that the resulting vertex is vertex v gives
a new graph G′. This graph is again extremal immune (Lemma 4.11), and by
our assumption, must be an ABC graph.

Consider a decomposition of G′ with A-components T1, . . . , Tk, and if the
order of G′ is even, C-component P . The edge sets of these components induce
the components T ′

1, . . . , T
′
k resp. P ′ in G. Observe that the edges of these com-

ponents together with the edges {v1v2, v2v3, v1v3} of C give a partition of the
edges of G.

G can be constructed from G′ with two edge expansions and an edge addi-
tion. So in this section we can use the terminology of Section 4.2.2 and consider
whether components of G′ are split or not by these operations: an edge induced
component G′[M ] is split if it is not isomorphic to G[M ].

If the order of G′ is even, one C operation is used in every decomposition
of G′. In the decomposition we consider, x and y will denote the vertices in G′

on which the C operation is applied, and z will denote the vertex introduced
by the C operation. So the C-component P consists of edge components F (xz)
and F (yz).

With G, G′, v etc. defined as above, we first state a number of claims before
Lemma 4.62 can be proved.

Claim 4.63 G′ has a decomposition with at least one A-component.

Proof: The proof is very similar to the proof of Claim 4.53. ✷

Claim 4.64 In G′, if an A-component Ti is split then the order of G′ is even
and Ti contains both x and y and x 6= y.

Proof: Let Ti be an A-component that is split, so v ∈ V (Ti). First we construct
a matching-cut M in T ′

i .
W.l.o.g. T ′

i can be obtained from Ti by a non-trivial edge expansion of v
into v1v2 and deletion of v1v2, followed by an edge expansion of v2 into v2v3,
and deleting v2v3. Since a decomposition of Ti exists such that v is a triangle
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bv

G′: G:

e

f

ya = x

Figure 4.18: P is split

vertex (Corollary 4.32), Lemma 4.44 shows that an edge cut M exists in Ti that
becomes a matching after the first edge expansion, and therefore is a matching-
cut in T ′

i . Observe that M is a matching-cut in G if and only if it is an edge cut
in G′ (the C3 operation can be reversed by adding a loop and applying two edge
expansions. These operations do not destroy edge cuts). If G′ is odd, then Ti is
a block of G′ (Lemma 4.26), so M is also an edge cut in G′ (Observation 4.5).
So G′ is even, and Ti is not a block of G′ and therefore x 6= y in G′.

Suppose that in G′, x is not incident with edges from M . Consider any
matching-cut M ′ in F (xz) that separates x from z. Since edges from M and
M ′ share no end vertices (Lemma 4.26), either M or M ∪M ′ is a matching-cut
in G (Corollary 4.27). A similar matching-cut can be constructed if y is not
incident with edges from M . We conclude that x and y are both incident with
edges from M and therefore part of Ti. ✷

Claim 4.65 G′ is 2-connected.

Proof: If G′ is not 2-connected, then it contains a 1-connection A-component Ti

(Corollary 4.28). If Ti is split, then it contains x and y, and x 6= y (Claim 4.64).
In this case x and y are two different connection vertices of Ti, a contradiction.
So Ti is not split. In that case, the connection vertex of Ti in G′ also corresponds
to a cut vertex in G, a contradiction (Claim 4.51). ✷

Claim 4.66 The order of G′ is even, and x 6= y.

Proof: Suppose the order of G′ is odd. Then by Lemma 4.26 and Claim 4.65,
G′ has only one A-component. By Claim 4.64, it cannot be split. It follows that
v1 is a cut vertex in G, a contradiction (Claim 4.51).

So the order of G′ is even. Since G′ is 2-connected (Claim 4.65) and there
is at least one A-component (Claim 4.63), x 6= y. ✷

Claim 4.67 There is a decomposition of G′ such that v is part of an A-compo-
nent.

Proof: Suppose v ∈ V (P )\{x, y}. Since G′ is 2-connected (Claim 4.65), x and
y are the only connection vertices of P (Lemma 4.26), and v is only incident
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with edges from P . So if P is not split, v1 is a cut vertex in G, a contradiction
(Claim 4.51). We conclude that P is split. The rest of the proof is illustrated
in Figure 4.18. Consider a decomposition of P , and consider the operation that
introduces v. If v = z this is the C operation, otherwise a B operation. In
both cases, after this operation, v is incident with exactly two edges av and
bv. In P we consider the edge components F (av) and F (bv), which only have
connection vertices v and a resp. b, and the P3-component Q consisting of both
of these. Since P is split and v is only incident with edges from Q, we can find
edges e ∈ F (av) and f ∈ F (bv) both incident with v, that are not adjacent in
G. Let M1 be a matching-cut in F (av) that contains e and separates a and v,
and let M2 be a matching-cut in F (bv) that contains f and separates b and v
(Claim 4.40). Together these form an edge cut M1 ∪ M2 for Q that does not
separate a and b. Since a and b are the only connection vertices of Q in G′, this is
also an edge cut in G′. So by choice of the edges e and f , this is a matching-cut
in G. (Note that since x 6= y, this is also a matching when Q = P .) ✷

Claim 4.68 The C-component of G′ consists only of edges xz and yz.

Proof: The proof is the same as the proof of Claim 4.56: if the C-component
P is split w.l.o.g. it is split at x (Claim 4.67), which leads to a matching-cut
(using Lemma 4.45, since x 6= y). So P is not split and if at least one B operation
is applied in the decomposition of P , it leads to a 2-connection 4-cycle in G, a
contradiction (Claim 4.47). ✷

Claim 4.69 At least one A-component of G′ is split.

Proof: Assume no A-components are split. Since G′ is 2-connected, in every
decomposition of G′ no A operation is applied after the C operation. So using
Claim 4.68, G′ − z is an AB graph. v is part of an A-component (Claim 4.67).
By Corollary 4.37, there is a decomposition of G′−z that starts with v. Instead
of starting only with v, start with the triangle on v1, v2 and v3. Continue with
the rest of the decomposition. If an A-component Tj is introduced by an A
operation on v, then T ′

j is only incident with one of the vertices v1, v2 or v3

in G, since Tj is not split. So apply an A operation on v1, v2 resp. v3 instead.
This is similar for the C-component. This yields an ABC decomposition of G. ✷

Proof of Lemma 4.62: The above claims show that at least one A-component
T is split (Claim 4.69), so T contains x and y (Claim 4.64), and therefore this
is the only A-component (Claim 4.65, Lemma 4.26). The C-component consists
only of edges xz and yz (Claim 4.68). By Lemma 4.52 we know that G cannot
contain a C4, so every C4 in G′ is split and therefore incident with v. In addi-
tion, it follows that T is not a triangle, since then the three edges of T together
with one edge from {v1v2, v1v3, v2v3} would form a C4 in G.

Consider T ′ = G−z. Note that even though T = T1, T ′ 6= T ′
1 since the edges

of cycle C are included in T ′. We will describe a number of matching-cuts for
T ′, and show that no matter how x and y are chosen, one of these matching-cuts
is also a matching-cut in G. Throughout this proof we use the fact that if M
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is a matching-cut in T ′, it is easily extended to a matching-cut in G unless M
separates x from y and x and y are both incident with edges from M .

For every u ∈ V (T ) that is adjacent to v, we know that a decomposition of
G′ exists where u and v are triangle vertices of T (Corollary 4.32). Let w be
the third triangle vertex of T in this decomposition. F ′(vw) is the subgraph
of T ′ induced by the edges of edge component F (vw). F (uw) is a single edge,
otherwise T contains a C4 that is not incident with v. Since T is not a triangle,
F (vw) is not a single edge. Then F (vw) is split, otherwise F ′(vw) contains a
C4. Now we can find a matching-cut in T ′ that does not contain uv.

Recall that w.l.o.g. F ′(vw) can be obtained from F (vw) by a non-trivial
edge expansion of v into v1v2 and deleting v1v2, followed by an edge expansion
of v2 into v2v3 and deleting v2v3.

Claim 4.42 shows that an edge cut M for F (vw) exists that separates w from
v, such that w is not incident with edges from M , and M becomes a matching
after the first edge expansion. So M is a matching-cut in F ′(vw) that is not
incident with w. M ∪ {uw} is a matching-cut for T ′ that does not include uv
(See Figure 4.19(b)). We conclude that for every neighbor u of v, we can find a
matching-cut in T ′ that does not contain uv. As a corollary, we find that it is
not possible that x = v and y is a neighbor of v in G′.

v

a2

u = xw

a2

v1 v2

v3

v1 v2

v3

u w = y

z

a1 a1

v1 v2

v3

u

w

(a) (b)

H: G:

H:T :

(d)(c)

Figure 4.19: Two matching-cuts in T ′ and one in G
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Since T is not a triangle, in a decomposition of T , at least one B operation is
used. Consider the last B operation. The 2-connection 4-cycle corresponding to
this operation is split so it has connection vertices v and another vertex u. Let
a1 and a2 be the other vertices of this 2-connection 4-cycle. If we consider the
intermediate graph in the decomposition from which T is obtained, we know it
has a decomposition with triangle vertices u and v (Corollary 4.32), so T also
has a decomposition with triangle vertices u, v and another vertex w. W.l.o.g.
we assume that a1 is adjacent to v1 in T ′, and a2 is adjacent to v2 in T ′. Now
we can find a matching-cut in G: F (uw) is a single edge again. In T ′, edge set
M = {uw, a1v1, a2v2} is a matching-cut (see Figure 4.19(c)). If the distance
from x to y in T ′ is two, then G contains a C4. So since M is not part of a
matching-cut in G, the distance from x to y is one. Above we showed that it
is not possible that x = v and y is a neighbor of v in G′, so the only remaining
possibility is x = u and y = w.

Finally consider the following matching-cut: take any matching-cut M for
F (vw) that separates v from w. If M is incident with v1 in T ′, M ∪{a2v2, a1u}
is a matching-cut in G, otherwise M ∪ {a1v1, a2u} is a matching-cut (see Fig-
ure 4.19(d)).

Now in every case we can find a matching-cut in G, a contradiction. ✷

4.10 The proof of the conjecture

In this section, we prove Conjecture 4.3:

Theorem 4.70 If graph G = (V,E) is extremal immune, then G is ABC.

Proof: Suppose this is not true, so there exist counterexamples, which are
extremal immune graphs that are not ABC. Let G be a graph with minimum
size among these counterexamples. Claim 4.50 shows that G is simple, so no
C2 operation can be applied to it. Lemma 4.52 shows that G cannot contain a
4-cycle, so the C4 operation cannot be applied to it. Lemma 4.62 shows that G
cannot contain a triangle, so no C3 operation can be applied.

Suppose a P2 operation can be applied to G. Then in G there are neighbors
u and v, with d(u) = 3 and d(v) = 2. x and y are the other neighbors of u,
and z is the other neighbor of v. If z = x or z = y then G contains a C3,
a contradiction. If x and z are neighbors or y and z are neighbors, then G
contains a C4, also a contradiction. So after the P2 operation is applied, graph
G′ is obtained that contains edge xy and vertex z, and z is not equal to or
adjacent to x or y. G′ is an ABC graph since it is again extremal immune
(Lemma 4.11). Clearly, G′ cannot be a K1, a C2 or a C3. For every ABC graph
G′ other than these three graphs and every edge e ∈ E(G′), we can show that
there is a 4-cycle or triangle that does not contain e:

If G′ 6= C2, we may assume there is at least one A-component (Claim 4.34).
If G′ contains an A-component of order at least 5, then the statement follows
from Claim 4.31. Otherwise, if G′ has at least two A-components, then two
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disjoint triangles are easily found. So G′ must consist of a triangle and a C-
component. If on this C-component at least one B operation is applied, then
we have a C4 and a C3 which are disjoint. So G′ is a diamond (a K4 minus one
edge). For this graph the statement is also true.

So in G′ there is a 4-cycle or triangle that does not contain xy. This corre-
sponds to a 4-cycle or triangle in G, a contradiction.

We conclude that no C2, C3, C4 or P2 operation can be applied to G, which
is a contradiction with Lemma 4.12. Therefore a minimum counterexample does
not exist. ✷

4.11 Recognizing ABC graphs

Algorithm 2 is an algorithm that recognizes AB graphs, and Algorithm 3 is an
algorithm that recognizes ABC graphs. A B operation 4-cycle of G is a 4-cycle
in G that has no adjacent connection vertices. Note that B operations always
introduce B operation 4-cycles. Recall that a 1-connection triangle has at most
one connection vertex: if the input for Algorithm 2 is AB, then the last C3
operation in the algorithm is applied when G = K3.

Algorithm 2 Recognition of AB graphs

INPUT: A graph G.

while G contains a 1-connection triangle or B operation 4-cycle C do
Apply a C3 resp. C4 operation on C in G

end while
if |V (G)| = 1 then

return YES, stop
else

return NO, stop
end if

Theorem 4.71 Algorithm 2 recognizes AB graphs in polynomial time, and Al-
gorithm 3 recognizes ABC graphs in polynomial time.

Proof: We first prove the correctness of Algorithm 2. We prove by induction
over (odd values of) n = |V (G)| that Algorithm 2 returns YES when the input
G is AB. If G = K1 then YES is returned. Otherwise, G contains at least one
1-connection triangle or B operation 4-cycle C (consider the last operation in a
decomposition). A C3 resp. C4 operation on any such C results in an AB graph
G′ (Claim 4.35 resp. Claim 4.30). By induction, Algorithm 2 now returns YES.

If Algorithm 2 returns YES for graph G, then reversing the C3 and C4
operations one by one yields an AB decomposition of G: the decomposition
starts with a K1, and since only on 1-connection triangles and B operation 4-
cycles C3 resp. C4 operations were applied, the reverse operations correspond
to A resp. B operations.
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Algorithm 3 Recognition of ABC graphs

INPUT: A graph G.

if |V (G)| is odd then
use Algorithm 2

end if
while G contains a 1-connection triangle or B operation 4-cycle C do

Apply a C3 resp. C4 operation on C in G
end while
for all vertices v ∈ V (G) with d(v) = 2 do

if G − v is AB then
return YES, stop

end if
end for
return NO, stop

In every iteration of Algorithm 2, graph G loses two vertices, so at most
(n − 1)/2 iterations are needed. All steps can be done in polynomial time,
hence Algorithm 2 is a polynomial time algorithm.

We now prove the correctness of Algorithm 3. Let input graph G be ABC.
If the order of G is odd then we showed above that YES is returned. Otherwise,
we prove by induction over (even values of) n = |V (G)| that YES is returned.
If a C4 operation is applied on a B operation 4-cycle of G to yield G′, then
G′ is again ABC (Claim 4.30), and we can use induction. If G contains a
1-connection triangle C with connection vertex v, then C is a block of G, and
therefore it is an A-component in any decomposition (Lemma 4.26). Then there
is a decomposition in which an A operation on v that introduces C is the last
operation. The graph obtained by a C3 operation on C is an intermediate graph
in this decomposition, and thus is ABC. By induction, the algorithm returns
YES. If G contains no 1-connection triangle or B operation 4-cycle, then every
decomposition of G ends with a C operation. Consider a decomposition where
the C operation introduces a vertex z. G − z is an AB graph, so Algorithm 3
returns YES. To evaluate whether G − z is an AB graph, Algorithm 2 is used.

Similar to the previous case, if Algorithm 3 returns YES, then reversing
all operations applied on G by both algorithms yields a decomposition of G:
reversing the vertex deletion in the for-loop corresponds to the C operation.

Note that all steps of Algorithm 3 can be done in polynomial time, includ-
ing the recognition of AB graphs. The number of iterations in the for-loop is
at most n, and the number of iterations of the while-loop is at most n/2, so
Algorithm 3 has polynomial time complexity. ✷

Since we have established that extremal immune graphs are exactly ABC graphs,
we have the following corollary.

Corollary 4.72 For graphs G = (V,E) with |E| = ⌈3(|V | − 1)/2⌉, we can
decide in polynomial time whether G is immune.
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Chapter 5

Extremal results for

spanning trees with many

leaves

5.1 Introduction

In this chapter we study spanning trees with many leaves, or equivalently, small
connected dominating sets (See Section 5.2.2). We are interested in statements
of this type: every graph on n vertices that satisfies a certain set of properties,
has a spanning tree with at least αn + β leaves (0 < α < 1). One statement of
this type was proved independently by Linial and Sturtevant [41] and Kleitman
and West [38]:

Theorem 5.1 (Linial & Sturtevant, Kleitman & West) Every connected
graph on n vertices with δ ≥ 3 has a spanning tree with at least ⌈ 1

4n+2⌉ leaves.

This bound is best possible for every n: for n mod 4 ∈ {0, 1}, in [38] examples
are given of connected graphs with δ = 3 that do not have spanning trees with
more than ⌈ 1

4n + 2⌉ leaves. For n mod 4 ∈ {2, 3}, such examples can also be
found: Figure 5.1 shows some examples for various values of n, which should
make clear how to construct examples for every n. The encircled vertices show
how leaves can be chosen to construct a spanning tree with maximum number
of leaves. One can see that these examples contain many diamonds: a diamond
is a K4 minus one edge. An immediate question is whether the bound can
be improved when diamonds are forbidden. One result in this direction is by
Griggs, Kleitman and Shastri [34].

Theorem 5.2 (Griggs, Kleitman & Shastri) Every connected cubic graph
without diamonds on n vertices has a spanning tree with at least ⌈(n + 4)/3⌉
leaves.

95
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: leaf

Figure 5.1: Theorem 5.1 is best possible for n = 16, 13, 11, 6

The bound in Theorem 5.2 is also best possible in some sense: of all the valid
bounds of the form αn + β for this class, this bound maximizes α, and of all of
those bounds that maximize α, this bound maximizes β. Equivalently, we can
say that this is the best possible asymptotically sharp linear bound for this class.
This is proved in [34] by first constructing examples of graphs with no more than
⌈(n + 4)/3⌉ leaves for every n divisible by six: this shows that α = 1

3 is best
possible. The single graph Q3 then shows that β = 4

3 cannot be increased (Q3

has eight vertices and no spanning tree with more than four leaves). However,
for most other values of n no examples are known that show that this bound is
sharp. See Section 5.8 for a discussion on the sharpness of this bound and the
other bounds in this chapter.

Our first question is what kind of bounds can be obtained when we consider
graphs with δ ≥ 3 instead of cubic graphs, but still forbid (certain types of)
diamonds. In this chapter, we present one best possible bound for these graphs.
In addition, even though the proof of Kleitman and West for Theorem 5.1 is
very short and elegant, the proof of Theorem 5.2 uses the same techniques, but
consists mainly of a very long and intricate case study. Therefore we are also
interested in new techniques for proving results of this kind.

In Section 5.4 we prove that the bound from Theorem 5.2 also holds for
graphs with δ ≥ 3 without triangles:

Theorem 5.3 Every connected graph on n vertices without triangles with δ ≥ 3,
has a spanning tree with at least ⌈(n + 4)/3⌉ leaves.

Our main result is that for graphs with δ ≥ 3, the following result holds. Here
a cubic diamond is a diamond induced by vertices of degree three.

Theorem 5.4 Every connected graph on n vertices with δ ≥ 3, that contains
D cubic diamonds, has a spanning tree with at least ⌈(2n − D + 12)/7⌉ leaves.

Theorem 5.4 is proved in Section 5.5. See also Section 5.5 for a slightly sharper
formulation of Theorem 5.4. The bounds in Theorem 5.3 and Theorem 5.4 are
best possible, in the same sense as explained above. This is shown in Section 5.6.

Apart from a small difference of 2
7 in the constant, Theorem 5.4 can be seen

as a generalization of Theorem 5.1: since D ≤ 1
4n (diamonds induced by degree
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three vertices are vertex disjoint), it follows directly from Theorem 5.4 that
connected graphs with δ ≥ 3 have a spanning tree with at least ⌈(2n − D +
12)/7⌉ ≥ ⌈( 7

4n + 12)/7⌉ = ⌈ 1
4n + 12

7 ⌉ leaves.

The proofs we will present use techniques that are different from previously
used techniques. Theorem 5.3 has a relatively short proof that demonstrates
these techniques, but for Theorem 5.4 a more elaborate proof is needed. In
Section 5.3, the ideas behind our method are introduced.

Our proofs are constructive, and correspond to efficient and simple algo-
rithms: Spanning trees that satisfy the bound from Theorem 5.3 can be found
with an algorithm that repeatedly adds vertices or pairs of vertices to a leaf
set (according to some simple rules) until no more leaves can be added, and
then constructs a spanning tree with those leaves. Spanning trees that satisfy
the bound from Theorem 5.4 can be found using a similar algorithm that also
involves local search on these leaf sets. These algorithms are explained in Sec-
tion 5.7. The formulation of the algorithms is very basic, and there is a lot
of room to customize them for different purposes; whether the goal is to speed
them up, find better trees or tune them to specific instances.

Finally, in Section 5.8, we discuss some possible ways to extend or improve
the current results.

5.2 Preliminaries

5.2.1 An alternative definition of blocks

In this chapter, the blocks of a graph are maximal 2-connected subgraphs. So
unlike in the usual definition, a K2 is not a block. Therefore bridges are not
contained in any block of the graph. The following lemma is an easy to prove
variant of a well-known lemma.

Lemma 5.5 A connected graph without leaves and with cut vertices has at least
two blocks that contain exactly one cut vertex.

5.2.2 Spanning trees and connected dominating sets

The following close relation between spanning trees and connected dominating
sets is well-known. If T is a spanning tree for G = (V,E) with leaf set L,
then V \L is a connected dominating set, unless G = K1 or G = K2: G − L is
connected, and every vertex in L is adjacent to a vertex not in L. Similarly,
for every connected dominating set S, we can easily find a spanning tree for
which V \S is a subset of the leaf set: choose any spanning tree of G[S], and for
every vertex u 6∈ S add an edge between u and one of its neighbors in S. This
leads to a connected, spanning subgraph of G without cycles. So G 6= K1,K2

has a spanning tree with at least l leaves if and only if G has a connected
dominating set with at most |V | − l vertices. Note that this construction can
be done in polynomial time, so a polynomial time algorithm for constructing



98 CHAPTER 5. EXTREMAL RESULTS FOR MAXLEAF

Kn

Figure 5.2: A graph with no small 2-CD-set

connected dominating sets leads to a polynomial time algorithm for finding the
corresponding spanning trees.

In the remainder of the chapter, we will consider connected dominating sets
instead of leaf sets of spanning trees. We feel that this is more practical for our
purposes, which is illustrated by our methods, and discussed in Section 5.8. We
will call connected dominating sets CD-sets for short. If S is a CD-set, we will
still call the vertices in V \S the leaves of S. A neighbor u of v is called a leaf
neighbor or CD-set neighbor of v if u is a leaf or CD-set vertex, respectively. If
S is a CD-set for G and G[S − v] is not connected, v is called a connector. If S
is a CD-set for G and S − v is not dominating, v is called a dominator. Observe
that if S and S′ ⊂ S are CD-sets for G, and v ∈ S is a dominator or connector,
then v ∈ S′. A leaf v is called an i-leaf if it has i CD-set neighbors. A CD-set
is called a 2-CD-set if all its leaves are 1-leaves or 2-leaves.

5.3 Introduction to the method

We are interested in finding bounds of this form: every (connected) graph G,
with possibly some additional properties, has a CD-set S with |S| ≤ α|V (G)|−β,
where 0 < α < 1 and β is any constant. It is clear that when G can have many
vertices of degree two, no such bounds can be obtained (consider Pn), so we
only consider graphs with δ ≥ 3.

The first question one can ask is: how good are the bounds that we can
obtain using minimal CD-sets? The idea is to start with a CD-set containing
all vertices, and removing vertices that are not connectors or dominators, until
nothing can be removed anymore, and a minimal CD-set is obtained. It is easy
to see that with this method we cannot guarantee that a certain fraction of the
vertices will become leaves: consider for instance the wheel Wn, where there is
only one CD-set containing one vertex, and all other minimal CD-sets contain
n − 3 vertices.

The reason that this method fails is that for some examples, if we make a
wrong initial choice, we will have a leaf with many neighbors in the CD-set,
all of which have degree three. This then can then again be seen as finding a
CD-set in a graph with many degree two vertices.
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So the next idea is to only remove vertices from the CD-set that have few
neighbors in the CD-set, for instance at most two neighbors. In that case we
are looking for minimal 2-CD-sets. The first problem is that some graphs do
not have any small 2-CD-sets: see for instance the graph G in Figure 5.2. G
has a CD-set on 6 vertices, but no 2-CD-set on fewer than |V (G)| − 9 vertices.
In addition, for some other graphs (e.g. Kn), we need to remove arbitrarily
many vertices to go from one 2-CD-set to the next, which makes it hard to find
efficient algorithms and short proofs for results on minimal 2-CD-sets.

Fortunately, in order to prove a good bound it is not necessary that leaves
have few neighbors in the CD-set, it is only necessary that they have few neigh-
bors of degree three in the CD-set. To put it differently, we often may ignore
edges between two vertices of high degree in our analysis. This leads to the
following definitions of certain types of CD-sets.

Definition 5.6 S ⊆ V (G) is a standard CD-set for graph G if the following
properties hold:

1. S is a 2-CD-set for G.

2. Every v ∈ S has dG(v) ≥ 3.

Definition 5.7 S ⊆ V (G) is a potential standard CD-set for G if there exists
a spanning subgraph G′ of G such that S is a standard CD-set for G′. Such a
graph G′ is called a realization of S. G′ is a maximal realization of S if there
is no other realization of S of which G′ is a subgraph.

We will show that the notion of minimal potential standard CD-sets is strong
enough to obtain good bounds, and that potential standard CD-sets are easy
to work with within an algorithmic context.

For a given potential standard CD-set S, every maximal realization has
the same number of edges: if a leaf v has k neighbors in S, then k − 2 edges
between v and S need to be deleted in order to obtain a realization. In a
maximal realization exactly k − 2 of these edges are deleted. This is true for
every leaf, deleted edges count towards only one leaf, and no other edges have
to be deleted. So maximal realizations can alternatively be defined as having
maximum number of edges.

Using minimal potential standard CD-sets, we will be able to prove the
bounds from Theorem 5.3 and Theorem 5.4, expressed in terms of CD-sets
instead of spanning trees. We first restrict ourselves to connected graphs without
triangles with δ ≥ 3. In the next section we will show that in this case, for any
minimal potential standard CD-set S of G and any minimal CD-set S ′ ⊆ S,
|S′| ≤ 2

3 |V (G)| − 4
3 . By imposing two additional restrictions on the minimal

potential standard CD-set S, we can prove Theorem 5.4 in a similar way.
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5.4 Small CD-sets for graphs without triangles

5.4.1 Construction and properties

In this section we state a number of properties for potential standard CD-sets
S and their realizations G′. In Section 5.4.2 we will prove a bound for pairs of
S and G′ that satisfy these properties. But first we will show that such a pair
S and G′ exists for every connected graph G with δ(G) ≥ 3.

The next theorem states the essential properties of minimal potential stan-
dard CD-sets that we need to prove our bound. Property 2 is added to allow
an easier formulation of Properties 4 and 5, though it is not necessary for the
method. Similarly, Property 3 is only added to ensure G′ is a maximal real-
ization, which simplifies the later proofs. We remark that for every minimal
potential standard CD-set S, a realization G′ can be found such that G′ and S
satisfy the properties from Theorem 5.8. However, from now on we are not con-
cerned with minimality, only with the properties stated in Theorem 5.8. Note
that for this theorem, we do not yet need to exclude triangles.

Theorem 5.8 A connected graph G with δ(G) ≥ 3 has a spanning subgraph G′

and a CD-set S with the following properties. Degrees, neighbors and all other
graph related notions are taken with respect to G′.

1. S is a standard CD-set (for G′).

2. If u, v ∈ S, d(u) ≥ d(v) ≥ 4 and uv ∈ E(G′), then uv is a bridge of G′[S].

3. Edges in E(G)\E(G′) are between vertices in S, or between a vertex in S
and a 2-leaf.

4. Every vertex v ∈ S that is neither a dominator nor a connector has at
least three neighbors in S, and all of its neighbors in S have degree three.

5. If {u, v} ⊆ S, uv ∈ E(G′) and u and v are both neither dominators nor
connectors, then G′[S] − u − v is not connected.

Proof: We consider a CD-set S and spanning subgraph G′ such that S is a
standard CD-set for G′, that are optimal according to the following priorities:

• Minimize |S|.

• Minimize |E(G′[S])|.

• Maximize |E(G′)|.

By this we mean that among all pairs of S and G′ that minimize |S|, we consider
pairs that minimize |E(G′[S])|. Among all these pairs, we choose one of those
that maximizes |E(G′)|. Note also that V is a standard CD-set for G, so there
is at least one such pair S and G′. We show that for S and G′ chosen this way,
the above properties hold: if not, we can find an improved S and G′ according
to the priorities.
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Property 2: If u, v ∈ S, d(u) ≥ d(v) ≥ 4 and uv ∈ E(G′), then uv is a bridge of
G′[S].
Proof: Consider u, v ∈ S with d(u) ≥ 4, d(v) ≥ 4 and uv ∈ E(G′). If uv is not
a bridge in G′[S] then S is a standard CD-set for G′ − uv. Since this decreases
|E(G′[S])|, this change is an improvement.

Property 3: Edges in E(G)\E(G′) are between vertices in S, or between a vertex
in S and a 2-leaf.
Proof: Suppose a 1-leaf u is incident with an edge uv ∈ E(G)\E(G′). If v ∈ S,
then adding edge uv to G′ preserves the standard CD-set; u becomes a 2-leaf.
If there is an edge uv ∈ E(G)\E(G′) with u, v 6∈ S, then adding uv clearly
also preserves the standard CD-set. In both cases, the values from the first two
priorities are not changed, and |E(G′)| increases, which is an improvement. We
conclude that all edges in E(G)\E(G′) are incident with at least one vertex in
S and none are incident with 1-leaves.

Property 4: Every vertex v ∈ S that is neither a dominator nor a connector
has at least three neighbors in S, and all of its neighbors in S have degree three.
Proof: Let v be a vertex in S that is not a dominator or connector. If v has at
most two neighbors in S, then S−v is again a CD-set, for which v is a 2-leaf, so
this is an improvement. Suppose v has a neighbor u ∈ S with d(u) ≥ 4. Since
v is not a connector, uv is not a bridge of G′[S], so by Property 2, d(v) = 3.
Then S − v is a standard CD-set for G′ − uv, an improvement.

Property 5: If {u, v} ⊆ S, uv ∈ E(G′) and u and v are both neither domi-
nators nor connectors, then G′[S] − u − v is not connected.
Proof: Suppose u and v in S are neighbors which are both not connectors or
dominators. By Property 4, u and v have at least three neighbors in S, and all
of those neighbors have degree three. It follows that u and v both have degree
three, and therefore they have no neighbors outside of S. So S − u− v is again
a dominating set, and u and v are 2-leaves with respect to S − u− v and G′. It
follows that S − u − v is an improved standard CD-set for G′, unless S − u − v
is not a connected set. ✷

Now that we have proved the existence of a CD-set with these properties, we
can use them to establish upper bounds on the size of the CD-set, related to
the properties of the input graph.

5.4.2 An upper bound for the size of the constructed CD-

set

Our basic approach behind the deduction of a good upper bound for the size
of a CD-set S is based on the following idea. Let S be a potential standard
CD-set for G and G′ a realization, and suppose they satisfy the properties from
Theorem 5.8. For showing that |S| is roughly bounded from above by 2

3 |V (G)|,
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it is sufficient to show that |S| ≤ 2|S|. This is easy when G′[S] is a tree: vertices
with degree one resp. two in G′[S] have at least two resp. one neighbors in S,
since these vertices have degree at least three in G′. A tree has average degree
less than two, so there are at least |S| edges in [S, S]. Combining this with the
fact that vertices in S are incident with at most two of these edges, we obtain
|S| ≤ 2|S|. This is the basic idea behind the proof of our bound, which will be
refined later, also for the case when G′[S] is not a tree.

Observe that when G′[S] is not a tree, there may be vertices in S that are
not connectors or dominators, even when S is a minimal potential standard
CD-set. In this case we can find a minimal CD-set S ′ ⊂ S. It is for this set
S′ that we prove the bound. To improve the clarity of the exposition, we first
state the theorem which yields this bound, and then prove the two lemmas that
are used in its proof.

Theorem 5.9 Let G = (V,E) be a connected graph with δ(G) ≥ 3, and let G′

and S be a spanning subgraph and CD-set for G that satisfy the properties from
Theorem 5.8, such that in addition no block of G′[S] contains a triangle. If
S′ ⊆ S is a minimal CD-set, then |S ′| ≤ (2|V | − 4)/3.

Proof: In order to prove this theorem, we assign weights w to the vertices of
S such that the total weight w(S) is |V \S| + 3

2 |S\S′|. We show that w(S) ≥
1
2 |S| + 2. Then we can combine these equations to obtain the result.

The weight assignment is as follows: all leaves of S distribute a weight of
1 equally among their neighbors in S ′ (vertices in S\S′ receive no weight yet).
This means we have assigned a total weight of |V \S|. Next, we assign a weight
of 3

2 to each vertex in S\S′.

In order to show that w(S) ≥ 1
2 |S|+ 2, we prove three lower bounds for this

weight assignment w.

1. A vertex v with degree two in G′[S] is a dominator or connector (Prop-
erty 4 from Theorem 5.8), so v ∈ S ′. Since v has at least one leaf neighbor
u 6∈ S (Property 1), and u has at most two neighbors in G′[S′], u assigns
at least 1

2 to v. This shows that for a degree two vertex v, w(v) ≥ 1
2 .

2. A vertex v with degree one in G′[S] is a dominator, since it cannot be a
connector, and it must be a connector or dominator (Property 4). From
the 1-leaf adjacent to it, it receives a weight of 1. In addition, since v
has degree at least three and leaves have at most two CD-set neighbors,
it gains an additional weight of at least 1

2 . So for a degree one vertex v,
w(v) ≥ 3

2 .

3. Let G′[B] be a block of G′[S], and let L denote the set of vertices in B
with two neighbors in B, and H = B\L the set of vertices in B with at
least three neighbors in B. Then |L| ≥ |H| + 1 (this is shown below in
Lemma 5.10). Let C ⊂ S denote the set of connectors, which are the cut
vertices of G′[S].
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A vertex in L that is not a connector also has degree two in G′[S], and
therefore must be a dominator (Property 4). A dominator in B has weight
at least 1. We consider two cases:

(a) Suppose |(S\S′) ∩ B| ≥ 1. Then one of the vertices in H has an
additional weight of at least 3

2 . We have w(B\C) ≥ 3
2 + |L\C| ≥

3
2 + |L| − |C ∩ B|. Since |L| ≥ |H| + 1, |L| ≥ 1

2 |B| + 1
2 . Hence

w(B\C) ≥ 2 + 1
2 |B| − |C ∩ B|.

(b) Suppose (S\S′) ∩ B = ∅. Suppose B contains a vertex v that is not
a dominator or connector with respect to S. Since v ∈ S ′, it is a
connector or dominator with respect to S ′. But (S\S′) ∩ B = ∅, so
v is also not a connector for S′. Therefore, in S, v is adjacent to a
2-leaf u, and the other CD-set neighbor of u is in S\S ′. In this case,
v receives a weight of 1 from u. Recall that dominators also receive
a weight of at least 1. So all vertices in B\C receive a weight of at
least 1. It follows that w(B\C) ≥ |B\C| = |B|−|C∩B|. Since G′[B]
is not a triangle, |B| ≥ 4. Hence w(B\C) ≥ 1

2 |B| + 2 − |C ∩ B|.

In both cases we have w(B\C) ≥ 1
2 |B| + 2 − |C ∩ B|.

If G′[S] 6= K1, Lemma 5.11 below shows that w(S) ≥ 1
2 |S|+ 2. In that case we

have
3

2
|S\S′| + |V \S| = w(S) ≥ 1

2
|S| + 2 ⇔

3

2
|S| − 3

2
|S′| + |V | − |S| ≥ 1

2
|S| + 2 ⇔

|V | − 2 ≥ 3

2
|S′| ⇔ |S′| ≤ (2|V | − 4)/3.

If G′[S] = K1, then this final inequality follows easily since |V | ≥ 4 (G′ is a
spanning subgraph of a graph with δ ≥ 3). ✷

We continue to prove the two lemmas that were used in the above proof. We
adopt the notation from the proof. In particular, for a block G′[B] of G′[S], the
set L is the set of vertices in B that have two neighbors in B, and H = B\L is
the set of vertices with at least three neighbors in B. The first lemma gives a
lower bound for the number of L-vertices in a block of G′[S].

Lemma 5.10 Let CD-set S and graph G′ have the properties stated in Theo-
rem 5.8. For every block G′[B] in G′[S], |L| ≥ |H|.

If G′[B] contains no triangles, then |L| ≥ |H| + 1.

Proof: Let G′′ = G′[B]. Consider two neighbors u, v ∈ H ∩ B. If dG′(u) ≥ 4,
then dG′(v) = 3 = dG′′(v) since uv is not a bridge of G′[S] (Property 2 from
Theorem 5.8). Then v is not a dominator or connector since all its neighbors
are in B. This is a contradiction with Property 4. So both u and v have degree
three in G′, and therefore are not dominators or connectors. So by Property 5,
they form a 2-cut in G′[S], and therefore also in G′′.
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We show that it follows that every vertex in H has at most one neighbor in
H. Suppose u ∈ H has two neighbors v and w in H. G′′−u−v is disconnected,
and u and v both have exactly one neighbor in both components. Therefore if
u and v share a neighbor, this must be a vertex in L since G′′ is 2-connected.
So w is not a neighbor of v. Now it can be checked that G′′ − u − w is still
connected, a contradiction with the statement from the previous paragraph.

So every vertex in H has at most one neighbor in H, and therefore at least
two neighbors in L. Clearly, every vertex in L has at most two neighbors in H.
It follows that |L| ≥ |H|.

In addition, if |L| = |H|, then every vertex in H has exactly one neighbor
in H, and every vertex in L has two neighbors in H. We show that it follows
that G′′ contains a triangle. Consider two neighbors u, v ∈ H. Let C1 and
C2 be the two components of G′′ − u − v, such that |V (C1)| ≤ |V (C2)|. If C1

contains vertices of H, then let u′ and v′ be two neighbors in H ∩ V (C1). Let
C ′

1 and C ′
2 be the components of G′′ − u′ − v′, such that {u, v} ⊆ V (C ′

2). Now
V (C2) ⊂ V (C ′

2), so |V (C ′
1)| < |V (C1)|. We can continue to find new neighbor

pairs in H like this, until the smallest component contains no vertices of H any-
more. Since every vertex in L has two neighbors in H, this component consists
of a single vertex, and we have found a triangle. ✷

In the proof of Theorem 5.9 we started with a certain weight assignment
and showed that in G′[S]: a degree two vertex has weight at least 1

2 , a degree
one vertex has weight at least 3

2 , and for a block B and cut vertex set C (with
respect to G′[S]), w(B\C) ≥ 1

2 |B|+ 2− |C ∩B|. We anticipated in the proof of
Theorem 5.9 that this yields that the total weight of S is at least 1

2 |S| + 2, so
slightly more than 1

2 on average.
The proof of the following lemma shows our counting method: leaves of

G′[S] contain excess weight, and blocks of G′[S] have a weight deficit. The
proof shows how weights are moved inwards along the branches, and how the
weight deficit for blocks (given by the |C ∩ B| term) becomes an excess when
all but one of the branches surrounding a block are dealt with this way. See
Figure 5.3 for an example illustrating this reassignment of weights.

Lemma 5.11 Let G = (V,E) 6= K1 be a connected graph with non-negative
weights w on the vertices such that:

1. If d(v) = 2 then w(v) ≥ 1
2 .

2. If d(v) = 1 then then w(v) ≥ 3
2 .

3. If G[B] is a block of G, and C is the set of cut vertices of G, then
w(B\C) ≥ 1

2 |B| + 2 − |C ∩ B|.
For this graph, w(V ) ≥ 1

2 |V | + 2.

Proof: We prove the statement by induction on |V |. If G is 2-connected, then
the statement follows immediately from Property 3. If G = K2 the statement
is clearly true.
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Figure 5.3: Moving the weights in G′[S]
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In any other case, G has at least one leaf u such that G − u is not K1, or
it has at least one block with exactly one cut vertex (Lemma 5.5). We consider
these two cases.

Suppose first that u is a leaf of G, with neighbor v. Consider the graph
G′ = G − u with weight function w′(v) = w(v) + w(u) − 1

2 , and w′(x) = w(x)
for all other vertices. We prove that for G′ and w′, the three properties hold
again, so we can use induction. Note that since w(u) ≥ 3

2 , w′(v) ≥ w(v) + 1.
If v has degree two in G′ then since w′(v) ≥ 1, the first property holds for

v. If v has degree one in G′, then w(v) ≥ 1
2 (since v has degree two in G),

so w′(v) ≥ 3
2 , and the second property holds for v. For all other vertices, the

weights and degrees do not change so these two properties hold for all vertices.
For a block G′[B], it is obvious that Property 3 still holds, unless v ∈ B and

v is not a cut vertex anymore in G′. In this case, let CG resp. CG′ denote the
set of cut vertices of G and G′ (CG = CG′ + v).

w′(B\CG′) ≥ w(B\CG) + 1 ≥ 1

2
|B| − |CG ∩ B| + 3 =

1

2
|B| − |CG′ ∩ B| + 2,

so Property 3 holds.
We conclude that if G has a leaf u, then we can construct a new graph

G′ = G − u with weight function w′ such that w′(V (G′)) = w(V (G)) − 1
2 , for

which the three properties hold. G′ 6= K1 and G′ is connected, so by induction,
w(V (G)) = w′(V (G′) + 1

2 = 1
2 |V (G′)| + 5

2 = 1
2 |V (G)| + 2, which proves the

lemma for this case.

Now we consider the case that G has no leaves. Then G has a block B which
contains only a single cut vertex u. Consider the graph G′ = G − (B − u) with
weight function w′(u) = 3

2 and w′(x) = w(x) for all other vertices. G′ 6= K1,
so if we can show that the three properties hold for G′ and w′, we can use
induction.

If dG′(u) = 1 or dG′(u) = 2, then w′ clearly satisfies the corresponding
properties. For a block G′[B′], Property 3 clearly holds when u 6∈ B′ or u is
still a cut vertex in G′. In the other case, let CG resp. CG′ denote the set of cut
vertices of G and G′. Now

w′(B′\CG′) = w(B′\CG)+
3

2
≥ 1

2
|B′|− |CG ∩B′|+ 7

2
>

1

2
|B′|− |CG′ ∩B′|+ 5

2
,

which is even better than necessary.
Now for G′ all weight properties are satisfied and we can use induction: let

V = V (G) and V ′ = V (G′).

w(V ) ≥ w′(V ′) + w(B − u) − 3

2
≥ (

1

2
|V ′| + 2) + (

1

2
|B| + 1) − 3

2
=

1

2
|V ′| + 1

2
|B| + 3

2
=

1

2
(|V | − |B| + 1) +

1

2
|B| + 3

2
=

1

2
|V | + 2.
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This proves the lemma for the case where G has no leaves, so the lemma is true
in all cases. ✷

In Theorem 5.9, there is an additional condition that no block of G′[S] con-
tains triangles. Unfortunately, such a G′ and S do not always exist for every
connected graph G with δ(G) ≥ 3. Consider graphs with triangles consisting
of three cut vertices: every standard CD-set and actually even every CD-set
contains triangles. In fact, we can even construct planar, 3-connected, cubic
graphs that do not have a CD-set without triangles:

Theorem 5.12 Deciding whether a given graph has a CD-set without triangles
is NP-complete, even when restricted to planar, cubic, 3-connected graphs. The
same is true for deciding whether a given graph has a potential standard CD-set
without triangles.

Proof: The problem of deciding whether a given graph has a spanning sub-
graph that is a path is called the Hamiltonian Path problem. This problem is
NP-complete even when restricted to planar, cubic, 3-connected graphs [31].
Let G = (V,E) be such a Hamiltonian Path instance. Replacing every vertex
with a triangle in the straightforward way gives a graph G′, which is again
planar, cubic and 3-connected. Suppose S is a CD-set without triangles for
G′. Define F ⊂ E as follows: if the edge corresponding to uv ∈ E is part of
G′[S], add uv to F . Since S contains at most two vertices of every triangle in
G′, ∆((V, F )) ≤ 2. Suppose a vertex v with d(v) = 0 exists in (V, F ). Then,
because S is a dominating set, every neighbor of v has degree one in (V, F ).
So (V, F ) has maximum degree two and at least three vertices with degree one,
and therefore has multiple non-trivial components, contradicting the fact that
G′[S] is connected. Therefore (V, F ) has minimum degree one and maximum
degree two and is connected, which gives a Hamiltonian path for G. Similarly,
a Hamiltonian path for G can be used to find a CD-set without triangles for G′.
This shows that the first decision problem of Theorem 5.12 is NP-complete.

In the graph constructed above, a CD-set without triangles exists if and only
if a potential standard CD-set without triangles exists, so the second problem
is also NP-complete. ✷

So we cannot hope to improve our CD-set construction method to always find
CD-sets that do not contain triangles. However, for graphs without triangles
Theorem 5.8 and Theorem 5.9 immediately lead to the following positive state-
ment:

Theorem 5.13 A connected, triangle-free graph on n vertices with δ ≥ 3 has
a CD-set S with |S| ≤ (2n − 4)/3.

This statement is equivalent with stating that a connected, triangle-free graph
on n vertices with δ ≥ 3 has a spanning tree with at least (n + 4)/3 leaves
(see Section 5.2.2), so we have proved Theorem 5.3. We have proved this by
considering minimal CD-sets with a number of properties, and showing that for



108 CHAPTER 5. EXTREMAL RESULTS FOR MAXLEAF
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Figure 5.4: G[S] contains one cubic diamond block

any such CD-set the bound holds. This differs from the techniques that were
used previously to prove this kind of results.

For graphs with triangles, we use the CD-set construction method presented
in the next section. The idea is to find a CD-set in which blocks and therefore
blocks containing triangles are sparse. This leads to an upper bound for the CD-
set size, and corresponding lower bound for the number of leaves of a spanning
tree, that is better than the bound from Theorem 5.1 (except in some very
special cases given by the worst case examples for that bound), but worse than
the bound from Theorem 5.13.

5.5 Small CD-sets for graphs with few cubic di-

amonds

5.5.1 Construction and properties

The bound given in Theorem 5.1 is best possible for its class (connected graphs
with δ ≥ 3). So if we want to improve the bound, we have to restrict the graph
class. Fortunately, only a small restriction is needed.

Definition 5.14 A subgraph H of G is a cubic diamond if H is a diamond that
is induced by four vertices of degree three in G.
If u and v are the two vertices in H that are not adjacent, it is called a cubic
diamond between u and v.
Let S ⊆ V (G). Subgraph H of G[S] is a cubic diamond block of G[S] if H is a
cubic diamond with respect to G and a block with respect to G[S]. (Vertices of
H may have degree two in G[S].)

Figure 5.4 shows an illustration of cubic diamond blocks: H1 is a cubic diamond
block of G[S] that contains one vertex with degree two in G[S], but H2 and H3

are not cubic diamond blocks.
All of the examples showing that Theorem 5.1 is best possible contain many

cubic diamonds. We will show that for graphs without cubic diamonds, the
bound can be improved. Actually our main result is stronger: we give a new
bound that depends on the number of cubic diamonds. The new bound is
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Figure 5.5: A diamond necklace

considerably better if this number is small, and it almost coincides with the
bound from Theorem 5.1 when this number is maximum. The only difference
is a discrepancy of 2

7 in the constant.
Below we again prove the existence of a potential standard CD-set S for G

and a realization G′ that have a number of properties. The first five properties
are the same as those stated in Theorem 5.8. In addition, since cubic diamonds
are the only obstruction to an improved bound, we need to make sure that cubic
diamonds in G′[S] only occur when they cannot be avoided. This is the case
when the graph G contains a diamond necklace (see Figure 5.5).

Definition 5.15 An induced subgraph H of G is a diamond necklace in G if for
some k ≥ 1, the vertices of H can be labeled u1, . . . , uk+1, v1, . . . , vk, w1, . . . , wk,
such that the edge set of H consists exactly of uivi, uiwi, viwi, viui+1, wiui+1

for i = 1, . . . , k, and such that u2, . . . , uk have degree four in G, and all other
vertices of H have degree three in G.

Note that a cubic diamond is also a diamond necklace. Property 6 in Theo-
rem 5.18 below shows that in the CD-set we consider, the only cubic diamond
blocks that occur are part of a diamond necklace. Before we can explain Prop-
erty 7 of Theorem 5.18, we need the following definitions.

Definition 5.16 A vertex v ∈ S is a simple CD-set vertex with respect to the
CD-set S for graph G if d(v) = 3 and

• G[S − v] has two components, and S − v is a dominating set for G, or

• G[S − v] is connected, and v has exactly one 1-leaf neighbor.

Definition 5.17 A 1-leaf v is a block-leaf with respect to the CD-set S for graph
G if there is a path P in G[S] with end vertices x and y (x = y is possible),
consisting only of simple CD-set vertices, such that

• x is a neighbor of v.

• y is part of a block of G[S], but none of the other vertices of P are part of
a block.

Sloppily speaking, in the proof of Theorem 5.9 and Lemma 5.11, a lower
bound for |S| was found as follows. First weights were assigned to vertices
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in S, mainly from leaves that distributed a weight of one equally among their
neighbors in S. Then we showed that these weights can be redistributed over
the vertices of S such that every vertex receives a weight of at least 1

2 .
If blocks of G′[S] may contain triangles, then this is not always possible.

However, for every block that is not a diamond, there is usually one additional
block-leaf (there are exceptions to this statement, but those are easy to work
with). If we can ensure that there are relatively few block-leaves (and thus that
blocks are sparse), then we can change the weight assignment: every block-leaf
will assign a weight of a little more than 1 to its CD-set neighbors, and other
leaves will distribute a weight of a little less than 1 among its CD-set neighbors.
This can be done such that the total weight is still at most |S|. With this weight
assignment, non-diamond blocks receive enough weight to prove the desired
bound. Property 7 below shows that there are relatively few block-leaves.

Theorem 5.18 A connected graph G with δ(G) ≥ 3 has a spanning subgraph
G′ and a CD-set S with the following properties. Degrees, neighbors and all
other graph related notions are taken with respect to G′.

1. S is a standard CD-set (for G′).

2. If u, v ∈ S, d(u) ≥ d(v) ≥ 4 and uv ∈ E(G′), then uv is a bridge of G′[S].

3. Edges in E(G)\E(G′) are between vertices in S, or between a vertex in S
and a 2-leaf.

4. Every vertex v ∈ S that is neither a dominator nor a connector has at
least three neighbors in S, and all of its neighbors in S have degree three.

5. If {u, v} ⊆ S, uv ∈ E(G′) and u and v are both neither dominators nor
connectors, then G′[S] − u − v is not connected.

6. The number of cubic diamond blocks in G′[S] is at most the number of
diamond necklaces in G.

7. The number of block-leaves is at most half the total number of leaves.

In addition, if |S| = 2, then |S| ≥ 4.

Proof: We consider a CD-set S and spanning subgraph G′ such that S is a
standard CD-set for G′, that are optimal according to the following priorities:

• Minimize |S|.

• Maximize the number of 2-leaves in S.

• Minimize the number of cubic diamond blocks in G′[S].

• Minimize |E(G′[S])|.

• Maximize |E(G′)|.
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By this we mean that among all pairs of S and G′ that minimize |S|, we consider
pairs that maximize the number of 2-leaves. Among all these pairs, we choose
one that minimizes the number of cubic diamond blocks in G′[S], etc. We show
that for S and G′ chosen this way, the above properties hold. The proof is by
contradiction: we consider a standard CD-set S for G′. If one of the properties
does not hold, we find an improved S and G′ according to the priorities.

Property 2: If u, v ∈ S, d(u) ≥ d(v) ≥ 4 and uv ∈ E(G′), then uv is a bridge of
G′[S].
Proof: Consider u, v ∈ S with d(u) ≥ 4, d(v) ≥ 4 and uv ∈ E(G′). If uv
is not a bridge in G′[S], then we can delete uv such that S still is a standard
CD-set for G′. Since this decreases |E(G′[S])|, this change is an improvement
unless it introduces a new cubic diamond block D. In the latter case, assume
w.l.o.g. v ∈ V (D), and let z 6∈ {u, v} be a vertex in D adjacent to the three
other vertices of D. Consider S − z and G′ − vz (with uv ∈ E(G′)). This is
again a standard CD-set, so an improvement is found.

The proofs of Property 4 and Property 5 are exactly the same as in the proof of
Theorem 5.8, and the proof of Property 3 is very similar. We leave the details
to the reader.

Property 6: The number of cubic diamond blocks in G′[S] is at most the number
of diamond necklaces in G.
Proof: We show that every cubic diamond block in G′[S] is part of a diamond
necklace in G, and that every diamond necklace in G contains only one cubic
diamond block of G′[S].

First we define an operation on a standard CD-set S for subgraph G′ of G,
which changes S and G′. This operation is illustrated in Figure 5.6. Let D be
a cubic diamond block in G′[S]. Edges in E(G)\E(G′) will be called removed
edges. Suppose a removed edge xy exists with x ∈ V (D) and y a 2-leaf. A 2-leaf
change using xy consists of the following steps: let w ∈ V (D) − x be a vertex
with three neighbors in V (D). Add y to S, remove w from S, add xy to E(G′),
and remove wx from E(G′). If the addition of y to S introduces a 3-leaf z, then
in addition remove yz from E(G′), for every such leaf z. Since y now has three
neighbors in S, this last operation does not reduce its degree below three. After
this change, x has degree three and w is a 2-leaf. It follows that the result is a
standard CD-set S∗ for the new graph G∗ and that D is not a block in G∗[S∗].
Note that G∗[S∗] may contain a cubic diamond block that was not present in
G′[S], as illustrated in Figure 5.6(b).

Using 2-leaf changes, we will prove the statements from the beginning of the
proof. Let D1 = G′[{u1, v1, w1, u2}] be a cubic diamond block in G′[S], with
u1u2 6∈ E(G′). If D1 is also a cubic diamond in G, the statements are obvious.
Otherwise, there is a removed edge xy such that x ∈ V (D1). If y ∈ S, then add
xy to G′. S is again a standard CD-set with respect to G′, and G′[S] contains
one cubic diamond block less. This is an improvement. So we may assume
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Figure 5.6: Two examples of a 2-leaf change
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Figure 5.7: Two possible results of a series of 2-leaf changes

that y 6∈ S. Then y is a 2-leaf (Property 3). We can apply a 2-leaf change
using the edge xy. If the number of cubic diamond blocks decreases, this is an
improvement (as indicated in Figure 5.6(a)). Otherwise, x and y are part of a
new cubic diamond block D2. In this case, D1 and D2 only have x in common
(the other two remaining vertices of D1 cannot be part of a cubic diamond block
since they are now adjacent to a 2-leaf), and w.l.o.g. x = u2 (otherwise x would
have degree at least four, and D2 would not be cubic). This case is shown in
Figure 5.6(b). We label the vertices of D2 as V (D2) = {u2, v2, w2, v3}, with
v2v3 6∈ E(G′).

If a 2-leaf change is possible for D1, we first try to apply a 2-leaf change
that decreases the number of cubic diamond blocks. If this is not possible,
we apply an other 2-leaf change. So in this case, v1 and w1 are not incident
with removed edges. We also know that w.l.o.g. u2 is incident with exactly
one removed edge (otherwise the neighbor of u2 in V (G′)\V (D1) would have at
least two 2-leaf neighbors and therefore would have degree at least four), and
u1 is incident with at most one removed edge. We apply a 2-leaf change using
the removed edge incident with u2, which gives a new cubic diamond block D2,
with V (D2) = {u2, v2, w2, u3} such that u2 and u3 are not adjacent. Now we
try to find an improvement again: if an edge can be added such that D2 is not a
cubic diamond block anymore, or if a 2-leaf change can be applied such that the
number of cubic diamond blocks decreases, we have found such an improvement.
Otherwise, if a 2-leaf change is possible that does not introduce D1 again, we
apply this 2-leaf change introducing a cubic diamond block D3 with V (D3) =
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{u3, v3, w3, u4}. We continue to apply 2-leaf changes (without returning to a
previous state) until either an improvement is found (see Figure 5.7(a)), or no
new 2-leaf change can be applied anymore. In the latter case, we have found k
diamonds in G labeled D1, . . . ,Dk such that V (Di) = {ui, vi, wi, ui+1}, where
ui and ui+1 are not adjacent, and we know that dG(vi) = dG(wi) = 3 for all i,
dG(uk+1) = 3, dG(ui) = 4 for i = 2, . . . , k (see Figure 5.7(b)). If dG(u1) = 3,
then we have found a diamond necklace in G which contains only one cubic
diamond block of G′[S]. If dG(u1) > 3, then we consider the original G′ and
S again, and apply the same strategy starting with a 2-leaf change using an
edge incident with u1. If this also does not lead to an improvement, a structure
like the one shown in Figure 5.7(b) is present on both sides of D1, and we have
again found a diamond necklace in G.

In every case we have either found an improvement, or have shown that the
cubic diamond block is part of a cubic diamond necklace in G that contains only
one cubic diamond block. This concludes the proof of Property 6.

Property 7: The number of block-leaves is at most half the total number of leaves.
Proof: We will show that if there are leaves with at least two block-leaf neigh-
bors, we can make an improvement according to our priorities, except in one
very specific case. Combined with the fact that 1-leaves have at least two leaf
neighbors (Property 3), this enables us to prove that there are at least as many
non-block-leaves as block-leaves in S and G′ (a non-block-leaf is a leaf but not
a block-leaf).

Below we consider a number of cases corresponding to structures in S and
G′. In every case we will define a new pair S∗ (or S2) and G∗ such that S∗ is a
standard CD-set for subgraph G∗ of G, and S∗, G∗ is an improvement. We use
the following shorthand to indicate the four features we will check for S∗ and G∗:

Connected: S∗ induces a connected graph.
Dominating: S∗ is a dominating set.
2-CD-set: There are only 1-leaves and 2-leaves with respect to S∗ and G∗.
Minimum degree 3: Vertices in S∗ have degree at least three in G∗.
Improvement: In every case we can show that |S∗| < |S| or |S∗| = |S| and S∗

has more 2-leaves than S.

First we study these cases separately, and afterwards we use these cases to
prove Property 7.

Suppose there is a leaf u with two block-leaf neighbors v and w. Let x and
y be the CD-set neighbors of v resp. w. Consider S∗ = S + u − x − y.

Case 1: S∗ is again a CD-set.
We will show to construct graph G∗. It is clear that this change is an improve-
ment.
2-CD-set: If there is a 2-leaf a with respect to S that becomes a 3-leaf because
of the addition of u to the CD-set, then d(u) > 3, since v, w and at least one
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Figure 5.8: The change from case 2.1

CD-set vertex are also neighbors of u. So the edge au can be deleted from G′

without decreasing the degree of a CD-set vertex below three. This holds for
every such edge. Since v and w are block-leaves for S, d(x) = d(y) = 3, and
they both have at least one leaf neighbor with respect to S∗, so the two new
leaves are also not 3-leaves.
Minimum degree 3: Only vertex u with d(u) ≥ 3 was added to the CD-set.

Case 2: G′[S∗] is not connected. We consider two subcases which cover this
case.

Case 2.1: G′[S∗] and G′[S − x − y] are not connected.
Since v and w are block-leaves and x and y are dominators, x and y cannot be
connectors. So x and y form a minimal 2-cut for G′[S]. So both have at least
two CD-set neighbors. Consider S2 = S +u−x (See Figure 5.8 for an example).
Connected: x is not a connector, so G′[S − x] is connected. Since v is a
block-leaf, x has degree three, and thus u is not adjacent to x. So G′[S2] is also
connected.
Dominating: Since v is a block-leaf, only v is not dominated by S − x. u is a
neighbor of v, so S2 is a dominating set.
2-CD-set: If a 2-leaf becomes a 3-leaf because of the addition of u, we can
delete an edge from G′ (as in case 1). x becomes a 2-leaf.
Minimum degree 3: u has degree at least three.
Improvement: |S2| = |S|. We gain a 2-leaf (x), and lose a leaf that may have
been a 1-leaf or 2-leaf (u). v remains a 1-leaf, but with a new CD-set neighbor.
w was a 1-leaf but becomes a 2-leaf after the addition of u. x has degree three,
so it has no leaf neighbors other than v, and therefore no 2-leaves can become
1-leaves. It is possible that some other 1-leaves become 2-leaves after the addi-
tion of u. We see that there is at least one more 2-leaf.

Case 2.2: G′[S∗] is not connected, but G′[S − x − y] is connected.
In this case, u is an isolated vertex in G′[S∗]. This means that in S its CD-set
neighbors are exactly x and y (not just one of them, since v and w are block-
leaves). Consider S2 = S + u − x (See Figure 5.9).
Connected: x is not a connector, so G′[S − x] is connected. u has y as a
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Figure 5.9: The change from case 2.2
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Figure 5.10: The situation and labeling in case 3

CD-set neighbor, so G′[S2] is connected.
Dominating: Only v is not dominated by S − x. v is adjacent to u, so S2 is
dominating.
2-CD-set: If the addition of u makes 2-leaves into 3-leaves, we can again delete
edges from G′ to prevent this (as in case 1). x has degree three and one leaf
neighbor (v), so it is not a 3-leaf.
Minimum degree 3: u has degree at least four.
Improvement: |S2| = |S|. We gain a 2-leaf (x), and lose a 2-leaf (u). v re-
mains a 1-leaf, with a new CD-set neighbor. w was a 1-leaf but becomes a 2-leaf
after the addition of u. x has degree three, so it has no leaf neighbors other
than v, and therefore no 2-leaves can become 1-leaves. It is possible that some
other 1-leaves become 2-leaves after the addition of u. We see that there is at
least one more 2-leaf.

Case 3: Suppose S∗ is not a dominating set.
This case is more complicated than the previous cases. We study the situation
in more detail, and introduce some additional vertex labels, and then proceed
to study six subcases. See Figure 5.10. The only 1-leaf neighbors of x and y
are v resp. w, so there is a 2-leaf (with respect to S) that has CD-set neighbors
x and y. Let z be this 2-leaf. d(z) = 2 only if in G, z is adjacent to another
vertex a ∈ S (Property 3). In this case, we can add the edge az to G′, and find
that there is a graph for which S∗ is a standard CD-set (see case 1 for details).
So we may now assume that z has at least one leaf neighbor. Since S∗ is not
dominating, this leaf neighbor is not equal to u, but can be equal to v or w.
x and y have degree one in G′[S]. Let x′ and y′ be their respective CD-set
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Figure 5.11: The change from case 3.1
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Figure 5.12: The change from case 3.2

neighbors. x′ 6= y′ since v and w are block-leaves.

Case 3.1: Suppose z is adjacent to w. Now consider S2 := S+u+w−x−y−y′

(See Figure 5.11).
Connected: G′[S − x] and G′[S − y − y′] are connected since v and w are
block-leaves. x is not part of a block (of G′[S]), so G′[S − x − y − y′] is also
connected. y′ is not a dominator, so u has a neighbor in S not in {x, y, y′}. v
is adjacent to u. So G′[S2] is connected.
Dominating: The only vertices not dominated by S − x − y − y′ are y, v, w
and z, since y′ is not a dominator. u dominates v, w is in S2, and w dominates
z and y.
2-CD-set: z becomes a 1-leaf, so u and w both are adjacent to at least three
vertices that will not become 3-leaves. So if for S2 there would be 3-leaves
adjacent to u or w, we can prevent this by deleting the corresponding edges,
without decreasing the degrees of u and w below three. The new leaves have
degree three and are adjacent to other leaves.
Minimum degree 3: u and w have degree at least three.
Improvement: |S2| < |S|.

Case 3.2: Suppose the following properties hold:

• z has a 1-leaf neighbor.

• x′ is not part of a block (of G′[S]), so it has one other simple CD-set
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Figure 5.13: The change from case 3.3

neighbor x′′.

Consider S2 = S + z − x′ − x′′ (See Figure 5.12). If x′ and x′′ share a 2-
leaf neighbor, then x′′ is not part of a block and has one other simple CD-set
neighbor x′′′ and we consider S2 = S + z − x′′ − x′′′ instead.
Connected: G′[S − x′ − x′′] has two components, one consisting of the single
vertex x. z is adjacent to y and x, so G[S2] is connected. In the case where we
consider G′[S − x′′ − x′′′], one component consists of vertices x and x′, and the
reasoning is the same.
Dominating: x′ and x′′ (or x′′ and x′′′) are not dominators, and do not share
a 2-leaf neighbor, and both have neighbors in S − x′ − x′′ (S − x′′ − x′′′), so
S − x′ − x′′ (S − x′′ − x′′′) is already a dominating set.
2-CD-set: z has at least three neighbors that are not 2-leaves with respect to
S, so if 3-leaves would be introduced by the addition of z, we can prevent this
by deleting the corresponding edges. x′ and x′′ (x′′ and x′′′) have degree three
and are adjacent, so these will not become 3-leaves.
Minimum degree 3: z has degree at least three.
Improvement: |S2| < |S|.

Case 3.3: Suppose the following properties hold:

• z has a 1-leaf neighbor z′ 6= v, z′ 6= w.

• x′ is part of a block.

Consider S2 := S + u + z − x − x′ (See Figure 5.13).
Connected: G′[S − x − x′] is connected. Since x′ is not a dominator and
N(x) = {v, z, x′}, u has a CD-set neighbor other than x′ or x. z is adjacent to
y. So G′[S2] is connected.
Dominating: Only v and x are not dominated by S − x − x′. u dominates v,
and z dominates x.
2-CD-set: x and x′ do not become 3-leaves since they have degree three. u is
adjacent to at least three vertices that will not become 3-leaves. z is adjacent
to at least three vertices that will not become 3-leaves.
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Figure 5.14: The change from case 3.4

Minimum degree 3: u and z have degree at least three.
Improvement: |S2| = |S|. We lose u which can be a 1-leaf or 2-leaf, and we
lose the 2-leaf z. We gain a 2-leaf x′ (since it is part of a block) and a 1-leaf
x. w becomes a 2-leaf, v remains a 1-leaf (with a new CD-set neighbor), and z ′

becomes a 2-leaf. Since x and x′ have no other leaf neighbors in S, there are
no other 2-leaves that can become 1-leaves. It is possible that some 1-leaves
become 2-leaves by the addition of u and z. So we gain at least one 2-leaf.

Case 3.4: Suppose the following properties hold:

• v has a neighbor v′ 6= u that is a block-leaf. Let v′′ be its CD-set neighbor.

• x′ and v′′ are part of the same block.

Note that v′ cannot be equal to w, because in that case v′′ = y and is not part
of a block. Consider S2 = S + u + v − v′′ − x (See Figure 5.14).
Connected: G′[S − x] and G′[S − v′′] are connected since v resp. v′ are block
leaves. Since x is not part of a block, G′[S − x − v′′] is also connected. u has a
CD-set neighbor other than x or v′′, and v is adjacent to u.
Dominating: In S − x − v′′, only v and v′ are not dominated, since x and v′′

do not share a 2-leaf neighbor. v ∈ S2, and v′ is dominated by v.
2-CD-set: u and v have at least three non-2-leaf neighbors, so any 3-leaves
adjacent to u or v can be prevented by deleting edges from G′. v′′ and x have
degree three and have at least one leaf neighbor in S2.
Minimum degree 3: u and v have degree at least three.
Improvement: |S2| = |S|. We lose the 1-leaf v and the leaf u which can be a
1-leaf or a 2-leaf. v′′ is part of a block so it becomes a 2-leaf. x becomes a 2-leaf
since v ∈ S2. z becomes a 1-leaf instead of a 2-leaf, v′ remains a 1-leaf (with a
new CD-set neighbor), and w becomes a 2-leaf instead of a 1-leaf. In S there
are no 2-leaves adjacent to v′′ since d(v′′) = 3 and it is part of a block, so the
removal from the CD-set of v′′ cannot make 2-leaves into 1-leaves. Something
similar is true for x. The addition of u and v can make some 1-leaves into
2-leaves. So we gain at least one 2-leaf.

Case 3.5: Suppose the following properties hold:

• v has a neighbor v′ 6= u, v′ 6= w that is a block-leaf.
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Figure 5.16: The change from case 3.6

• Let v′′ be the unique CD-set neighbor of v′. v′′ and x′ are not part of the
same block, and do not share a 2-leaf neighbor.

Consider S2 = S + u + v − x − x′ − v′′ (See Figure 5.15).
Connected: Since v is a block-leaf, G′[S − x − x′] is connected. Since v′ is a
block-leaf, G′[S − v′′] is connected. In addition, since v′′ and x′ are not part of
the same block, G′[S−x−x′−v′′] is connected. x′ and v′′ do not share a 2-leaf
neighbor, so u has a CD-set neighbor other than x, x′ or v′′. v is adjacent to u.
So G′[S2] is connected.
Dominating: The only vertices not dominated by S − x − x′ − v′′ are v, v′

and x, since v and v′ are the only 1-leaves adjacent to x resp. v′′, x′ is not a
dominator, and x′ and v′′ do not share a 2-leaf neighbor. v ∈ S2, and v′ and x
are dominated by v.
2-CD-set: x, x′ and v′′ all have degree three and have at least one leaf neighbor
with respect to S2. Both u and v have at least three neighbors that will not
become 3-leaves.
Minimum degree 3: u and v have degree at least three.
Improvement: |S2| < |S|.

Case 3.6: Suppose the following properties hold:

• x′ and y′ are not part of the same block and do not share a 2-leaf neighbor.

• z has a neighbor z′ that is a 2-leaf.
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Consider S2 = S + u + z + z′ − x − x′ − y − y′ (See Figure 5.16).
Connected: Since v and w are block leaves, G′[S−x−x′] resp. G′[S−y−y′] are
connected. Since x′ and y′ are not part of the same block, G′[S−x−x′−y−y′]
is also connected. Since x′ and y′ do not share a 2-leaf neighbor, z′ has a CD-set
neighbor other than x′, y′, x and y. The same is true for u. z is adjacent to z′.
So G′[S2] is connected.
Dominating: The only vertices not dominated by S −x− y are v, w and z. x′

and y′ are not dominators and do not share a 2-leaf (also not with x and y), so
the only additional vertices not dominated by S − x − y − x′ − y′ are x and y.
In S2, v and w are dominated by u, z is part of S2, and x and y are dominated
by z.
2-CD-set: The new leaves have degree three and are adjacent to at least one
leaf. u, z and z′ have at least three neighbors that will not become 3-leaves.
Minimum degree 3: u, z and z′ have degree at least three.
Improvement: |S2| < |S|.

Unfortunately, the above cases do not cover all possibilities, so we cannot show
that in S and G′, every leaf has at most one block-leaf neighbor. However we
can use the above cases to show that if a leaf has at least two block-leaf neigh-
bors, it is part of a highly restricted structure. We will deduce a number of
properties for this situation, and use this to conclude our proof of Property 7.
For this we introduce some definitions and notations.

A cycle C in G′ is called a problem cycle if its vertices can be labeled u, v, w,
x, y and z as in Figure 5.10, such that u is a leaf with two block-leaf neighbors
v and w, v and w have CD-set neighbors x and y, and x and y have the 2-leaf
neighbor z in common. For any problem cycle C, we use the notation u(C) to
denote the vertex that is labeled u in such a labeling. We will also call u(C)
the u-vertex of C. For the other five vertices the notation is similar. Note that
there is only one vertex in a problem cycle that can receive the label u, and the
same holds for the label z, but the labels v and w are interchangeable, just like
the labels x and y (though x and v should always be adjacent).

We will now prove that if a leaf u has at least two block-leaf neighbors v and
w, then there is a problem cycle C with u = u(C), v = v(C) and w = w(C).
Then we will state a number of properties for problem cycles.

Consider a leaf u with at least two block-leaf neighbors v and w, which have
CD-set neighbors x resp. y. If S∗ = S +u−x− y is again a CD-set, apply Case
1 to obtain a contradiction. If S∗ is not connected, apply Case 2.1 or 2.2. If S∗

is not dominating, then in Case 3 it is shown that these five vertices are part of
a problem cycle C together with a vertex z = z(C), with d(z) ≥ 3. This covers
all cases, so if a leaf u has block-leaf neighbors v and w with CD-set neighbors
x resp. y, then u = u(C), v = v(C), w = w(C), x = x(C) and y = y(C) for
some problem cycle C. In this case we can define vertices x′ and y′ as it is done
in Case 3, and use the subcases of Case 3 to deduce properties of C. These
properties are stated in the following claims.

1. z has no 1-leaf neighbor, and has at least one 2-leaf neighbor.
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Proof: If z has a 1-leaf neighbor, this cannot be u since then S +u−x−y
is a CD-set. If z is adjacent to w or v, we can apply Case 3.1 (using the
symmetry of the cases). Otherwise z is adjacent to a 1-leaf z ′ 6∈ V (C),
and we can apply Case 3.2 or Case 3.3. Since d(z) ≥ 3, z has a 2-leaf
neighbor.

2. If v or w has a block leaf neighbor v′, then v′ ∈ {u, v, w}.
Proof: We prove the statement for v; for w it follows by symmetry.
Suppose v has a block-leaf neighbor v′ 6∈ {u,w}, with CD-set neighbor v′′.
If x′ and v′′ are part of the same block, we can apply Case 3.4. If x′ and v′′

are not part of the same block and do not share a 2-leaf neighbor, we can
apply Case 3.5. So we now assume that x′ and v′′ share a 2-leaf neighbor.
Then x′ is not part of a block, and does not share a 2-leaf neighbor with
y′. We know that z has a 2-leaf neighbor (Claim 1), so Case 3.6 can be
applied.

In addition we state two claims for problem cycles that have vertices in common.
A non-block-leaf is called class 0 if it has no block-leaf neighbors, class 1 if it has
one block-leaf neighbor, and class 2 if it has at least two block-leaf neighbors.

3. If C1 and C2 are problem cycles with u(C1) = u(C2), then C1 = C2.
Proof: If v(C1) ∈ V (C2) or w(C1) ∈ V (C2), then w.l.o.g. v(C1) = v(C2).
Since v(C1) has exactly one CD-set neighbor, x(C1) = x(C2). Since v(C1)
is a block-leaf, x(C1) has only one other leaf neighbor, so z(C1) = z(C2).
z(C1) is a 2-leaf, so y(C1) = y(C2). y(C1) is adjacent to only one block-
leaf, so w(C1) = w(C2). It follows that C1 = C2. We conclude that it is
not possible that there are two different problem cycles C1 and C2 such
that u(C1) = u(C2) and v(C1) or w(C1) is equal to v(C2) or w(C2). Now
if u(C1) = u(C2) and the two cycles do not have any of these vertices in
common, then we consider a new problem cycle C3 that contains u(C1),
v(C1) and v(C2) (since a leaf and two of its block-leaf neighbors are always
part of a problem cycle). Now we have u(C3) = u(C1) and v(C3) = v(C1),
but C1 6= C3, a contradiction.

4. If the problem cycles C1 and C2 both contain a class 0 leaf z, then w.l.o.g.
v(C1) = v(C2), x(C1) = x(C2), z(C1) = z(C2), y(C1) = y(C2) and
w(C1) = w(C2) (the u-vertices may be different).
Proof: The only class 0 leaf on a problem cycle can be the z-vertex, so
z = z(C1) = z(C2), and it must be a 2-leaf. So it has only two CD-set
neighbors, and w.l.o.g. x := x(C1) = x(C2) and y := y(C1) = y(C2).
Since their other neighbors on the cycles are block-leaves, x and y are
only adjacent to one block-leaf, and v(C1) = v(C2) and w(C1) = w(C2).

For the purpose of proving that at most half of the leaves are block-leaves,
we define a function f that assigns non-block-leaves to block-leaves. Using the
above claims, we will prove that f is injective. The assignment is done using
the following method which contains three assignment steps.

Consider a block-leaf v to which no non-block-leaf has been assigned.
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1. If v has a class 1 neighbor u, then assign f(v) := u.

2. Otherwise, if v has a class 2 neighbor u, which has another block-leaf
neighbor w, then let C be the problem cycle with v = v(C), u = u(C) and
w = w(C). Assign f(v) := u, f(w) := z(C).

3. Otherwise, v has only block-leaf neighbors. Since d(v) ≥ 3 (Property 3),
v = u(C) for some problem cycle C. Assign f(v) := z(C).

Repeat this until all block-leaves are assigned a non-block-leaf. Clearly, one of
the above steps applies for every block-leaf, so f is a function. We will prove
that f is injective, so every non-block-leaf is assigned at most once.

Consider a non-block-leaf z. If z is class 1, then it is assigned at most once
in step 1. All leaves assigned in steps 2 and 3 are class 0 (Claim 1) or class 2,
so z is not assigned in these steps.

If z is class 2, then z = u(C) for some problem cycle C. z is only part of
one such problem cycle (Claim 3), so z is assigned at most once in step 2, and
not in step 3 (step 3 only assigns class 0 vertices).

If z is class 0, then it can be assigned in step 2 or step 3. For every problem
cycle C that z is part of, v(C) and w(C) are the same (Claim 4), so z is assigned
at most once in step 2 (even though z can be part of multiple problem cycles,
once the v and w-vertices are assigned a non-block-leaf, problem cycles with
the same v and w-vertices are not considered anymore in step 2). Suppose z
is assigned once in step 2 and once in step 3, or at least twice in step 3. Then
z = z(C1) = z(C2) for two different problem cycles C1 and C2, and w.l.o.g.
u(C2) is a block-leaf (C2 corresponds to the cycle used in step 3). C1 and C2

must also have the v, w, x and y-vertices in common (Claim 4). This means
that v(C1) has a block-leaf neighbor u(C2) 6∈ V (C1), a contradiction with Claim
2. We conclude that also in this case, z is assigned at most once.

We have shown that an injective function from the block-leaves to the non-
block-leaves can be constructed. This shows that at most half of the leaves are
block-leaves, and completes the proof of Property 7.

We complete the proof of Theorem 5.18 by proving the following statement.

If |S| = 2, then |S| ≥ 4.
Proof: Suppose |S| = 2. Since there are no connectors, both vertices in S are
dominators, and there are at least two 1-leaves u and v. Since the vertices in
S have degree at least three (Property 1), there is at least one other leaf w. If
in addition to w there is at least one other leaf, we are done. Otherwise, w is
a 2-leaf. Since u and v have degree at least three (Property 3), both u and v
are also adjacent to w. We conclude that {w} is a standard CD-set, which is
an improvement. ✷

Analogously to the use of Theorem 5.8 and Theorem 5.9, now that the existence
of a CD-set with the properties stated in Theorem 5.18 has been established,
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we will use these properties to determine an upper bound on the size of such a
CD-set. This will be done in the next section.

5.5.2 An upper bound for the size of the constructed CD-

set

We introduce a notion that enables us to explore the existence of block-leaves
when considering a weight assignment to G′[S].

Definition 5.19 A subgraph P of a graph G is a block path of G if it is a path
with end vertices l and b such that d(l) = 1, d(b) = 3, b is part of a block of
G, and all internal vertices of P have degree two in G. For such a path P , lP
denotes the end vertex with degree one in G, and bP denotes the end vertex with
degree three in G.

Note that block paths contain at least two vertices. The relation between block-
leaves and block paths is as follows. For a CD-set S of graph G′, every block-leaf
v is adjacent to either a vertex in a block of G′[S], or the end vertex lP of a
block path P in G′[S]. Every block path in G′[S] is adjacent to at most one
block-leaf.

The next lemma is a variant of Lemma 5.11 that can be used for G′[S] when
S and G′ have the properties stated in Theorem 5.18, and when triangles are
allowed. We can now only prove that there are roughly 2

5 leaves for every CD-
set vertex, instead of roughly 1

2 . The first three properties in Lemma 5.20 then
correspond directly to the first three properties in Lemma 5.11, although the
block property we need is more sophisticated. When combined with the weight
assignment we use in Theorem 5.21, the additional path property states that
every block path either ends in a block-leaf from which it receives extra weight,
or if it does not end in a block-leaf, it receives extra weight in another way.

Lemma 5.20 Let G = (V,E) be a connected non-tree graph with non-negative
weights w on the vertices such that:

1. If d(v) = 2 then w(v) ≥ 2
5 .

2. If d(v) = 1 then w(v) ≥ 6
5 .

3. (Block property) Consider a block G[B] of G. Let C denote the set of
cut vertices of G, and let L denote the vertices in B that have two neighbors
in B, and H = B\L. Then w(B\C) ≥ 2

5 |B| − 6
5 |C ∩ L| − 4

5 |C ∩ H| + 12
5 .

4. (Path property) If P is a block path in G, then w(P ) ≥ 2
5 |V (P )| + 4

5 .

For this graph, w(V ) ≥ 2
5 |V | + 12

5 .

Proof: If G is 2-connected, then the statement follows immediately from the
inequality for blocks. For the other cases we will construct a smaller graph G′

with weight function w′, and use induction on |V |. For this we need to prove
the four properties for G′ and w′.
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First, a remark on proving the path property for G′ and w′. Suppose Prop-
erty 1 and 2 of the lemma hold for G′ and w′. Let P be a block path in G′.
Note these two properties already imply that w′(P ) ≥ 2

5 (|V (P )| − 2) + 6
5 =

2
5 |V (P )|+ 2

5 . So in order to prove that the path property holds for P , it suffices
to show that w′(lP ) ≥ 8

5 , or w′(bP ) ≥ 2
5 , or w′(x) ≥ 4

5 for some internal vertex
x of P .

If G is not 2-connected, it has at least one leaf or at least one block with
exactly one cut vertex (Lemma 5.5). We distinguish these two cases.

Let u be a leaf of G, with neighbor v. Consider the graph G′ = G − u with
weight function w′(v) = w(v)+w(u)− 2

5 , and w′(x) = w(x) for all other vertices.
We prove that G′ and w′ satisfy the four properties of the lemma. Note that
since w(u) ≥ 6

5 , w′(v) ≥ w(v) + 4
5 .

If v has degree two in G′ then since w′(v) ≥ 4
5 , the first property holds

for v. If v has degree one in G′, then w(v) ≥ 2
5 (since v has degree two in

G), so w′(v) ≥ 6
5 , and the second property holds for v. For all other vertices,

the weights and degrees do not change so the first two properties hold for all
vertices.

For a block G′[B], it is obvious that the block property still holds, unless
v ∈ B and v is not a cut vertex anymore in G′. In this case, let CG resp. CG′

denote the set of cut vertices of G and G′ (CG = CG′ + v), and let L denote the
set of vertices in B with two neighbors in B, and H = B\L (H and L are the
same in G and G′). If v ∈ H, then

w′(B\CG′) ≥ w(B\CG) +
4

5
≥

2

5
|B| − 6

5
|CG ∩ L| − 4

5
|CG ∩ H| + 16

5
=

2

5
|B| − 6

5
|CG′ ∩ L| − 4

5
|CG′ ∩ H| + 12

5
.

If v ∈ L, then v has degree two in G′ and degree three in G, so v = bP for a
block path P in G on vertices u and v. Therefore w′(v) ≥ 2

5 |V (P )|+ 4
5 − 2

5 = 6
5 ,

thus w′(B\CG′) ≥ w(B\CG) + 6
5 , and the same reasoning as above shows that

the block inequality holds again.
Now suppose v is part of a block path P ′ in G′. If v = P ′

l , then v is an
internal vertex of a block path P of G, with V (P ) = V (P ′) + u. In that case,
w′(P ′) = w(P ) − 2

5 = 2
5 |V (P )| + 4

5 − 2
5 = 2

5 |V (P ′)| + 4
5 , so the path property

holds for P ′. If v = P ′
b or v is an internal vertex of P ′, then the path property

holds for P ′ since the first two properties hold for G′, and w′(v) ≥ 4
5 . All other

block paths in G′ correspond to block paths in G with the same weights.
We conclude that if G has a leaf u, then we can construct a new graph

G′ = G − u with weight function w′ such that w′(V (G′)) = w(V (G)) − 2
5 , for

which the four properties hold. G′ is not a tree since G is not a tree, so we can
use induction. By induction, w(V (G)) = w′(V (G′) + 2

5 = 2
5 |V (G′)| + 12

5 + 2
5 =

2
5 |V (G)| + 12

5 , which proves the lemma for this case.
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Now we consider the case that G has no leaves. Then G has a block B which
contains only a single cut vertex u. Consider the graph G′ = G − (B − u) with
weight function w′(u) = 8

5 and w′(x) = w(x) for all other vertices. Since G is
not 2-connected and has no leaves, it has at least two blocks (Lemma 5.5), and
therefore G′ is not a tree. We will show that the four properties hold for G′ and
w′, and use induction.

If dG′(u) = 1 or dG′(u) = 2, then w′ clearly satisfies the corresponding
properties. Since w′(u) = 8

5 , a block path in G′ that contains u satisfies the
path property. For a block G′[B], the block property clearly holds when u 6∈ B
or u is still a cut vertex in G′. In the other case, let CG resp. CG′ denote the
set of cut vertices of G and G′, and let L denote the set of vertices in B with
two neighbors in B, and H = B\L. Now

w′(B\CG′) = w(B\CG) +
8

5
≥

2

5
|B| − 6

5
|CG ∩ L| − 4

5
|CG ∩ H| + 20

5
>

2

5
|B| − 6

5
|CG′ ∩ L| − 4

5
|CG′ ∩ H| + 12

5
.

We conclude that G′ and w′ satisfy all properties of the lemma. Since G′ is not
a tree, we can use induction. Let V = V (G) and V ′ = V (G′).

w(V ) ≥ w′(V ′) + w(B − u) − 8

5
≥ (

2

5
|V ′| + 12

5
) + (

2

5
|B| + 6

5
) − 8

5
=

2

5
|V ′| + 2

5
|B| + 10

5
=

2

5
(|V | − |B| + 1) +

2

5
|B| + 10

5
=

2

5
|V | + 12

5
.

This proves the statement for the case that G has no leaves, which completes
the proof of Lemma 5.20. ✷

Using the previous weight counting lemma, we can prove the following upper
bound for the size of a minimal CD-set S ′ ⊆ S.

Theorem 5.21 Let G′ and S be a graph and a CD-set satisfying the properties
from Theorem 5.18. If S′ ⊆ S is a minimal CD-set, then |S ′| ≤ (5|V (G)|−12+
D)/7, where D is the number of cubic diamond blocks in G′[S].

Proof: In order to prove this theorem, we assign weights w to the vertices of
S such that the total weight is at most |V \S| + 7

5 |S\S′| + D/5, and then show
that w(S) ≥ 2

5 |S|+ 12
5 . Then we can combine the two inequalities to obtain the

result.
The weight assignment is as follows: block-leaves assign a weight of 6

5 to their
CD-set neighbor, and all other leaves distribute a weight of 4

5 equally among
their neighbors in S′ (vertices in S\S′ receive no weight yet). Since at most half
of the leaves are block-leaves (Property 7 of Theorem 5.18), we have assigned
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a total weight of not more than |V \S|. Next, we assign a weight of 7
5 to each

vertex in S\S′. Vertices in S\S′ that are part of a cubic diamond block of G′[S]
receive an additional weight of 1

5 .

We prove that G′[S] and this weight assignment w satisfy the four properties
of Lemma 5.20.

1. A vertex v with degree two in G′[S] is a dominator or connector (Prop-
erty 4 of Theorem 5.18), so v ∈ S ′. v has at least one leaf neighbor u
(Property 1), and u has at most two neighbors in G′[S], so it assigns at
least 2

5 to v. This shows that w(v) ≥ 2
5 .

2. A vertex v with degree one in G′[S] must be a dominator, since it cannot
be a connector, and it must be a connector or dominator (Property 4).
From the 1-leaf adjacent to it, it gets a weight of at least 4

5 . In addition,
since v has degree at least three and leaves have at most two CD-set
neighbors, it gains an additional weight of at least 2

5 . So w(v) ≥ 6
5 .

3. If G′[B] is a block of G′[S], and L is the set of vertices in B with two neigh-
bors in B and H is the set of vertices in B with at least three neighbors
in B, then |L| ≥ |H| (Lemma 5.10). Let C denote the set of connectors.
A vertex in L that is not a connector must be a dominator (Property 4).
A dominator in L has weight at least 6

5 , since either its 1-leaf neighbor
is a block-leaf, or it has degree at least four and receives weight at least
4
5 + 2

5 . We consider two cases:

(a) Suppose |(S\S′) ∩ B| ≥ 1. Note that this implies that |H| ≥ 1
(Property 4). Then one of the vertices in H has an additional weight
of at least 7

5 . Now if |B| ≥ 5 then w(B\C) ≥ 6
5 |L\C| + 7

5 ≥ 3
5 |B| −

6
5 |C∩L|+ 7

5 ≥ 2
5 |B|− 6

5 |C∩L|+ 12
5 ≥ 2

5 |B|− 6
5 |C∩L|− 4

5 |C∩H|+ 12
5 .

If |B| < 5, then G′[B] is a diamond, since |H| ≥ 1. In this case, let
v ∈ (S\S′)∩B. v is not a connector or dominator in S. Therefore, all
its neighbors have degree three in G′. So there is one other vertex in B
that is not a connector or dominator, and therefore v also has degree
three. We conclude that B is a cubic diamond block, so the additional
weight of v is 8

5 , and w(B\C) ≥ 6
5 |L\C|+ 8

5 ≥ 3
5 |B|− 6

5 |C ∩L|+ 8
5 =

2
5 |B| − 6

5 |C ∩ L| + 12
5 ≥ 2

5 |B| − 6
5 |C ∩ L| − 4

5 |C ∩ H| + 12
5 .

(b) Suppose (S\S′) ∩ B = ∅. Suppose B contains a vertex v that is not
a dominator or connector with respect to S. Since v ∈ S ′, it is a
connector or dominator with respect to S ′. Since (S\S′) ∩ B = ∅, it
is not a connector. So in S, v is adjacent to a 2-leaf u, and the other
CD-set neighbor w of u is in S\S ′. In this case, v receives a weight of
4
5 . So vertices in H\C receive at least 4

5 , and vertices in L\C receive
at least 6

5 .

If |B| = 3, then L = B, and w(B\C) ≥ 6
5 |L\C| = 6

5 |B| − 6
5 |C ∩ L| −

4
5 |C∩H| = 2

5 |B|− 6
5 |C∩L|− 4

5 |C∩H|+ 12
5 . Now we assume |B| ≥ 4,
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and also use |L| + |H| = |B|, |L| ≥ |B|/2:

w(B\C) ≥ 6

5
|L\C| + 4

5
|H\C| =

6

5
|L|+4

5
|H|−6

5
|C∩L|−4

5
|C∩H| ≥ 2

5
|L|+4

5
|B|−6

5
|C∩L|−4

5
|C∩H| ≥

1

5
|B|+ 4

5
|B|− 6

5
|C∩L|− 4

5
|C∩H| ≥ 2

5
|B|− 6

5
|C∩L|− 4

5
|C∩H|+ 12

5
.

4. Let P be a block path in G′[S]. If lP , bP or an internal vertex x of
P has degree at least four in G′, then it can be checked that w(lP ) ≥ 8

5 ,
w(bP ) ≥ 2

5 resp. w(x) ≥ 4
5 . If lP has two 1-leaf neighbors, then w(lP ) ≥ 8

5 .
If an internal vertex x is a dominator then w(x) ≥ 4

5 . Otherwise, the 1-leaf
neighbor of lP is a block-leaf, and w(lP ) ≥ 6

5 + 2
5 . Together with the first

two properties above, this proves the path property.

If G′[S] is not a tree, we can apply Lemma 5.20, which shows that w(S) ≥
2
5 |S| + 12

5 . It follows that

7

5
|S\S′| + D/5 + |V \S| = w(S) ≥ 2

5
|S| + 12

5
⇔

7

5
|S| − 7

5
|S′| + D/5 + |V | − |S| ≥ 2

5
|S| + 12

5
⇔

|V | + D/5 − 12

5
≥ 7

5
|S′| ⇔ |S′| ≤ (5|V | − 12 + D)/7.

If G′[S] is a tree, we prove the last inequality in another way. Since there are
no block-leaves, we assign the weights as we did in the proof of Theorem 5.9:
every leaf distributes a weight of 1 equally among its CD-set neighbors. Using
the same reasoning as in the proof of Theorem 5.9, we see that

• If v has degree two in G′[S], then w(v) ≥ 1/2.

• If v has degree one in G′[S], then w(v) ≥ 3/2.

It is a standard exercise to show that the number of leaves in a tree (on at least
two vertices) is at least h + 2, where h is the number of vertices in the tree
with degree at least three. From this fact it follows that w(S) ≥ |S|/2 + 2. If
|S| ≥ 4, then |S| = w(S) ≥ |S|/2 + 2 ≥ 2

5 |S| + 12
5 . If |S| = 3, then G′[S] = P3.

There are at least two dominators in S, so there are at least two 1-leaves in S.
Since every vertex in S has degree at least three (Property 1), there are at least
three edges between S and leaves other than the two aforementioned 1-leaves.
Since there are no 3-leaves (Property 1), we conclude that there are at least four
leaves. So |S| ≥ 4 > 2

5 |S| + 12
5 . If |S| = 1 then since the vertex in S has degree

at least three, |S| ≥ 3, so |S| ≥ 3 > 2
5 |S| + 12

5 . Finally, if |S| = 2, then |S| ≥ 4

(Theorem 5.18), so |S| ≥ 4 > 2
5 |S| + 12

5 . So in all cases:

|S| ≥ 2

5
|S| + 12

5
⇔
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Figure 5.17: Reducing a necklace containing multiple diamonds

u v u vw
x

y

Figure 5.18: Reversing the necklace reduction

|V | − 12

5
≥ 7

5
|S| ⇔ |S| ≤ 5

7
|V | − 12

7
.

Noting that S′ = S and D = 0 in this case, we obtain the desired inequality. ✷

In the bound from Theorem 5.21, the term D is equal to the number of cu-
bic diamond blocks in G′[S]. Using Property 6 from Theorem 5.18, we know
that for the S and G′ we consider, all cubic diamond blocks are part of diamond
necklaces in G, so the number of diamond necklaces is an upper bound for D. In
the theorem below we show that diamond necklaces can be reduced when they
consist of more than one diamond, and that therefore this term D can even be
bounded by the number of cubic diamonds in G (diamond necklaces consisting
of one diamond).

Theorem 5.22 Let G be a connected graph on n vertices with δ ≥ 3. Then G
has a CD-set S with |S| ≤ (5n − 12 + D)/7, where D is the number of cubic
diamonds in G that contain three vertices of S.

Proof: First we reduce diamond necklaces that are not cubic diamonds in G:
replace every diamond necklace containing at least two diamonds by a single
cubic diamond as shown in Figure 5.17. These are called the new cubic dia-
monds, and the other cubic diamonds are called the original cubic diamonds.
The resulting graph G1 is again a simple connected graph with δ(G1) ≥ 3.

Consider a CD-set S and subgraph G′ of G1 that satisfy the properties
from Theorem 5.18. Let D and D′ denote the number of original resp. new
cubic diamonds of G1 that are a block of G′[S]. Since all diamond necklaces
are now cubic diamonds, the number of cubic diamond blocks in G′[S] is D +
D′ (Property 6). By Theorem 5.21, any minimal CD-set S ′ ⊆ S has |S′| ≤
(5|V (G1)| − 12 + D + D′)/7. Note that for any minimal CD-set S ′ ⊆ S, the
cubic diamonds in G′ that contain three vertices of S ′ are exactly those that
are blocks in G′[S].

From S′ we can construct a CD-set for G: we can reconstruct G from G1

by applying the operation illustrated in Figure 5.18 a number of times for every
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new cubic diamond. This operation introduces three new vertices. At the same
time, we can maintain a CD-set by adding at most two new vertices to the CD-
set every time we apply the operation: if u and v in Figure 5.18 are not in the
previous CD-set, then we add v and x. If one of u and v is in the previous CD-
set, then we add w and x. Let k be the number of times this operation has to
be applied in order to reconstruct G from G1, and construct the corresponding
CD-set S′′. Using k ≥ D′, we can bound |S′′| as follows:

|S′′| ≤ |S′| + 2k ≤ (5|V (G1)| − 12 + D + D′)/7 + 2k ≤

(5(|V (G)| − 3k) − 12 + D + k)/7 + 2k = (5|V (G)| − 12 + D)/7.

The reconstruction does not affect the original cubic diamonds, and also does
not affect which vertices of these diamonds are in the CD-set. So D is the num-
ber of cubic diamonds in G that contain three vertices of S ′′. ✷

Note that Theorem 5.4 from the introduction follows immediately from The-
orem 5.22.

5.6 Worst case examples for the CD-set size

In this section we show that the bounds in Theorem 5.13 and Theorem 5.22 are
best possible (in the same sense as explained in Section 6.1). Throughout this
section, n denotes the number of vertices of G.

Theorem 5.13 shows that every connected, triangle-free graph on n vertices
with δ ≥ 3 has a CD-set S with |S| ≤ (2n− 4)/3. We use examples very similar
to those mentioned in [34] to show that this bound is best possible: for n = 6k,
take k copies of the graph shown in Figure 5.19(a), and connect them in a cyclic
form as shown in Figure 5.19(b). The resulting graph is cubic, connected and
contains no triangles. It can be checked that it has no CD-set with fewer than
2
3n−2 = ⌊(2n−4)/3⌋ vertices. This shows that for a linear bound αn−β, α = 2

3
is best possible. When we consider the graph Q3 on eight vertices which has no
CD-set with fewer than four vertices, we see that β = 4

3 cannot be decreased.
Theorem 5.22 shows that every connected graph G with δ ≥ 3 has a CD-set

S with |S| ≤ (5n − 12 + D)/7, where D is the number of cubic diamonds in G.
To prove that this bound is best possible we use the graph N0 in Figure 5.20 as
a building block, together with diamonds. For any D and n = 4D + 7k, take D
diamonds and k copies of N0 and connect them in a cycle. The resulting graph
is connected, has δ = 3, and has D cubic diamonds. It can be checked that it
has no CD-set with fewer than 5k +3D− 2 = 5

7n+ 1
7D− 2 = ⌊(5n+D− 12)/7⌋

vertices. It follows that for a bound of the form αn + γD − β, only the choices
α = 5

7 and γ = 1
7 give an asymptotically sharp bound. Q3 again shows that

β = 12
7 cannot be improved.

Just as for the bounds from Theorem 5.2 and 5.13, other than Q3 we do
not know any examples that show that β cannot be increased. However, for
every n ≥ 4 and D with 0 ≤ 4D < n − 4 we can construct examples with D
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: leaf

(a) (b)

Figure 5.19: The bound of Theorem 5.13 is best possible

cubic diamonds that do not have a CD-set with fewer than ⌊(5n + D)/7 − 2⌋
vertices. For the construction of these examples, we take D diamonds, one copy
of N(n−4D) mod 7 (see Figure 5.20), and add copies of N0 until we have exactly
n vertices in total. These building blocks are again connected in a cycle. See
Figure 5.21 for an example. The resulting graph has n vertices, is connected, has
δ = 3, has D cubic diamonds and has no CD-set with fewer than ⌊(5n+D)/7−2⌋
vertices. Note that this difference of 2

7 in the constant is the same difference
that prevents Theorem 5.22 (Theorem 5.4) from being a direct generalization
of Theorem 5.1 (see Section 6.1).

5.7 An algorithmic viewpoint

It can be verified that the proofs of Theorem 5.8 and Theorem 5.18 are con-
structive: if we start with any potential standard CD-set for the graph G (this
can be simply V (G)), we can apply the steps mentioned in the proofs until a
CD-set S is obtained that satisfies the desired properties. For Theorem 5.8,
these steps are adding and removing edges, removing a single vertex from the
CD-set and possibly one incident edge, or removing a pair of vertices from the
CD-set. In fact, for both proofs it can be checked that recognizing violations of
the properties and applying the corresponding improvement steps (according to
the three resp. five priorities mentioned in the proofs) can be done in polynomial
time.

Such algorithms can be seen as local search algorithms, where the objective
value is defined by the priorities stated in the proofs, and the neighborhood of
a solution is defined by exactly those steps that are applied in the proofs.

However, implementing a local search algorithm using exactly these steps
is not the most practical or most general way to program algorithms for this
problem that guarantee the bounds from Theorem 5.9 and Theorem 5.21. In
this section, we present short, practical, and stronger algorithms that generalize
the methods from these proofs. These algorithms can again be seen as local
search algorithms, with the same objective value as before, but this time the
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N0:

N1:

N2:

N3:

N4:

N5:

N6:

: leaf

Figure 5.20: Building blocks for the worst case examples

Figure 5.21: A worst case example with four cubic diamonds
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neighborhood is defined more general (it contains the previous neighborhoods),
and therefore the algorithms will give results that are at least as good, and
probably better. Since the neighborhood is larger, the time complexity of the
new algorithms is worse. For a practical implementation, the time complexity
can be improved by making smarter choices of solutions to consider in the
neighborhood, but we will not go into such details. We prefer to state the
algorithms in a short and clear way, and leave the practical improvements to
those that are interested.

We will consider potential standard CD-sets instead of standard CD-sets:
for the first algorithm, this allows us to use a very ’linear’ algorithm which
only removes vertices from the CD-set until a minimal CD-set is obtained; for
the second algorithm this enables us to ensure that the new neighborhood is of
polynomial size. Before we can use potential standard CD-sets in the algorithm,
we need the next lemma.

Lemma 5.23 It can be checked in polynomial time whether S ⊆ V (G) is a
potential standard CD-set for G, and if so, a maximal realization G′ of S can
be found in polynomial time.

Proof: We construct an auxiliary bipartite graph H with vertex set A∪B: for
every vertex v ∈ S, we add d(v) − 3 vertices to A (only vertices with degree at
least four will correspond to vertices in A). For every i-leaf in S with i > 2, we
add i−2 vertices to B. We join vertices in A to vertices in B if in G edges exist
between the corresponding vertices.

We show that a realization G′ of S exists if and only if H has a matching
M that saturates every vertex in B. If M is such a matching, delete every edge
in G that corresponds to an edge of M , to obtain G′. For every former i-leaf
(with i > 2), i − 2 incident edges are deleted since M saturates B, so only
1-leaves and 2-leaves remain. For every vertex in S with original degree d, at
most d − 3 incident edges are deleted, so vertices in S still have degree at least
three. Clearly, S is still a CD-set in G′.

Similarly, every maximal realization of S corresponds to a B-saturating
matching in H.

The existence of polynomial time algorithms now follows from the well-
known fact that polynomial time algorithms exist for finding a maximum match-
ing (in fact, for bipartite graphs a specialized algorithm exists), and that if a
B-saturating matching exists, every maximum matching saturates B. ✷

Algorithm 4 returns a CD-set that satisfies the bound from Theorem 5.13 when
the input graph is triangle-free, but it is not required that the input graph is
triangle-free. Using Lemma 5.23 we see that every step of the algorithm can
be implemented in polynomial time. Since every step decreases the size of S or
S′, Algorithm 4 terminates in polynomial time. Note that for every graph G,
V (G) is a potential standard CD-set, so it is easy to find a correct input for the
algorithm for every G. We prove that the output of this algorithm satisfies the
bound from Theorem 5.13, regardless of the choice of input S.
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Algorithm 4 The construction corresponding to Theorem 5.13

INPUT: A potential standard CD-set S for a connected graph G with δ(G) ≥ 3.

while there is a U ⊂ S with |U | ≤ 2 such that S − U is a potential standard
CD-set for G do

S := S − U
end while
S′ := S.
while there is a vertex u ∈ S′ such that S′ − u is a CD-set for G do

S′ := S′ − u.
end while

Theorem 5.24 For a connected, triangle-free graph G with δ(G) ≥ 3, and any
potential standard CD-set S for G, Algorithm 4 returns a CD-set S ′ such that
|S′| ≤ (2|V (G)| − 4)/3.

Proof: Let S and S′ be the two CD-sets as they are after the algorithm has
terminated. Choose a maximal realization G′ for S, and in addition remove
some edges from G′: if uv ∈ E(G′), {u, v} ⊆ S with G′[S] − uv connected and
dG′(u) ≥ dG′(v) ≥ 4, then delete uv from G′. Repeat this as long as such edges
exist.

We prove that for these S and G′, the properties from Theorem 5.8 are sat-
isfied.

Property 2: If u, v ∈ S, d(u) ≥ d(v) ≥ 4 and uv ∈ E(G′), then uv is a bridge of
G′[S].
Proof: If uv is not a bridge, it would have been deleted from G′ in the above
step.

Property 3: Edges in E(G)\E(G′) are between vertices in S, or between a vertex
in S and a 2-leaf.
Proof: Let G′′ be the maximal realization from which G′ is obtained by delet-
ing some edges between vertices in S. If an edge e ∈ E(G)\E(G′) has no end
vertices in S, or is incident with a 1-leaf, then also e 6∈ E(G′′). This is a con-
tradiction with the fact that G′′ is a maximal realization.

Property 4: Every vertex v ∈ S that is neither a dominator nor a connector
has at least three neighbors in S, and all of its neighbors in S have degree three.
Proof: Property 2 holds, so the same reasoning as in the proof of Theorem 5.8
applies. Note that in that proof, the only possible improvement to S that is
considered consists of removing one vertex from S. This change is also consid-
ered in Algorithm 4.

Property 5: If {u, v} ⊆ S, uv ∈ E(G′) and u and v are both neither domi-
nators nor connectors, then G′[S] − u − v is not connected.
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Proof: Since Property 4 holds, we can again apply the reasoning from the proof
of Theorem 5.8. The improvement considered there consists of removing two
vertices from S, which is also considered in Algorithm 4.

Since these properties hold and G contains no triangles, Theorem 5.9 shows
that for any minimal CD-set S∗ ⊆ S, S∗ satisfies the bound. By the final step
of the algorithm, S′ is a minimal CD-set with S ′ ⊆ S. ✷

We next present an algorithm that can be used to find a CD-set S ′ that sat-
isfies the bound from Theorem 5.22. We first point out a potential difficulty
we have to cope with, and explain why we use potential standard CD-sets in
the algorithm. In the proof of Property 6 from Theorem 5.18, the ‘diamond
necklace-like’ structures can be arbitrarily long. So if we view a pair of a po-
tential standard CD-set S and corresponding realization G′ as a solution, there
is no fixed upper bound on the number of edges that need to be changed in G′

when going from one solution to the next. Therefore, without any additional
rules on what edge sets to consider, we would have to consider an exponential
size neighborhood. We want to avoid such additional rules since we want to
state a simple, insightful formulation of the algorithm. Therefore we consider
potential standard CD-sets instead. Another advantage is that this way, we
consider a larger neighborhood, and therefore have a stronger algorithm. A
disadvantage of using potential standard CD-sets is that for comparing two po-
tential standard CD-sets S and S2, we need to consider values that depend on
(arbitrarily chosen) realizations. The following definition shows which values
we take into account when evaluating such S and S2.

Definition 5.25 Let S and S2 be potential standard CD-sets for graph G, and
let G′ resp. G′

2 be realizations for these CD-sets. We write (S2, G
′
2) ≺ (S,G′) if

• |S2| < |S|, or if

• |S2| = |S| and S2 has fewer 1-leaves than S, or if

• |S2| = |S|, S2 and S have the same number of 1-leaves, and G′
2[S2] con-

tains fewer cubic diamond blocks than G′[S].

Note that the number of 1-leaves is the same for every maximal realization.
Unfortunately this is not true for the number of cubic diamond blocks. However,
in the proof of Lemma 5.26 we show that for the final outcome, it does not matter
that we choose arbitrary realizations in the algorithm.

Algorithm 5 is the main part of the algorithm we use to find a CD-set
satisfying the properties from Theorem 5.18. Note again that input S = V (G)
and G′ = G can be chosen for any graph G. Formulated this way, the algorithm
is not very fast because of the number of choices of U and W that are considered
in each iteration. But we note that in every iteration, most of the possible
choices of U and W that are considered are easily seen to be useless or redundant,
so a large gain can be made here. See the proof of Theorem 5.18 for some ideas on
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Algorithm 5 The construction of a CD-set corresponding to Theorem 5.18

INPUT: A potential standard CD-set S and a maximal realization G′, for a
connected graph G with δ(G) ≥ 3.

for all U ⊆ S and W ⊆ S with |U | ≤ 3 and |U | ≤ |W | ≤ min{|U | + 2, 4} do
S2 := (S ∪ U)\W
if S2 is a potential standard CD-set then

Find a maximal realization G′
2 of S2.

if (S2, G
′
2) ≺ (S,G′) then

Repeat the algorithm with input S2, G′
2 and G.

end if
end if

end for
S′ := S.
while there is a vertex u ∈ S′ such that S′ − u is a CD-set for G do

S′ := S′ − u.
end while

useful choices of U and W . However, we preferred a short and clear formulation
over speed, and therefore did not add additional rules for the choice of U and
W .

Lemma 5.26 For a connected graph G with δ(G) ≥ 3 and any potential stan-
dard CD-set and realization as input, Algorithm 5 finds in polynomial time a
potential standard CD-set S, which has a realization G∗ such that S and G∗

satisfy the properties stated in Theorem 5.18.

Proof: Let potential standard CD-set S and maximal realization G′ be the S
and G′ as they are when the algorithm has terminated. In addition we consider
another realization G∗ for S that is obtained from G′ by deleting some edges:
start with G∗ = G′. If uv ∈ E(G∗), {u, v} ⊆ S with G∗[S] − uv connected and
dG∗(u) ≥ dG∗(v) ≥ 4, then delete uv from G∗. Repeat this as long as such edges
exist.

We prove that for the resulting S and G∗, the properties from Theorem 5.18
are satisfied. We omit the proof of the first properties, as they can be proved
in exactly the same way as in the proof of Theorem 5.24.

Property 6: The number of cubic diamond blocks in G∗[S] is at most the number
of diamond necklaces in G.
Proof: Before we prove this property, we will prove two other statements.
These are about the number of cubic diamond blocks in a realization of a given
CD-set S. Observe that different (maximal) realizations of S can have a differ-
ent number of cubic diamond blocks.

Claim 1: If a potential standard CD-set S has two maximal realizations G′
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and G′
2 such that the number of cubic diamond blocks in G′[S] and G′

2[S] dif-
fers, then there is a vertex u such that S−u is again a potential standard CD-set.

Since G′ and G′
2 are maximal, G′[S] = G′

2[S]. Let D be a cubic diamond
block in G′[S] that is not a cubic diamond block in G′

2[S]. Since D is a diamond
and a block in both, there is a v ∈ V (D) with dG′

2
(v) ≥ 4. Let u ∈ V (D)− v be

adjacent to all other vertices in D. Now S −u is a standard CD-set for G′
2 −uv

(u becomes a 2-leaf, and v still has degree at least three. u is not a connector
or dominator in any maximal realization).

Claim 2: Let G′ and G′
2 be two realizations for S such that G′

2 = G′ − e
for some edge e. If G′[S] and G′

2[S] have a different number of cubic diamond
blocks, then there are vertices u or u and v such that S − u resp. S − u − v is
again a potential standard CD-set.

First observe that since G′ and G′
2 are both realizations of S, any cubic di-

amond block in G′[S] is a cubic diamond block in G′
2[S]. So if the number of

cubic diamond blocks differs, then there is a cubic diamond block D in G′
2[S]

that is not a cubic diamond block in G′[S]. If vertices of D are incident with
e, then there is a vertex v ∈ V (D) with dG′(v) ≥ 4. Let u ∈ V (D) − v be
adjacent to all other vertices in D. In this case, S − u is a standard CD-set for
G′ − uv (see Claim 1). Now suppose no vertices of D are incident with e. In
this case, D is a cubic diamond in G′[S], but not a block. Let u and v be the
two vertices in D that are adjacent to all other vertices of D. S − u − v is a
standard CD-set for G′ (u and v become 2-leaves, and since D was not a block
and dG′(u) = dG′(v) = 3, S − u − v is a CD-set).

Using these two claims we prove Property 6. Let S and G′ be the S and
G′ as the are when Algorithm 5 has terminated (G′ is a maximal realization
for S). Let G∗ again be a realization for S obtained from G′ by deleting edges
until Property 2 is satisfied. Suppose that in G∗[S], cubic diamond blocks exist
that are not part of a diamond necklace in G, or multiple cubic diamond blocks
are part of the same cubic diamond necklace. We show that this leads to a
contradiction with the fact that S is the output from algorithm 5.

In the proof of Theorem 5.18 it is shown that in this case a new potential
standard CD-set S2 = S − x + y and realization G∗

2 exist such that G∗
2[S2] has

fewer cubic diamonds than G∗[S], and S2 has the same number of 1-leaves. Note
that even though this change from S to S2 is described as a series of changes, the
end result differs only in one vertex. In Algorithm 5, S2 is considered. Let G′

2

be the maximal realization for S2 that is considered in the algorithm. Finally,
let G′′

2 be a maximal realization of S2 of which G∗
2 is a subgraph. (G′′

2 and G′
2

do not have to be the same.) We will show that an improvement exists that is
considered in the algorithm, regardless of the arbitrary choices of G′ and G′

2,
which is a contradiction.

Realization G∗
2 for S2 is a (spanning) subgraph of maximal realization G′′

2 .
Therefore if G∗

2[S2] and G′′
2 [S2] have a different number of cubic diamond blocks,
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Claim 2 shows that an improvement S2 − u or S2 − u − v exists. These can be
written as S − x + y − u resp. S − x + y − u − v, so these improvements are
considered in the algorithm, a contradiction. So now we may assume that G∗

2[S2]
and G′′

2 [S2] have the same number of cubic diamond blocks. G′
2 and G′′

2 are
both maximal realizations of S2. If G′

2[S2] and G′′
2 [S2] have a different number

of cubic diamond blocks, Claim 1 shows that an improvement S2 − u exists.
The set S2 − u = S − x + y − u is considered in the algorithm, a contradiction.
We conclude that G′

2[S2] also has the same number of cubic diamond blocks as
G∗

2[S2]. Realization G∗ of S is a subgraph of maximal realization G′, so similar
reasoning as previously shows that G′[S] and G∗[S] have the same number
of cubic diamond blocks. Since G∗

2[S2] has fewer cubic diamonds than G∗[S],
G′

2[S2] has fewer cubic diamonds than G′[S], and therefore the algorithm finds
an improvement when S2 and G′

2 are compared with S and G′, a contradiction.
In every case an improvement is found. We conclude that every cubic dia-

mond block of G∗[S] is part of a diamond necklace of G, and that every diamond
necklace of G contains at most one cubic diamond block of G∗[S], so Property 6
holds for S and G∗.

Property 7: The number of block-leaves is at most half the total number of
leaves.
The improvement steps used in cases 1, 2.1, 2.2, 3.1-3.6 of the proof of Prop-
erty 7 (Theorem 5.18) are all considered in the algorithm. In all of these cases,
|S| decreases or the number of 2-leaves increases. The number of 2-leaves in a
maximal realization does not depend on the choice of the realization, so all of
these changes are always accepted as an improvement by Algorithm 5. So for S
and G′, these cases are excluded, and the same reasoning as in the rest of the
proof of this property applies.

We now use a very rough analysis to show that the algorithm can be imple-
mented in polynomial time. The number of sets U and W that satisfy the first
step is bounded by a polynomial in |V (G)|. Every step of the algorithm can
be implemented in polynomial time (Lemma 5.23). Every time the algorithm is
repeated, the input is ‘smaller’ with regard to the relation ‘≺’. The number of
possible combinations of values that are considered for evaluating this relation
is bounded by a polynomial in |V (G)|. ✷

It follows that for finding the CD-set described in Theorem 5.22, also a sim-
ple polynomial time algorithm exists.

Theorem 5.27 Let G be a connected graph with δ(G) ≥ 3. We can find in
polynomial time a CD-set S for G with |S| ≤ (5|V (G)| − 12 + D)/7, where D is
the number of cubic diamonds in G that contain three vertices of S.

Proof: The algorithm is as follows. First replace diamond necklaces by cubic
diamonds, as described in the proof of Theorem 5.22. For the resulting graph
G1, use Algorithm 5 to find a potential standard CD-set S and realization G′
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that satisfy the properties stated in Theorem 5.18 (Lemma 5.26), and a CD-set
S′ ⊆ S. By adding vertices in the diamond necklaces of G, S ′ can be made into
a CD-set S′′ of G. See the proof of Theorem 5.22 for details.

We see that S′ is a minimal CD-set, by the last step of Algorithm 5. So S ′′

satisfies the above bound (see again the proof of Theorem 5.22 for details). ✷

5.8 Discussion

In this chapter, we introduced new techniques to find small CD-sets/spanning
trees with many leaves. We feel that our methods show that considering small
CD-sets is more practical for this purpose than looking at leafy spanning trees,
which was previously done to deduce bounds of this kind. For instance, the con-
cept of minimality of a CD-set proves to be very useful, but no similar concept
exists for spanning trees. We have also shown that there are simple but powerful
ways of doing local search on minimal CD-sets, which again have no easy and
equally powerful equivalent in the world of leafy trees. To put it differently, we
feel that spanning trees contain too much information for our purposes: it does
not matter which leaves are connected to which CD-set vertices, or which tree
is chosen to connect the CD-set vertices.

These techniques may be useful to prove other similar results: for instance
Linial conjectured that every graph on n vertices with minimum degree δ has
a spanning tree with at least n − 3n/(δ + 1) + cδ leaves, for some appropriate
constant cδ. For sufficiently large δ, this conjecture has been disproved by
Alon [1], but for small values of δ the conjecture has been shown to be true. For
δ = 3, Theorem 5.1 proves the conjecture. For δ = 4, a proof appears in [38].
For δ = 5, Griggs and Wu [35] gave a proof. For small values of δ greater than
five, little is known. For more information, see [15].

The worst case examples for the bound from Theorem 5.22 presented in
Section 5.6 still contain many diamonds: we expect that if we forbid all diamonds
(not just cubic diamonds), every graph in this class has a CD-set with at most
2
3n− 4

3 vertices. So we expect that Theorem 5.2 can be generalized to all graphs
with δ ≥ 3. Even though proving this will be hard, we think that the local
search algorithm presented in Section 5.7, or a similar algorithm that considers
a slightly larger neighborhood, might attain this bound. If this generalization
can be proved, this would allow a further improvement of the time complexity
of the algorithm presented in Chapter 6.

We mentioned that for our two bounds (Theorem 5.13 and 5.22) and the
bound in Theorem 5.2, Q3 is the only known example that prevents us to find
a stronger linear bound. If we exclude this graph and a few other small graphs
(in [34], K2 × C5 and another graph on ten vertices are mentioned), it may be
possible to show that the bounds become |S ′| ≤ 2

3 |V |−2 resp. |S′| ≤ 5
7 |V |+ 1

7D−
2. We have shown in Section 5.6 that the second bound cannot be improved
further unless we exclude infinitely many graphs. For the other bound, similar
examples can be constructed that show the same. Again we do not expect an
easy proof for these improved bounds.
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We remark that Algorithm 4 mentioned in Section 5.7 does not attain this
improved bound: if we consider K2 × K3, we see that Algorithm 4 may output
a CD-set on three vertices (this is a minimal CD-set). Observe that if we add a
local search step as used in Algorithm 5, we do find a good CD-set in this case
(on two vertices). We expect that Algorithm 5 always finds CD-sets that satisfy
the improved bounds.



Chapter 6

A fast FPT algorithm for

finding spanning trees with

many leaves

6.1 Introduction

We assume all graphs to be simple unless noted otherwise. The number of
vertices of graph G is denoted by n. In the Max-Leaf Spanning Tree problem
(MaxLeaf), an input consists of a connected graph G. The objective is to find
a spanning tree for G with the maximum number of leaves. Such a tree will be
called an optimal tree. We denote the set of leaves of graph T by L(T ). This
problem has been well-studied over the last twenty years. On the negative side,
MaxLeaf is known to be NP-hard (Garey and Johnson [31]), and APX -hard
(Galbiati, Maffioli and Morzenti [29, 30]). On the positive side, the literature
contains some polynomial time approximation algorithms for MaxLeaf that
have fairly small worst case performance guarantees (a guarantee of 3 by Lu
and Ravi [42], and a guarantee of 2 by Solis-Oba [53]).

We remark that in the literature, results on MaxLeaf also appear under the
name Minimum Connected Dominating Set. It is easy to see that for a spanning
tree T of a graph G, V (G)\L(T ) is a connected dominating set (unless T = K2),
and that for every connected dominating set S, a spanning tree T exists with
S ⊆ L(T ). It follows that the problems are equivalent for most purposes (though
not from an approximability viewpoint; see e.g. [36]).

In the remainder of this chapter, we consider the decision version of
MaxLeaf:

INPUT: A connected, simple graph G and a positive integer k.
QUESTION: Does G have a spanning tree T with |L(T )| ≥ k?

141
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We can split the input of this problem into two parts, denoted as (G, k). This
is a parametrization of the problem where the second part, k, is called the pa-
rameter. A parametrized problem (x, y) belongs to the complexity class FPT, if
it has an algorithm with time complexity bounded by a function f(|y|) · g(|x|),
where g is a polynomial (Downey and Fellows [23]). Here |x| and |y| denote
the input size of x and y (in a reasonable encoding). The dependence f(|y|) of
the running time on |y| may be arbitrary; for instance, f(|y|) may grow doubly
exponentially with |y|, or even worse. A problem with such an algorithm is said
to be fixed-parameter tractable (FPT, for short), and such an algorithm is called
an FPT algorithm. Note that an algorithm with time complexity f(|y|)+ g(|x|)
is also an FPT algorithm if g is a polynomial.

To improve the readability, in our case we replace |x| by n and |y| by k in
this definition. Observe that this does not functionally change the definition of
FPT algorithms for MaxLeaf. We will call f(k) the parameter function of the
FPT algorithm. In most FPT algorithms, the factor g(n) in the complexity is
a low degree polynomial (often n3 or lower). Therefore the factor f(k) is most
often used to compare the strength of different FPT algorithms.

Fellows and Langston [27] observed that MaxLeaf belongs to FPT via
the graph minors machinery of Robertson and Seymour; their argument was
non-constructive and did not explicitly yield an algorithm. Bodlaender [6] con-
structed the first FPT algorithm for MaxLeaf. Its time complexity was linear
in n and had a parameter function f(k) of roughly (17k4)!; we stress that [6] was
only interested in proving the existence of such an algorithm, and did not put any
effort in getting a good time complexity. A little later, Downey and Fellows [22]
constructed a better FPT algorithm for MaxLeaf with f(k) = (2k)4k. This
was further improved by Fellows, McCartin, Rosamond and Stege [28]; their pa-
rameter function is roughly k (14.23)k. In a previous version of this chapter [12]
we obtained an FPT algorithm with parameter function O(9.49k). Recently
Estivill-Castro, Fellows, Langston and Rosamond [24] presented a general ap-
proach for constructing FPT algorithms and showed how this can be used to
find an FPT algorithm for MaxLeaf with parameter function O(8.80k). See
Section 6.6 for more details on this algorithm and more comparisons between
these FPT algorithms. In this chapter, we use the new extremal result from
Chapter 5 to obtain an FPT algorithm with parameter function O(8.12k).

The literature also contains a number of purely combinatorial results around
problem MaxLeaf, mainly in extremal graph theory. Ding, Johnson and Sey-
mour [21] prove that whenever a graph G satisfies |E(G)| ≥ n + 1

2 (k− 1)(k− 2)
and n 6= k + 1, then it has a spanning tree with at least k leaves. Another
branch of extremal results deals with graphs with large minimum degree. Linial
conjectured around 1987 that every graph G with δ(G) ≥ δ has a spanning tree
with at least n(δ − 2)/(δ + 1) + cδ leaves, where cδ is a small positive constant
only depending on δ. Alon [1] used a probabilistic argument to disprove Linial’s
conjecture for the cases where δ is sufficiently large. However, for small values
of δ the conjecture turned out to be true. Kleitman and West [38] and Linial
and Sturtevant [41] proved Linial’s conjecture for δ = 3 with c3 = 2. Kleitman
and West [38] proved it for δ = 4 with c4 = 8/5, and Griggs and Wu [35] proved
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it for δ = 5 with c5 = 2. All these bounds are best possible. The cases with
δ ≥ 6 are not well-understood. In particular, we do not know the value of the
smallest δ for which Linial’s conjecture is false. For more information, we refer
the reader to Caro, West and Yuster [15].

Our previous result was based on the aforementioned bound for δ = 3:
every connected graph G with δ(G) ≥ 3 has a spanning tree with at least
n/4 + 2 leaves [38]. This bound is best possible, but all worst case examples
contain many cubic diamonds: a diamond is a complete graph on four vertices
minus one edge, and a subgraph H of G is called a cubic diamond of G if
it is a diamond induced by four vertices of degree three. Griggs, Kleitman
and Shastri [34] showed that every connected cubic graph without diamonds,
contains a spanning tree with at least n/3+4/3 leaves, and that this is the best
possible linear bound. In Chapter 5 we showed that every connected graph G
with δ(G) ≥ 3 without cubic diamonds has a spanning tree with at least 2

7n+ 12
7

leaves. This is again the best possible linear bound. In fact, the following strictly
stronger statement was proved, which gives the bound that we will use for our
FPT algorithm:

Theorem 6.1 Let G be a connected graph on n vertices with δ(G) ≥ 3. G has
a spanning tree T with |L(T )| ≥ 2

7n + 12
7 − d

7 , where d is the number of cubic
diamonds of G that contain exactly one leaf of T .

Using the trivial bound d ≤ n/4, it follows that this can be seen as a general-
ization of the aforementioned bound for δ = 3, apart from a small difference in
the constant.

The contribution of this chapter is the following: we construct a fast FPT
algorithm for MaxLeaf with parameter function f(k) ∈ O(8.12k). Our solu-
tion approach is quite different from the previous lines of attack in [6, 22, 28].
It is based on three main ingredients. The first ingredient is a preprocessing
procedure that translates any instance (G, k) of MaxLeaf into an (equivalent)
smaller instance (G′, k′) that satisfies a number of nice structural properties.
This preprocessing procedure is described in detail in Section 6.3. The second
ingredient is an (expensive) enumerative procedure that considers an exponen-
tial number of vertex subsets and checks whether they can form the leaf set of a
spanning tree. This procedure is described in Section 6.4. The third ingredient
is Theorem 6.1, which can be used to combine these algorithms into an FPT
algorithm, and deduce its time complexity. The FPT algorithm is stated in
Section 6.5, which also contains a proof of correctness and its time complexity.
In Section 6.6 we discuss an alternative analysis of our algorithm, practical ap-
plications and further improvements. But first we define some key concepts for
our methods in the next section.

6.2 Preliminaries

The operation of suppressing a vertex u of degree two consists of contracting
an incident edge uv, and assigning the label v to the new vertex again. This is
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: S∅(G)

: S=2(G)

: S≥3(G)

G : shave(G):

P

C(P ):

backbone(G):

Figure 6.1: shave(G), backbone(G), the vertex partition and a c-path.

the reverse operation of an edge subdivision. Suppressing a vertex preserves all
vertex degrees.

For the following definitions, see Figure 6.1 for an example. Recall that we
allow a graph to have an empty vertex set; this graph is called the empty graph.
We define a subgraph of G called shave(G): if G is a tree, shave(G) is the
empty graph. Otherwise, shave(G) is the graph obtained from G by repeatedly
removing leaves, until no leaves remain. If shave(G) has no vertices of degree
at least three, backbone(G) is the empty graph. Otherwise, backbone(G) is
obtained by suppressing all degree two vertices of shave(G). So if G is not a
tree and shave(G) is not a cycle, backbone(G) has minimum degree at least
three. backbone(G) can be a multi-graph with loops.

Related to these definitions, we will partition the vertex set of G into three
disjoint classes S∅(G), S=2(G), and S≥3(G).

• The set S∅(G) = V (G)\V (shave(G)) contains the vertices that do not
appear in shave(G).

• The set S=2(G) = V (shave(G))\V (backbone(G)) contains the vertices
that have degree two in shave(G).

• The set S≥3(G) = V (backbone(G)) contains the rest of the vertices.

Let u and v be two distinct vertices in S≥3(G). A caterpillar path (or c-
path, for short) between u and v is a subgraph of G that is a (u, v)-path, with
all internal vertices in S=2(G). If x1, . . . , xr are the internal vertices of a c-
path ordered from u to v, then P = 〈u, x1, . . . , x2, v〉 denotes this c-path. Note
that a single edge uv with u, v ∈ S≥3(G) also forms a c-path. Every edge
in backbone(G) that is not a loop corresponds to a c-path in G. A vertex
x ∈ S∅(G) is said to be in the neighborhood of a c-path from u to v, if there
is a path P from an interior vertex of the c-path to x of which all internal
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vertices are in S∅(G). In other words, x is in the neighborhood if it belongs to
one of the branches connected to the c-path. If P is a c-path, C(P ) denotes
the (connected) subgraph of G induced by V (P ) and all the vertices in S∅(G)
that are in the neighborhood of the c-path P (C(P ) is the actual caterpillar).
A vertex x ∈ S=2(G) without neighbors in S∅(G) is called an α-vertex, and a
vertex x ∈ S=2(G) with at least one neighbor in S∅(G) is called a β-vertex.

6.3 The preprocessing phase

In this section, we will prove a number of reduction lemmas that altogether lead
to the following theorem.

Theorem 6.2 There exists a polynomial time algorithm that translates any in-
stance (G, k) of MaxLeaf into another instance (G′, k′) that satisfies the fol-
lowing properties:

1. (G, k) and (G′, k′) are equivalent.

2. backbone(G′) is a simple graph.

3. k′ ≤ k.

4. G′ contains no cubic diamonds.

5. Every vertex in S∅(G′) is a leaf, unless G′ = P3.

6. For every c-path in G′, its internal vertices form an alternating sequence
of α- and β-vertices.

The second property states the main goal of the preprocessing: if backbone(G′)
is simple, we can use existing extremal results. This will show that if |S≥3(G′)| ≥
3.5k′, the instance (G′, k′) is a YES-instance. The third property is needed to
express this bound in k instead of k′. The final three properties give some
additional structural information.

We will present a number of lemmas that correspond to operations on the
instance. All of these operations work on a specific structure and remove it,
such that step by step the desired structural properties are obtained. When we
say an instance (G, k) containing a certain structure is reducible, we mean that
we can replace this structure with a different structure giving a new equivalent
instance (G′, k′), such that k′ ≤ k. G′ is again a simple graph. Furthermore, in
such a replacement step the number of edges or the number of c-paths decreases,
and the other number does not increase. This is needed in order to prove that
the algorithm terminates in polynomial time.

An instance that is not reducible with our reduction rules is called a reduced
instance. Our first four reduction rules already ensure that c-paths in a reduced
instance will have one of only five different forms.

Lemma 6.3 If G has a bridge e = uv with d(u) ≥ 2 and d(v) ≥ 2, then (G, k)
is reducible.
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Proof: Consider G′ = G ·e, and k′ = k. In every spanning tree of G, the bridge
e is used and the vertices u and v are non-leaves. Hence, if T is a spanning tree
of G with at least k leaves, T · e is a spanning tree of G′ with at least k leaves.
Similarly, the converse is also true. ✷

Lemma 6.4 If G contains two leaves v1 and v2 that are adjacent to the same
vertex u with d(u) ≥ 3, then (G, k) is reducible.

Proof: Let G′ = G−v1, and k′ = k−1. T is a spanning tree of G with k leaves
if and only if T − v1 is a spanning tree of G′ with k − 1 leaves, since u is not a
leaf in either graph. ✷

These two reduction rules can be applied until the graph G has the following
structure:

Proposition 6.5 Let (G, k) be a reduced instance. Every vertex in S∅(G) is a
leaf, unless G = P3. Every vertex in S≥3(G) ∪ S=2(G) is adjacent to at most
one vertex from S∅(G).

Proof: Observe that edges incident with S∅-vertices are bridges. So if u ∈
V (G) is a S∅-vertex, (G, k) is reducible unless all neighbors of u are leaves
(Lemma 6.3). In that case, if d(u) ≥ 3 then (G, k) is reducible (Lemma 6.4). It
follows that G = P3.

If S≥3(G) ∪ S=2(G) is non-empty, G is not a tree, and thus all S∅-vertices
are leaves. Therefore if a vertex in S≥3(G) ∪ S=2(G) is adjacent to multiple
vertices from S∅(G), Lemma 6.4 can be applied. ✷

In the following lemmas about reducibility, we use this proposition implicitly;
when proving that a structure is reducible, we assume the properties in Propo-
sition 6.5 hold, because otherwise the reduction rules from Lemma 6.3 and 6.4
can be applied. Observe that if S≥3(G) = ∅, then (G, k) already satisfies the
properties in Theorem 6.2. So from now on we will assume that S≥3(G) 6= ∅.

Lemma 6.6 Consider a c-path P = 〈u, x1, . . . , xr, v〉.
(a) If for some i, the vertices xi and xi+1 both are α-vertices, then (G, k) is

reducible.

(b) If for some i, the vertices xi and xi+1 both are β-vertices, then (G, k) is
reducible.

Proof: (a) Consider G′ = G − xixi+1, and k′ = k. We argue that that there
always exists an optimal tree for G that avoids the edge xixi+1. Consider an
optimal tree T that does use xixi+1. T −xixi+1 consists of two subtrees T1 and
T2. By Lemma 6.3 we may assume that xixi+1 is not a bridge in G, and so
there is an edge y1y2 in G that connects T1 and T2. Then it can be seen that
the new tree T ′ := T −xixi+1 +y1y2 is an optimal tree, too (the transformation
cannot decrease the number of leaves). We conclude that optimal trees for G
and G′ have the same number of leaves.
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(b) Consider G′ = G · xixi+1, and k′ = k. Observe that β-vertices are cut
vertices, and therefore are never leaves in a spanning tree. We first prove the
existence of an optimal tree of G that contains xixi+1. Consider an optimal tree
T of G with xixi+1 6∈ E(T ). T + xixi+1 contains a cycle C. Choose an edge
yz 6= xixi+1 on this cycle. T2 = T + xixi+1 − yz is again a tree, with at least
as many leaves (xi and xi+1 were not leaves in T ). So if a spanning tree of G
with at least k leaves exists, we may consider a spanning tree T of G with at
least k leaves that contains xixi+1. We use T to construct a spanning tree of
G′ with at least k leaves: consider T ′ = T · xixi+1. All leaves of T are leaves of
T ′. Similarly, every spanning tree T ′ of G′ with at least k leaves corresponds to
a spanning tree of G with at least k leaves, since the vertex resulting from the
contraction of xixi+1 is a β-vertex of G′. ✷

Lemma 6.7 Consider a c-path P = 〈u, x1, . . . , xr, v〉. If for some i, the vertices
xi−1 and xi+1 both are α-vertices and xi is a β-vertex, then (G, k) is reducible.

Proof: We reduce this graph by contracting xi−1xi, xixi+1 and xiy, where y
is the single leaf adjacent to xi, and setting k′ = k − 1. Vertex xi−1 is incident
to the edge xi−1xi and to a second edge e. Vertex xi+1 is incident to the edge
xixi+1 and to a second edge f .

We claim that there always exists an optimal tree for G that uses the two
edges xi−1xi, xixi+1: consider an optimal tree T with xi−1xi 6∈ E(T ). Then
T ′ = T − e + xi−1xi is a spanning tree with at least as many leaves. Similarly,
if xixi+1 /∈ T , then T ′ = T − f + xixi+1 is a spanning tree with at least as
many leaves. Clearly, xiy ∈ E(T ). A spanning tree T with at least k leaves that
contains these three edges, can be made into a spanning tree T ′ of G′ with at
least k − 1 leaves: in T , contract the same three edges into the single vertex z.
If xi−1 or xi+1 was a leaf of T , z is a leaf of T ′. These two vertices cannot both
be leaves. So we only lose leaf y. Similarly, any spanning tree T ′ of G′ with at
least k−1 leaves corresponds to a spanning tree T of G with at least k leaves. ✷

We have the following immediate consequence of Lemmas 6.6 and 6.7.

Proposition 6.8 For any c-path P = 〈u, x1, . . . , xr, v〉 in a reduced instance,
r ≤ 3 holds, and the interior vertices are alternatingly α-vertices and β-vertices.
Moreover, if r = 3 then x1 and x3 are β-vertices and x2 is an α-vertex.

At this point we have sufficiently characterized the possible forms of c-paths
in a reduced instance: c-paths in a reduced instance will have one of only five
different forms (no internal vertices; α-vertex; β-vertex; α-vertex and β-vertex;
β-vertex, α-vertex and β-vertex). In the remaining proofs this proposition will
be used implicitly again.

Now we will present a number of reduction rules that reduce parallel c-paths:
c-paths that correspond to parallel edges in backbone(G). It will turn out that
in all cases we can reduce parallel c-paths.
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6.3.1 The cases where both caterpillar paths have interior

vertices

Lemma 6.9 Let P = 〈u, x1, . . . , xr, v〉 and P ′ = 〈u, x′
1, . . . , x

′
s, v〉 be two c-

paths in G. If r ≥ 2 and s ≥ 1, and if x1 and x′
1 both are β-vertices, then (G, k)

is reducible.

Proof: We will reduce (G, k) to G′ = G · ux1 and k′ = k.
In order to show that this is a valid reduction, we first argue that an optimal

tree exists for G that contains ux1, and does not have u as a leaf: consider an
optimal tree T that does not contain ux1. In that case, x1x2 ∈ E(T ). Then
T − x1x2 + ux1 is again a spanning tree, and has at least as many leaves: x2

is an α-vertex and therefore a leaf in the new tree. Now let T be an optimal
tree that contains ux1, but has u as a leaf. In that case, ux′

1 6∈ E(T ), and
x1x2 ∈ E(T ). Then we see that T + ux′

1 − x1x2 is again a spanning tree, with
the same number of leaves (we lose u and gain x2 as a leaf).

We conclude that there always exists an optimal tree T that contains the
edge ux1, in which u and x1 are non-leaves. Therefore, if T has at least k leaves,
T ·ux1 is a spanning tree of G′ with at least k leaves. Similarly, a spanning tree
T ′ of G′ with at least k leaves corresponds to a spanning tree of G with at least
k leaves, since the vertex resulting from the contraction is a cut vertex of G′.✷

Lemma 6.10 Consider two c-paths P = 〈u, x1, . . . , xr, v〉 and P ′ = 〈u, x′
1, v〉

in G. If r ≥ 1 and if the (unique) interior vertex x′
1 of P ′ is an α-vertex, then

(G, k) is reducible.

Proof: We reduce this instance to G′ = G − x′
1 and k′ = k − 1.

We claim there always exists an optimal tree for G that does not use both
of the edges ux′

1 and x′
1v. Consider an optimal tree T . Suppose that it uses

both edges ux′
1 and x′

1v. Then T must avoid exactly one edge yz in P . We
distinguish three cases: first, if y and z both are interior vertices of P , then
one of them is an α-vertex and one of them is a β-vertex. Hence, at most one
of them can be a leaf in T . Then T + yz − ux′

1 has at least as many leaves as
T . In the second case, we assume that T avoids the edge yz = ux1. Consider
T + ux1 − ux′

1: this does not change whether u is a leaf. x′
1 becomes a leaf,

so this new spanning tree has at least as many leaves as T . If yz = xrv, the
desired spanning tree is T + xrv − x′

1v.
To summarize, there always exists an optimal spanning tree T in which x′

1

is a leaf. If T has at least k leaves, then T − x′
1 has at least k − 1 leaves. u and

v cannot both be leaves in a spanning tree T ′ of G′. So if T ′ has at least k − 1
leaves, we can add either ux′

1 or vx′
1 to T ′, such that no leaves are lost. One

leaf is gained, so G then has a spanning tree with at least k leaves. ✷

Lemma 6.11 Consider two c-paths P = 〈u, x1, v〉 and P ′ = 〈u, x′
1, v〉 in G. If

x1 and x′
1 both are β-vertices, then (G, k) is reducible.

Proof: Let y be the leaf neighbor of x1. We reduce (G, k) to G′ = G − x1 − y,
k′ = k − 1.
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Figure 6.2: The reduction rule from Lemma 6.12

W.l.o.g., an optimal tree T of G avoids either ux1 or x1v. In both cases, if
T has at least k leaves, then T ′ = T − x1 − y is a spanning tree of G′ with at
least k − 1 leaves. If T ′ is a spanning tree of G′ with at least k − 1 leaves, then
u or v is not a leaf. So adding edges ux1 and x1y resp. vx1 and x1y gives a
spanning tree of G with at least k leaves. ✷

Lemma 6.12 Consider two c-paths P = 〈u, x1, x2, v〉 and P ′ = 〈u, x′
1, x

′
2, v〉 in

G. If x1 and x′
2 both are α-vertices, and if x2 and x′

1 both are β-vertices, then
(G, k) is reducible.

Proof: Construct G′ as follows: remove all internal vertices of P and P ′, and
all adjacent leaves. Now add a c-path Q = 〈u, y1, y2, y3, v〉, consisting of a β-
vertex, an α-vertex and a β-vertex, in this order. Set k′ = k − 1. Figure 6.2
illustrates this rule, and shows the five corresponding tree replacement rules.

There always exists an optimal tree T of G such that when restricted to the
edges of P and P ′, it has one of the five forms shown in the middle of Figure 6.2:
for any spanning tree T we can replace E(T ) ∩ (E(P ) ∪ E(P ′) by one of these
edge sets without destroying connectivity, introducing cycles, decreasing the
number of leaves, or changing the leaf status of u or v. For these five cases, we
can replace these edges by the corresponding set shown on the right side, which
gives a spanning tree of T ′. This replacement does not increase the degree of u
and v. So if T has at least k leaves, T ′ has at least k − 1 leaves.
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On the other hand, we can see that G′ always has an optimal tree that
has one of the four different forms shown on the right side of Figure 6.2, when
restricted to the edges of Q. Suppose such an optimal tree T ′ has at least k− 1
leaves. Replace these edges by the corresponding edge set of G: in case (d), if
v is a leaf in T ′, choose the fourth set, otherwise the fifth set.

In all cases we obtain again a spanning tree T of G. This replacement may
increase the degree of u or v, but only if they are not a leaf in T ′. So T has at
least k leaves. ✷

We finish this section by checking that we have indeed settled all the cases
where both c-paths P = 〈u, x1, . . . , xr, v〉 and P ′ = 〈u, x′

1, . . . , x
′
s, v〉 have at

least one interior vertex (and hence satisfy r, s ≥ 1):

Lemma 6.13 If G contains c-paths P = 〈u, x1, . . . , xr, v〉 and P ′ = 〈u, x′
1, . . . ,

x′
s, v〉 with r ≥ s ≥ 1, then (G, k) is reducible.

Proof: We may assume that these c-paths alternatingly consist of α-vertices
and β-vertices (Proposition 6.8). Moreover, there are at most three interior
vertices, and if there are exactly three then the first and last one are β-vertices
and the middle one is an α-vertex (Proposition 6.8).

First assume that s = 1: If x′
1 is an α-vertex, then by Lemma 6.10 this

situation is reducible. If x′
1 is a β-vertex and r ≥ 2, then Lemma 6.9 can

be applied to reduce the instance. If x′
1 is a β-vertex and r = 1, then either

Lemma 6.10 or Lemma 6.11 leads to a reduction. Next assume that s = 2 (and
r ≥ 2): if u or v are adjacent to two β-vertices on P and P ′, then Lemma 6.9
applies, otherwise Lemma 6.12 applies. The case s = r = 3 can be settled by
Lemma 6.9. ✷

6.3.2 The cases where one of the caterpillar paths is an

edge

In this section, we discuss the case where u, v ∈ S≥3(G) are connected by the
edge uv and by a c-path P = 〈u, x1, . . . , xr, v〉. There are four possible cases
that are handled in the four lemmas below: (i) r = 3; (ii) r = 2; (iii) r = 1 and
x1 is a β-vertex; (iv) r = 1 and x1 is an α-vertex.

Lemma 6.14 If uv ∈ E(G) and there is a c-path P = 〈u, x1, x2, x3, v〉 in G,
then (G, k) is reducible.

Proof: We reduce to G′ = G − x1x2, k′ = k. x1 and x3 are β-vertices and x2

is an α-vertex. We claim that there always exists an optimal tree for G that
does not use the edge x1x2: if an optimal tree T does not use ux1, x2x3 or
x3v, then we can simply add this edge and remove x1x2, without decreasing the
number of leaves. Otherwise, uv 6∈ E(T ). In this case, u or v is not a leaf, so
T + uv − x1x2 has at least as many leaves.

Since the edge x1x2 is not needed in an optimal tree, we may remove it from
G and reduce the instance. ✷
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Lemma 6.15 If uv ∈ E(G) and there is a c-path P = 〈u, x1, x2, v〉 in G, then
(G, k) is reducible.

Proof: W.l.o.g., x2 is an α-vertex. We reduce (G, k) to G′ = G − x2v, k′ = k.
Similar to the previous proof, we can show that there exists an optimal tree

T of G which avoids x2v, which shows that the reduction is valid. ✷

Lemma 6.16 If uv ∈ E(G) and there is a c-path P = 〈u, x1, v〉 in G, where x1

is a β-vertex, then (G, k) is reducible.

Proof: In this case, there always exists an optimal tree for G that does not
use the edge uv. We reduce the instance by removing uv from G, and setting
k′ = k. ✷

Lemma 6.17 If uv ∈ E(G) and there is a c-path P = 〈u, x1, v〉 in G, where x1

is an α-vertex, then (G, k) is reducible.

Proof: We remove uv, and add a vertex y and edge x1y. k′ = k. Note that
this operation does not decrease the number of edges (this number remains the
same), but it does decrease the number of c-paths. Therefore, this is still a valid
reduction rule according to our conditions, once we establish that the resulting
instance is equivalent.

Similar to the previous proofs, we find that an optimal tree T exists that
avoids ux1 or x1v. W.l.o.g., ux1 6∈ E(T ). If uv ∈ E(T ), we consider T ′ =
T − uv + y + ux1 + x1y, which has the same number of leaves (y is a new leaf,
x1 is not a leaf anymore, and the degree of u does not change). If uv 6∈ E(T ),
we consider T ′ = T + x1y, which also has the same number of leaves. Similarly,
a spanning tree T ′ of G′ corresponds to a spanning tree T of G with the same
number of leaves, since u and v cannot both be leaves in T ′. ✷

These reductions cover all cases where one of the c-paths is an edge. So we
may conclude that for a reduced instance (G, k), backbone(G) contains no
parallel edges. Now we only need to remove loops to ensure that backbone(G)
is simple.

6.3.3 Removing loops and cubic diamonds

Lemma 6.18 If G has a cycle C that contains exactly one vertex u ∈ S≥3(G),
then (G, k) is reducible.

Proof: u is a cut vertex of G, so in any spanning tree of G, u is not a leaf.
A spanning tree T of G avoids exactly one edge of C. If C contains two adja-
cent α-vertices v and w, there exists an optimal spanning tree that avoids vw.
Otherwise, if C contains at least one α-vertex v, we can choose an arbitrary
neighbor w, and observe that there always exists an optimal tree that avoids
vw. In the final case, when C contains only β-vertices (and u), we can choose
an arbitrary edge vw and observe that an optimal tree exists that avoids vw.



152 CHAPTER 6. A FAST FPT ALGORITHM FOR MAXLEAF

u ux x

v

w

(b)

(a)

Figure 6.3: Removing a cubic diamond, and the corresponding spanning trees

In all cases, we can reduce to G′ = G − vw, k′ = k. ✷

Our final reduction rule is concerned with removing cubic diamonds from
backbone(G), but only if these diamonds also correspond to cubic diamonds
in G.

Lemma 6.19 If G contains a cubic diamond D = G[{u, v, w, x}] with ux 6∈
E(G), then (G, k) is reducible.

Proof: We reduce to G′ = G − v − w + ux, k′ = k − 1.
Let T be an optimal tree of G, and suppose it has at least k leaves. We

may assume w.l.o.g. that E(T ) ∩ E(D) contains either the edges shown in Fig-
ure 6.3(a) or those shown in Figure 6.3(b). In the first case, we replace these
edges of T by a single edge uv, to obtain a spanning tree T ′ of G′ with at least
k − 1 leaves. (If u or v previously was a leaf, it is again a leaf.) In the second
case, we remove these edges to obtain a spanning tree T ′ of G′ with at least
k − 1 leaves. Similarly, if a spanning tree of G′ contains uv, we replace this by
the edge set in Figure 6.3(a), otherwise we add the edge set in Figure 6.3(b). In
both cases this yields a spanning tree of G with one more leaf. ✷

6.3.4 Summary of the preprocessing algorithm

In this section, we use the previous lemmas to prove Theorem 6.2.

Proof of Theorem 6.2:
Our pre-processing algorithm on instance (G, k) works as follows: as long as
one of the structures mentioned in Lemmas 6.3-6.19 is present, we apply the
corresponding reduction rule. The priority of these rules corresponds to the
order in which the lemmas are stated, so for instance the rule in Lemma 6.9 is
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only applied on instances for which the properties in Proposition 6.8 hold. Let
(G′, k′) be the final instance which cannot be reduced any further, the reduced
instance.

All of the aforementioned reduction rules work on structures that can be rec-
ognized in polynomial time, and the operations can be carried out in polynomial
time. Since every rule decreases |E(G)|+ |E(backbone(G))|, the preprocessing
will terminate in a linearly bounded number of steps. Thus the preprocessing
algorithm has polynomial time complexity. Observe also that every reduction
rule yields again a connected simple graph. Now we prove the properties stated
in Theorem 6.2 one by one.

1. (G, k) is equivalent to the reduced instance (G′, k′): all reduction rules
give an equivalent instance.

2. We show that for a reduced instance (G′, k′), backbone(G′) is a simple
graph. For a graph G, parallel edges in backbone(G) correspond to c-
paths P and P ′ in G that have the same end vertices u and v. If both P and
P ′ contain at least one internal vertex, (G, k) is reducible (Lemma 6.13).
If P consists of the single edge uv, then Lemmas 6.14-6.17 cover all cases
(Proposition 6.8)), and show that (G, k) is reducible. It follows that for
a reduced instance (G′, k′), backbone(G′) has no parallel edges. Finally,
Lemma 6.18 shows that backbone(G′) contains no loops.

3. All of our reduction rules do not increase k, so k′ ≤ k.

4. By Lemma 6.19, G′ contains no cubic diamonds.

5. Proposition 6.5 shows that this property holds.

6. Proposition 6.8 shows that this property holds.

✷

6.4 An enumerative procedure

Algorithm 6 is the enumerative procedure. This algorithm answers the deci-
sion problem by checking an exponential number of sets (subsets of the leaves),
and for all of these sets finding a spanning tree that is optimal in some way in
polynomial time.

In the proof of the next lemma we show how to implement the steps in
the algorithm; how to decide if a spanning tree T with L ⊆ L(T ) exists, and
how to find such a spanning tree such that |L(T )\S≥3(G)| is maximized, all in
polynomial time. In Lemma 6.21, we show that by checking all of these sets,
Algorithm 6 finds the correct answer.

Lemma 6.20 Let graph G satisfy the properties from Theorem 6.2. For every
L ⊆ S≥3(G) we can decide in polynomial time if a spanning tree T of G exists
with L ⊆ L(T ), and in that case we can find in polynomial time a spanning tree
T of G with L ⊆ L(T ) that maximizes |L(T )\S≥3(G)|.
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Algorithm 6 the enumerative procedure

Input: a MaxLeaf instance (G, k) that satisfies the properties stated in The-
orem 6.2, and S≥3(G) 6= ∅.

for all subsets L ⊆ S≥3(G) with |L| ≤ k do
if a spanning tree T of G with L ⊆ L(T ) exists then

Find a spanning tree T of G with L ⊆ L(T ), and |L(T )\S≥3(G)| maxi-
mum.
if |L(T )| ≥ k then

return YES, stop
end if

end if
end for
return NO

Proof: The first part of this proof shows how to decide if such a spanning tree
exists, and if it exists, how we construct T . In the second part of the proof, we
analyze the constructed graph T : we prove that it is a spanning tree and that
it maximizes |L(T )\S≥3(G)|.

Tree construction It is easy to see that a spanning tree T with L ⊆ L(T )
does not exist if V (G)\L is not a dominating set or does not induce a connected
graph. In the other case, we will construct a spanning tree. Observe that in
this case, c-paths between two vertices in L consist of a single edge, vertices in
L are not adjacent to S∅-vertices, and in backbone(G), every vertex in L is
adjacent to a vertex not in L. Also, since S≥3(G) 6= ∅ and backbone(G) is
simple (Property 2 from Theorem 6.2), note that every S=2-vertex of G is part
of a c-path. Figure 6.4 shows an example of our tree construction. Observe that
the constructed tree T is not optimal: with a simple change vertex v can also be
made into a leaf, without losing any other leaves. However, since v ∈ S≥3(G), v
is not counted towards the number of leaves we want to maximize, so this does
not matter.

Consider H = backbone(G) − L. Assign weights w to the edges of H as
follows: if the c-path corresponding to edge e contains an α-vertex, w(e) = 1,
otherwise w(e) = 0. w(H) denotes the sum of the weights w over all edges of
H. These weights can be interpreted as the number of leaves we can gain on
this c-path if we do not use all edges of the c-path in our spanning tree (end
vertices of a c-path are not counted for the number of leaves). We construct a
spanning tree TH of H such that w(TH) is minimum. It is well-known that such
a spanning tree can be found in polynomial time using a greedy algorithm.

Using this spanning tree TH of H, we construct a spanning tree T of G: start
with T = G, and remove edges as follows. For every edge e ∈ E(H)\E(TH)
that corresponds to c-path P in G:

• If w(e) = 1, then remove an edge of P incident to an α-vertex (this vertex
becomes a leaf).
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Figure 6.4: The construction of spanning tree T of G, with L ⊆ L(T ).

• If w(e) = 0, then remove an arbitrary edge of P .

For every v ∈ L:

• If v is adjacent to a β-vertex or an S≥3-vertex not in L, then let u be this
vertex. Otherwise, let u be an α-vertex adjacent to v. Note that in both
cases, u is part of a c-path with one end vertex not in L. Remove all edges
incident with v, except uv.

We call the resulting graph T .

Analysis of the constructed graph In order to prove that T is a spanning
tree of G, we first show that for every pair u, v ∈ V (G), a (u, v)-path exists
in T . Consider the subgraph TB of backbone(G) that contains all edges that
correspond to c-paths that are used in T : by this we mean the c-paths of which
all edges are included in T . Observe that the edge set of TB is exactly the edge
set of TH plus for every v ∈ L, one edge from v to a vertex u ∈ V (TH). So TB

is a spanning tree of backbone(G). For every (u, v)-path in TB , we obtain a
(u, v)-path in T by replacing all edges with the corresponding c-paths. So in
order to show that every pair of vertices in T is connected, we only need to show
that for every vertex in T , we can find a path in T to an S≥3-vertex of G. We
removed at most one edge from every c-path: c-paths with two end vertices in
L consist of a single edge, and for other c-paths the statement follows directly.
We did not remove edges incident with S∅-vertices: no S∅-vertex is adjacent
to a vertex in L. It follows that for every vertex there is a path in T to an
S≥3-vertex, and thus for every pair of vertices u, v ∈ V (G), a (u, v)-path exists
in T .
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Next we show that T contains no cycles. c-paths together with their neigh-
borhood form a tree, so if a cycle exists, it contains S≥3-vertices. If v1, . . . , vk

are these S≥3-vertices numbered along the cycle, then v1, v2, . . . , vk, v1 is a cycle
in the aforementioned spanning tree TB of backbone(G), a contradiction.

Finally, we prove that our choice of T maximizes |L(T )\S≥3(G)|. So we
only count leaves of T that are S=2-vertices or S∅-vertices of G. Since every
S∅-vertex is a leaf of G (Property 5 of Theorem 6.2), all S∅-vertices are leaves in
every spanning tree of G. Therefore we only have to show that |L(T )∩S=2(G)|
is maximum. We do this by comparing T with an arbitrary spanning tree T ′ of
G with L ⊆ L(T ′).

First we consider c-paths between two vertices not in L. For every such
c-path P , P contains a leaf of T if P contains an α-vertex, and P is not used in
T . Such a path P corresponds to an edge e of H with w(e) = 1 and e 6∈ E(TH).
We conclude that the number of this kind of leaves gained is w(H) − w(TH).
Now we count the number of leaves of T ′ on these c-paths. For T ′ we define
a subgraph T ′

B of backbone(G) in the same way as previously: uv ∈ E(T ′
B)

if the c-path between u and v is used in T ′. Observe that T ′
B is a spanning

tree of backbone(G). If u ∈ S≥3(G) is a leaf of T ′, it is a leaf of T ′
B , so

T ′
H = T ′

B − L is a spanning tree of H. If a c-path P is used in T ′, none of its
internal vertices become leaves in T ′. If P is not used in T ′, at most one edge
e of P is not present in T ′. Leaves are gained on this path only if end vertices
of e are α-vertices. Since α-vertices on c-paths are not adjacent (Property 6
of Theorem 6.2), at most one vertex on an unused c-path can become a leaf in
T ′, and none if the c-path contains no α-vertices. We see that the number of
leaves of T ′ that are S=2-vertices on c-paths between two vertices not in L is at
most w(H) − w(T ′

H), where T ′
H is a spanning tree of H. Since TH was chosen

to be a minimum weight spanning tree of H, this number is not greater than
w(H) − w(TH), the number of leaves of T on these paths.

c-paths with two end vertices in L have no internal vertices and therefore
do not count towards the number of S=2-vertices that become leaves. Now we
consider c-paths P with one end vertex u ∈ L and one end vertex v 6∈ L. For
every u ∈ L, there is exactly one c-path of this type incident with u that is used
in T ′. For all other incident c-paths P of this type, the edge incident with u is
the only edge not present in T ′. A leaf is gained if and only if the neighbor v of
u on such an unused c-path is an α-vertex. It follows that our construction of
T also maximizes the number of leaves on c-paths of this type.

We have considered all S=2-vertices on all c-paths of G, and all S=2-vertices
of G are part of a c-path. Therefore, for the spanning tree T we constructed,
|L(T ) ∩ S=2(G)| ≥ |L(T ′) ∩ S=2(G)| holds for every spanning tree T ′ with
L ⊆ L(T ′). ✷

Lemma 6.21 If a spanning tree T of G with |L(T )| ≥ k exists, Algorithm 6
returns YES, otherwise algorithm 6 returns NO.

Proof: Clearly Algorithm 6 only returns YES if a spanning tree T with |L(T )| ≥
k exists. Now suppose a spanning tree T of G with |L(T )| ≥ k exists. Let
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L = L(T ) ∩ S≥3(G). If |L| ≤ k, the set L is considered in the algorithm, and a
spanning tree T ′ is found that maximizes |L(T ′)\S≥3(G)|. So |L(T ′)| ≥ |L(T )|,
and the algorithm returns YES.

If |L| > k, then consider an arbitrary set L′ ⊂ L with |L′| = k. This set L′

is considered Algorithm 6. Clearly, a spanning tree T ′ with L′ ⊆ L(T ′) exists,
so the algorithm finds a spanning tree with at least k leaves, and returns YES.
✷

6.5 The FPT algorithm

Algorithm 7 is our FPT algorithm for MaxLeaf, which uses the preprocess-
ing algorithm from Section 6.3 and enumerative procedure from Section 6.4.
Correctness is proved in Lemma 6.22, and its time complexity is analyzed in
Lemma 6.23.

Algorithm 7 the FPT algorithm

input: (G, k)

STEP 1: Apply preprocessing to (G, k), and call the resulting instance
(G′, k′).

STEP 2: if G′ contains no S≥3-vertices then use a straightforward algo-
rithm to find the answer, stop. (See the text for details.)

STEP 3: if |S≥3(G′)| ≥ 3.5k′ then return YES, stop.

STEP 4: Use Algorithm 6 on (G′, k′).

First we show how to implement step 2. If G′ has no S≥3-vertices, then
either G′ is a tree or shave(G′) is a cycle. If G′ is a tree, (G′, k′) is a YES-
instance if and only if |L(G′)| ≥ k′. If shave(G′) is a cycle, a spanning tree of
G′ is obtained by deleting one edge. It is easy to find the best edge e to delete,
and to find the correct answer.

Lemma 6.22 Algorithm 7 returns YES if and only if (G, k) is a YES-instance
for MaxLeaf.

Proof: Theorem 6.2 shows that step 1 gives an equivalent instance. Above
we showed how step 2 can be implemented such that the answer is correct.
Lemma 6.21 shows that the enumerative procedure used in step 4 gives the
correct output. Now we will show that if in step 3 a YES answer is given, this
is correct; we will show that if |S≥3(G′)| ≥ 3.5k′, then G′ has a spanning tree
with k′ leaves, using Theorem 6.1 for backbone(G′).

When step 3 is entered, all properties stated in Theorem 6.2 hold for G′, and
S≥3(G′) 6= ∅, so backbone(G′) is a simple graph with minimum degree at least
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Figure 6.5: Changing the spanning tree when a diamond edge is subdivided

three. Since G′ contains no cubic diamonds (Property 4 from Theorem 6.2), a
cubic diamond in backbone(G′) does not correspond to a cubic diamond in
G′. More formally this can be described as follows: G′ can be constructed from
backbone(G′) by applying edge subdivisions and adding leaves (introducing
a vertex and connecting it to an existing vertex). If D is a cubic diamond
in backbone(G′), then in this construction of G′, at least one edge of D is
subdivided, or at least one leaf is added adjacent to a vertex of D. We will use
this fact to show that if backbone(G′) has a spanning tree T with at least k
leaves, then G′ has a spanning tree with at least k + d leaves, where d is the
number of cubic diamonds of backbone(G′) that contain exactly one leaf of T .

Let T1 be a spanning tree of G1, and let D be a cubic diamond of G1 that
contains exactly one leaf of T1. W.l.o.g., we may assume T1 contains the edges
shown in Figure 6.5. Apply an edge subdivision on an edge of D, and call the
resulting graph G2, and the subgraph corresponding to D we call D′. Now we
can gain one leaf: remove the edges of D from E(T1), and add the appropriate
edge set from Figure 6.5 or a symmetric edge set to E(T1). Note that since D is
a cubic diamond, we can choose to use a different leaf than the original leaf in
D. The resulting graph T2 is is a spanning tree for G2 with one more leaf. Now
let G2 be obtained from G1 by adding a leaf adjacent to one of the vertices of
D. In this case, we can also gain a leaf: in T1, replace the edges of D with one
of the edge sets shown in Figure 6.6, or a symmetric edge set.

We remark that we need to assume that D contains only one leaf of T1:
otherwise there are cases where no leaf can be gained after an edge subdivision
or leaf addition.

This allows us to prove that if |S≥3(G′)| ≥ 3.5k′, the instance is a YES-
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G1:

G2:

G2:
T1:

T2:

T2:

Figure 6.6: Changing the spanning tree when a leaf is added to a diamond

instance. Let n = |S≥3(G′)| = |V (backbone(G′)|. Now we can apply Theo-
rem 6.1, which shows that backbone(G′) has a spanning tree T with |L(T )| ≥
2
7n + 12

7 − d
7 , where d is the number of cubic diamonds that contain exactly

one leaf of T (we use the fact that backbone(G′) is simple: Property 2 from
Theorem 6.2).

We construct G′ from backbone(G′) by applying edge subdivisions and leaf
additions. At every step we maintain a spanning tree T : if we subdivide an edge
that is part of a cubic diamond D, or add a leaf adjacent to a vertex in a cubic
diamond D, and D contains one leaf of T , we change T as described above.
We gain one leaf in this case. Otherwise, we extend T in the straightforward
way, which does not decrease the number of leaves. We observed that on every
cubic diamond of backbone(G′), at least one of these operations is applied.
Therefore when G′ is obtained, at least d leaves are gained. It follows that
the constructed spanning tree of G′ has at least 2

7n + 12
7 − d

7 + d ≥ 2
7n + 12

7
leaves, so the instance is a YES-instance if k′ ≤ 2

7n + 12
7 , or alternatively, if

n ≥ 7
2k′ > 7

2k′ − 6. This proves that the output of step 3 is correct. ✷

Lemma 6.23 Algorithm 7 with input (G, k) has time complexity g(m) + f(k),
with m = |V (G)|, g(m) a polynomial, and f(k) ∈ O(8.12k).

Proof: The preprocessing step can be implemented such that the complexity
is polynomial in m (Theorem 6.2). The same is true for step 2 and step 3.
So the time complexity of step 1–3 is polynomial in m, where the degree of
the polynomial depends on the implementation. Note however that this is a
practical, small degree polynomial.
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Now we analyze the complexity of step 4. Let n = |S≥3(G′)|. Step 4 is only
done if n < 3.5k′. The enumerative procedure checks all subsets of size at most
k′ of the vertices of backbone(G′). For every such subset, a polynomial time
algorithm is applied (polynomial in n, so also in k′). The number of subsets is

(

n

k′

)

+

(

n

k′ − 1

)

+ . . . +

(

n

0

)

≤

(

3.5k′

k′

)

+

(

3.5k′

k′ − 1

)

+ . . . +

(

3.5k′

0

)

≤ k′

(

3.5k′

k′

)

+ 1.

Therefore there is a polynomial g(k′) such that the complexity of the last step is

O(g(k′)
(

3.5k′

k′

)

). In addition, k′ ≤ k (Property 3 from Theorem 6.2). Now we use

Stirling’s approximation x! ≈ xxe−x
√

2πx, or alternatively, x! ∈ Θ(xxe−x
√

x).
This gives

(

3.5k′

k′

)

≤
(

3.5k

k

)

=
(3.5k)!

(2.5k)!k!
∈

O

(

(3.5k)3.5k
√

3.5k

e3.5k
· e2.5k

(2.5k)2.5k
√

2.5k
· ek

kk
√

k

)

= O

(

3.53.5k

2.52.5k
√

k

)

⊂

O

(

(

80.2118

9.8821

)k
)

⊂ O(8.117k).

For any polynomial g(k), we have g(k)8.117k ∈ O(8.12k), so we conclude that
the parameter function of this algorithm is f(k) ∈ O(8.12k). ✷

The above lemmas can be summarized as follows:

Theorem 6.24 Algorithm 7 is an FPT algorithm for MaxLeaf with parame-
ter function f(k) ∈ O(8.12k).

6.6 Discussion

We have found an FPT algorithm for MaxLeaf with parameter function f(k) ∈
O(8.12k). This is the best parameter function for an FPT algorithm for MaxLeaf

yet. We remark that even though we did not completely optimize and analyze
the polynomial algorithms that are used in our algorithm, these are all algo-
rithms with reasonable complexities; polynomials with no degrees greater than
three. It follows that considering the parameter function is indeed a good way
to assess the speed of our algorithm.

There is another commonly used way of comparing the strength of certain
types FPT algorithms. The first part of our algorithm is an example of a
kernelization algorithm: in terms of MaxLeaf, this is a polynomial time algo-
rithm that either answers the question, or translates one instance (G, k) into
an equivalent instance (G′, k′), such that |V (G′)| and k′ are both bounded by
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some polynomial in k. Observe that if |V (G′)| = n ≤ g(k), then there is a
trivial enumerative procedure that finds an optimal spanning tree for G′ in time
f(n)2n ≤ f(g(k))2g(k), where f(n) is a polynomial, by trying all possible leaf
sets. So any kernelization procedure automatically leads to an FPT algorithm.
Different FPT algorithms that are based on a kernelization step can also be
compared by looking at this function g(k) that bounds |V (G′)|.

In our case, the bound for k′ is trivial: k′ ≤ k. To bound |V (G′)| in terms
of k, we observe that after our preprocessing, for every c-path P , the number
of internal vertices and S∅-vertices in its neighborhood is at most five (Propo-
sition 6.5, Proposition 6.8). Every S≥3-vertex of G′ is adjacent to at most
one S∅-vertex (Lemma 6.4). It follows that |V (G′)| ≤ 2|V (backbone(G′))| +
5|E(backbone(G′))| < 2|S≥3(G′)|+ 5

2 |S≥3(G′)|2. If |S≥3(G′)| ≥ 3.5k, we may
answer YES immediately (see Algorithm 7), and otherwise |V (G′)| ≤ 2 · 3.5k +
5
2 (3.5k)2 = 7k + 30.625k2. So, even though we can bound |V (backbone(G′))|
by 3.5k, which is all we need for our enumerative algorithm, for the reduced
instance G′ itself the bound is worse.

The recent algorithm by Estivill-Castro et al. [24] is also an example of a
kernelization algorithm. The bound on their kernel (G′, k′) is much better than
ours: |V (G′)| ≤ 3.75k. However, their method does not easily allow a fast
enumerative procedure which has to check subsets of only a part of the reduced
instance (in our case, S≥3(G′)). So we deduced the parameter function of their
algorithm as follows: one can check all subsets L of V (G′) of size exactly k, and
check in polynomial time if there is a spanning tree T of G′ with L ⊆ L(T ).
Using |V (G′)| ≤ 3.75k and an analysis very similar to the proof of Lemma 6.23,
we conclude that their parameter function is f(k) ∈ O(8.80k).

For practical purposes, our algorithm with parameter function f(k) ∈
O(8.12k) is still not very useful for worst case instances, even for relatively
small values of k like k = 15. However, for instances with many vertices of de-
gree one and two, the algorithm works well for much larger values of k. In this
case, a lot of preprocessing can be done and/or the backbone graph is relatively
small, as is therefore the running time of the enumerative procedure.

But even though this algorithm may not be practical for many instances,
parts of the algorithm can be combined with other (heuristic) approaches. In
particular, the preprocessing can be combined with any other approach, to yield
fast, practical algorithms.

Our algorithm is formulated only for the decision problem. In practice the
optimization version of MaxLeaf is more interesting. Fortunately, since the
extremal result we used is constructive (see Chapter 5), our algorithm can also
be translated to an optimization algorithm. For instance, for any constant C,
we can give an algorithm and a number k such that for any instance G with
|V (G)| = n, in time C + g(n) (where g(n) is a polynomial) we find

• An optimal spanning tree of G, or

• a spanning tree of G with at least k leaves.

The first case occurs when the preprocessing returns a small reduced instance,
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which can be analyzed in time C, and the second case occurs when the reduced
instance is large, and the algorithm from Chapter 5 gives a spanning tree with
at least k leaves.

Finally, we discuss some ideas for further improvements. Though the ex-
tremal result in Theorem 6.1 is best possible for its class (graphs with δ(G) ≥ 3
without cubic diamonds), it is expected that stronger bounds can be obtained
for more restricted graph classes (see Chapter 5). For instance, bounds of the
form |L(T )| ≥ |V (G)|/3+C may exist for the class of graphs with δ(G) ≥ 3 that
contain no diamonds at all, or just no diamond necklaces. Loosely speaking, a
diamond necklace is a string of diamonds separated from the rest of the graph
by a 2-edge cut, thus a generalization of a cubic diamond. If such a bound can
be proved for graphs without diamond necklaces, this can almost immediately
be combined with our algorithm to get a parameter function f(k) ∈ O(6.75k).

This is just one way in which stronger extremal results can be used in our
algorithm: for any extremal result for a graph class G, if we can extend our
preprocessing to guarantee that backbone(G′) is part of G, the bound can be
used in our algorithm. Unfortunately, it does not seem easy to find preprocessing
rules that raise the minimum degree of backbone(G′) or remove triangles from
backbone(G′), in which case there would be a number of extremal results ready
to be used (see Section 6.1, and Chapter 5).
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[14] A. Brandstädt, F. F. Dragan, V. B. Le, and T. Szymczak. On stable cutsets
in graphs. Discrete Applied Mathematics, 105(1-3):39–50, 2000.

[15] Y. Caro, D. B. West, and R. Yuster. Connected domination and spanning
trees with many leaves. SIAM Journal on Discrete Mathematics, 13(2):202–
211, 2000.
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connection vertex, 55
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contraction of edges, 6, 55
n-cube, 7
cubic diamond, 96, 143
cubic diamond block, 108
cubic graph, 5
cut vertex, 7
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decision problem, 8
decomposition, 59, 60
density, 8, 11

normalized, 22
diamond, 6, 95, 143
diamond necklace, 109
directed graph, 33
distance bound, 14
distance function, 14
dominating set, 7
dominator, 98

edge component (in ABC graph), 60
edge cut, 7
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edge expansion, 6, 55
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edge-load, 13
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empty graph, 6
extremal immune, 54, 91

flow, 13
optimal, 13
uniform, 13

FPT algorithm, 10, 142

girth, 7

Hamilton cycle, 7
Hamilton path, 7
Hamiltonian, 7
head, 33
horizontal edges, 15
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incidence function, 4

indentification of vertices, 5
instance, 7

equivalence, 8
intermediate graph, 59
internal vertex, 55
interval graph, 26
interval representation, 26
isolated vertex, 5

kernelization, 160

layer of a product graph, 15
leaf, 5, 98
i-leaf, 98
line graph, 32
loop, 4

matching, 7
matching-cut, 9, 31, 53
Matching-Cut problem, 9, 31

bounded treewidth, 49
claw-free graphs, 47
co-graphs, 48
outerplanar graphs, 50
planar graphs, 38, 43, 46

Max-Leaf Spanning Tree problem,
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minimum, 4
minimum counterexample, 57, 72
monadic second order logic, 49
multi-edge, 5
multi-graph, 4

network, 1
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network load, 13
NP, 8
NP-completeness, 8

objective function, 7
objective value, 7
optimal tree, 141
optimization problem, 7
order of a graph, 5
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orientation, 33
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parallel c-paths, 147
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parameter, 142
parameter function, 142
parametrization, 142
I-partition, 21
path, 6
planar graph, 5
polynomial time, 8
potential standard CD-set, 99
problem cycle, 121
product graph, 7, 15

quadrangulated graph, 47

realization, 99
reduced instance, 145
reducible, 145
regular, 5

segment, 35
Segment 3-Colorability problem, 35
series-parallel graph, 50
simple CD-set vertex, 109
simple graph, 5
size of a graph, 5
solution

feasible, 7
optimal, 7

spanning tree, 95
sparsest cut, 8, 11

cactus, 23
complete bipartite graph, 28
product graph, 9
unit interval graph, 24

split, 55, 57, 75, 87
stable cutset, 31
standard CD-set, 99
star, 7
subdivision of edges, 5
subgraph, 6

edge induced, 6
induced, 6

spanning, 6
suppression of vertices, 5, 143

tail, 33
tree, 7
treewidth, 49
triangle, 6
triangle component, 60

Uniform Concurrent Flow problem,
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unit interval graph, 9, 12
unit interval representation, 9, 12

vertex cut, 7
vertical edges, 15

wheel, 6
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Summary

In this thesis, three different graph concepts are studied. A graph (V,E) consists
of a set of vertices V and a set of edges E. Graphs are often used as a model for
telecommunication networks, where the nodes of the network are represented
by the vertices, and an edge is present between two vertices if the corresponding
nodes are joined by a direct connection in the network. The two vertices joined
by an edge are called its end vertices, and these two vertices are neighbors of
each other. The degree of a vertex is its number of neighbors. The problems
in this thesis can be explained and motivated using applications in the area of
network design and analysis, which is done in Chapter 1. This chapter also
contains the basic definitions that will be used.

The first problem we study is the problem of finding sparsest cuts of a graph.
For a non-empty proper subset of the vertices S ⊂ V , [S, S] denotes the set of
edges with one end vertex in S, which is an edge cut. An edge cut [S, S] is a

sparsest cut if its density |[S,S]|

|S||S|
is minimum, over all edge cuts of the graph.

Sparsest cuts are closely related to all-to-all flows in networks, and we also
discuss an application related to network reliability. In general, the problem of
finding sparsest cuts or calculating their density is NP-hard. However, for three
classes of well-structured graphs we characterize the sparsest cuts in Chapter 2.
These classes are Cartesian product graphs, unit interval graphs and complete
bipartite graphs.

Secondly, matching-cuts are studied. A matching is a set of edges that
pairwise have no end vertices in common, and a matching-cut is an edge cut
that is also a matching. The problem of deciding whether a graph admits a
matching-cut is NP-complete. In Chapter 3 we show that the problem remains
NP-complete when restricted to planar graphs with maximum degree four.
We show that the problem can be decided in polynomial time for a number
of graph classes such as claw-free graphs, co-graphs, outerplanar graphs, and
graph classes with bounded treewidth in general.

In Chapter 4, graphs without a matching-cut are studied, which are called
(matching) immune. Farley and Proskurowski proved that for all immune
graphs on n vertices with m edges, m ≥ ⌈3(n − 1)/2⌉, and constructed a large
class of immune graphs attaining this lower bound for every value of n, called
ABC graphs. In Chapter 4, we prove their conjecture that all matching immune
graphs with m = ⌈3(n − 1)/2⌉ are ABC graphs.
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The third topic of this thesis is spanning trees with many leaves. A spanning
tree of a graph is a connected subgraph that contains all vertices, with a min-
imum number of edges. A leaf of a spanning tree is a vertex with degree one.
Finding spanning trees with many leaves is another problem that often occurs
in network design. In Chapter 5 we show that connected graphs on n vertices,
without triangles, with minimum degree at least three, have a spanning tree
with at least (n+4)/3 leaves. In addition we present a more general but weaker
result; we show that connected graphs on n vertices, with minimum degree at
least three, have a spanning tree with at least (2n − D + 12)/7 leaves, where
D is the number of diamonds in the graph induced by degree three vertices (a
diamond is a K4 minus an edge). Both results are best possible and constructive.

In Chapter 6 we give an algorithm for deciding whether a graph on n vertices
has a spanning tree with at least k leaves, using the second result from Chapter 5.
This problem is NP-complete. The complexity of the algorithm is g(n) + f(k),
where g(n) is a polynomial and f(k) ∈ O(8.12k). It follows that this is a Fixed
Parameter Tractable (FPT) algorithm, when k is viewed as the parameter of
the problem. This is the current fastest FPT algorithm for this problem.



Samenvatting

In dit proefschrift worden drie verschillende grafentheoretische concepten behan-
deld. Een graaf (V,E) bestaat uit een verzameling punten V , en een verzameling
lijnen E. Grafen worden vaak gebruikt om telecommunicatienetwerken te mo-
delleren; in dat geval komen de punten overeen met de knopen uit het netwerk,
en zijn twee punten verbonden door een lijn als de bijbehorende knopen direct
verbonden zijn in het netwerk. De twee punten die verbonden worden door een
lijn heten de eindpunten van de lijn, en deze twee punten zijn buren van elkaar.
De graad van een punt is het aantal buren. De onderwerpen uit dit proefschrift
kunnen worden uitgelegd en gemotiveerd door middel van toepassingen op het
gebied van netwerkontwerp en -analyse. Dit wordt gedaan in Hoofdstuk 1. Dit
hoofdstuk behandelt tevens de basisdefinities die gebruikt worden.

Het eerste probleem dat behandeld wordt is het probleem van het vinden
van lichtste snedes in een graaf. Voor een niet-lege, echte deelverzameling van
de punten S ⊂ V , noteert [S, S] de verzameling lijnen met precies één eind-
punt in S. Een verzameling van deze vorm heet een lijnsnede. Een lijnsnede

[S, S] is een lichtste snede als de dichtheid |[S,S]|

|S||S|
minimaal is, over alle lijn-

snedes van de graaf. Lichtste snedes zijn gerelateerd aan bepaalde stromen
in netwerken. We schetsen tevens een toepassing gerelateerd aan de betrouw-
baarheid van netwerken. In het algemeen is het NP-moeilijk om lichtste snedes
te vinden, of hun dichtheid te berekenen. Desalniettemin karakteriseren we
in Hoofdstuk 2 voor enkele graafklassen de lichtste snedes. Deze graafklassen
zijn Cartesisch product grafen, eenheids-interval grafen en volledige bipartiete
grafen.

Als tweede worden matching-snedes behandeld. Een matching is een verza-
meling lijnen die paarsgewijs geen eindpunten gemeen hebben, en een matching-
snede is een lijnsnede die eveneens een matching is. Beslissen of een graaf een
matching-snede heeft is een NP-volledig probleem. In Hoofdstuk 3 tonen we aan
dat dit probleem NP-volledig blijft wanneer we de invoer beperken tot planaire
grafen met grootste graad vier. Het probleem kan beslist worden in polynomiale
tijd voor grafen zonder gëınduceerde K1,3, voor co-grafen, voor buitenplanaire
grafen, en in het algemeen, voor graafklassen met begrensde boombreedte.

In Hoofdstuk 4 worden grafen zonder matching-snede bestudeerd. Deze
grafen heten (matching) immuun. Farley and Proskurowski hebben bewezen dat
voor alle immune grafen met n punten en m lijnen geldt dat m ≥ ⌈3(n−1)/2⌉, en
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hebben een graafklasse geconstrueerd die bestaat uit immune grafen die precies
aan deze ondergrens voldoen, genaamd ABC grafen. In Hoofdstuk 4 bewijzen
we hun vermoeden dat alle immune grafen met m = ⌈3(n − 1)/2⌉ ABC grafen
zijn.

Het derde onderwerp van dit proefschrift is dat van opspannende bomen
met veel bladeren. Een opspannende boom van een graaf is een samenhangende
deelgraaf die alle punten bevat, met een minimaal aantal lijnen. Een blad
is een punt met graad één. Het vinden van opspannende bomen met veel
bladeren is wederom een probleem dat zich vaak voordoet in het ontwerpen
van netwerken. In Hoofdstuk 5 bewijzen we dat samenhangende grafen met n
punten, zonder driehoeken, met kleinste graad minstens drie, een opspannende
boom hebben met minstens (n+4)/3 bladeren. We bewijzen ook een algemener
maar zwakker resultaat; we tonen aan dat samenhangende grafen met n punten,
met kleinste graad minstens drie, een opspannende boom bevatten met minstens
(2n−D+12)/7 bladeren. Hierin staat D voor het aantal diamanten in de graaf
die gëınduceerd worden door punten met graad drie (een diamant is een K4

minus een lijn). Beide resultaten zijn constructief, en de gegeven grenzen zijn
optimaal.

In Hoofdstuk 6 geven we een algoritme om te beslissen of een graaf op n
punten een opspannende boom bevat met minstens k bladeren, gebruikmakend
van het tweede resultaat in Hoofdstuk 5. Dit is een NP-volledig probleem. De
complexiteit van het algoritme is g(n)+ f(n), waarbij g(n) een polynoom is, en
f(k) ∈ O(8.12k). Dit is dus een Fixed Parameter Tractable (FPT) algoritme,
wanneer we k beschouwen als de parameter van het probleem. Dit is op dit
moment het snelste FPT algoritme voor dit probleem.
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