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ABSTRACT 

In order to analyze signals defined over graphs, many concepts 
from the cIassical signal processing theory have been extended to 
the graph case. One of these concepts is the uncertainty principle, 
which studies the concentration of a signal on a graph and its graph 
Fourier basis (GFB). An eigenvector of a graph is the most localized 
signal in the GFB by definition, whereas it may not be localized in 
the vertex domain. However, if the eigenvector itself is sparse, then 
it is concentrated in both domains simultaneously. In this regard, 
this paper studies the necessary and sufficient conditions for the 
existence of 1, 2, and 3-sparse eigenvectors of the graph Laplacian. 
The provided conditions are purely algebraic and only use the ad­
jacency information of the graph. Examples of both cIassical and 
real-world graphs with sparse eigenvectors are also presented. 

Index Terms- Graph signals, sparsity, sparse eigenvectors. 

1. INTRODUCTION 

Analysis of signals defined over graphs has been of interest in re­
cent years. For signals defined on graphs, each node (of the graph) 
is associated with data, and the graph is assumed to model the un­
derlying dependency structure between the data sources. This type 
of signal structure is not Iimited to electrical engineering and can be 
found in a variety of different contexts such as social, economic, and 
biological networks, among others [1,2]. 

The recent advancements in [3- 5] studied the processing of sig­
nals defined over graphs. In these studies the analysis is based on 
the "graph operator," which can be selected as the adjacency matrix 
as in [4], or the graph Laplacian as in [5]. There are other proposals 
as weil [6, 7]. By using the eigenvectors of the graph operator as 
the graph Fourier basis (GFB), sampling, reconstruction and multi­
rate processing of graph signals are studied in [8- 17]. Apart from 
these, another important concept in signal analysis is the uncertainty 
principle [18]. The studies in [19- 22] extend this concept to signals 
defined over graphs. 

This paper considers the sparse eigenvectors of the Laplacian 
of a given graph. By definition, an eigenvector (an element of the 
GFB) is the most localized signal in the graph Fourier domain. On 
the other hand, an eigenvector need not to be localized in the vertex 
domain in general. However, if there are sparse eigenvectors, then 
they are the most concentrated signals in the vertex domain and the 
GFB simultaneously. 

In the search for sparse eigenvectors, one approach is to numeri­
cally compute all the eigenvectors of the graph Laplacian, then look 
for the sparse ones. However, this "brute-force" procedure has two 
main downsides. For large graphs numerical computation of eigen­
vectors is a costly operation. More importantly, so me graphs have 
repeated eigenvalues. In this case, a repeated eigenvalue constitutes 
an eigenspace, hence the corresponding eigenvectors are not unique. 

This work was supported in parts by the ONR grant NOOOI4-15-1-211 8, 
and the Califomia Institute ofTechnology. 

Even if an eigenspace has a sparse eigenvector, finding sparse vec­
tors in a subspace is known to be an NP-hard problem [23- 25]. The 
approach taken in this paper is therefore different: we characterize 
the sparse eigenvectors of a graph algebraically, using only the ad­
jacency information of the graph. 

In the following, we first provide a brief review of graph signal 
processing notation. In Sec. 2, we present the necessary and suffi­
cient conditions for 1- and 2-sparse eigenvectors to exist. In Sec. 3, 
we consider the 3-sparse case. We also make the connection between 
3-sparse and 2-sparse eigenvectors for unweighted graphs. In Sec. 4 
we provide cIassical and real-world graph examples and show that 
they have sparse eigenvectors. 

1.1. Preliminaries and Notation 

Let A E M N denote the adjacency matrix ofa graph ofsize N (i.e., 
N nodes or vertices). We assurne the graph does not have self loops, 
i.e. ai ,i = O. The weight of the edge from the jth node to the i th 

node is denoted by the (i , j) th element of A. A graph is undirected 
when ai,j = aj,i for all pairs of nodes. For undirected graphs with 
non-negative edge weights (ai,j ?o 0), the graph Laplacian is defined 
as L = D - A , where D is the diagonal degree matrix given as 
(D )i,i = 2:j ai,j. The set of nodes that are adjacent to node i is 
denoted by N(i), that is, N(i) = U lai,j =1= O}. For two sets A and 
B, the set difference is defined as A\ B = {x E A lx rt B}. We use 
u to denote the set union operator. Number of elements in a set A is 
denoted by lA I. We use Ilx lll to denote the fl -norm of the vector x. 

In this paper we always consider undirected graphs with non­
negative edge weights. Notice that Theorems 1 and 2 apply to 
weighted graphs, whereas Theorem 3 and 4 are specific to un­
weighted graphs. A graph is said to be connected if there is a path 
between any pair of nodes. In the following, the term "eigenvector" 
always refers to eigenvectors of the graph Laplacian. 

2. SPARSE EIGENVECTORS OF GRAPH LAPLACIAN 

When the graph of interest is disconnected, it is straightforward to 
find sparse eigenvectors. To see this, let A be the adjacency matrix 
of a graph with D disconnected components. Then, under the proper 
labeling of the nodes, the adjacency matrix and the Laplacian can be 
written in the block diagonal form: 

where A i E MNi and L i E M Ni are the adjacency matrix and the 
graph Laplacian of the ith component, respectively. Due to block­
diagonal form of L , corresponding eigenvectors can be selected to be 
block sparse. Therefore, for 1 ~ i ~ D , there exists an eigenvector 
that has at most Ni non-zero elements. If there is an arbitrari ly small 
component, then we can find arbitrarily sparse eigenvectors of the 
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Laplacian. However, this result is valid for only one direction, and 
the converse is not tme: if a graph has a sparse eigenvector, it does 
not imply that the graph is disconnected. This will be clear from 
Theorems 2 and 3, which prove that a connected graph can have a 
sparse eigenvector. However, l-sparse eigenvectors are exceptions 
in this regard as stated next: 

Theorem 1 (Isolated nodes of a graph). Assume that the graph of 
interest is undirected and non-negatively weighted. Then, the graph 
Laplacian has a l-sparse eigenvector if and only if the graph has an 
isolated node. 

Proof' Assume that the graph has an isolated node. Accord­
ing to block diagonal form in (1) , there exists a 1-sparse eigenvector 
of the graph Laplacian. 

For the converse, let v be a 1-sparse eigenvector. Without loss of 
generality assume that the first index is non-zero VI = 1, and the rest 
is zero. Therefore Lv is equivalent to the first column of L. That is, 
Lv = [d1 -a'k,lV = A[1 OTV, where a R,l E n N - I is the vector 
that denotes the adjacency ofnode 1, and d1 = IlaR,llh is the degree 
of node 1. Notice that the eigenvalue equation yields aR,l = 0, 
which means that no other node is adjacent to node 1, that is, node 1 
is an isolated node. • 

Now we provide the characterization theorem for 2-sparse 
eigenvectors of weighted graphs. 

Theorem 2 (2-sparse eigenvectors of a connected graph). Let A 
denote the adjacency matrix of an undirected and connected graph 
with a i,j ?o 0 being the weight of the edge between nodes i and j. 
Then, there exist nodes i and j such that 

ai,k = aj,k \f kE {1 , .. · ,N}\ {i ,j }, (2) 

if and only if the graph Laplacian, L , has a 2-sparse eigenvector 
with nonzero eigenvalue A = di + ai,j' The condition (2) reduces to: 

N( i) \ {j} = N(j) \ {i }, (3) 

when the graph is unweighted. <> 

Proof' Assume that the graph Laplacian of a connected 
graph has a two-sparse eigenvector v with nonzero eigenvalue. Due 
to permutation invariance of the node labels, without loss of any 
generality assume that the first two indiees are nonzero, that is, 
V I =1= 0 and V2 =1= 0, but Vi = 0 for i ?o 3. 

For a connected graph, notiee that the all-1 vector is the only 
eigenvector of the graph Laplacian with the zero eigenvalue. Since 
the graph Laplacian is a symmetrie matrix the eigenspaces are or­
thogonal to each other. Therefore the 2-sparse eigenvector (with 
nonzero eigenvalue) v is orthogonal to the all-1 vector, which im­
plies that VI + V2 = O. Then, we can select VI = -V2 = 1 without 
loss of any generality. 

Let Adenote the adjacency matrix of the graph. We have 

A = [a~'l a~2 :l~l ' L = [-:;'1 -~~2 ~:l~l ' (4) 
aR,l aR,2 AR -aR,l -aR,2 L R 

where AR E M N .2 and L R E M N -2 are the partitions of the ad­
jacency matrix and the graph Laplacian, respectively. aR,l E n N .2 

is the vector that denotes the adjacency of node 1 except node 2. 
a r ,2 is the same for node 2. Notice that d1 = a2,1 + IlaR,l lh and 
d2 = al ,2 + IlaR ,21iI- Now, consider the followi ng 

Lv = [_(~12'~ ~ld~) 1 = AV = A [-~l· 
-aR, l + aR,2 0 

Therefore we have a R,l = a R,2, which in particular implies that 
d1 = d2 since al,2 = a2,1 (graph is undirected). Furthermore 
the corresponding eigenvalue is A = d1 +al,2. Since the graph is 
connected d1 > 0, and A is nonzero. Notice that the condition 
aR,l = aR,2 is the same as the condition in (2) (with i=1 and j =2). 

Conversely, assume that there exist two nodes with the property 
in (2). Without loss of generality, assume i = 1 and j = 2, and let 
v be a 2-sparse vector with VI = -V2 = 1. Then partition the graph 
Laplacian as in (4). Due to (2), we have a R,l = a R,2, and d1 = d2 . 

Then we have Lv = AV with A = d1 + al,2 . Therefore, v is a 2-
sparse eigenvector of L. Using the fact that d1 > 0 for a connected 
graph, and the assumption that the weights are nonnegative, we con­
clude A> O. • 

3. SPARSE EIGENVECTORS OF UNWEIGHTED GRAPHS 

In this section we provide the characterization theorem for 3-sparse 
eigenvectors of unweighled graphs. We later show the connection 
between 3 and 2-sparse eigenvectors of unweighted graphs. 

Theorem 3 (3-sparse eigenvectors of a connected graph). Let A 
denote the adjacency matrix of an undirected, unweighted, and con­
nected graph. There exist nodes i, j, and k such that 

N(i) \ {j , k} = N(j) \ {i, k} = N(k) \ {i , j}, (5) 

if and only if the graph Laplacian, L, has a 3-sparse eigenvector 
wirh non-zero eigenvalue. <> 

Proof' Assume that the graph Laplacian of a connected 
graph has a three-sparse eigenvector v with nonzero eigenvalue. 
Due to permutation invariance of the node labels, without loss of 
generality assume that VI =1= 0, V2 =1= 0, V3 =1= 0 but Vi = 0 for i ?o 4. 

For a connected graph, the all-1 vector is the only eigenvector of 
the graph Laplacian with the zero eigenvalue. Since the 3-sparse 
eigenvector (with nonzero eigenvalue) v is orthogonal to the all-
1 vector we have VI + V2 + V3 = O. By scaling the eigenvector, 
without loss of any generality, we can select V I = 1, V2 = 'Y, and 
V3 = -1-'Y for so me 'Y, where 'Y =1= 0 and 'Y =1= -1 since the eigenvec­
tor v is exactly 3-sparse. 

Similar to (4), the graph Laplacian can be partitioned as follows 

r 
dl -al ,2 -al ,3 -a'k 1 j 

L = -a2,1 d2 -a2,3 -a~:2, (6) 
-a3,1 -a3,2 d3 -aR,3 

-aR, l -aR,2 -aR,3 L R 

where L R E M N .3 is the partition of the Laplacian, and for 
1 ~ i ~ 3, a R,i E n N .3 is the vector that denotes the adjacency of 
node i with the nodes {4, ··· ,N}. Since v is an eigenvector, it 
should satisfy the following eigenvalue equation: 

[ 
dl - 'Y a l ,2 + (1+'Y) al ,3 1 [ 1 1 

Lv = -a2,1+'Y d2 + (1+'Y)a2 ,3 = AV = A 'Y (7) 
- a 3,1 - 'Y a3,2 - (1+'Y) d 3 -(1+'Y) . 

- aR ,l - 'Y aR ,2 + (1+'Y) aR,3 0 

This implies that aR,l + 'Y aR ,2 - (1+'Y) aR,3 = O. This vector 
equation holds true if and only if it is satisfied element-wise. That is 

ar,l - a r ,3 = 'Y (a r ,3 - a r ,2) \f rE {4, .. . , N} . (8) 

Remember that the graph is assumed to be unweighted, therefore, 
a r,l, a r ,2 , and a r ,3 are either 1 or O. Hence, (8) can appear in 23 = 8 
different variations, each of wh ich results in a different value for 'Y. 
The following table considers each case separately and provides the 
solution(s) for 'Y. 

a r,l ar ,2 ar ,3 'Y Validness 
0 0 0 n .( 

0 0 1 -1 X 
0 1 0 0 X 
0 1 1 - Cf) X 
1 0 0 Cf) X 
1 0 1 0 X 
1 1 0 -1 X 
1 1 1 n .( 
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In the table, R means that any real number is a solution. Remem­
ber that , =1= 0 and , =1= -1 since the eigenvector v is assumed to 
be exactly 3-sparse. As a result, a solution to (8) exists only if 
a r, 1 = a r ,2 = a r ,3. Since this is necessary for all r E {4, ... , N}, 
we get aR,1 = aR,2 = aR,3 . This condition is the same as (5). 

Conversely, assurne that the condition (5) holds. Without loss 
of generality assurne that i = 1, j = 2, and k = 3. Then we have 
aR,1 = aR,2 = aR,3, where aR,i is the same as in (6). Define 
S = IlaR,l lh = IN(i)\ {j ,k} l. Notice that s > 0, since s = 0 im­
plies that the first three nodes are disconnected from the rest of the 
graph. Now consider the following eigenvalue equation: 

Notice that the matrix on the left-hand side is the Laplacian of the 
subgraph on the first three nodes. Since the graph is unweighted, this 
matrix can have 23 = 8 different forms. By exhaustively considering 
each case, one can show that (9) can always be solved for A and , 
with , =1= 0 and , =1= -1. However, values of both A and , depend 
on the matrix . Eigenvalues of a graph Laplacian are always non­
negative, therefore A-S ;::, O. As a result A ;::, S > O. 

Notiee that d l = S + al ,2 + al ,3, d 2 = S + al ,2 + a2 ,3, and 
d3 = S + al ,3 + a2 ,3 . Therefore, a pair of (A , , ) that satisfies (9) 
also satisfies (7). Hence, using , solved from (9), a 3-sparse vector 
v constructed as VI = 1, V2 = " V 3 = -(1+, ), and Vi = 0 for 
i ;::, 4 is an eigenvector of the graph Laplacian L. Furthermore, the 
corresponding eigenvalue A (computed via (9» is nonzero. • 

There are two remarks regarding Theorems 2 and 3. 1) The ex­
istence of sparse eigenvectors does not depend on the size and the 
global structure of the graph. Existence of nodes with the properties 
in (2) or (5) directly implies the claimed results. 2) The sparse eigen­
vectors are localized on the graph. If the nodes have the properties 
in (2) or (5), they must have at least one common neighbor. (This 
follows from the fact that the graph is connected). Hence, non-zero 
elements of the eigenvector are at most 2 hops away from each other. 

Similarity between the conditions (3) and (5) encourages us to 
pursue a more general condition on a (connected) graph so that an 
eigenvector with an arbitrary number of non-zero elements exists. In 
fact, such a generalization is possible only as a sufficient condition. 
However, finding a necessary condition is not easy. The main rea­
son is that it is possible to combine sparser eigenvectors in a given 
eigenspace in order to achieve less sparse ones. To see this, let K 
be an arbitrary sparsity K ;::, 4. It can be written as K = 2m + 3n 
for so me integer m and n. Hence, if there exist m 2-sparse and n 3-
sparse eigenvectors (with the same eigenvalue and disjoint supports), 
a linear combination of these 2 and 3-sparse eigenvectors yields a 
K -sparse eigenvector. Furthermore, m and n are not unique for a 
given K in general. In short, a K-sparse eigenvector might exist for 
various different reasons, whieh makes it difficult to find a necessary 
condition for a K-sparse eigenvector to exist. In particular, consider 
the Minnesota road graph (to be studied in Sec. 4.5). It has four 
orthogonal 2-sparse eigenvectors with eigenvalue 1. (See Fig. 3(a)-
3(d).) Since these 2-sparse eigenvectors are in the same eigenspace, 
any linear combination of these is also an eigenvector. Furthermore, 
it is apparent from Fig. 3(a)-3(d) that these 2-sparse eigenvectors 
have disjoint supports. As a result, one can find a 6-sparse eigenvec­
tor via a linear combination ofthree 2-sparse eigenvectors. However, 
a 6-sparse eigenvector could have been the result of a combination 
of two 3-sparse eigenvectors (with the same eigenvalue and disjoint 
supports) as weil. This empirieally shows that a necessary condition 
is not easy to obtain for an arbitrary sparsity. Also notice that one 
can find 4, 6, and 8-sparse eigenvectors via linear combinations of 
the 2-sparse eigenvectors of Fig. 3(a)-3(d). Unlike the 2-sparse ones, 
these 4, 6, and 8-sparse eigenvectors are not localized (in terms of 
number of hops) on the graph. Hence, a K-sparse eigenvector may 
not be localized on the graph. 

It is interesting to observe that the condition for 3-sparse eigen­
vectors is more strict than the condition for 2-sparse eigenvectors for 
unweighted graphs. We formally state this result as folIows. 

Theorem 4 (3-sparse implies 2-sparse). If the Laplacian of an undi­
rected, unweighted and connected graph has a 3-sparse eigenvector, 
then it has a 2-sparse eigenvector. <> 

Proof Assurne that the Laplacian of an undirected, un­
weighted and connected graph has a 3-sparse eigenvector. Then, due 
to Theorem 3, there exist nodes i, j , k with the condition in (5). Let 
S = N(i) \ {j, k} = N(j) \ {i, k} = N(k) \ {i , j}. The relations 
in-between the nodes i , j , k can have 4 different forms. This follows 
from the fact that there are 4 non-isomorphic simple graphs on 3 
nodes (page 4 of [26]). These cases are illustrated Fig. 1. 

o 

o 
(al (bl (cl (dl 

Fig. 1. All four non-isomorphie graphs on 3 nodes. 

In the following table, we consider all 4 cases separately and show 
thatthere exists a pair of nodes i, j with N( i) \ {j} = N(j) \ {i}. 

Case N(i) N(j) N(i)\ {j} N(j)\ {i} 
Fig. l(a) S S S S 
Fig. l(b) S u {j,k} S u {i,k} S u {k} S u {k} 
Fig. l(c) S u {j} S u {i} S S 
Fig. l(d) S u {k} S u {k} S u {k} S u {k} 

As a result, due to Theorem 2, the graph Laplacian has a 2-sparse 
eigenvector independent of the relation between the nodes i , j , k .• 

It is important to note that the result of Theorem 4 is specific to 
2 and 3-sparse eigenvectors and cannot be generalized to arbitrary 
sparsity. As a simple counter-example, consider the Minnesota road 
graph (Sec. 4.5). It has 2-sparse and 4-sparse eigenvectors, but it 
does not have a 3-sparse eigenvector. 

4. EXAMPLES 

In the following we will provide graph examples that satisfy, and do 
not satisfy, the conditions in (2) and (5). Notice that the graphs in 
Sec. 4.1-4.5 are unweighted, whereas the one in Sec. 4.6 is weighted. 

4.1. Complete Graph, K N 

A complete graph on N nodes has an edge between any two nodes. 
Figure 2(a) provides a visual representation of K s. Let i , j and k be 
three arbitrary nodes of a complete graph. Then, we have 

N(i)\ {j, k} = N(j)\ {i , k} = N(k)\ {i,j} = {I,· · · ,N}\ {i,j, k}, 

whieh shows that an unweighted complete graph of an arbitrary size 
(N ;::, 3) has a 3-sparse eigenvector, which in partieular implies that 
it has a 2-sparse eigenvector as weil (Theorem 4). 

4.2. Complete Bi-Partite Graph, K N,M 

A complete bi-partite graph of size N + M is a bi-partite graph (one 
color having N nodes, and other color having M nodes) such that 
every node of a color is connected to every node of the other color. 
Figure 2(b) provides a visual representation of K 4 ,5 . Let i , j, and k 
be three nodes that belong to the same color. Then we have that 

N(i)\ {j, k} = N(j)\ {i, k} = N(k)\ {i,j} = Nodes ofthe other color, 
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which shows that an unweighted complete bi-partite graph of an ar­
bitrary size (given that a color has at least 3 nodes) has a 3-sparse 
eigenvector, which in particular implies that it has a 2-sparse eigen­
vector as weIl. 

4.3. Star Graph, SN 

A star graph of size N is a complete bi-partite graph KI ,N-I. In 
particular, it has a center node that is connected to any other node, 
and all the nodes are connected only to the center node. Figure 2(c) 
provides a visual representation of S9. Assurne that the center node 
is labeled as 1. Let i, j and k be three nodes other than the center 
node. Then we haveN(i) = N(j) = N(k) = {I}. Therefore, 

N(i)\ {j , k} = N(j)\ {i, k} = N(k)\ {i , j} = {I} , 

which shows that an unweighted star graph of an arbitrary size 
(N ~ 3) has a 3-sparse eigenvector, wh ich in particular implies that 
it has a 2-sparse eigenvector as weil (Theorem 4). 

4.4. Cyde Graph, CN 

A cycle graph of size N contains a single cycle through all nodes. 
Figure 2(d) provides a visual representation of Cs . Notice that 
C2 = K 2 , C3 = K 3, C4 = K 2 ,2, hence they have 2-sparse eigen­
vectors as shown above. For N ~ 5, C N does not have a pair of 
nodes that satisfy (3). Therefore, a cycle graph for N ~ 5 does not 
have a 2-sparse eigenvector, which, in particular, implies that it does 
not have a 3-sparse eigenvector as well (Theorem 4). In fact , it can 
be formally shown that an eigenvector of a cycle graph of size N 
has at least N / 2 non-zero values [22]. 

(a) (b) (c) (d) 

Fig. 2. a) K s, complete graph of size 8, b) K 4 ,5, complete bi-partite 
graph of size 4-5, c) S9, star graph of size 9, d) Cs , cycle graph of 
size of 8. 

Above examples are carefully selected to point out an important 
observation: sparsity of the graph is not related to the existence of 
sparse eigenvectors. This follows from the following three facts: 
1) A complete graph is dense, yet it has a sparse eigenvector. 
2) A cycle graph is sparse, yet it does not have a sparse eigenvector. 
3) A star graph is sparse, and it has a sparse eigenvector. 

4.5. Minnesota Road Graph 

In this example, we consider the Minnesota wad graph [8, 17]. We 
use the data publicly available in [27]. This graph has 2642 nodes in 
total where 2 nodes are disconnected to the rest of the graph. Since 
a wad graph is expected to be connected, we disregard those two 
nodes. See [8,17] for the visual representation of the graph. This is 
an unweighted graph where nodes represent intersections, and edges 
represent roads connecting the intersections. There are total of 3302 
undirected unweighted edges. 

By using a brute-force search over the graph, we have found 
that the graph does not have a triplet of nodes with the pwperty in 
(5), hence the graph does not have a 3-sparse eigenvector. How­
ever, it does have 6 different pairs of nodes with the property in (3). 
These pairs are visualized in Fig. 3. Hence, the graph has 2-sparse 
eigenvectors. Notice that the eigenvectors generated by the nodes in 
Fig. 3(a)-3(d) are orthogonal to each other and have eigenvalue 1. 

Using linear combinations of 2-sparse eigenvectors, we can verify 
that the graph has 4, 6, and 8-sparse eigenvectors as well. 

:::: r~ 48.8 

46.75 

48.7 

48.65 

-97.2 -97.1 -97 -96.9 

(a) 

43.65 1--_ _ ......... ~-

43.6 

(d) 

484:1 \ ~ 
47.8~ ·· 

47'1 
47.4 L.CC90"'CA -.90::-.2=---C.90C:-.CC,,-:-.8 --c.8::-:-9 .6 44.4 ~.-::-".C-4 -.'::-6.~3 -."::-.2=---=.,::-,.1:-

(b) 

(e) 

(c) 

4:::1 
44.79 t'-I - ....._-7-

44. 78 ~ 

44.n f 

(f) 

Fig. 3. Pairs of nodes in the Minnesota road graph that result in 2-
sparse eigenvectors. The pairs that satisfy the condition in (3) are 
colored in blue. Notice that the pairs in (a)-(d) generate eigenvectors 
with eigenvalue 1, and the pairs in (e)-(f) generate eigenvectors with 
eigenvalue 2. (See Theorem 2.) Axes represent the geographical 
location of the intersections. 

4.6. Co-appearance Network 

In this example, we consider the co-appearance network of charac­
ters in the famous novel Les Miserables by Victor Hugo [28,29]. 
This is an undirected but weighted graph, where two characters are 
connected if they appear in the same scene, and the weight of an 
edge is the total number of co-appearances through the novel. The 
graph has 77 nodes and 254 (weighted) edges in total. 

In a co-appearance graph, pairs of nodes with the condition in 
(2) have a meaningful interpretation. If two characters always appear 
simultaneously, they will have the same number of co-appearances 
with other characters, which implies the condition in (2) mathemat­
ically. As an example, consider characters "Brevet", "Chenildieu", 
and "Cochepaille" of the novel Les Miserables. They are three wit­
nesses in Champmathieu's trial, and appear simultaneously through 
the court scenes. Nodes (of the graph) that correspond to any two 
of these three characters satisfy the condition in (2), which, in turn, 
implies that the graph Laplacian has a 2-sparse eigenvector. 

Since the graph is weighted, we can not utilize Theorem 3 in 
order to find 3-sparse eigenvectors of the Laplacian. Nevertheless, 
we have experimentally observed that the nodes that correspond to 
the above-mentioned three characters of the novel constitute a 3-
sparse eigenvector! 

5. CONCLUSIONS 

In this paper, we studied the necessary and sufficient conditions for 
the existence of 1, 2, and 3-sparse eigenvectors of the Laplacian of 
an undirected graph. These sparse eigenvectors are important due to 
their simultaneous localization in the vertex domain and the graph 
Fourier domain. The presented results for 1 and 2-sparse eigenvec­
tors are valid for weighted graphs, whereas the results on 3-sparse 
case are specific to unweighted graphs. We presented examples of 
both classical and real-world graphs with sparse eigenvectors. We 
further showed that, for unweighted graphs, the existence of a 3-
sparse eigenvector implies the existence of a 2-sparse eigenvector. 
We also provided counter-examples to show that this result does not 
extend to arbitrary sparsity. 
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