
Sparse Dynamic Programming II:

Convex and Concave Cost Functions

David Eppstein

Zvi GaW

Raffaele Giancarlo

Giuseppe F. Italiano

ClJCS--!72-S9

Sparse Dynamic Programming II:
Convex and Concave Cost Functions

David Eppstein 1

Raffaele Giancarlo 1.3

Zvi Galil 1.2

Giuseppe F. Italiano 1,4

1 Computer Science Department, Columbia University, :\ew York, :;Y 10027

2 Computer Science Department, Tel Aviv University, Tel Aviv. Israel

3 Department of Mathematics, University of Palermo, Palermo. Italy

4 Department of Computer Science, 1: niversity of Rome, Rome, Italy

Abstract: \Ve consider dynamic programming solutions to two recurrences. used

to compute a sequence alignment from a set of matching fragments between two

strings. and to predict RN A secondary structure. These recurrences are defined

over a number of points that is quadratic in the input size; however only a

sparse set matters for the result. We give efficient algorithms for solving these

problems, when the cost of a gap in the alignment or a loop in the secondary

structure is taken as a convex or concave function of the gap or loop length. Our

algorithms reduce the best known time by a factor almost linear in the density of

the problems: when the problems are sparse this results in a substantial speed-up.

In trod uction

\Ve are concerned here with t\VO problems in sequence analysis. both solvable by dynamic program

ming. The first problem is alignment of sequences. and the second is prediction of RNA secondary

structure. In both cases a cost function is involved: for sequence alignment this gives the cost of

inserting or deleting a consecutive group of symbols, and for R:-1A structure this gives the cost of

forming a loop of a given length. Also in both cases, the dynamic program has some sparsity in

its structure. which we would like to exploit in the design of efficient algorithms for the problems.

In a companion paper [8J we showed how to do this for cost functions that are linear in the length

of the insertion or deletion, or in the length of the R:-;A loop. Here we extend these methods to

cost functions that may be either convex or concave. ~fany of the cost functions that are likely to

be used satisfy an additional property, which we will define following Hirschberg and Larmore [10:

and Eppstein. Galil, and Giancarlo [7, 9]. For such functions. our algorithms can be made even

more efficient.

Our algorithm for computing alignments from a sparse set of fragments runs in time O(n ..

m + .\1 log AI) for conca.ve cost functions, and O(n + m + .\1 10g'\l Q(AI)) for convex cost functions

Here nand m are the lengths of the two input strings, ,\1 is the number of fragments found. and

Q(x) is the inverse Ackermann function. a very slowly growing function. The log function here. and

throughout the paper, is assumed to be log x = log2(2 + I); i.e. when x is small the logarithm do

not become negative. For simple convex cost functions the time can be further reduced to match! hI'

concave time bound. These bounds improve the previous best known time of O(n + m + .\1'2) :JO

Our algorithm for the prediction of RXA secondary structure with convex or concave c ... '

functions for single loops runs in time O(n + .\1 10g.\I log min(.\f, n~ /-\f)). Here n is the length!

the input sequence, and ,\1 is the number of possible base pairs under consideration. When ! ~, ..

'/

cost function is simple. our bounds can be improved to Ot TI + .\/ log.\1 log log mint .\/. Tl: /.\1)). The

previous best known bound was O(n~ log 71) [3]: ollr bounds impro\'f' this by taking ad\'antage of

the sparsity of the problem.

Our algorithms are based on a common unifying framework, in which we find for each point of

the sparse problem a geometric region of the dynamic programming matrix in which that point can

influence the values of other points. \Ve then resolve conflicts between different points by applying

several algorithmic techniques in a variety of novel ways. In particular. previous algorithms for

many of the problems we study have used either data structures [7, 9, 10] or matrix searching

[1, 2, 3, 14, 28]. By combining both techniques, we achieve better bounds than either technique

alone would give.

First let us define convexity and concavity as we will be using it. Each of our cost functions

will be a two-parameter function w(i. j), where i and j are both integer indices into the input

sequences. We say that w is concave when, for all i < i' < j < j'. the quadrangle inequality

w(i.j') + w(i',j) ~ w(i.j) + u'(i',j') (1)

is satisfied. \Ve say that w is convex when the reverse inequality, which we call the inverse quadrangle

inequality, is satisfied. For most applications, the cost function will actually depend only on the

difference between its two parameters: in other words, [L'(i. j) = g(j - i) for some function g. In

this case, w will be convex or concave by the above definition exactly when 9 is convex or concave

by the usual one-parameter definition.

The quadrangle inequality was introduced by ~10nge [191. and revived by Hoffman [111. in

connection with a planar transportation problem. Later. F. Yao [31] used the inequality to solve a

dynamic programming problem related to the construction of optimal binary search trees. Recently.

the quadrangle inequality has seen use in a number of other dynamic programming algorithms for

sequence analysis [3, 6, 7, 9. 14. 28].

A Dynamic Minimization Problem

We now describe a data structure to solve a minimization with dynamically changing input valuPS

We will later use this data structure in our solution of the sparse sequence alignment problem. Thl"

data structure may also have independent interest of its own. We consider the following equatiOn

E[i] = min D[)] + !L'(I,j).
1

Each of the indices i and j are taken from the set of integers from 1 through some bound n. ThO'

minimization for each E[i] depends on all values of DU]. not just those for which j < i. The (O~t

function w(i,j) is assumed to be either convex or concave. The values of DU] will initially bp ~ .. t

to +00. At any time step. one of the following two operations may be performed:

(1) Compute the value of E[i]. for some index i. as determined by equation 2 from the prestOn'

values of DU].

(2) Decrease the value of DU]. for some index j. to a new value that must be smaller than' h ..

previous value but may otherwise be arbitrary.

We will give a data structure for this problem that will take O(logn) amortized time per

operation. For simple cost fUIlctions, this time can be r .. duced to O(lo!!;iogn) amortized ,imp per

operation.

Equation 2 generalizes a number of problems that have appeared in other algorithms for

sequence analysis, computational geometry. and other problems.

• Knuth and Plass [16J used a recurrence of the form D[i] = minj<i D[j] + w(i. j) to break

paragraphs into evenly spaced lines in the T£,.X program. They used the naive O(n2
) dynamic

program to solve the recurrence. Hirschberg and Larmore [10] gave algorithms for solving the

recurrence in time O(n log n), assuming a weaker form of the quadrangle inequality than that

used here. With the quadrangle inequality as we use it. the problem becomes trivial to solve.

This recurrence can be seen as an example of equation 2, in which we consider the index i to

range successively over the integers from 1 to n; for each i, we first calculate E[i], and then

include it in the recurrence by reducing D[iJ from +Xl to the newly calculated value of E[i].

• Aggarwal et al. [2] considered the problem of finding the minimum value of each row of an

implicitly defined matrix, satisfying certain constraints. An important special case of their

problem is the static version of equation 2, in which all values of DU] are specified before any

value of E[i] is computed. They gave a linear time algorithm for the matrix searching problem.

and thus also this special case.

• Galil and Giancarlo [9] considered a generalization of the problem of Knuth and Plass, in which

D[i] may be computed in some simple but arbitrary way from the corresponding value of E[i].

This generalization can be applied for sequence alignment problems with non-linear gap costs.

They gave an O(n log n) algorithm for this problem. when w(i. j) is either convex or concave:

a version of their algorithm takes linear time for simple functions.

• Wilber [28J extended the matrix searching techniques of Aggarwal et al. [2] to matrices in

which the entries in each row depend dynamically on previously solved row minima. He used

this to achieve a linear time solution to the concave case of Galil and Giancarlo's problem.

However Wilber's algorithm is not suitable for the application to sequence alignment, or to

other problems in which many instances of the problem are computed simultaneously. Epp

stein [6J modified Wilber's algorithm to avoid these difficulties, while still taking only linear

time.

• Aggarwal and Klawe [1] extended the matrix searching techniques of Aggarwal et al. [2] to

staircase matrices. a class of matrices that includes as a special case triangular matrices, and

used this result to solve some further computational geometry problems. Their algorithm for

solving such matrices takes time O(n log logn). Klawe and Kleitman [14] improved this result

to O(na(n», where a is the inverse Ackerman function. They further allowed the rows of th ..

matrix to depend dynamically on previously computed row minima as in Wilber's algorithm

This resulted in an improvement of the convex case of Galil and Giancarlo's problem to tIm"

O(na(n)).

• Eppstein. Galil and Giancarlo ;7] gave an algorithm for computation of R:--:A structure. in

which an important subproblem can be viewed a.:; the computation of equation 2. when: !i"

values of DU] may be reJuceJ In any order. but III which the values of E[i] are compu: ... ;

only in sequential order. They gave algorithms for this subproblem which take amortized time

O(logn) per operation: for simple convex problems their algorithms take time O(loglogn) per

operation. Aggarwal and Park [3] later improved their algorithm. by using a different method

of computation based on the matrix searching techniq ues of Aggarwal et a1. [2].

Our algorithm for the general dynamic equation above is similar to those of Galil and Gian

carlo [9] and Eppstein, Galil and Giancarlo [7]. However we will later see how these techniques can

be combined with matrix searching algorithms to provide further improvements.

\Ve first show that we need only consider concave cost functions; the convex case will turn out

to be essentially the same.

Lemma 1. If w(i,j) is convex. then w'(i,j) = w(i,n - j + 1) is concave.

Proof: Let f(j) = n - j + 1. Then f maps the interval 1 ... n into itself. If j <)'. then

clearly fU') < fU). Therefore. if the inverse quadrangle inequality holds for w(i,j), the inequality

formed by reversing the order of j and j' holds for w'(i. j) = w(i, fU)). But this is the same as the

quadrangle inequality for w'(i,j) .•

Corollary 1. The dynamic minimization problem defined by equation 2, for convex weight func

tions w(i,j), can be solved as a concave problem by reversing the order of the second index j.

From now on in this section we will assume without loss of generality that w(i, j) is concave.

Our algorithm is based on the following fundamental fact:

Lemma 2. For any i, j, and j'. with j < j'. if D(j] + w(i,j) ~ D(j'] + w(i,j'), then for all i' > i,

D[j] + w(i',j) ~ D[j'] + wei,)'). Conversely, if D[j] + w(i,j) ~ DU'] + w(i,j'), then for all i' < i,

D[j] + w(i',j) ~ D(j'l + w(i'.j').

Proof: By the quadrangle inequality, w(i,),) + w(i'.j) ~ w(i,j) + wei',)'). Subtracting

w(i, j') + w(i', j') + DU'] - D[j] from both sides and rearranging gives

(D[j] + w(i,j)) - (D[j/] + w(i,j')) ~ (D[j] + w(i'.j)) - (D(j'l + w(i',j')).

But by assumption (D[j] + w(i.j)) - (D[j'] + w(i,j')) is positive. and therefore (DU] + w(i',j))

(D[j'] + wei',),)) must also be p06itive and the first statement holds. The proof of the converse

statement is similar .•

For specificity, let us break ties In favor of the smaller index. That is, we say that D[J] is

better than D[j'] at i if either D[j] + w(i.j) < D[;'] + w(i,j'), or j < j'.

Corollary 2. At CUly given time. the values of D[j] supplying the minima for the positions of £[1].

with ties broken u a.bove, partition the p06sible indices i into a sequence of intervals. If j < 1'. if

i is in the interval in which D[j] is be!t. and i' is in the interval in which DU'l is best, then i < I'

Thus our a.Igorithm need simply maintain the interval in which each value D[j] is best. and

a search structure of the interval boundaries. in which the interval containing a given point I can

be looked up. Such a. search structure can be maintained at a cost of O(logn) per modification or

search. using any form of balanced binary trees [-t, 15. 231. If we use the flat tree data structurp

of van Emde Boas [24J, this time ca.n be reduced to O(loglogn). Thus it remains to show how to

decrease a given value of DU]. while ma.intaining the partition above and performing only 011 I

search tree operations.

.)

In fact we may need to perform more than O(1) search tree operations when we reduce a

\'alue of DU], because many other values of D[]'; may have their corresponding intervals redllc,'d

to nothing and thus will need to be removed from the search tree. We avoid that difficulty by.

\\.·henever we insert a value of DU] in the searcn tree, charging the operation with the time rpquired

to later delete it. In this way, each reduction will perform O(1) non-charged search tree operations.

and will be charged for 0(1) further operations which may occur in the future. The total is O(1)

operations per reduction. but the time bounds become amortized over the lifetime of the data

structure rather than worst case per operation.

We call an index j into the array DU] live if, for some E[i], DU] supplies the minimum in

equation 2. As well as finding the interval containing a given index i into array E. we also need to

search for the first live index before a given index j into array D. This can be done by maintaining

another search tree or fiat tree containing the live indices.

Let RU] be the rightmost (greatest) index in the interval corresponding to index j, and similarly

let LU] be the leftmost index. For brevity, let C(i,j) stand for DU] + w(i,j).

As in the algorithm of Galil and Giancarlo [9J, we need a subroutine border(j,j'). This will

always be called with j < j'; it returns the greatest index i such that C(i,j) $ C(i,j'). If no such

index exists, it returns O. For arbitrary C06t functions. lemma 2 can be used to derive a binary

search routine that finds border(j, j') in time O(log n). For many functions, border(j, jf) can be

calculated directly as the root of a functional equation: we say that such a function has the closest

zero property. Hirschberg and Larmore [10]. and later Eppstein. Galil and Giancarlo [7, 9] used this

property to derive more efficient algorithms for the problems they solved. ~fost simple functions

that are likely to be seen in practice, such as logarithms and square roots, have the closest zero

property.

The steps performed to reduce the value of DUJ are as follows:

begin

repeat

end:

find j' < j as large as possi ble wi th ;' live;

if no such j' exists then LU] - 1: break;

else if C(LU'],j) < C(LU'],j) then begin

LU]- LU'];
make j' no longer live;

end:

if j' still exists then begin

L(j] - barder(]'. J);

R(j']- LU] - 1:

end;

repeat

find j' > j as small a.s p06sible with]' live:

if no such j' exists then R[l] - n: break:

else if C(R[J'].J) < C(RU'). J) then begin

R[j] - R[j']:
make j' no longer live;

end;

end

end:

if j' still exists then begin

RU']- border(j,j'):

LU] - RU'] + 1:

end;

n

if LU] ~ Rb] and j is not in the search structure then

add j to the search structure;

Clearly a change in D[j] can only affect the borders between it and its neighbors in the interval

partition. and not any of the borders between unchanged values. Each iteration of the two loops

above removes a point j' from the set of live points, exactly when the decrease in DU] expands

the corresponding interval to cover the remaining interval of j'; that is, when j' no longer supplies

the minimum at any point. The remaining steps fix the borders of the intervals between j and any

remaining neighbors. It can be seen. using lemma 2. that the resulting partition is exactly that

described by corollary 2. Thus the algorithm correctly solves the dynamic minimization problem

we are in terested in.

Theorem 1. The data structure above can be implemented to take O(logn) time, or O(loglogn)

for functions with the cl06est zero property. The latter version also requires a setup time of O(n).

Proof: The time for each reduction can be split into the time per iteration of the loops, and

the remaining time. The loop time for an iteration deleting point j', as we have said. will be

charged when we insert j' rather than when we delete it. This time is one search tree operation per

iteration. Thus the time possibly charged to j will be one search tree operation. The remaining

time consists of at m06t 4 search tree operations, to remove the old interval boundaries from the

search tree and insert the new ones, and possibly to add j to the list of live indices. We also make

two calls to the border subroutine. The total amortized time per operation is O(log n), or for simple

func tions O(log log n) .•

Sparse RNA Structure

The following recurrence has been used to predict R~A structure [7, 22.25. 26J:

D[i,j] = min{D[i - l,j - 1] + b(i.j), H(i,j]. V[i.j]. E[i.j]},

where

V[i,j] = min D[k,j-1]+w'(k,l}
O<k<, ," '

H[i,j] = min D[i - 1, IJ + w'(l. j)
0<1<)

E[i.j] = min D[i'./] + w(i' + /. i + j).
1 <,' <,-I

1~;'<)-1

The function w corresponds to the energy C06t of a free loop between the two base pairs. and '.

corresponds to the cost of a bulge. Both wand w' typically combine terms for the loop len(",

and for the binding energy of bases I and j. The function b(i,j) contains only the base 1"06.'

binding energy term. and corresponds to the energy gain of a stacked pair (see [22J for definitl.,r .•

7

of these terms). The companion paper [8J describes why the number .\/ of base pairs (i. Jl such

that D[i, j] < +00 may be taken to be significantly less than n!, and uses this fact to impro\'.>

the time for solving these recurrences when wand Ii" are linear: here we instead allow them to be

convex or concave.

In fact to compute the best structure for an R;\'A sequence, rather than simply the best score

for the structure. we need to also maintain for each pair (i,j) a pointer to the pair (i'. j') supplying

the minimum. It is not difficult to modify our algorithm to maintain such pointers; we omit the

details.

First note that the computation of V[i, j] within a fixed column j does not depend on that

in other columns. except indirectly via the values of D[i,j). We may perform this computation

using the algorithm of Galil and Giancarlo [9); if the number of points i in column j such that

D[i.j] :f; +00 is denoted by Pj. then the time for computing all values of V[i,j] for a fixed]

will be O((Pi + Pj-l) log JI). The total time :or these computations in all columns will then be

O(Af log AI). We could achieve even better bounds using the more complicated algorithms of Klawe

and Kleitman [14] or Eppstein [6]. but this would not affect our total time bound.

The computation of H[i, j] is similar. Therefore the remaining difficulty is the computation

of E[i.j], as defined by recurrence 6. For simplicity of exposition we relax the condition in the

recurrence that i' < i - 1 and instead allow i' < i; similarly with j and j'. However the algorithm

we describe works essentially unchanged for the actual conditions on i' and j'.

The obvious dynamic programming algorithm solves recurrence 6 for sequences of length n

in time O(n4
) [22]: this can be improved to O(n3

) [26]. When lL' is a linear function of the

distance between bad diagonals (i' + j') - (i + j), another easy dynamic program solves the

problem in time 0(n 2) (13]. In the companion paper we reduce this time bound to O(n +

Mloglogmin(M.nmjAJ)) [8].

Here we consider instead the case that the cost function is either convex or concave. EppstPin

et al. [7] found a 0(n 2 1og2 n) algorithm for such costs; this was later improved to O(n2 10gn) :3]

\Ve would like to again use the sparsity of the possible base pairs to further reduce the time for the

problem with convex or concave coots. We assume that the possible base pairs have already been

enumerated: the companion paper [8J explains how this may be done.

Each point (poosible base pair) may be considered as having a range of influence consistlnlZ

of the region of the dynamic programming matrix below and to the right of it. Thus the range of

each point is a quarterplane with vertical and horizontal boundaries. \\'e first effecti\'ely remo\p

the horizontal bounda.ries, leaving half· planar ranges. at a logarithmic cost in execution time, Thl'

is done as follow8.

We solve the problem by a divide and conquer recursion on the rows of the dynamic pro~ram

ming matrix. For each level of the recursion. having t points in the subproblem for that le pl. \

choose a row r such that the numbers of points above r and below r are each at most t/2, SU(h .t

row must always exist. and it can easily be found in linear time. Thus we can partition the pOint.

of the problem into three sets: those above r, those on r. and those below r. In fact it would h ..

possible to partition the points into only two sets. by including the first half of the points on •

among the points below r, and including the second half of the points on r among the points ab .. , ..

r. However the correctness of the algorithm is easier to see with the three-part division: and "In·"

the best way of computing the two-part division seems to be by first computing the three-part

division, we might as well just use the three part division.

\Vithin each level of the recursion, we will need the points of each set to be sorted by their

column number. This can be achieved by initially bucket sorting all points, and then at each level

of the recurrence performing a pass through the sorted list to divide it into the three sets. Thus

the order we need will be achieved at a linear cost per level of the recurrence.

\\'e note that for any point above or on r, the minimum value in equation 6 only depends on

the values of other points above r. For points below r. the value of equation 6 is the minimum

between the values from points above r, and the points below r. Thus we can compute all the

minima by performing the following steps: (1) solve the problem above r by a recursive invocation

of our algorithm, (2) use the values given by this solution to solve the problem for the points on r,

(3) compute the influence of the points above or on r, on the values of the points below r. and (4)

recursively solve the problem below r.

This divide and conquer technique is similar to the dynamic-to-static reduction of Bentley and

Saxe [5]; it differs from the R~A structure algorithm of Aggarwal and Park [3J in that we divide

only by rows, and not by columns. It does not seem possible to modify the algorithm of Aggarwal

and Park to run in time depending on the sparsity of the problem, because at each level of their

recursion they compute a linear number of matrix search problems. the size of each of which does

not depend on the sparsity of the problem.

The problem remaining after our recursion is as follows. We are given a set A of points above

a certain row of the matrix. and a set B of points below the row. Both sets are sorted by column

number. The values of the points in A are known. and we want to know their contributions to the

minimizations for each of the points in B. Each level of the divide and conquer recursion computes

the solution to two such problems. one with A the points above row rand B the points on row r.

and a second with A the points above or on row rand B the points below row r.

\Ve now write a recurrence equation for the reduced subproblem:

E[i,j] = min D[i'.j'] + w(i' + j', i + j).
(,' .;')EA

l~/ <J

(i)

The crucial difference between this and equation 6 is that now, the requirement that i' < i has been

subsumed by the separation into sets A and B. In other words, the horizontal boundaries of the

quarter-planar regions of influence have been removed. leaVing only the vertical boundaries. Thus

the range of influence of each point in A is the subset of B to the right of the point, and points

in A are totally ordered by inclusion of the ranges. We use the total order to add the points of A

to the data structure described in the previous section. so that when we process each point of B

exactly the points that influence it Will have been added to the data structure.

In particular, we process the points of A and B in order by their column numbers. The detads

of this processing will be given below. Within a given column. we first process the points of H

and then the points of A. By procf>eding along the sorted lists of points in each set. we need ooh

spend time on columns that actually ("Ontain points, so there will be no time loss determining whIch

points to process next. Clearly. if we use this order. then whenever we process a point (i.n from

the set B. the points (i'.)') of A that will have been processed will be exactly those with}' <)

9

\Ve process points by maintaining a copy of the data structure described in the pre\'ious section.

To recall. the data structure maintains a matrix of values D[y}. initially all +x. At each step. the

algorithm may either decrease one such value. or it may answer a query of the form

E[x] = min D[y] + lc(Y . .r). (8)
y

It is easily se€n that equation 8 is like equation 7. but with points (i. j) replaced by the numbers

i + j of their diagonals, and with the requirement that j' < j removed. As we have described above.

this last requirement will be taken care of by the order in which we process the points.

To process a point (i,j) from A. with value v. we let y = i + j be the number of the diagonal

containing the point. and reduce D[y] to min(D[y]. v). To process a point (i.j) from B. we let

x = i + j be the number of the diagonal containing the point, and compute the influence of the

points in A on the value at (i.j) to be E[x] as in equation 8.

This completes the solution of equation 7. and thus the solution of recurrence 6. To summarize,

the algorithm solving the recurrence can be written in pseud~code as follows:

procedure RNA(x, y):

begin

end

find sparse set X of possible base pairs from the two strings;

sort X by column numbers:

let arrays E and D be indexed by members of X:

for x E X do E[r] = +00;

Recurse(X);

The recursive subprocedure called above solves the problem within the set of points given.

assuming the influences of previous points have already be€n included in the computation. The

input set of points is assumed sorted by column numbers. and the splitting of that set into subsets

A, B, and C must maintain that sorted order. Note that there is no call to RecuTse(B) because

the points in B. being all on the same row. cannot influence each other.

p roced ure Recu rse(X):

begin

let j be a row with at m06t IXI/2 points above and below it;

let A be the pain ts above row j in X;

let B be the points on row j;

let C be the points below row j;

if A :f:. 0 then begin

Recurse(A);

lnftuence(A, 8);

end;

for x E 8 do

compute D[r] from E[I];
if C :f:. 0 then begin

Inftuence(A U B. C);

Recurse(C):

end;

10

end

Finally we give pseudo-code for computing the influence of one set of points on another. in

which all the actual work of solving the recurrence is performed. Again, the input sets are sorted

by column.

proced ure Influence(A, B):

begin

end

let X = AU B, maintaining sorted order: if A and B both have

points in the same column let those of B come first:

let F[i] = minj GU] + U.'(j. i) be solved by the

data structure of the previous section:

for x E X in order do begin

d - roU.'(x) + column(x);

end:

if x E A then G[d] - min(G[d]. D[x])
else £[x]- min(£[x], F[d]);

Before we give the time bound, let us first note that the time per data structure operation can

be taken to be O(logM) or O(loglog.\!) rather than O(logn) or O(loglogn). This is because we

need only consider diagonals of the dynamic programming matrix that actually contain some of

the M points in the sparse problem. We number these non-empty diagonals in order by their real

diagonal numbers: it is easily seen that this change does not affect the convexity or concavity of

the cost function. However closest zero functions have the complication that the computation of

border(x,y) is defined in terms of actual diagonal numbers. Therefore we need to translate actual

diagonal numbers into the nearest non·empty diagonals; a table to perform this translation can b ..

created in O(n + A!) time. and used throughout the algorithm.

Theorem 2. The RNA structure computation of recurrence 6, for a sequence of length n, with

.\1 possible base pairs. and convex or concave cost functions, can be performed in time O(n +

,\1 log2 .\1). For cost functions with the closest zero property, the computation can be perform .. d

in time O(n + AI log J[log log;\[).

Proof: Denote the number of poin ts processed at a given level of the recurrence by t. Then : ~p

time taken at that level is O(t), together with Oft) operations from the data structure of the preVIO'l'

section, The time per data structure operation is either O(log.\f) or O(loglog.\1). as descnh ... j

above. The latter version also requires 0(.\1) preprocessing time to set up the fiat tree searr!)

structures; however the same structures can be re·used at different levels of the recursion and so ~ ~:.,

setup time need only be payed once. The divide and conquer adds another logarithmic factor to . : .. '

bound. We also need to compute the possible base pairs and bucket sort them. in a preprOC fh., • rl

stage taking time O(t). The details of this generation are given in the companion paper [8]

total time to solve recurrence 6 is O(n + .\flog2 .\1) in general. or O(n T Jflog Jflog log Jf '.

simple functions .•

Improved RNA Structure Computation for Intermediate Density

\
11

In the introduction we promised a time bound for the R~ A structure computation of O(n +
Mlog.\llogmin(J1,n2 jJ!)) in general. and O(O(n T .\flog.Hloglogmin(.H.n2 jJf)) for simple

cost functions. Yet in the previous section the bounds we gave were only O(n + M log~ Jf) or

O(n + M log M log log A1). Here we describe how to improve our algorithms to run within the time

bounds we claimed. We assume without loss of generality that n < .H: otherwise. the bounds given

in the previous section red uce to those here.

First let us examine the algorithm for simple functions. The algorithm for arbitrary functions

is similar but requires a few more ideas. Our algorithms will be similar to those of the previous

section, but the divide and conquer scheme will be different. Instead of dividing only by rows, we

divide alternately by rows and columns, similarly to the divide and conquer technique used in the

non·sparse R:.l'A structure algorithm of Aggarwal and Park [3]. tvIore precisely. at even levels of

the divide and conquer recurrence we divide the dynamic programming matrix at some row i as

before; however we choose i to be the center of the matrix rather than the center of the sparse set

of points in the matrix. At odd levels we similarly divide by columns. In this way, each level of the

recursion performs a computation in a matrix that is either square or close to square; there can be

o (log n) levels before the recursion bottoms out at single points.

In terms of the pseudo-code given in the previous section. we need two versions of Recurse.

one that divides by rows and one that divides by columns, each of which calls the other. We also

need two versions of Influence, one to be called by each version of Recurse. All of these procedures

keep the sets of points they handle in two sorted orders: sorted by rows, and sorted by columns.

1: nlike the code of the previous section. we divide into only two sets A and C: the line of division

between them will be halfway between two actual rows or columns. and so there is no in-between

set B. Further this line of division is chosen by halving the number of columns in the sets, instead

of halving the number of points.

As before. we compute the values of the points in A. recursively. compute the influence of these

values on those of the points in C. and then finish the computation of the values in C recursively.

In the description that follows we assume that the current level in the divide and conquer recursion

is even. so that as in the previous section the division between A and C occurs on a row boundary;

the computation for odd levels is similar.

In the previous section, we computed the value D from E for each point when it was part of

set B. Because here there is no such set, we must do so at another time; in particular we do ,I)
when the recursion bottoDlB out, and all points are on a single row or column. In this way the val.) ..

is computed exactly once for each point, before it is needed.

Thus the pseudo-code for the procedures can be written as follows. We have merged th ..

Influence procedure in with ReclJrse. because it would have been called only in one place. \Ve onl,

show one of the two mutually recursive procedures; the other can be found by replacing rows h\

columns and vice versa.

procedure RecurseColumn(X):

begin

let i and k be the first and last rows occurring in X;

if i = k then

for x E X do

end

12

compute D[I] from E[II;
else begin

j ~ r(i + k}/21:
let A. be the points above row j in X;
let C be the points on or below row j:

RecurseRou:(A};

let F[i] = min) G[j] + w(j. i} be solved by the data structure

of the first section. modified as descri bed below:

for x E X in order by columns do begin

d - row(x} + column(x);

end:

if x E A then G[d] - min(G[d], D[x])
else E[x]- min(E[x), F[d]);

RecurseRou:(C);

end;

In the data structure of the first section, in place of the flat trees of van Emde Boas, we use

Johnson's improved flat trees [12]. This is again a structure in which one can insert, delete, and

search for points numbered from 1 to n. However. whereas flat trees take time o (log log n) per op

eration. improved flat trees take time O(log log D), where D is the length of the gap between poin ta

in the structure containing the point being searched for. inserted, or deleted. ~fore importantly for

our analysis, a sequence of k operations, all of one type (insertions, deletions. or searches). can be

performed in total time O(k log log n/ k}. For insertions and deletions this follows from Johnson '5

analysis of his algorithm.

For a sequence of searches in order by the positions being searched for. the time bound follows

because consecutive searches in the same gap can be detected in constant time, by simply comparing

each new search point with the endpoints of the gap containing the previous search point. Therefor.,

we need pay the O(loglog D) cost at most once per gap. The cost of the sequence of search

operations is therefore 2:7=1 O(loglogD,). Because the function f(x) = log log x is convex, any sum

2:7=1 f(x,} is maximized when the x, are all equal, and so the sum is bounded by kf(2:7=1 I,/k)

In particular. the cost of the search sequence can be reduced to

I<

O(kloglog(L D,/k)) = O(kloglogn/k).

,=1

For a sequence of k searches in non-sorted order we can use another instance of Johnson's flat tr

to sort the search points, in time O(kloglogn/k), and then perform the searches in sorted orop:

as above; however all our sequences of searches will in fact be already in sorted order.

Theorem 3. The R~A structure computation of recurrence 6. for a sequence of length n. '~:'"

_\f possible base pairs. and convex or concave cost functions with the closest zero property. can

performed in time O(n + .\[log.\[log log mint .\[, n2 /.\1)).

Proof: Consider the time for the top level of the recursion. which we denote T(O). I I."

algorithm from the previous section consists of, for each column, performing a sequence ofsearrh

and then a sequence of insertions and deletions. Let the number of searches in column i be d€'n"·· .. ·

13

Si, and the number of insertions and deletions be denoted d,. Then L d, is at most twice the

total number of points in set A, and L.5, is the total number of points in set C. The time taken

is Ls;loglogn/s; + 2::d;loglogn/d,. In the function f(x) = .rloglogn/x. the loglogn/x term

decreases as x increases, and so the function as a whole is sublinear and therefore convex. Because

of this convexity the total time taken at the gi\'en recursive stage in the algorithm can be reduced

to
n

T(O) = L O(f(s.) + f(d;))

n

~ O(nf(L s;/n))

i=1

= O(nf(AI/n))

n
= O(n(M/n) log log M /n)

= o (.\fiog log n2 /,\1).

An identical analysis applies to each even level recursive subproblem, with n replaced in the bound

by the size of the matrix for the su bproblem. Similar bounds hold for the odd levels.

N ow let us consider the sum of the times for all stages at a given leve12i. As before, the analysis

for odd levels is similar. Let J[l' for j from 1 to 22i
, be the number of points in subproblem j.

Further, at the given level, there will be 22i subproblems. each of having 2; rows and columns.

Then, by con vexity, the total time for the level is

.) ~t

• (n/2 i),!
T(i)=O(L·Hjloglog \[)

J= 1 • J

~ O(22'(M/22
,) log log (,J/;r)

= O(,\,/ log log n2
/ .\/).

There are O(log"'f) levels in the recursion, and as we have shown above each takes time bounded

by O(Mloglogn2/M), so the total time is O(AflogAJloglogmin(Af.n 2 /JI)) .•

For non-simple functions, we must also take into account the binary searches required to

compute border(i,j) when including new values from A into the data structure. Assume that k

such computations need be performed for a given column. If all the binary searches occurred In

disjoint intervals of the range from 1 to n, the total time would be O(k log n/ k) and a similar analySIS

to that for simple functions would give a total time bound of or,\,[log.\f log min(Jl, n 2 /.H)). To

force the search intervals to be disjoint. we first find the borders among the points being inserted

In particular, we need to solve an instance of equation '2, in which there are k new values of

DU] given. By corollary 2 of the first section, each value of DU] supplies the minima for E[i] With

i in some interval of the range from 1 to n, and further these intervals appear in the same ordpr

as the positions of DU]. Clearly, border(i,}) for a newly added point j need only be computf"d

within the interval in which DUllS better than the other new points. Further, all computations lIf

11

border-Ci.j) have at least one of the indices i or j being a newly added point. If, given the set of

new values to be inserted. we can compute the partition of [1 ... n] into intervals in which each of

these values is best, guaranteed to exist by corollary 2, we can use this partition to perform each

border-(i.j) computation in a disjoint interval. and therefore the total time for these computations

for k new points will be O(k log n/ k).

The algorithm of Aggarwal et al. [2] can find the minima at all n points, and therefore the

boundaries between the intervals, in time O(k + n). That of Galil and Giancarlo [i, 9], which

uses binary searches to find interval borders as in the data structure of the first section. but which

needs only a stack instead of a more complicated search structure, can find the boundaries in time

O(k log n). \Ve combine these two algorithms to achieve a bound of O(k log n/k), which is what we

need to solve the RNA structure problem in the given time bound.

This is done as follows. We first select the points E[n/k], E[2n/k], etc, and find for each of

these points which value of D(j] supplies the minimum. This computation involves only k points

E[i], and so we can solve it in time O(k) using the algorithm of Aggarwal et al, The remaining

points in the range from 1 to n are divided up by this computation into k segments, each of length

n/k. For each boundary between values D[j - 1] and D(j], we know from the above computation

which segments it falls in. If the two endpoints of an interval both have the same value of D(j]

supplying their minima, there can be no boundary within that interval. Otherwise. if D[i] is the

left minimum and DU] the right minimum, the segments will contain only those boundaries of

intervals corresponding to positions between i and j.

Thus for each segment we can perform a binary search, as used in the computation of Galil

and Giancarlo, for the boundaries that may fall within that interval. Each binary search is thus

limited to a range of n/k points. and so it will take time O(logn/k). Each value of D[jl is involved

in the computations for at most two segments, those to the left and to the right of the segment

border points for which it supplies the minima. If DU] does not supply the minimum for any

segment border point, it will be involved in the computation for exactly one segment. The time for

a segment containing b boundaries will be b log n/ k, and so the total time for computing boundaries

between new point intervals is O(k log n/k) as desired.

Once we have computed the boundaries between the intervals of the new points being inserted,

we can insert the points into the data structure as before, computing border(i. j) by a binary search

that stays within the interval of the point being inserted. The sum of the interval lengths is bounded

by n. so the time for insertion is bounded by O(klogn/k).

Theorem 4. The RN A structure computation of recurrence 6, for a sequence of length n. with .\[

possible base pairs, and arbitrary convex or concave cost functions with the closest zero property.

can be performed in time O(n + '\llogJf logmin(.\l,n2/.\I)).

Proof: As we have shown above, the time for computing borders in k consecutive insertions

in the data structure can be reduced to O(k log n/k). For k consecutive deletions, we delay recom

puting any borders until all deletions have been made, so that each recomputed border is betwPf>n

points that will not be deleted. [n this way the binary searches are again in disjoint intervals and

the time is again O(k log n/k). Lookups. as well as the remaining computations for insertions and

deletions, can be handled with Johnson's data structure in time O(kloglogn/k) = O(klogn/kl

Thus for any sequence of consecutivp operations of the same type. the time is O(k log n/k). By .\

similar analysis as that for simple func tions, the total time is O(n + _\/ log M log minp[, n" /-\[)) .•

Sparse Sequence Comparison

In this section we are concerned with the comparison of two sequences. of lengths nand m, which

differ from each other by a number of mutations. An alignment of the sequences is a non-crossing

matching of positions in one with positions in the other, such that the number of unmatched

positions (insertions and deletions) and matched positions with the symbol from one sequence not

the same as that from the other (point mutations) is kept to a minimum. This is a well-known

problem, and a standard dynamic programming technique solves it in time O(nm) [20j. In a more

realistic model. a sequence of insertions or deletions would be considered as a unit, with the cost

being some simple function of its length; sequence comparisons in this more general model can be

solved in time O(n3) [27J. The cost functions that typically arise are convex; for such functions

this time has been reduced to O(n2 10gn) [9. 7, 18J and even O(n2Q(n)), where Q is a very slowly

growing function, the functional inverse of the Ackermann function [14J.

Since the time for all of these methods is quadratic or more than quadratic in the lengths of

the input sequences, such computations can only be performed for fairly short sequences. \Vilbur

and Lipman [29. 30J proposed a method for speeding these computations up, at the cost of a small

loss of accuracy, by only considering matchings between certain subsequences of the two input

sequences. In particular, their algorithm finds the best alignment in which each matched pair of

symbols is part of a contiguous sequence of at least k matched symbols, for some fixed number k.

Let the two input sequences be denoted XIX2··· Xm and Yl Y2 ... Yn' \Vilbur and Lipman's

algorithm first selects a small number of fragments, where each fragment is a triple (i.j. k) such

that the k-tuple of symbols at positions i and j of the two strings exactly match each other; that

is, Xi = Yj, Xi+l = Yj+l, ... , X,+k-l = YJ+k-I' \Ve do not describe here how such fragments ar!'

found; such a description can be found in the companion paper [8J. It suffices to mention that such

fragments can be found in time O(n + m + ;\1) using standard string matching techniques.

A fragment (i',j',k') is said to be below (i,j,k) if i + k ~ i' and j + k ~ j'; i.e. the substrin~

in fragment (i',/.k') appear strictly after those of (i,j.k) in the input strings. Equivalently WP

say that (i,j,k) is abot·e (i',/,k'). The length of fragment (i,j.k) is the number k. The foru'ard

diagonal of a fragment (i,j,k) is the number j - i. This differs from the back diagonals i +) usf'd

for the RNA structure computation. Here we will use both back and forward diagonals.

An alignment of fragments is defined to be a sequence of fragments such that, if (i,j,k) and

(i',j',k') are adjacent fragments in the sequence. either (i',j'.k') is below (i.j,k) on a differpnt

forward diagonal (a. gap), or the two fragments are on the same forward diagonal, with i' > I I"
mismatch). The C08t of an alignment is taken to be the sum of the costs of the gaps. minus th ..

number of matched symbols in the fragments. The number of matched symbols may not necessanh

be the sum of the fragment lengths. because two mismatched fragments may overlap. ~everthp;,,,,,

it is easily computed as the sum of fragment lengths minus the overlap lengths of mismatc:l"'~

fragment pairs. The cost of a gap is some function of the distance between forward diago:I-L'

g(IU - i) - (j' - i')I)·

\\lhen the fragments are all of length 1, and a.re taken to be all pairs of matching symbols fr""

the two strings, these definitions COIncide with the usual definitions of sequence alignments. \\"h .. ·

16

the fragments are fewer, and with longer lengths. the fragment alignment will typically approximate

fairly closely the usual sequence alignments. but the co~t of computing such an alignment may bp

much less.

The method given by Wilbur and Lipman for computing the least cost alignment of a set of

fragments is as follows. Given two fragments. at most one will be able to appear after the other in

any alignment. and this relation of possible dependence is transitive; therefore it is a partial order.

We process fragments in the order of any topological sorting of this order. Some such orders are

by rows (i), columns (j). or back diagonals (i + j).
For each fragment. the best alignment ending at that fragment is taken as the minimum, over

each previous fragment. of the cost for the best alignment up to that previous fragment together

with the gap or mismatch cost from that previous fragment. The mismatch cost is simply the

length of the overlap between two mismatched fragments; if the fragment whose alignment is being

computed is (i. j, k) and the previous fragment is (i - x. j - x. k') then this length can be computed

as max(O.k' - x). From this minimum cost we also subtract the length of the new fragment; thus

the total cost of any alignment includes a term linear in the total number of symbols aligned.

Formally, we have

{

min C(i - x.j - x.k') + max(O.k' - x)
C(i,j,k) = -k + min (I-r,j-r,k')

min C(i',j',k') + g(IU - i) - (j' - i')I)
(I'.;'.k') above (i,},k)

(9)

The naive dynamic programming algorithm for this computation, given by Wilbur and Lipman.

takes time O(M2). If.J/ is sufficiently small. this will be faster than many other sequence alignment

techniques. However we would like to speed the computation up to take time linear or close to

linear in .\/: this would make such computations even more practical for small M. and it would

also allow more exact computations to be made by allowing .\/ to be larger.

In the companion paper [8], we show how to perform this computation for linear functions

g(x) in time O(n + m + AI log log min(J/, nm/JI'). Here we consider the problem for convex and

concave cost functions.

\Ve consider recurrence 9 as a dynamic program on points in a two-dimensional matrix. Ea.c h

fragment (i.j.k) gives rise to two points, (i.j) and (i + k - l.j + k - 1). We compute the bf'!lt

alignment for the fragment at point (i,j); however we do not add this alignment to the data

structure of already computed fragments until we reach (i + k - l.j + k - 1). In this way. thf'

computation for each fragment will only see other fragments that it is below. \Ve compute separatph

the best mismatch for each fragmen t; this is always the previous fragment from the same diagonal

and so this computation can easily be performed in linear time. From now on we will ignore I hI"

distinction between the two kinds of points in the matrix. and the complication of the mismat(h

computation.

As in the RNA structure computation. each point has a range consisting of the points bpi" ..

and to the left of it. However for this problem we divide the range into two portions, the :, ..

influence and the right influence. The left influence of (i. j) consists of those points in the ranJl:f' I

(i,j) which are below and to the left of the forward diagonal j - i, and the right influence con~I".

17

of the points above and to the right of the forwar'~ diagonal. Within each of the two influences.

g(lp - ql) = g(p - q) or g(lp - ql) = g(q - p); i.e. the division of the range in two parts r'~moves th",

complication of the absolute value from the COEt function.

Thus the computation looks very similar to that for R:-1 A structure. except that here we have

two separate computations. and where in the R~A structure computation we had ranges that were

quarter-planar geometric regions, now we have two collections of influences that are eighth-planar

geometric regions. The minimization over either the left or the right influences turns out to be

an affine transformation of the RX A structure problem, and so one would think that the same

methods apply. In fact the algorithms for this problem are very similar, but more complicated,

because we must use the same evaluation order to solve both the left and right subproblems.

Our algorithm for this problem can be viewed as a novel application of the Bentley-Saxe

dynamic-to-static reduction: we perform two such reductions. in two different orders. one for each

type of eighth-plane piece of the fragment point ranges. The differing order leaves the problem dy

namic, but the reduction instead can be imagined as remo\'ing the vertical or horizontal boundaries

of the pieces, leaving only the forward-diagonal boundaries. The red uced subproblem can then be

solved with matrix-searching techniques.

We first cut the domains of each point into right and left pieces, as described above. \Ve divide

the points into subproblems. and then proceed to compute the values of the recurrence at each

point. Each value we compute is derived from the subproblems containing the given point. and

once we have computed this value we apply it in the subproblems depending on it. The order in

which we will compute the values at each point will be by back diagonals. This order is is symmetric

with respect to the two kinds of pieces. so without loss of generality from now on we need only

consider the subproblems derived from the right pieces. i.e. those eighth-plane pieces which are

bordered on two sides by rows and forward diagonals.

As in the R~A structure computation, we use divide and conquer to produce the subproblems

into which we divide the computation. Each point will be in set A for o (log n) subproblems and

set B for O(log n) subproblems. However within the divide and conquer we only compute thp

structure of the subproblems; that is, we determine for each subproblem its corresponding sets ..t

and B. We do not immediately attempt to solve the subproblems, because that would violate lh~

processing order by back diagonals. Instead we produce a data structure maintaining the statp of

each subproblem. Only after all subproblems have been so constructed do we then proceed to sol', ..

the recurrence, in order by back diagonals as stated above. After we begin solving the recurrpnc ...

we will maintain each subproblem dynamically, including the values from points in set .-\ as thf>~

become known, and computing the subproblem minima for points in set B as they become avadabl ..

In each subproblem, as in the R~ A structure computation. the points in A are those abm ..

some row and the points in B are those below the same row. The minimization for point (i, J) In H

depends on the value at a point (I'.]') in A exactly when], - i' <] -I. Thus we order the pOint.- n

the subproblems by the numbers of their forward diagonals. As in the R~.-\ structure computat.<ln

such an order can be maintained by initially bucket sorting all points, and then splitting the ,on",:

list at each level of the recursion.

The actual order in which the subproblems receive the values of D[x] for points in set A

18

be more arbitrarv than that described above. as will be the order in which the values that have

been determined- within the subproblem for points in set B are requested by the main program.

Howe\'er the forward diagonals totally order the points by their dependence on each other. The

subproblem solution proceeds by saving each given value of D[x] until all previous \'alues in the

dependence order are known. and then computing as many derived values as possible with the

known values and saving these derived values until the main program asks for them. In this way

each subproblem solution operates asynchronously of the main program. All we require is that.

whenever the main program asks for the subproblem's value at a point x in set B. all values D[y]

for points yon previous forward diagonals of set A will have already been given to the subproblem.

It turns out that, with the forward diagonal dependence order, each subproblem is exactly

a dynamic monotone staircase matrix problem as defined by Klawe and Kleitman [l-!]. In the

language of the data structure we gave in the first section. once we have reduced the value at DUI.
we never reduce any D[j'] with j' < j. and once we have computed E[i], we never compute any

E[i'] with i' < i.

Such problems could of course be solved by our more general data structure. which does not

depend on the order of reductions and computations: however because of the staircase ordering

we can use matrix searching techniques to solve the problem more quickly. If g(x) is convex. the

algorithm of Klawe and Kleitman solves the problem for t points in time O(ta:(t)): here a: is the

inverse Ackermann function. a very slowly growing function. If g(x) is concave, the algorithm of

Wilber [28] solves a single instance of the problem in linear time. However we need to solve many

such problems with the inputs to some depending on the outputs of others. and Wilber's analysis

breaks down for this case. Eppstein [61 has extended Wilber's algorithm to allow such interleaved

computations, while remaining within the linear time bound.

Another possible solution to these monotone staircase problems is to use the algorithms of

Galil and Giancarlo [9]. These solve both the convex and concave problems in time O(tlogt), or

for functions with the cl06est zero property in time Oft). However they are much simpler than

the matrix searching algorithms. and so even the O(t log t) version of the algorithms will likely be

better than matrix searching in practice.

Each subproblem can be solved independently, including values from the points in ..t in the

order they are needed and as they are available. and computing values for points in B when all

the points they depend on have been included. When we split the computation into subproblems.

we also keep for each point a list of the subproblems for which that point is in set .4: thus when

the point's value is computed we need only look at the list to determine which subproblems can

proceed in their computation. Alone; with these subproblem computations. we also proceed as WP

ha ve said along back diagonals; for eac h poi nt on a gi ven back J iagonal we com pu te the \'al ue a..~

the minimum of the O(logn) values from the subproblems for which the point is in set B. and th .. n

include the computed value in the computations for which the point is in set .4.

Let us now summarize the outline of the sparse alignment al~orithm in pseudo-code:

begin

find sparse set X of frae;ments;

divide-and-conquer 0\ rows to produce subproblems for right influences:

divide-and-conquer h\ columns for left influences:

end

19

for diag -- 2 to 2n do

end

for x E X with row(x) + column(I) = diag do begin

E[x] - +()O:

end

for subproblem S with x E B(S) do

£[x]- min(E[x]. value at x in S);
compute D[x] from E[x];
for subproblem S with x E ...1(S) do

include value of D[x] in S;

It remains to show that, when the back diagonal computation reaches each point. the subprob

lems giving the point's value will all have computed their separate minimizations for that point, so

that the total value for that point can in fact be computed. In terms of the pseudo-code above. we

need to show that each subproblem S with x E 8(S) is ready to supply the value at x when the

computation reaches the back diagonal containing point x.

For clarity of explanation. assume the subproblem S is one involving right influences: the

assertion for left influence subproblems follows by symmetry. If a point (i, j) in set B(S) for

some subproblem S depends on the value at a point (i'. j') in set A(S), then clearly i' < i and

j' - i' < j - i. But then j' + i' = (j' - i') + 2i' < (j - i) + 2i = j + ij that is, the back diagonal

containing (i' + j') appears before that containing (i, j). Because we process points in order by back

diagonals, D[(i',j')] will already have been computed and included in subproblem S. Therefore all

subproblem results will in fact be computed in time for them to be combined by the back diagonal

computation, and the algorithm correctly compu tes recurrence 9.

Theorem 5. The problem of sequence alignment from a sparse set of fragments can be solved in

time O(n + m +}VI 10gA-Io:(JJ)) for convex gap cost functions, and time O(n + m + AI 10gJ!) for

concave functions.

Proof: As we have said, the time for each subproblem of size t is O(to:(t)) in the convex case.

and O(t) in the concave case. The divide and conquer adds a logarithmic factor to these time

bounds, giving O(n + m + AI 10gM) in the concave case, and O(n + m + Mlog.H o:(Jf)) in the

con vex case .•

If we use the algorithms of Galil and Giancarlo, the bound for fragment alignment with simple

functions is O(n + m + M log .M), for both the convex and concave cases. For arbitrary convex and

concave functions the time rises to O(n + m + At log2 .\1). However the latter algorithms do not

use matrix searching and are therefore likely to be more efficient in practice.

Conclusions

We have described algorithms for two dynamic programming problems, sequence alignment from a

sparse set of fragments, and R~A structure prediction. We use the fairly general assumption that

an associated cost function in the dynamic programming problems is either convex or concave.

In each case, the dynamic programming matrix is sparse. and our algorithms take advanta.~p

of that sparsity. Our algorithms ha\'e time bounds that vary almost linearly in the density of {hI'

problems. For the sequence alignment problem, the previous solution already assumed sparslt\

-

20

however our algorithm improves on it by almost an order of magnitude. For the R.:\A structure

problem. no sparse solution was previoudy known. EH'n when the problem is dense. our algorithm~

for this problem are no worse than the best known algorithms: when the problem is sparse our time

bounds become much better than those of previous algorithms.

References

[1] Alok Aggarwal and ~laria ~1. Klawe, Applications of Generalized ~latrix Searching to Geo·

metric Algorithms, SL-\~I J. Discr. App!. ~lath., to appear.

[2] Alok Aggarwal. ~Iaria M. Klawe. Shlomo Moran. Peter Shor. and Robert Wilber. Geometric

Applications of a ~!atrix·Searching Algorithm. Algorithmica 2. 1987. 209-233.

[3] Alok Aggarwal and James Park, Searching in ~lultidimensional ~Ionotone ~[atrices. 29th

FOCS, 1988, 497-512.

[4] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis of Computer

Algorithms, Addison- Wesley. 1974.

[5] J.L. Bentley and J .B. Saxe. Decomposable Searching Problems I: Static-ta-Dynamic Transfor·

mation. J. Algorithms 1(4), December 1980,301-358.

[6] Da\'id Eppstein, Sequence Comparison with Mixed Convex and Concave Costs, manuscript.

[7] David Eppstein. Zvi GallI. and Raffaele Giancarlo. Speeding Up Dynamic Programming, 29th

FOCS, 1988, 488-496.

[8] David Eppstein. Zvi Galil, Raffaele Giancarlo. and Giuseppe F. Italiano, Sparse Dynamic

Programming I: Linear Cost Functions, manuscript.

[9] Zvi GaUl and Raffaele Giancarlo, Speeding Up Dynamic Programming with Applications to

~Iolecular Biology, Theor. Com put. Sci .. to appear.

[10] D.S. Hirschberg and L.L. Larmore, The Least Weight Subsequence Problem, SIA~I J. Com·

put. 16. 1987.628-638.

[11] A.J. Hoffman. On Simple Linear Programming Problems, Convexity. Proc. Symp. Pure ~Iath

7. A~IS. 1961. 317-327.

[12] Donald B. Johnson. A Priority Queue in Which Initialization and Queue Operations Tak ..

o (log log D) Time. ~tath. Sys. Th. 1.5. 1982,29.5-309.

[13] ~I.I. Kanehisi and W.B. Goad. Pattern Recognition in ~ucleic Acid Sequences II: An Effir,.'n'

Method for Finding Locally Stable Secondary Structures, :"ucl. Acids Res. 10(1). 1982. '2()~,

277.

[14] ~Iaria M. Klawe and D. Kleitman. An Almost Linear .-\lgorithm for Generalized ~Iatrix Spar. ~

ing. preprint, 1987.

[1.5J Donald E. Knuth. The Art of Computer Programming, \'olume 3: Sorting and Searchint
Addison- Wesley, 1973.

[16J Donald E. Knuth and ~lichael F. Plass. Breaking Paragraphs into Lines, Software Pr;ll 0 , r

and Experience 11,1981. pp. 1119-1184.

fI7l D.J. Lipman and W.L Pearson. Rapid and Sensitive Protein Similarity Searches. Scient o'

J !l~5. J.J35-J.J.J 1. •

21

[18] \Vebb ~liller and Eugene W. ~lyers. Sequence Comparison with Concave Weighting Functions,

Bull. ~.lath. BioI. 50(2), 1988, pp. 97-120.

[19] G. Monge, Deblai et Remblai, ~lemoires de L-\cauemie des Sciences, Paris. 1781.

[20] S.B. Needleman and C.D. Wunsch, A General :\lethod applicable to the Search for Similarities

in the Amino Acid Sequence of Two Proteins. J. ~lol. BioI. 48. 1970, p. 443.

[21] Ruth Nussinov. George Pieczenik, Jerrold R. Griggs. and Daniel J. Kleitman, Algorithms for

Loop ~latchings. SL-\~1 J. Appl. ~lath. 35(1). 1978, 68-82.

[22] David Sankoff, Joseph B. KruskaL Sylvie ~1ainville, and Robert J. Cedergren, Fast Algo

rithms to Determine RNA Secondary Structures Containing 11ultiple Loops, in D. Sankoff

and J .B. Kruskal, editors. Time Warps, String Edits. and ~lacromolecules: The Theory and

Practice of Sequence Comparison, Addison-Wesley. 1983.93-120.

[23] Robert E. Tarjan. Data Structures and ~etwork Algorithms. SL-\:\<1. 1985.

[24] Peter van Emde Boas. Preserving Order in a Forest in Less Than Logarithmic Time. 16th

FOCS, 1975, and Info. Proc. Lett. 6, 1977.80-82.

[25] ~fichael S. \Vaterman and Temple F. Smith, RNA Secondary Structure: A Complete !-.1athe

matical Analysis, :\fath. Biosciences 42. 1978,257-266.

[26] :\lichael S. \Vaterman and Temple F. Smith, Rapid Dynamic Programming Algorithms for

RNA Secondary Structure, in Adv. AppL ~lath. 7, 1!)86. 455-46·t,

[27] \lichael S. Waterman. Temple F. Smith. and W.A. Beyer. Some Biological Sequence ~latrices,

Adv. :\1ath. 20. 1976,367-387.

[28] Robert Wilber. The Concave Least Weight Subsequence Problem Revisited. J. Algorithms 9(.1).

1988. 418-425.

[29] \\T.J. Wilbur and D.J. Lipman. Rapid Similarity Searches of :\ucleic Acid and Protein Da.ta

Banks. Proc. :\at. Acad. Sci. ('SA 80, 1983, 726-730.

[30J \V.J. Wilbur and David J. Lipman. The Context Dependent Comparison of Biological Sf>'

quences, SLU,! J. Appl. \lath. 44(3). 1984,557-567.

[31] F.F. Yao. Efficient Dynamic Programming ('sing Quadrangle Inequalities. 12th STOC, l!)~O.

429-·t3.5.

