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ABSTRACT

We develop a method of sparse decomposition of stereo au-

dio signals, and test its application to blind separation of

more than two sources from only two linear mixtures. The

decomposition is done in a stereo dictionary which we can

define based on any standard time-frequency or time-scale

dictionary, such as the multiscale Gabor dictionary. A de-

composition of a stereo mixture in the dictionary is com-

puted with a Matching Pursuit type algorithm called Stereo

Matching Pursuit. We experiment an application to blind

source separation with three (mono) sources mixed on two

channels. We cluster the parameters of the stereo atoms of

the decomposition to estimate the mixing parameters, and

recover estimates of the sources by a partial reconstruction

using only the appropriate atoms of the decomposition. The

method outperforms the best achievable linear demixing by

dB to more than dB on our preliminary experiments, and

its performance should increase as we let the number of it-

erations of the pursuit increase. Sample sound files can be

found here : http://www.irisa.fr/metiss/gribonval/

1. INTRODUCTION

Stereo audio signals can be modeled as a pair of (noisy)

mixtures

(1)

of (mono) sources , with an additive

(stereo) Gaussian noise and

a pair of linear filters.

In the natural acoustic mixing that occurs during the si-

multaneous recording of several sources with a pair of mi-

crophones, each pair of filters depends on the spatial

location of the source relatively to the sensors. In the ane-

choic case, they can be modeled as gain-delay filters, and

the stereo mixture can be expressed as

(2)

where is a panpot parameter : corresponds to

mixing entirely on the left channel, mixes it to

the right channel.

Mono audio sources , which can be considered as

vectors in the Hilbert space of finite energy signals, have

been shown to have sparse decompositions in a variety of

time-frequency dictionaries (e.g. local trigonometric bases

[1], wavelet or wavepacket bases [2] or the union of them

[3], or the Gabor multiscale dictionary [4, 5, 6]). By sparse

representation we mean that with

(we denote the dictionary by ) and the sequence

has a fast decay when tends to infinity. It follows that the

stereo mixture , which lies in the Hilbert space stereo
of finite energy stereo signals, has a representation

as

(3)

in the stereo dictionary stereo of stereo atoms

(4)

where is a (mono) atom, is a panpot parameter, and

a delay parameter which can be restricted to

where is the maximum delay between channels.

Given the stereo mixture , we propose to decompose it

on a stereo dictionary using a Matching Pursuit type algo-

rithm [5]. After iterations, is decomposed as

(5)
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where is a residual. We define the

Stereo Matching Pursuit algorithm in Section 2.

In Section 3 we experiment a simple blind source sepa-

ration algorithm based on Stereo Matching Pursuit decom-

position. The idea, which was exploited in [7] using the

complex spectrogram as a sparse representation of each chan-

nel, is that each stereo atom in the decomposition (5) cor-

responds to an atom in the representation (3) for some ,

hence every pair from (5) yields an estimate of

the panpot and relative delay . By cluster-

ing one can estimate the number of sources and

partition the indexes into classes

. As mentioned in [7], in the case of

sources, it is possible to estimate a demixing matrix from

the clusters, and the sources can be estimated linearly by

applying the demixing matrix. We are more interested in

the case of sources : then, no linear demixing can in

general completely separate the sources. However by par-

titioning the decomposition (5), one can obtain a nonlinear

estimate of the sources (up to gain and delay)

(6)

In a way, this extends the complex spectrogram-based blind

source separation technique proposed in [7] by providing a

method for adaptively choosing the size of the window.

2. STEREO MATCHING PURSUIT

We recall the definition of the Matching Pursuit algorithm

[5] and specialize it to the setting of stereo signals. Given

a complete dictionary , i.e. a family of unit vectors in a

Hilbert space that spans a dense subspace of (note :

it can easily be checked that if is complete in then

stereo is complete in stereo), and an arbitrary number

, the Matching Pursuit decomposes any signal into

a linear combination of atoms chosen among and a

residual term as in (5). The strong convergence of

the algorithm was proved by Jones

[8] and shows that one can get as good an approximation to

as wanted by taking big enough.

2.1. Standard algorithm

Standard Matching Pursuit goes as follows. From a decom-

position of into atoms, one gets an -atom

decomposition in the following way :

1. Compute for all .

2. Select the best atom of the dictionary

3. Compute the new residual

(7)

with .

2.2. Stereo Matching Pursuit

For any mono atom and delay parameter , the pair

of stereo vectors is an orthonormal

basis of its linear span in stereo, which we will call

a stereo subspace. The orthonormal projection

of onto is given by

(8)

and one can easily check that

Assume that for any and , : it follows

that Matching Pursuit with stereo goes as :

1. Compute for and all .

2. Compute for all and .

3. Select the best stereo subspace

4. Compute the new residual

with and

(9)

Hence, no exhaustive search over the panpot parame-

ter is needed for the optimization of a stereo atom. The

complexity of iterations of Stereo Matching Pursuit for

a signal of samples is essentially twice that of standard

Matching Pursuit, i.e. [5, 9] with the usual

discretization of the Gabor dictionary [4].
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3. EXPERIMENTS

Using the Matching Pursuit Package of the LastWave pro-

gram [10] we have implemented Stereo Matching Pursuit

using the stereo dictionary of real Gabor atoms [4, 5]

(10)

where is a given window of unit energy, e.g. the Gaus-

sian window, is a scale parameter, a time parameter,

a frequency parameter and a normalizing constant.

Each real Gabor atom is in the linear span of two conjugated

complex Gabor atoms

(11)

therefore, similarly to what was done above with the panpot

parameter , no exhaustive search over the phase param-

eter is needed [11, 12, 9].

3.1. Stereo Matching Pursuit of real audio signals

We performed experiments on a mixture of three sources :

is a recording of cello; is a recording of drums;

is a recording of piano. Each source is sampled at

kHz and we use seconds of each signal, i.e.

samples. Stereo Matching Pursuit was performed

using iterations. The computation time on a

Pentium III 750 MHz laptop was about minutes. We dis-

play on Figure 1 the decay (in decibels) of the relative error

as a function of . Due to the relatively high
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Fig. 1. Decay (in decibels) of the relative approximation

error as a function of the number of stereo

atoms.

computation time of this straightforward implementation of

the decomposition algorithm, we have performed only few

experiments at the time of writing this paper. However, a

fast version of the Matching Pursuit decomposition is under

development, based on sub-dictionaries of local maxima of

the stereo Gabor dictionary [9]. We expect the computation

time to be divided by about 25, thus enabling more itera-

tions and better approximations.

3.2. Source separation of panpot mixture

We tested the source separation capabilities of our decom-

position method in the case where the sources are mixed us-

ing pure panpot [13], i.e. (see Equation (2)) ,

, . , . ,

and . For each value of the differ-

ence in intensity between channels is at most

decibels, hence each of the three sources is perceived

strictly between the two ears in binaural hearing [14].

Stereo Matching Pursuit was performed with .

Figure 2 displays the histogram of : three peaks

can clearly be observed, they are centered on the values

. Estimates of the three sources where computed
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Fig. 2. Histogram of from a Stereo Matching Pursuit

decomposition of a panpot mixture of three audio signals.

One can observe three peaks, centered around the values

and (see text).

from Equation (6) by manual clustering in three intervals

, and . For each source,

source cello drums piano

2000 4000 5500

536 924 540

SNR (dB) 4.8 8.5 14.6

SNR (dB) 0.0 1.1 11.5

Table 1. Signal to noise ratio between the original and the

estimated sources with the Stereo Matching Pursuit based

separation (SNR ) and the best linear demixing (SNR ),

and their correlation with the contribution of the

source to the stereo mixture and the number of atoms

used in the estimation (see Equation (6)).

we summarized in Table 1, the norm of its contri-

bution to the mixture, the number of atoms used in its
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estimation, the absolute signal to noise ratio (SNR) in deci-

bels SNR and, as a refer-

ence, the value SNR of the best SNR attainable by linear

demixing. One can notice that the SNR logically increases

as the contribution of the source to the stereo mixture in-

creases. Moreover, Stereo Matching Pursuit separation out-

performs the best linear demixing by 3 dB (for the piano)

to more than dB (for the drums). It seems that the larger

the number of atoms used in the estimation of a source,

the larger the improvement over linear demixing. Hence,

we expect the SNR to improve if we make more iterations

of the Stereo Matching Pursuit.

4. CONCLUSION AND ONGOINGWORK

In this paper we presented a new method of decomposi-

tion of stereophonic audio signals, using the notion of stereo

time-frequencydictionary and aMatching Pursuit approach.

With the stereo Gabor dictionary, we performed blind source

separation by clustering the decomposition coefficients and

partial reconstruction. Among other potential applications

of the decomposition method, let us point out the modifica-

tion of the stereo image (i.e. remixing at the user end) by

changing the and parameters before reconstruction, as

well as techniques of compression of audio signals where,

depending on the available bitrate, we may choose to re-

spect more or less the stereo image by using more or less

bits to code and .

At the time of writing this paper, we were about to test

an implementation of a fast version of the Stereo Match-

ing Pursuit decomposition, which we expect to multiply the

computation speed by 25. Using the fast algorithm, we will

make experiments with more iterations of the pursuit, lead-

ing to smaller energy of the residue . Therefore, we

expect to see an improvement in the SNR of the blind sepa-

ration application.

Because acoustic stereo recordings generally involve a

combination of phase and intensity stereophony, we plan to

turn to source separation with nonzero delays . Hence,

we will have to deal with the fact that the relative delay is

more reliably estimated from short atoms of the decompo-

sition (i.e. with a small scale ), while the phase differ-

ence is more reliable for longer atoms. Moreover, we will

likely need to cluster simultaneously the panpot, delay and

phase difference parameters of the

decomposition atoms. We may eventually have to investi-

gate modified decomposition algorithms where some auto-

matic clustering is done adaptively at each iteration of the

pursuit, driving the selection of the next atom.
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