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Abstract— In this work we address joint object category and
instance recognition in the context of RGB-D (depth) cameras.
Motivated by local distance learning, where a novel view of
an object is compared to individual views of previously seen
objects, we define a view-to-object distance where a novel view is
compared simultaneously to all views of a previous object. This
novel distance is based on a weighted combination of feature dif-
ferences between views. We show, through jointly learning per-
view weights, that this measure leads to superior classification
performance on object category and instance recognition. More
importantly, the proposed distance allows us to find a sparse
solution via Group-Lasso regularization, where a small subset
of representative views of an object is identified and used, with
the rest discarded. This significantly reduces computational cost
without compromising recognition accuracy. We evaluate the
proposed technique, Instance Distance Learning (IDL), on the
RGB-D Object Dataset, which consists of 300 object instances
in 51 everyday categories and about 250,000 views of objects
with both RGB color and depth. We empirically compare IDL to
several alternative state-of-the-art approaches and also validate
the use of visual and shape cues and their combination.

I. INTRODUCTION

Visual recognition of objects is a fundamental and chal-

lenging problem and a major focus of research for computer

vision, machine learning, and robotics. In the past decade,

a variety of features and algorithms have been proposed

and applied to this problem, resulting in significant progress

in object recognition capabilities, as can be seen from

the steady improvements on standard benchmarks such as

Caltech101 [7].

The goal of our work is to study the recognition problem

at both the category and the instance level, on objects that we

commonly use in everyday tasks. Category level recognition

involves classifying objects as belonging to some category,

such as coffee mug or soda can. Instance level recognition is

identifying whether an object is physically the same object

as one that has previously been seen. Most recognition

benchmarks are constructed using Internet photos at the

category level only, but the ability to recognize objects at

both levels is crucially important if we want to use such
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Fig. 1. Two distance learning approaches. (Left) Local distance learning
uses a view-to-view distance, typically followed by a k-nearest neighbor
rule. (Right) The proposed instance distance learning, where we use the
weighted average distance from a view x to an object instance Y which
consists of a set of views of the same object.

recognition systems in the context of specific tasks, such as

human activity recognition or service robotics. For example,

identifying an object as a generic “coffee mug” (category) or

as “Amelia’s coffee mug” (instance) can lead to substantially

different implications depending on the context of a task. In

this paper we use the term instance to refer to a single object.

In addition to category and instance level recognition,

we want to enrich the recognition data by taking advan-

tage of recent advances in sensing hardware. In particular,

the rapidly maturing technologies of RGB-D (Kinect-style)

depth cameras [20], [13] provide high quality synchronized

videos of both color and depth, presenting a great opportunity

for combining color- and depth-based recognition. To take

advantage of this rich new data in object recognition, the

classifier needs to combine visual and shape information.

However, not all features are always useful. Some features

may be more discriminative for certain objects, while other

features are more useful for other objects. The best features

to use may also depend on the task at hand, for example

whether we are trying to find “Amelia’s coffee mug” or just

any coffee mug (category versus instance recognition). The

recognition system should learn which features are useful

depending on the particular object and task at hand.

One successful line of work on combining heterogeneous

features is distance learning (e.g. [27], [26]), in particular

local distance learning [23]. Local distance learning has been

extensively studied and demonstrated for object recognition,

both for color images [9], [10], [18] and 3D shapes [15]. A

key property of these approaches is that they can model com-

plex decision boundaries by combining elementary distances.

Local distance learning, however, is not without issues.

For our problem setting, there are two main limitations to

overcome: (1) existing formulations of local distance learning

do not capture the relations between object categories and

specific instances under them; (2) they provide no means

for selecting representative views, or example images, of



instances and thus become very inefficient if a large number

of views are collected for each object.

The explosive growth of the web has led to the availability

of large repositories of images like Flickr and 3D models like

Google 3D Warehouse. The computer vision community has

recently released ImageNet [5], a growing database of mil-

lions of images organized according to WordNet hypernym-

hyponym relations. Although these large databases contain

a wealth of information that can potentially be used to

solve robot perception problems, it remains difficult to create

algorithms that can take advantage of these large datasets

while still retaining the efficiency required for robotics

applications.

In this paper we propose an approach to sparse Instance

Distance Learning (IDL): instead of learning per-view dis-

tances, we define and optimize a per-instance distance that

combines all views of an object instance (see Fig. 1). By

learning a distance function jointly for all views of a par-

ticular object, our approach significantly outperforms view-

based distance learning for RGB, Depth, and RGB+Depth

recognition. This result can also be motivated as subclass

classification [25], [6]. Even more importantly, joint instance

distance learning naturally leads to a sparse solution using

Group-Lasso regularization, where a sparse set of views

of each instance is selected from a large pool of views.

Thus, IDL provides a data-driven way to select informative

training examples for each object and significantly sparsify

the data set, discarding redundant views and speeding up

classification. We show that IDL achieves sparse solutions

without any decrease in performance.

II. LEARNING INSTANCE DISTANCES

In this section, we describe how to learn instance distance

functions for classification tasks in the context of image

classification. In image classification, we are given a set of

objects Y . The goal is to learn a classifier to predict category

and instance labels of images, or views, outside the training

set. One of the simplest methods to do this is to find nearest

neighbors of the test view and make a prediction based on

the labels of these nearest neighbors. In this section, we show

how to improve this approach by learning an instance dis-

tance function. We start by considering a simple classification

rule, the nearest instance classifier, which labels incoming

test images x using the label of the nearest instance (an

extension to k-nearest instances is straightforward):

cx = argmin
i,j

1

|Yij |

∑

y∈Yij

d(x, y) (1)

Here, Yij denotes the set of views taken of the j-th instance

of the i-th category. As can be seen, cx is the object that

appears most similar to the test image, averaged over its

views. d(x, y) can be any distance function between views

x and y. In this paper, we use the l2 distance d(x, y) =
‖x − y‖. The nearest instance classifier given in (1) can be

used for both category and instance recognition: The index i

provides the category and the index j gives the corresponding

instance. Unfortunately, the nearest instance classifier can

Fig. 2. Decision boundaries found by two instance distance classifiers
on a two-dimensional dataset. (Left) instance distance learning with l2

regularization. (Right) instance distance learning with data sparsification,
which retains only 8% of data (stronger colors) and still has a similar
decision boundary.

often perform poorly in practice due to the difficulties of

finding a good distance measure.

We now consider a significantly more powerful variant

by learning an instance distance function for recognition.

In many problems there are multiple features available and

the best performance is obtained by using all available

information. To do so, we replace the scalar distance d(x, y)
between two views x and y by a vector d(x, y) of separate

l2 feature distances. The corresponding instance distance

function between example x and the j-th instance of i-th

category Yij can then be written as

fij(x) =
1

|Yij |

∑

y∈Yij

w
⊤
y d(x, y) + bij (2)

where W is a set of weight vectors wy for all y ∈ Yij .

Unlike the nearest instance classifier, this significantly more

expressive distance function allows the classifier to assign

different weights to each feature and for each view, enabling

it to adapt to the data. Note that we have added a bias term,

bij , to the instance distance function to allow negative values.

The weight vector wy is D-dimensional, where D is the

number of different features extracted for each view. Note

also that each example view has a different weight vector.

Due to this, the functions do not define a true distance metric,

as they are asymmetric. This is advantageous since different

examples may have different sets of features that are better

for distinguishing them from other examples, or views.

When learning the weight vector for an instance, it is

necessary to distinguish between category and instance clas-

sification. For instance recognition, the weight Wij defining

the distance function for the j-th instance in category i can

be learned using the following l2 regularized loss function:
∑

x∈Yij

L(−fij(x)) +
∑

x∈Y \Yij

L(fij(x)) + λW⊤
ijWij (3)

where we have chosen L(z) = max(0, 1− z)2, the squared

hinge loss. The first term penalizes misclassification of views

x ∈ Yij that belong to the same instance. The second term

similarly penalizes misclassification of negative examples, or

views, by incurring a loss when their distance is small. Note

that the negative examples also include views of different

instances that belong to the same category i. The final term is

a standard l2 regularizer, biasing the system to learn smaller

weight vectors. This objective function is convex and can be



optimized using standard optimization algorithms. Given a

test image x, we assign to it the category or instance label

of the nearest object using cx = argmini,j fij(x).
For category recognition, we learn the instance distance

by minimizing the following l2 regularized loss:
∑

x∈Yi

L(−fij(x)) +
∑

x∈Y \Yi

L(fij(x)) + λW⊤
ijWij (4)

where Yi =
⋃Ni

s=1
Yis and Ni is the number of instances in

the i− th category. The key difference between the instance

recognition and the category recognition loss is that in the

former, only the views of the same instance are positive

examples, whereas in the latter the views of all instances

in the same category become positive examples.

Fig. 2 (left) shows the decision boundary obtained with

instance distance learning on a two-dimensional dataset. The

dataset contains two classes: red and blue. There are two

separate instances in the blue class and they lie on opposite

sides of the single red class instance. Instance distance

learning is able to find a very good decision boundary

separating the two classes.

III. EXAMPLE SELECTION VIA GROUP-LASSO

An important property of the instance distance we defined

in Section II is that it allows for data sparsification. This is

achieved by replacing l2 regularization in (3) with Group-

Lasso [28], [19], resulting in the following objective func-

tion:
∑

x∈Yij

L(−fij(x)) +
∑

x∈Y \Yij

L(fij(x)) + λ
∑

y∈Yij

√

w⊤
y wy (5)

Here, the first two terms optimize over individual compo-

nents of the instance weight vector, and the third, Group-

Lasso, term drives the weight vectors of individual views

toward zero. Group-Lasso achieves this by grouping the

weight components of individual views in the penalty term.

In contrast to previous work that make use of the Group-

Lasso for encouraging feature sparsity, here we use it to

encourage data sparsity. In other words, optimizing this

objective function yields a supervised method for choosing

a subset of representative examples, or views. If the Group-

Lasso drives an entire weight vector wy to 0, the corre-

sponding example no longer affects the decision boundary

and has effectively been removed by the optimization. The

degree of sparsity can be tuned by varying the λ parameter.

Intuitively, data sparsity is often possible because many

examples may lie well within the decision region or are

densely packed together. Removing such examples would

reduce the magnitude of the regularization term while having

little or no effect on the loss terms. Each data point is only

one of many that contribute to the instance distance and

redundant examples would not significantly influence the

decision boundary.

The advantage of data sparsification using the proposed

objective function is twofold. As explained above, the pro-

posed technique can remove redundant and uninformative

examples. Secondly, removing examples from consideration

Fig. 3. Views of objects from the RGB-D Object Dataset shown as 3D point
clouds colored with RGB pixel values. From left to right, top to bottom,
they are apple, calculator, cereal box, coffee mug, lemon, and soda can.

at test time results in computational cost savings which coun-

teracts the data-size-dependent time complexity of nearest

neighbor techniques.

For category level, the group lasso based instance distance

learning uses the following objective function

∑

x∈Yi

L(−fij(x)) +
∑

x∈Y \Yi

L(fij(x)) + λ
∑

y∈Yij

√

w⊤
y wy (6)

Fig. 2 (right) shows a data sparsification example using

instance distance learning with Group-Lasso. In this two-

dimensional dataset, the technique is able to throw away 92%

of the data and still obtain decision boundaries that closely

match the one learned without data sparsification.

IV. EXPERIMENTS

We apply the proposed instance distance learning (IDL)

to two related object recognition tasks: category recognition

and instance recognition. In category recognition, the system

is trained on several objects belonging to each category and

the task is to classify a never-before-seen object into one of

the categories. In the instance recognition task, the system is

presented with multiple views of each object, and the task is

to classify never-before-seen views of these same objects.

The experimental results in this section demonstrate that

our technique obtains good performance on both recognition

tasks, particularly when taking full advantage of both shape

and visual information available from the sensor. The tech-

nique is able to not only automatically sparsify training data,

but it also exceeds the performance of several alternative

approaches and baselines, even after sparsification. We also

apply the instance distance learning technique to object

detection and show that it is able to detect objects in a

cluttered scene.

A. Experimental Setup

We evaluate our technique on the RGB-D Object

Dataset [14], a novel dataset consisting of cropped and seg-

mented images of distinct objects spun around on a turntable.

The dataset consists of 300 object instances in 51 categories.

There are between three to twelve instances in each category.

The images are collected with an RGB-D camera that can

simultaneously record both color image and depth data at

640×480 resolution. In other words, each ‘pixel’ in the



RGB-D frame contains four channels: red, green, blue and

depth. The 3D location of each pixel in physical space can

be computed using known sensor parameters. Each object

was placed on the turntable and rotated. Data was recorded

from three viewing heights, at approximately 30, 45 and 60

degrees above the horizon. We used around 50 views at each

height, giving around 150 views per instance, or 45000 RGB

+ Depth images in total, each of which serves as a data point

in training or testing. Fig. 3 shows some example views

of objects from the data set. Each view shown here is a

3D point cloud where the points have been colored with

their corresponding RGB pixel values. The segmentation

procedure uses a combination of visual and depth cues and

is described in detail in [14].

We extract features that capture both the visual appearance

and shape of each view (image) of a particular object.

The presence of synchronized visual and 3D data greatly

enhances the amount of information available for performing

object recognition and our technique naturally combines

multiple features in a single framework. We first compute

spin images [12] for a randomly subsampled set of 3D points.

Each spin image is centered on a 3D point and captures

the spatial distribution of points within its neighborhood.

The distribution, captured in a two-dimensional 16 × 16
histogram, is invariant to rotation about the point normal.

We use these spin images to compute efficient match kernel

(EMK) features using random fourier sets as proposed in [2].

EMK features are similar to bag-of-words (BOW) features

in that they both take a set of local features and generate a

fixed length feature vector describing the bag. EMK features

approximate the Gaussian kernel between local features and

give a continuous measure of similarity. To incorporate

spatial information, we divide an axis-aligned bounding cube

around each view into a 3×3×3 grid. We compute a 1000-

dimensional EMK feature in each of the 27 cells separately.

We perform principal component analysis (PCA) on the

EMK features in each cell and take the first 100 components.

Finally, we include as shape features the width, depth and

height of a 3D bounding box around the view. This gives us

a total of 30 shape descriptors.

To capture the visual appearance of a view, we extract

SIFT [17] on a dense grid of 8×8 cells. To generate image-

level features and capture spatial information we compute

EMK features on two image scales. First we compute a

1000-dimensional EMK feature using SIFT descriptors from

the entire image. Then we divide the image into a 2 × 2
grid and compute EMK features separately in each cell from

only the SIFT features inside the cell. We perform PCA

on each cell and take the first 300 components, giving a

1500-dimensional EMK SIFT feature vector. Additionally,

we extract texton histograms [16] features, which capture

texture information using oriented gaussian filter responses.

The texton vocabulary is built from an independent set of

images on LabelMe. We also include a color histogram and

also use the mean and standard deviation of each color

channel as visual features. There are a total of 13 visual

descriptors.

B. Performance Comparisons

Given the above set of features, we evaluate the cate-

gory and instance recognition performance of the proposed

instance distance learning technique and compare it to a

number of alternative state-of-the-art classifiers:

• IDL: Our proposed instance distance learning algorithm

with l2 regularization.

• EB LOCAL: An exemplar-based local distance function

learning technique by Malisiewicz et al. [18].

• SVM: linear support vector machine

• RF: random forest classifier [3]

We follow the experimental setup in [14] to allow for

direct comparisons. For category recognition, we randomly

leave one object out from each category for testing and

train the classifier on all views of the remaining objects. For

instance recognition, we divide each video into 3 consecutive

sequences of equal length and for each object instance. There

are 3 heights (videos) for each object, so this gives 9 video

sequences for each instance. We randomly select 7 of these

for training and test on the remaining 2.

To verify that our technique is indeed able to take advan-

tage of both shape and visual information available from

the RGB-D camera, we evaluated the performance of all

the techniques using only shape-based features, only visual-

based feature, and using both shape and visual features.

Fig. 4 shows the overall classification performance of the

different algorithms on both category-level and instance-

level recognition. As can be seen from the results, our

technique substantially improves upon the performance of a

competitive exemplar-based local distance method and other

state-of-the-art classification techniques in most cases or

otherwise gets comparable performance.

Overall, visual features are more useful than shape fea-

tures for both category level and instance level recognition.

However, shape features are relatively more useful in cat-

egory recognition, while visual features are relatively more

effective in instance recognition. This is exactly what we

should expect, since a particular object instance has a fairly

constant visual appearance across views, while objects in the

same category can have different texture and color. On the

other hand, shape tends to be stable across a category in

many cases, thereby making instance recognition via shape

more difficult. The fact that combining both shape and visual

features enables our technique to perform better on both tasks

demonstrates that our technique can take advantage of both

shape and visual features.

C. Data Sparsification Results

Fig. 6 shows the classification accuracy of two data

sparsification techniques at varying levels of data sparsity:

1) running instance distance learning technique on a uniform

random downsampling of the training data and 2) our sparse

instance distance learning (IDL SPARSE). The curve for

IDL SPARSE is generated by varying the regularization

tradeoff parameter, λ. The plot shows that IDL SPARSE

is able to sparsify the data considerably (up to a factor of



Technique Classification Accuracy

Category Instance

Shape Vision All Shape Vision All

EBLocal 58.9± 2.1 70.1± 3.4 78.4± 2.8 41.2± 0.6 81.2± 0.6 84.5± 0.5
LinSVM 53.1± 1.7 74.3± 3.3 81.9± 2.8 32.4± 0.5 90.9± 0.5 90.2± 0.6

RF 66.8± 2.5 74.7± 3.6 79.6± 4.0 52.7± 1.0 90.1± 0.8 90.5± 0.4
IDL 70.2± 2.0 78.6± 3.1 85.4± 3.2 54.8± 0.6 89.8± 0.2 91.3± 0.3

Fig. 4. Classification performance of various techniques on the RGB-D data set. EBLocal is exemplar-based local distance learning, LinSVM is linear
SVM, RF is Random Forest, and IDL is the instance distance learning proposed in this paper.

Fig. 5. Confusion matrices (row-normalized) for sparse instance distance learning on (left) category recognition and (right) instance recognition.

1

5
) without causing any significant loss in accuracy. Note

that IDL SPARSE does not necessarily converge to the

same accuracy as IDL because the techniques use different

regularization. The two techniques are only identical when

the regularization tradeoff parameter is set to 0, but this

would lead to overfitting.

Although uniform random downsampling is a naı̈ve form

of sparsification, it actually works very well on our dataset,

since uniform sampling of video frames gives good coverage

of object views. Nevertheless, the plot clearly shows that IDL

SPARSE obtains higher classification accuracy than random

downsampling across all levels of data sparsity. Fig. 7 shows

some example views retained for several objects.

Fig. 5 shows the confusion matrices between the 51 cat-

egories for category recognition (left) and the 300 instances

for instance recognition (right). In the category recognition

run, the sparse instance distance learning obtained an overall

accuracy of 83% and retained 15% of the training data. In the

instance recognition run, the technique obtained an overall

accuracy of 89.7% and retained 19% of the training data.

D. 3D Object Category Dataset

In addition to the novel RGB-D dataset that we col-

lected, we also evaluated instance distance learning (IDL)

on a publicly available image-only dataset: the 3D object

category dataset presented by Savarese et al. [22]. There

are 8 object categories in the dataset: bike, shoe, car, iron,

mouse, cellphone, stapler, and toaster. For each category, the

dataset contains images of 10 individual object instances

under 8 viewing angles, 3 heights and 3 scales for a total

number of 7000 images that are all roughly 400 × 300
pixels. We evaluated IDL on category level recognition on

Fig. 6. Number of examples retained versus classification accuracy of
two example selection techniques: 1) random downsampling and 2) sparse
instance distance learning. Accuracy of Instance distance learning is shown
for comparison.

this dataset using the same setup as [22]: we randomly select

7 instances per category for training and use the rest for

testing. The furthest scale is not considered for testing. IDL

obtains substantially higher accuracy (80.1%) than the results

reported in [22] (75.7%).

E. Object Detection

Object recognition is often more than just classifying a

cropped image of an object. For example, a robot may

be tasked to search the environment for a specific set of

objects, such as finding all coffee mugs and soda cans on

a table. This problem is referred to as object detection. In

object detection, the system is given a fixed set of objects

to search for and trains the appropriate detectors beforehand.

At test time, the system is presented with a set of images



Fig. 7. Data selection with Group-Lasso: A small set of representative
views that were chosen for several objects.

and must identify all objects of interest that are present in

the image by specifying bounding boxes around them. We

applied the instance distance learning technique to object

detection. Given the task of identifying a particular set of

objects, an instance distance classifier is trained for each

instance by using views in the particular instance as positive

examples. The set of negative examples is constructed from

views of other objects as well as a separate set of background

images that do not contain any objects the system is tasked

to find. At test time, the system is presented with a video

sequence taken from a particular scene, e.g. a kitchen area or

an office table. The system runs a sliding window detector

of a fixed size across each video frame, invoking the learned

instance distance classifier at each window. The window

sliding is done over an image pyramid to search across scales.

The classifier returns a score, which we threshold to obtain

bounding boxes. Since the distance from the camera to the

object can vary, the size of an object in the image can also

vary, so we run the sliding window detector on 20 image

scales by rescaling the image. We perform non-maximum

suppression to remove multiple overlapping detections.

The features we use for object detection differ from those

used for recognition. This is because state-of-the-art object

detection systems [4], [8] have shown histogram of oriented

gradients (HOG) features to be effective and also because

they can be efficiently computed on image windows using

convolution. We divide each image into a grid of 8 × 8
cells and extract features in each cell. As visual features, we

use a variation of HOG [8] computed on the RGB image.

This version considers both contrast sensitive and insensitive

features, where the gradient orientations in each cell (8× 8
pixel grid) are encoded using two different quantization

levels into 18 (0◦−360◦) and 9 orientation bins (0◦−180◦),

respectively. This 4 × (18 + 9) = 108-dimensional feature

vector is analytically projected into a 31-dimensional feature

as described in [8].

As depth features, we compute HOG features over the

depth image (i.e. treating the depth image as a regular

image and computing histograms of oriented gradients on it).

Additionally, we also compute a feature capturing the scale

(physical size) of the object. The distance d of an object

from the camera is inversely proportional to its scale, o. For

an image at a particular scale s, we have c = o
s
d, where

c is constant. In the sliding window approach the detector

window is fixed, meaning that o is fixed. Hence, d
s

, which

we call the normalized depth, is constant. We compute the

average normalized depth in 8×8 grid and use this as a scale

feature.

We evaluated the IDL classifier on the object detection task

on a video sequence of an office environment. Objects were

placed on a table and the system was tasked with finding the

soda can, coffee mug, and cap in the video sequence. The

cereal box acts as a distractor object and sometimes occludes

the objects of interest. Following the PASCAL VOC evalua-

tion metric, a candidate detection is considered correct if the

intersection of the predicted bounding box and the ground

truth bounding box is more than half of their union. Only

one of multiple successful detections for the same ground

truth is considered correct and the rest are counted as false

positives. Fig. 8 (left) shows the precision-recall curves of the

individual object detectors as well as the overall precision-

recall curve for all the objects. Each precision-recall curve

is generated by ranking the resulting detections using scores

returned by the classifier and thresholding on them. Each

threshold gives a point along the curve. We run only the

detector for the particular object to generate the precision-

recall curves for the individual objects. For the multiple-

object curve, we run all three object detectors and pool all

candidate detections across objects and generate a single

precision-recall curve. The precision-recall curves show that

IDL attains good performance on the object detection task.

Even when searching for three different objects by running

multiple detectors in the video sequence, there is only a

slight drop in the precision and recall. Fig. 8 (right) shows

an example multi-object detection. Here the system is able

to correctly locate the three objects even though there are

other objects and background clutter in the scene.

V. CONCLUSIONS

In this work we studied both object category and instance

recognition using the RGB-D Object Dataset [14], a large

RGB-D (color+depth) dataset of everyday objects. Our work

is of interest both in terms of algorithm design and of

the empirical validations on appearance and depth cues

for recognition. Our key insight is that because a category

consists of different objects, there is a natural division of a

category into subclasses, and this motivates our use of the in-

stance distance. We show that by jointly learning the weights

in this distance function, we outperform alternative state-of-

the-art approaches. The proposed instance distance learning

provides a distance measure for evaluating the similarity of

a view to a known set of objects. This information can be

used as input to other robotics tasks, such as grasping. An

interesting direction for future work is to treat the training

data as an object database where grasping information is

stored for each object. When the robot encounters an object

in the world, it can use the instance distance classifier



Fig. 8. Object detection results on a video sequence. (Left) Precision-recall curves of individual bowl, coffee mug, and soda can detectors and aggregated
detections. (Right) Example video frame with detection results.

to match the object to objects in the database to retrieve

potential grasps.

The use of Group-Lasso allows us to find a compact

representation of each object instance as a small set of views

without compromising accuracy. With the ever increasing

size of data sets available on the World Wide Web, sparsifi-

cation of such data will become more important. While the

current technique assumes an offline setting, the development

of online Group-Lasso style sparsification is an interesting

and promising direction for future work.

Finally, we showed that using both shape and visual

features achieves higher performance than either set of cues

alone for both category and instance recognition. Considering

the fast advances of RGB-D camera hardware, these results

are extremely encouraging, supporting the belief that the

combination of RGB and depth will find many uses in object

recognition, detection, and other robotics perception tasks.
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