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Sparse Electromagnetic Imaging Using Nonlinear
Landweber Iterations

Abdulla Desmal and Hakan Bağcı*

Abstract—A scheme for efficiently solving the nonlinear electromagnetic inverse scattering problem
on sparse investigation domains is described. The proposed scheme reconstructs the (complex)
dielectric permittivity of an investigation domain from fields measured away from the domain itself.
Least-squares data misfit between the computed scattered fields, which are expressed as a nonlinear
function of the permittivity, and the measured fields is constrained by the L0/L1-norm of the solution.
The resulting minimization problem is solved using nonlinear Landweber iterations, where at each
iteration a thresholding function is applied to enforce the sparseness-promoting L0/L1-norm constraint.
The thresholded nonlinear Landweber iterations are applied to several two-dimensional problems,
where the “measured” fields are synthetically generated or obtained from actual experiments. These
numerical experiments demonstrate the accuracy, efficiency, and applicability of the proposed scheme
in reconstructing sparse profiles with high permittivity values.

1. INTRODUCTION

Electromagnetic inverse scattering problem is defined as finding unknown material properties, such
as dielectric permittivity or conductivity or both, in an investigation domain from scattered fields
measured away from the domain itself [1–3]. Numerical methods for solving the inverse scattering
problem are called for in various applications in engineering including but not limited to through-wall
and tomography imaging [4–6], non-destructive testing [7], crack/mine detection [8, 9], hydrocarbon
reservoir exploration and monitoring [10, 11], and radar and remote sensing [12–14]. Despite the vast
amount of application areas, formulating and implementing efficient and accurate inverse solvers is
still a challenging task. This can be attributed to two essential characteristics of the inverse scattering
problem. (i) Nonlinearity: Scattered field is a nonlinear function of the permittivity. The strength of the
nonlinearity increases with the value of the permittivity [1]. (ii) Ill-posedness: Integral operators used
for expressing the scattered fields in terms of the permittivity have a “smoothening” effect. Smoothening
combined with the facts that the number of measurements is finite and the measurements are noisy
makes the inverse scattering problem ill-posed [1–3, 5].

Methods for solving the electromagnetic inverse problem can be classified based on the level
of maximum permittivity they can “handle”, i.e., the strength of the nonlinearity in the scattering
equations. For low values of permittivity, first-order linearization methods, such as the first-order Born
and Rytov approximations, provide a convergent and satisfactorily accurate solution [15]. Even though
higher-order schemes, such as the extended-Born [16] and second-order Born approximations [17] and
the Born iterative method [18–20], are applicable for higher values of permittivity when compared to
the first-order linearization methods, they still fail to produce convergent solutions for many practical
engineering applications where investigation domains involve “strong” scatterers with high values of
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permittivity. This drawback can be overcome by developing “complete” nonlinear inversion schemes
that do not linearize the forward scattering equations. Examples of these schemes include Newton-
type methods such as the inexact Newton [21–23], distorted Born [24], and Levenberg-Marquardt [25]
methods. Additionally, other schemes making use of the nonlinear conjugate gradient [26–29] or the
steepest descent [30, 31] are widely used for image reconstruction with strong scatterers.

The ill-posedness is alleviated by constructing the inverse problem in the form of a minimization
problem for the data misfit between the measured and the computed scattered fields, which is constrained
by adding a regularization/penalty term [2, 3]. Data misfit is represented in the L2-norm (i.e., least-
squares fit) and the penalty term can be the L0-, L1-, or L2-norm of the solution [2, 3]. The L2-norm
penalty term, which has been the more commonly used one, promotes smoothness in the solution [3].
On the other hand, solving the minimization problem regularized with the L0/L1-norm penalty term
promotes sharpness and sparseness, i.e., discontinuities in the recovered solution are detected more
accurately [32, 33]. It should be noted here that minimization problems with the sparseness-promoting
L0- and L1-norm penalty terms have often been studied in linear or linearized ill-posed problems.
Their use in electromagnetic inverse problems has been limited to only the Born iterative [19, 20] and
inexact Newton [21] methods even though sparse domains are very common in non-destructive testing,
through-wall, and radar imaging [6–9, 19–21, 34].

In this work, to enable efficient and accurate electromagnetic imaging of the sparse domains
involving strong scatterers, nonlinear least-squares data misfit between the measured scattered fields
and the computed ones, which are expressed directly as a nonlinear function of the permittivity, is
constrained by the sparseness-promoting L0- and L1-norm penalty terms. The resulting minimization
problem, which is also referred as sparsity-constrained nonlinear Tikhonov problem, is solved using
nonlinear Landweber (NLW) iterations [35, 36], where at each iteration a thresholding function is applied
to enforce the sparsity constraint. Unlike inexact Newton [21] and Born iterative [19, 20] methods with
sparsity constraints, the proposed scheme avoids generation of a sequence of linear sparse optimization
problems and requires only one regularization parameter, which directly penalizes the nonlinear problem,
to be set. Consequently, it simplifies the task of heuristic parameter “tweaking”, which is oftentimes
very cumbersome for existing inversion algorithms. Application of the proposed scheme to several two-
dimensional (2-D) problems, where the “measured” fields are synthetically generated or obtained from
actual experiments, demonstrates that the proposed scheme (i) produces sharper and more accurate
reconstruction of permittivity profiles in sparse domains (in comparison with schemes which use L2-
norm regularization) and (ii) maintains its convergence during the reconstruction of profiles with higher
permittivity values (in comparison with schemes which make use of (iterative) linearization of the
nonlinear problem).

The rest of the paper is organized as follows. Section 2.1 presents the nonlinear 2-D electromagnetic
scattering equations, Section 2.2 describes a scheme to discretize the scattering equations and constructs
the nonlinear forward solver, Section 2.3 focuses on the sparsity-constrained minimization problem and
its solution using the thresholded NLW iterations, and Section 2.4 describes a frequency hopping scheme
to be used together with the NLW iterations under excitations with multiple frequencies. Section 3
presents numerical experiments, which demonstrate the efficiency, accuracy, and applicability of the
proposed scheme in reconstructing the permittivity profiles in sparse domains with strong scatterers.
Finally, Section 4 concludes with a summary and future research directions.

2. FORMULATION

2.1. Nonlinear Scattering Equations

Let S represent the support of the 2-D investigation domain residing in an unbounded homogenous
background medium (Figure 1). The permeability and the (complex) permittivity of the investigation
domain and the background medium are represented by {μ0, ε(r)} and {μ0, ε0}, respectively. Here,
ε(r) is the unknown to be determined. The investigation domain is surrounded by a transmitter and
NR receivers (Figure 1). Let ω and Einc

u (r), u ∈ {x, y, z} represent the frequency of the transmitter
and the three components of the incident electric field it generates. Upon excitation, electric current
density with three components Ju(r), u ∈ {x, y, z} is induced on S. These current density components
satisfy Ju(r) = jωε0τ(r)Eu(r). Here, Eu(r) are the three components of the total electric field and τ(r)
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Figure 1. Description of the 2-D electromagnetic inverse scattering problem.

is the dielectric contrast defined as

τ(r) =
{

ε(r)/ε0 − 1, r ∈ S
0, else .

Let Esca
u (r), u ∈ {x, y, z} represent the three components of the scattered electric field generated

by the electric current density induced on S. Considering TE (u ∈ {x, y}) and TM (u = z) field
interactions separately, Esca

u (r) are expressed as

Esca
x (r) = −τ(r)Ex(r) +

c2
0

jω

[
∂2

xyAy(r) − ∂2
yyAx(r)

]
,

Esca
y (r) = −τ(r)Ey(r) +

c2
0

jω

[
∂2

xyAx(r) − ∂2
xxAy(r)

]
,

Esca
z (r) = jωAz(r).

(1)

Here, Au(r), u ∈ {x, y, z} are the three components of the magnetic vector potential, which are expressed
as

Au(r) = μ0

∫
S

Ju(r′)G(r, r′)ds′ =
jω

c2
0

∫
S

τ(r′)Eu(r′)G(r, r′)ds′

and G(r, r′) = H
(2)
0 (k0|r− r′|)/(4j), k0 = ω

√
ε0μ0, and c0 = 1/

√
μ0ε0 are the 2-D Green function, wave

number, and speed of light in the background medium, respectively.
Inserting (1) into the fundamental field relation Einc

u (r) = Eu(r) − Esca
u (r) and enforcing the

resulting equation on r ∈ S yields three integral equations that relate τ(r) to Eu(r) [37]:

Einc
x (r) = [1 + τ(r)]Ex(r) − c2

0

jω

[
∂2

xyAy(r) − ∂2
yyAx(r)

]
, r ∈ S,

Einc
y (r) = [1 + τ(r)]Ey(r) − c2

0

jω

[
∂2

xyAx(r) − ∂2
xxAy(r)

]
, r ∈ S,

Einc
z (r) = Ez(r) − jωAz(r), r ∈ S.

(2)

It should be clear from (2) that the relation between Eu(r) and τ(r) is nonlinear. If τ(r) were
known, (2), which describes a linear relation between Eu(r) and Einc

u (r), could be easily solved for
Eu(r).

Let rR
m, m = 1, . . . , NR, represent the locations of the receivers surrounding the investigation

domain. Note that rR
m /∈ S and τ(rR

m) = 0. Then, sampling (1) at rR
m yields:

Esca
x (rR

m) = c20
jω

[
∂2

xyAy(r)
∣∣
r=rR

m
− ∂2

yyAx(r)
∣∣
r=rR

m

]
,
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Esca
y (rR

m) =
c2
0

jω

[
∂2

xyAx(r)
∣∣
r=rR

m
− ∂2

xxAy(r)
∣∣
r=rR

m

]
, (3)

Esca
z (rR

m) = jωAz(rR
m).

In the set-up described here, the inverse problem is defined as finding the unknown τ(r) from the
scattered fields measured by the receivers. Let Emea

u (rR
m) represent the components of these fields.

Then, τ(r) can be extracted by minimizing the data misfit between Esca
u (rR

m) given by (3) and the
measured samples Emea

u (rR
m). It should be noted here that the number of measurements NR is finite.

Additionally, convolution integrals between τ(r′)Eu(r′) and G(r, r′) in (2) and (3) have a “smoothening”
effect on the fast varying components of τ(r′) and Eu(r′), which results in loss of information especially
if Emea

u (rR
m) are obtained from “noisy” measurements. These two factors make the inverse problem ill

posed [1–3]. Furthermore, a closer look at (2) and (3) reveals that Esca
u (rR

m) are nonlinear functions of
τ(r) meaning that the inverse problem is nonlinear in τ(r).

2.2. Discretization

To numerically solve the inverse scattering problem described in the previous section, (2) and (3) should
be discretized. To this end, support S is divided into N square cells with dimension Δd. It is assumed
that Δd is small enough to resolve the variations in τ(r) and Eu(r), u ∈ {x, y, z}. Under this assumption,
τ(r) and Eu(r) are approximated as:

τ(r) =
N∑

k=1

{t̄}kpk(r), Eu(r) =
N∑

k=1

{Ēu}kpk(r). (4)

Here, t̄ and Ēu are N × 1 vectors storing the samples of τ(r) and Eu(r), i.e., {t̄}k = τ(rk),
{Ēu}k = Eu(rk), where rk are the centers of the cells, and pk(r) is the pulse basis function defined
on the kth cell as

pk(r) =
{

1, r ∈ Sk

0, else

and Sk is the support of the kth cell. Inserting (4) into (2) and evaluating the resulting equation at rj ,
j = 1, . . . , N yield a system of equations:

Ēinc = F̄ Ē. (5)

Here, Ēinc and Ē are 3N ×1 vectors, and F̄ is a 3N ×3N matrix, which are expressed in terms of other
vectors and matrices as

Ēinc =

⎡
⎢⎣
Ēinc

x

Ēinc
y

Ēinc
z

⎤
⎥⎦ , Ē =

⎡
⎣Ēx

Ēy

Ēz

⎤
⎦ , F̄ =

⎡
⎢⎣

Ī +
(
Ī + Ḡyy

)
D (t̄) −ḠxyD (t̄) 0

−ḠxyD (t̄) Ī +
(
Ī + Ḡxx

)
D (t̄) 0

0 0 Ī + k2
0ḠD (t̄)

⎤
⎥⎦ . (6)

In (6), Ēinc
u and Ēu are N × 1 vectors storing samples of Einc

u (r) and Eu(r) on S, i.e., {Ēu}k = Eu(rk),
k = 1, . . . , N , Ī is the N × N identity matrix, the operator D(·) generates a diagonal matrix with
entries equal to those of its argument vector; and Ḡ, Ḡxx, Ḡxy, and Ḡyy are N ×N matrices storing the
samples of the convolution between pk(r′) and G(r, r′), ∂2

xxG(r, r′), ∂2
xyG(r, r′), and ∂2

yyG(r, r′), i.e.,

{
Ḡ

}
jk

=
∫

Sk

G
(
rj , r′

)
ds′,

{
Ḡxx

}
jk

=
∫

Sk

∂2
xxG

(
r, r′

)∣∣
r=rj

ds′,

{
Ḡxy

}
jk

=
∫

Sk

∂2
xyG

(
r, r′

)∣∣
r=rj

ds′,

{
Ḡyy

}
jk

=
∫

Sk

∂2
yyG

(
r, r′

)∣∣
r=rj

ds′.
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Similarly, inserting (4) into (3) yields a system of equations:

Ēsca = H̄D(Ē)P̄ t̄. (7)

Here, Ēsca is a 3N × 1 vector, and P̄ and H̄ are 3N × N and 3NR × 3N matrices, respectively, which
are expressed in terms of other vectors and matrices as

Ēsca =

⎡
⎢⎣

Ēsca
x

Ēsca
y

Ēsca
z

⎤
⎥⎦ , P =

⎡
⎣Ī
Ī
Ī

⎤
⎦ , H̄ =

⎡
⎢⎣
−ḠR

yy ḠR
xy 0

ḠR
xy −ḠR

xx 0
0 0 −k2

0Ḡ
R

⎤
⎥⎦ . (8)

In (8), Ēsca
u are N×1 vectors storing samples of Esca

u (r) at rR
m, i.e., {Ēsca

u }m = Esca
u (rR

m), m = 1, . . . , NR,
and ḠR, ḠR

xx, ḠR
xy, and ḠR

yy are N × N matrices storing the samples of the convolution between pk(r′)
and G(r, r′), ∂2

xxG(r, r′), ∂2
xyG(r, r′), and ∂2

yyG(r, r′), i.e.,
{
ḠR

}
mk

=
∫

Sk

G
(
rR
m, r′

)
ds′,

{
ḠR

xx

}
mk

=
∫

Sk

∂2
xxG

(
r, r′

)∣∣
r=rR

m
ds′,

{
ḠR

xy

}
mk

=
∫

Sk

∂2
xyG

(
r, r′

)∣∣
r=rR

m
ds′,

{
ḠR

yy

}
mk

=
∫

Sk

∂2
yyG

(
r, r′

)∣∣
r=rR

m
ds′.

The relation between Ēsca and t̄, i.e., the forward solver, is obtained by inserting Ē = F̄−1Ēinc from (5)
into (7):

Ēsca = H̄D
(
F̄−1Ēinc

)
P̄ t̄ = f (t̄) . (9)

It is clear from (6) that F̄−1 is a function of t̄. Consequently, the forward operator f(t̄) defines a
nonlinear function in t̄. The “decoupled” 2N × 2N and N × N matrix blocks in F̄ and F̄−1, and
2NR × 2N and NR × N matrix blocks in H̄ indicate that f(t̄) can be separated into TM (u ∈ {x, y})
and TE (u = z) components, each of which can be accounted for individually [see (6) and (8)]. This is
implicitly assumed in the rest of the text. Additionally, f(t̄) in (9) is derived assuming that there is only
one transmitter. In the case of multiple transmitters, each of which is used individually for generating
a separate Ēinc , f(t̄) is obtained by cascading the matrices in (9) for each of the transmitters. One
can also account for changes in receiver locations (from one excitation to another) by re-computing the
matrix H̄ before the cascade operation.

2.3. Nonlinear Sparse Optimization

Let Ēmea
u , u ∈ {x, y, z} represent N × 1 vectors storing samples of the components of the scattered

electric field measured at rR
m, i.e., {Ēmea

u }m = Emea
u (rR

m), m = 1, . . . , NR. Also, let Ēmea represent the
3N × 1 vector obtained by cascading Ēmea

u :

Ēmea =

⎡
⎢⎣
Ēmea

x

Ēmea
y

Ēmea
z

⎤
⎥⎦ . (10)

Using these definitions, the “discretized” inverse problem is constructed as finding t̄ by minimizing the
data misfit between Ēmea and Ēsca , which is expressed as a nonlinear function of t̄ using the forward
operator in (9). The discretized inverse problem also suffers from ill-conditioning like its continuous
counterpart as described in Section 2.1. The effects of ill-conditioning can be alleviated by constraining
the minimization problem with a penalty term as [2, 3]:

t̄ = arg min
t̄

1
2

∥∥f(t̄) − Ēmea
∥∥2

2
+ γ ‖t̄‖l . (11)
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The first term in (11) is the least-squares data misfit between Ēmea and Ēsca = f(t̄), and the second
term ‖t̄‖l is the penalty. The regularization parameter γ is a measure of the “trade off” between the
data misfit and penalty term. The norm used in the penalty terms changes the characteristics of the
regularized solution. Sparsity is promoted by choosing l = 0 (zeroth norm) or l = 1 (first norm) [3, 32].
It should be emphasized here that the sparsity constraint is enforced directly in the spatial domain
where the unknown contrast τ(r) resides, i.e., it is assumed that many entries of t̄, which stores the
coefficients of spatial basis expansion of τ(r), are zero. If this condition is not satisfied, one can apply
a transformation, such wavelet or discrete cosine transform, to obtain a “sparsified” basis expansion of
τ(r).

The minimization in (11) is carried out using thresholded nonlinear Landweber (NLW) iterations
as described next. These iterations read

Step 1) select γ, t̄(1)
Step 2) for i = 1, 2, . . . , NLW

Step 3) r̄(i) = Ēmea − f
(
t̄(i)

)
Step 4) t̄(i+1) = T γ

l

(
t̄(i) + β(i) ∂tf

∗|t̄=t̄(i)

(
r̄(i)

))
Step 5) end

In the above algorithm, subscript (i) attached to a variable indicates that the variable belongs to the ith
NLW iteration. Step 1 of the algorithm is the initialization, where the values of γ and t̄1 are set. In most
problems, choosing t̄1 = 0 gives convergent results. Value of γ is determined heuristically based on the
levels of noise in Ēmea , numerical modeling error, and ill-conditioning of the problem, which depends
on the electrical size of S and numbers of receivers and transmitters. At Step 4, operator ∂t̄f

∗(t̄) is the
adjoint of the operator ∂t̄f(t̄), which is the Frechet derivative of the nonlinear function f(t̄). Operator
∂t̄f(t̄) is obtained from (9) as [25]:

∂t̄f (t̄) = H̄M̄−1D
(
F̄−1Ēinc

)
(12)

where matrices F̄ and H̄ are given in (6) and (8), respectively, while M̄ is expressed as

M̄ =

⎡
⎢⎣

Ī + D (t̄)
(
Ī + Ḡyy

) −D (t̄) Ḡxy 0
−D (t̄) Ḡxy Ī + D (t̄)

(
Ī + Ḡxx

)
0

0 0 Ī + k2
0D (t̄) Ḡ

⎤
⎥⎦ .

At Step 4, β(i) is the step size of the ith NLW iteration. To ensure convergence, it is selected as
β(i) = 1/σ2

(i), where σ(i) is the maximum singular value of the matrix/operator ∂t̄f(t̄)|t̄=t̄(i) [32]. It
should be noted here that an accurate approximation to σ(i) is computed very efficiently with only a
few steps of power iterations. Additionally, σ(i) does not change significantly as the NLW iterations
evolve. Therefore β(i) is estimated only every few iterations to prevent extra computational work.

The sparsity constraint in the minimization problem (11) is enforced within the NLW iterations by
applying the thresholding function T γ

l (·) as shown in Step 4 of the above algorithm. If the penalty term
is the zeroth norm (l = 0), then T γ

0 (·) is known as hard-thresholding and is defined in complex domain
as [38]

{T γ
0 ({t̄}k)}k =

{{t̄}k , if |{t̄}k| >
√

2γ
0, otherwise , k = 1, . . . , N.

If the penalty term is the first norm (l = 1), then T γ
1 (·) is known as soft-thresholding and is defined in

complex domain as [39]

{T γ
1 ({t̄}k)}k =

max [|{t̄}k| − γ, 0]
max

[∣∣{t̄}(k)

∣∣ − γ, 0
]
+ γ

{t̄}k , k = 1, . . . , N.

The NLW iterations are truncated when a stopping criterion based on the discrepancy principle [40]∥∥r̄(i)

∥∥ ≤ δ

is satisfied. Here, δ is a user-defined tolerance chosen based on the levels of noise in Ēmea , numerical
modeling error, and ill-conditioning of the problem [3, 19]. This stopping criterion can also be
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implemented by simply setting the maximum number of iterations NLW to a fixed number, which
is determined heuristically like the tolerance δ.

It should be mentioned here that truncating NLW iterations (by setting NLW to a fixed number)
is a regularization in itself. NLW iterations “recover” the components of the solution with smaller
variations first and proceed to the components with larger variations. Consequently, truncation of the
NLW iterations eliminates the higher-frequency components, which are more susceptible to noise and
possibly corrupted in the presence of high levels of noise and numerical modeling error. This regularizes
the solution by promoting smoothness. Following the discussion above, if one replaces Step 4 with

t̄(i+1) = t̄(i) + β(i) ∂tf
∗|t̄=t̄(i)

(
r̄(i)

)
i.e., eliminates the thresholding, the resulting truncated (but not thresholded) NLW iterations will lead
to a smooth solution; and in essence this is equivalent choosing l = 2 in the minimization problem (11).

The computational cost of the NLW iterations is dominated by the cost of matrix inversions required
at Steps 3 and 4. More specifically, at the ith iteration, matrices F̄ [see (9)] and M̄ [see (12)] are
inverted to compute f(t̄(i)) and ∂tf

∗|t̄=t̄(i)

(
r̄(i)

)
. These matrix inversions are carried out iteratively

using the stabilized bi-conjugate gradient (STABICG) method. At every iteration of the STABICG
method, matrix F̄ or M̄ is multiplied by a vector. This matrix-vector multiplication is carried out very
efficiently with O(N log N) computational cost using FFTs since Ḡ, Ḡxx, Ḡyy, and Ḡxy are all Toeplitz
matrices [37]. Additionally, only one column of each of these matrices is needed in the FFT-accelerated
matrix-vector multiplication. The computational cost of computing and memory requirement of storing
this one column scale as O(N) [37]. This operation is done only once before the NLW iterations start.
It should also be mentioned here that the the computational complexity of the NLW iterations stay
the same when they are applied to three-dimensional (3-D) domains. But in this case, N scales as
(D/Δd)3, where D and Δd are dimensions of the domain and the cell where the pulse basis function
is defined. As with any other inversion algorithm, this makes the computational cost of solving 3-D
problems significantly higher than that of solving 2-D problems.

2.4. Frequency Hopping

Oftentimes, in microwave imaging problems, the measurements are taken at multiple frequencies. If
τ(r) does not depend on frequency, the algorithm described in the previous section can still be used
for sparsity-constrained inversion after ∂t̄f(t̄) is constructed by cascading matrices H̄, M̄−1, and F̄−1

computed for every frequency. This approach makes the NLW iterations more susceptible to converging
to a local minimum [of the minimization problem (11)] far from the actual solution especially if the
nonlinearity is strong. Also, it obviously cannot be used if τ(r) depends on frequency. An alternative
approach that does not suffer from these drawbacks is proposed in this section.

Let τ(r) = χ(r) − jσ(r)/(ωε0) represent the frequency dependent contrast function. Here, χ(r)
and σ(r) are the susceptibility and the conductivity on S. Define χ̄ and σ̄ as N × 1 vectors storing
samples of χ(r) and σ(r) on S, i.e., {χ̄}k = χ(rk) and {σ̄}k = σ(rk), k = 1, . . . , N . In the case of
multiple frequency measurements, the algorithm describing NLW iterations given in the previous section
is updated as

Step 1) select γ(1), χ̄(0), σ̄(0)

Step 2) for p = 1, 2, . . . , NFRE

Step 3) t̄(i) = χ̄(p−1) − jσ̄(p−1)/
(
ω(p)ε0

)
Step 4) for i = 1, 2...., NLW

Step 5) r̄(i) = Ēmea − f
(
t̄(i)

)
Step 6) t̄(i+1) = T γ(p)

l

(
t̄(i) + β(i) ∂tf

∗|t̄=t̄(i)

(
r̄(i)

))
Step 7) end
Step 8) χ̄(p) = Re

{
t̄(i+1)

}
, σ̄(p) = − (

ω(p)ε0

)
Im

{
t̄(i+1)

}
Step 9) end

In the above frequency-hopping algorithm, superscript (p) indicates that the variable it is attached to
belongs to the pth frequency step. At Step 1 χ̄(0) and σ̄(0) are initialized to zero and t̄(i) computed
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at Step 3 serves as an initial guess for NLW iterations applied at the next frequency step. Steps 4
to 7 are the thresholded-NLW iterations running over a single frequency as described before. Step 8
retrieves χ̄(p) and σ̄(p) from t̄(i+1) to initialize the NLW iterations at the next frequency step. This
procedure accelerates the convergence of the NLW iterations by “steering them away” from a possible
local minimum.

3. NUMERICAL RESULTS

In this section, the accuracy, efficiency, and applicability of the proposed method are demonstrated via
several examples, where domains of different electric sizes, contrast, and sparseness levels are investigated
under different excitations. In all examples, Ēmea is obtained from actual measurements or synthetically
generated as described next. Let τ ref (r) and t̄ref represent the actual (known) contrast and the vector
that stores its samples. t̄ref is inserted in (5); let the solution of the resulting system be represented
with Ēref . Then, t̄ref and Ēref are used in (7) to yield Ēs,ref . Finally Ēmea is generated by adding
white Gaussian noise to Ēs,ref . The level of this noise is measured in decibels using 20 log10(SNR),
where SNR is the signal to noise ratio.

In all examples, unless stated otherwise, the results are obtained using two methods (i) Thresholded
and truncated NLW iterations (termed as sparsity promoting NLW iterations and abbreviated as
SP-NLW) and (ii) truncated NLW iterations (termed as smoothness promoting NLW iterations and
abbreviated as SM-NLW). The relative norm error in (complex) contrast samples recovered at the ith
NLW iteration is computed using

err(i) =

√√√√√√√√√√

N∑
n=1

∣∣∣{t̄i}n − {t̄ref}n

∣∣∣2

N∑
n=1

∣∣∣{t̄ref}n

∣∣∣2
.

It should be noted here that if only the amplitude of the scattered fields are measured at rR
m,

m = 1, . . . , NR, a phase retrieval technique [1] has to be applied to compute the complex values of Ēmea .
Then, the proposed method can be used on those values. Another option is to modify the proposed
method so that it minimizes the difference between the amplitudes of Ēmea and Ēsca , i.e., optimizes a
phaseless functional [1]. One might expect that this modification will deteriorate the efficiency and/or
accuracy of the method. But it is safe to say that this is also expected from existing schemes extended
to invert phaseless scattered field data [1].

3.1. Circular Ring Scatterer

The relative permittivity profile of the domain and the transmitter-receiver configuration are shown in
Figure 2(a). The relative permittivities of the inner circle and outer ring are 2 and 2.5, respectively.
The investigation domain is discretized using N = 2500 square cells with dimension Δd = 0.15m. The
sparseness level in t̄ref is 3.4%. The numbers of transmitters and receivers are NR = 52 and NT = 12,
respectively. The frequency of the transmitters is f = 125 MHz. The level of noise in synthetically
generated Ēmea is 25 dB. NLW = 200 for both SP-NLWs and SM-NLW, and γ = 0.01 and γ = 0.09 for
soft- and hard-thresholded SP-NLWs.

Figure 2(b) plots err (i) computed by the soft/hard-thresholded SP-NLWs and the SM-NLW. At
iteration i = 200, err (i) reaches 45.6%, 54.9%, and 77.3%, for the soft/hard-thresholded SP-NLWs
and the SM-NLW, respectively. The figure shows faster convergence for the SP-NLWs over the SM-
NLW. Relative permittivity profiles recovered at iteration i = 200 by the three methods are shown in
Figures 2(c), 2(d), and 2(e), respectively. In Figures 2(c) and 2(d) the inner circle and the outer ring
are well separated but in Figure 2(e) they are detected as one object. These figures clearly demonstrate
the benefits of the sparsity constrained regularization.
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Figure 2. Circular ring scatterer. (a) Actual relative permittivity profile and locations of the
transmitters and receivers. (b) err (i) computed by hard-thresholded (l = 0) and soft-thresholded
(l = 1) SP-NLW and SM-NLW. Permittivity profiles recovered at i = 200 by (c) SP-NLW with l = 1
(d) SP-NLW with l = 0, and (e) SM-NLW.

3.2. Austria Scatterer

The well-known Austria scatterer [29] is considered in this example. The relative permittivity profile
of the domain and the transmitter-receiver configuration are shown in Figure 3(a). The relative
permittivities of the small circles and large ring are 2.5 and 2, respectively. The investigation domain
is discretized using N = 2500 square cells with dimension Δd = 0.15 m. The sparseness level in t̄ref

is 11.5%. The numbers of transmitters and receivers are NR = 32 and NT = 8, respectively. The
frequency of the transmitters is f = 125 MHz. Three different noise levels are considered: 25 dB, 10 dB,
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Figure 3. Austria scatterer. (a) Actual relative permittivity profile and locations of the transmitters
and receivers. (b) err (i) computed by soft-thresholded (l = 1) SP-NLW and SM-NLW for different noise
levels. Permittivity profiles recovered at i = 200 by (c) SP-NLW with l = 1 and SM-NLW for 25 dB
noise.

and 5 dB noise is added to synthetically generated Ēmea . NLW = 200 for the soft-thresholded SP-NLW
and the SM-NLW, and γ = 0.01 for the SP-NLW.

Figure 3(b) plots err (i) computed by the SP-NLW and the SM-NLW for all three levels of noise.
At iteration i = 200, for Ēmea generated with 25 dB, 10 dB, and 5dB noise, err (i) computed by the SM-
NLW reaches 72.8%, 75%, and 95.75%, respectively, while for the SP-NLW it reaches 35.4%, 38.61%, and
51.89%, respectively. This figure clearly illustrates that the SP-NLW is significantly more immune to
noise than the SM-NLW for this example. Figures 3(c) and 3(d) provide the relative permittivity profiles
recovered by the SP-NLW and the SM-NLW at iteration i = 200 for Ēmea generated with 25 dB noise,
respectively. The profile recovered under sparsity-constrained regularization is clearly more accurate
and sharper.

3.3. Layered Circular Scatterer

The relative permittivity profile of the domain and the transmitter-receiver configuration are shown
in Figure 4(a). The relative permittivities of the smaller and outer larger circles are 1.5 and 2.5,
respectively. The investigation domain is discretized using N = 2500 square cells with dimension
Δd = 0.15 m. The sparseness level in t̄ref is 9.9%. The numbers of transmitters and receivers are
NR = 32 and NT = 8, respectively. The frequency of the transmitters is f = 125 MHz. The level of
noise in synthetically generated Ēmea is 25 dB. NLW = 200 for the soft-thresholded SP-NLW and the
SM-NLW, and γ = 0.008 for the SP-NLW.

Figure 4(b) plots err (i) computed by the SP-NLW and the SM-NLW. At iteration i = 200, err (i)
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Figure 4. Layered circular scatterer. (a) Actual relative permittivity profile and locations of the
transmitters and receivers. (b) err (i) computed by soft-thresholded (l = 1) SP-NLW and SM-NLW.
Permittivity profiles recovered at i = 200 by (c) SP-NLW with l = 1 and (d) SM-NLW.

reaches 26.8% and 74.6% for the SP-NLW and the SM-NLW, respectively. Figures 4(c) and 4(d) provide
the relative permittivity profiles recovered by the SP-NLW and the SM-NLW at iteration i = 200,
respectively. In the profile recovered by the SP-NLW, the two circles are more clearly identified.

3.4. Layered Square Scatterer

The susceptibility and conductivity profiles of the domain together with the transmitter-receiver
configuration are shown in Figures 5(a) and 5(b), respectively. The susceptibilities and conductivities of
the smaller and outer larger squares are {10, 3 mS/m} and {6, 3mS/m}, respectively. The investigation
domain is discretized using N = 3025 square cells with dimension Δd = 0.15 m. The sparseness level in
t̄ref is 14.58%. The numbers of transmitters and receivers are NR = 32 and NT = 8, respectively. The
transmitters are operated two frequencies: 10 MHz and 40 MHz. NLW = 75 for the soft-thresholded
SP-NLW and SM-NLW, and γ(1) = 0.01, γ(2) = 0.001 for the SP-NLW.

Figure 5(c) plots err (i) computed by the SP-NLW and the SM-NLW at frequency steps p = 1 and
p = 2. At iteration i = 75 and the frequency step p = 2, err (i) reaches 26.7% and 50.7% for the SP-NLW
and the SM-NLW, respectively. Figures 5(d) and 5(e) provide the susceptibility profiles recovered by
the SP-NLW and the SM-NLW at iteration i = 75 and the frequency step p = 2, respectively. Similarly,
Figures 5(f) and 5(g) provide the recovered conductivity profiles. The SP-NLW is more accurate; the
profile recovered by the SM-NLW resembles a circle more than square. Furthermore, the layer interface
is more distinguishable in profiles recovered by the SP-NLW.
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Figure 5. Layered square scatterer. Locations of transmitters and receivers and actual (a) susceptibility
and (b) conductivity profiles. (c) err (i) computed by soft-thresholded (l = 1) SP-NLW and SM-NLW
for frequency steps p = 1 and p = 2. (d) Susceptibility profiles recovered at i = 75 by (d) SP-NLW
with l = 1 and (e) SM-NLW. Conductivity profiles recovered at i = 75 by (f) SP-NLW with l = 1 and
(g) SM-NLW.

3.5. Two Circular Scatterers

The relative permittivity profile of the domain is shown in Figure 6(a). The relative permittivities
of the plastic scatterer (smaller circle with radius 31 mm) and the foam scatterer (larger circle with
radius 80 mm) are 3 ± 0.3 and 1.45 ± 0.15, respectively. The investigation domain is discretized using
N = 2500 square cells with dimension Δd = 4.4 mm. The sparseness level in t̄ref is 9.92%. The receiver-
transmitter configuration is described in [41] and the transmitters are operated at frequency f = 2 GHz.
Samples Ēmea are generated from actual measurement field values provided in “FoamDielExtTE” and
“FoamDielExtTM” by [41]. Additionally, the calibration process described in [42] is used to generate
the incident field in the investigation domain. NLW = 200 for the soft-thresholded SP-NLW and the
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Figure 6. Two circular scatterers. (a) Actual relative permittivity profile. (b) err (i) computed by soft-
thresholded (l = 1) SP-NLW and SM-NLW. Permittivity profiles recovered at i = 200 by (c) SP-NLW
with l = 1 and (d) SM-NLW.

SM-NLW, and γ = 0.009 for the SP-NLW.
Figure 6(b) plots err (i) computed by the SP-NLW and the SM-NLW. At iteration i = 200, err (i)

reaches 44.7% and 64.9% for the SP-NLW and the SM-NLW, respectively. The relative permittivity
profiles recovered at iteration i = 200 by the two methods are shown in Figures 6(c) and 6(d). The
SP-NLW is more accurate in predicting the levels of the actual permittivity.

3.6. Range of Validity

In the last example, the applicability of the SP-NLW to investigation domains involving strong scatterers
with high values of permittivity is demonstrated. The investigation domain, the locations of the
transmitters and the receivers, and the discretization parameters are same as those described in
Section 3.2. Four scenarios, where the relative permittivity of the ring and eyes is set to 1.8, 2.0,
2.2, and 2.4, are considered. The transmitters are operated at four frequencies: 129 MHz, 134 MHz,
140 MHz, and 150 MHz for all scenarios. The level of noise in synthetically generated Ēmea is 25 dB.
The results obtained by the soft-thresholded SP-NLW are compared to those obtained by the soft-
thresholded Born iterative method (SP-BIM) described in [19]. For the SP-BIM, the inner thresholding
loop, which enforces the sparsity constraint, is truncated at NREG

it = 3 iterations for the first five Born
iterations, then at NREG

it = 5 up to the tenth Born iteration, and, finally, at NREG
it = 10 until the Born

iterations are completed. For both the SP-NLW and the SP-BIM γ = 0.01.
Figures 7(a) and 7(b) plot err (i) computed by the SP-BIM and the SP-NLW vs. the execution

time required for the ith iteration to be completed, for all four scenarios considered. Note that here
i stands for either the LW or BIM iterations. Figures clearly show that the SP-BIM fails to converge
when the relative permittivity of the scatterer is increased to 2.0, 2.2, or 2.4 while the SP-NLW recovers
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Figure 7. Four Austria scatterers with relative permittivities 1.8, 2.0, 2.2, and 2.4. err (i) computed by
(a) the soft-thresholded SP-BIM [19] and (b) the soft-thresholded SP-NLW. The relative permittivity
profiles recovered by (c) the SP-BIM at iteration i = 50 and (d) the SP-NLW at iteration i = 155 for the
scatterer with relative permittivity 1.8. The relative permittivity profiles recovered by (e) the SP-BIM
and (f) the SP-NLW at iteration i = 200 for the scatterer with relative permittivity 2.2.

the investigation domain accurately even when the relative permittivity of the scatterer is as high as
2.4.

For the scenario with the weakest scatterer with relative permittivity 1.8, the SP-BIM achieves the
lowest error err (50) = 43.66% at iteration i = 50. Figure 7(c) shows the relative permittivity profile
recovered by the SP-BIM at iteration i = 50. For the same scenario, the SP-NLW achieves the lowest
error err (155) = 33.42% at iteration i = 155. Figure 7(d) shows the relative permittivity profile recovered
by the SP-NLW at iteration i = 155. Higher accuracy obtained by the SP-NLW comes at the cost of
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approximately fivefold increase in the execution time. This is expected since it is well-known that the
BIM is rather efficient in recovering investigation domains involving weak scatterers.

On the other hand, a comparison of the profiles, for the scatterer with relative permittivity 2.2,
recovered by the SP-BIM at iteration i = 200 (err (200) = 102.1%) and the SP-NLW at iteration i = 200
(err (200) = 35.31%), which are respectively shown in Figures 7(e) and 7(f), clearly demonstrates the
benefits of the SP-NLW. The profile recovered by the SP-NLW is accurate while that obtained by the
SP-BIM shows a clearly-diverged solution.

4. CONCLUSION

Thresholded and truncated NLW iterations are used to efficiently and accurately solve the 2-D
electromagnetic inverse scattering problem that is constructed as least squares data misfit between the
scattered and measured fields, which are expressed as a nonlinear function of the permittivity and the
measured fields. Thresholding enforces the sparseness-promoting L0/L1 norm penalty term on the data
misfit. Numerical results demonstrate that the permittivity profiles reconstructed using thresholded
and truncated NLW iterations are sharper and more accurate than those obtained by only truncated
NLW iterations, especially when applied to sparse domains.

Extensions for solving the three dimensional electromagnetic inverse scattering problem as well as
domain sparsification schemes that make use of field and permittivity derivatives are underway.
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