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Abstract

We introduce a Bayesian method, LASSOplus, that unifies recent contributions in
the sparse modeling literatures, while substantially extending pre-existing estimators in
terms of both performance and flexibility. Unlike existing Bayesian variable selection
methods, LASSOplus both selects and estimates effects while returning estimated con-
fidence intervals for discovered effects. Furthermore, we show how LASSOplus easily
extends to modeling repeated observations and permits a simple Bonferroni correction
to control coverage on confidence intervals among discovered effects. We situate LAS-
SOplus in the literature on how to estimate subgroup effects, a topic that often leads to
a proliferation of estimation parameters. We also offer a simple pre-processing step that
draws on recent theoretical work to estimate higher-order effects that can be interpreted
independently of their lower-order terms. A simulation study illustrates the method’s
performance relative to several existing variable selection methods. In addition, we ap-
ply LASSOplus to an existing study on public support for climate treaties to illustrate
the method’s ability to discover substantive and relevant effects. Software implementing
the method is publicly available in the R package sparsereg.
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1 Introduction

Social scientists regularly confront situations that require some type of model selection. This may

include selecting the shape of the relationship between an explanatory variable and an outcome. Or,

as is the focus in this paper, it may involve “sparse modeling,” an estimation technique that zeroes

out all but the most relevant of variables from hundreds or thousands of possible candidates. Earlier

approaches to these situations, such as step-wise regression, have in recent years been replaced by

new tools, including those provided by the growing machine learning literature.1 Many of these tools

use some form of “regularization” or “sparsity” where estimates can be shrunk or removed from the

model according to a threshholding rule. As one applied example of variable selection, a subgroup

analysis involves estimating which combinations of treatments are most (or least) efficacious, and for

which observations (Berry, 1990). As experimental designs grow more complex (e.g., Hainmueller,

Hopkins and Yamamoto, 2014), the number of candidate subgroup effects has grown as well. In

turn, social scientists have grown increasingly interested in methods for uncovering subgroup effects

(e.g. Grimmer, Messing and Westwood, 2014; Imai and Ratkovic, 2013; Green and Kern, 2012),

with some of these methods using regularization-based variable selection methods.

In this paper, we introduce LASSOplus,2 a Bayesian method for variable selection in high dimen-

sional settings. LASSOplus offers two major statistical advances over existing Bayesian shrinkage

and selection methods (Park and Casella, 2008; Carvalho, Polson and Scott, 2010; Armagan, Dun-

son and Lee, 2012; Leng, Tran and Nott, 2014; Griffin and Brown, 2012, 2010; Kang and Guo,

2009). First, LASSOplus is the first sparse Bayesian method for variable selection, whereby ef-

fects are simultaneously estimated and selected. Second, LASSOplus has been designed to possess

desirable theoretical properties. We focus our theoretical attention on cases where the number of

possible effects are either growing in or even greater than the sample size. LASSOplus has the

Oracle Property described by Fan and Li (2001), which means that it is asymptotically indistin-

guishable from a model fit only to covariates with an in-truth non-zero effect. It also satisfies an

Oracle Inequality (Candes, 2006), so it achieves a prediction error of the same order as least squares

fit to the true model. Third, LASSOplus returns approximate confidence intervals. As a Bayesian

method, LASSOplus returns credible intervals, but previous methods have found that these cred-

ible intervals are more narrow than the confidence intervals (Kyung, Gill, Ghosh, Casella et al.,

2010). For the researcher interested in confidence intervals, we return uncertainty intervals that are

1For example, kernel regularized least squares (Hainmueller and Hazlett, 2013) and the adaptive LASSO (Kenkel
and Signorino, 2012) have been deployed for estimating functional forms while the LASSO (Tibshirani, 1996) has
been used for variable selection.

2For pseudo-l ikelihood unbiased selector.
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calibrated to achieve nominal coverage (Efron, 2015). Our goal is to produce a method useful to the

applied researcher, so our implementation of LASSOplus includes extensions to several commonly

encountered data structures and types. The software, which we make publicly available in the R

programming language, handles binary and truncated outcomes, computes up to three-way random

effects, and has both a full Markov Chain Monte Carlo implementation and a faster Expectation

Maximization implementation, a useful tool for practical modeling.

To illustrate the usefulness of LASSOplus, we apply the method to subgroup analysis. Existing

subgroup analysis methods face several shortcomings. Frequentist tree-based methods identify

subgroups, but they do not offer uncertainty estimates nor can they handle experiments with

repeated observations (Loh, Heb and Manc, 2015; Foster, Taylor and Ruberg, 2011; Imai and

Strauss, 2011; Lipkovich et al., 2011; Su et al., 2009), but see Wager and Athey (2015) for recent work

on both fronts. Frequentist variable selection methods also cannot handle repeated observations

(Imai and Ratkovic, 2013), and their methods for estimating confidence intervals perform poorly

in our simulations (Minnier, Tian and Cai, 2011). Recent work has implemented ensemble or high-

dimensional Bayesian methods (Berger, Wang and Shen, 2015; Green and Kern, 2012; Grimmer,

Messing and Westwood, 2014). These methods are powerful predictive tools, but they do not point-

identify relevant subgroups. They work by fitting either a single black-box model or several different

models, and subgroups are identified through an ex post, ad hoc search. The uncertainty estimates

(if they are even available) are not guaranteed to have nominal coverage, and implementations of

the machine learning methods do not accommodate repeated observations.

We present a simulation study that compares LASSOplus to other cutting edge methods. LAS-

SOplus achieves a false discovery rate lower than that of several existing methods, often dramati-

cally so. The method remains reasonably powerful, and its approximate confidence intervals achieve

nominal or near-nominal coverage. We also apply the method to a recent conjoint experiment by

Bechtel and Scheve (2013) in which the authors estimate the effects of different features of an inter-

national climate change agreement on voter support. The original authors conduct an extensive set

of subgroup analyses by running a regression after repeatedly subsetting their data. Our method

recovers many of the same effects, avoids the arbitrary nature of subsetting, is implemented in one

line of code, and returns uncertainty estimates on each effect that take into account the fact that

individuals respond to multiple versions of the experiment.

The structure of the paper reflects our three main goals. First, in Section 2, we introduce readers

to core concepts and existing methods for LASSO-based variable selection. Second, Sections 3 and

4 introduce the LASSOplus and state its statistical properties, while Section 5 discusses relevant
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issues arising during the application and interpretation of the method for subgroup analysis. Third,

we illustrate the application of LASSOplus in Section 6 by comparing it to earlier methods using

an extensive Monte Carlo simulation study and in Section 7 we apply the method to the case of

subgroup analysis by analyzing the data in Bechtel and Scheve (2013). We show how LASSOplus

recovers many of the original authors’ subgroup results while making minimal modeling decisions.

Section 8 concludes with key contributions and discusses future research opportunities.

2 Variable Selection and Shrinkage

Given observed outcome Yi and vector of K observed covariates Xi on observation i ∈ {1, 2, . . . , N},
researchers will commonly turn to the linear model to connect the two, as

Yi = X>i β
o + εi (1)

where βo is the population-level vector of parameters associated with each covariate and εi is the

error term, assumed mean-zero and equivariant. We will also assume that Yi is mean-zero, so∑N
i=1 Yi = 0 and that each element of Xi is scaled to be mean-zero and have a sample standard

deviation one, so
∑N

i=1Xik = 0 and
∑N

i=1X
2
ik = N − 1.

Social scientists are well-trained on how to handle the case where N >> K. Valid inference can

be conducted using the familiar t- or z-statistics, p-values, and confidence intervals. We work here

on a different problem: how to fit this model when there are hundreds or thousands of elements in

Xi and return the handful that best explain the outcome. When K is large, least squares estimates

are unstable, and when K > N , a unique estimate does not even exist.

This setting may at first seem unfamiliar or esoteric, but it is not. Once we consider Xi as

consisting of all main effects and two- and three-way interaction terms, even a modest number of

variables can produce a large number of covariates (e.g., Gillen et al., 2016). In our application

below, we consider data from a conjoint experiment, where main effects plus treatment× covariate
interactions generated 215 possible subgroup effects. Rather than present three or four pages of

output from a regression table, we implement LASSOplus, producing 41 non-zero effects. Thus

LASSOplus opens the door to allow for models that are saturated with interaction terms, while still

returning efficient estimates that can add nuance to the underlying theory.

LASSOplus is an example of a “sparse model.” Sparse modeling involves fitting a model that

zeroes out all but some small subset of β̂. The literature on sparse modeling is large and diverse, so

we first introduce several of the the key concepts, contributions, and insights. For ease of exposition,

we focus on variable selection in the single-parameter case, where Xi is simply a scalar and the issue

at hand is whether or not to set the estimate of βo to zero. After a brief survey of sparse modeling

methods we turn to a description and evaluation of LASSOplus.

3



2.1 Standard Practice: Variable Selection with One Covariate

For this section, we assume an outcome Yi and single covariate, Xi, both scaled as described above.

We are going to consider variable selection in this simplified setting, with model

Yi = Xiβ
o + εi (2)

where the goal is how to decide whether or not to zero out β̂. We focus on this simplified setting

because it provides analytic results not available in the multivariate setting, and we use these results

to convey the basic intuitions of variable selection. Later we return to the multivariate setting.

With a single covariate, variable selection is normally done in two stages: first, the effect is esti-

mated and then some p-value or t-statistic threshold for statistical significance is used to determine

whether the effect can be differentiated from zero. A standard estimate for βo is the least squares

estimate,

β̂LS = argmin
β̃

1

2

N∑
i=1

(Yi −Xiβ̃)2 (3)

=

∑N
i=1 YiXi∑N
i=1X

2
i

=

∑N
i=1 YiXi

N − 1
(4)

which gives a point estimate. The point estimate is then compared to its standard error, σ̂β̂ :

σ̂β̂ =
σ̂ε√
N − 1

; σ̂ε =

√∑N
i=1(Yi −Xiβ̂LS)2

N − 2
. (5)

If the t-statistic is larger in magnitude than some critical value, normally 1.96, the effect is considered

statistically significant. In this framework, estimation and selection occur in two separate steps.

Estimation and selection cannot, in fact, be simultaneous: the least squares estimate is never zero,

outside of pathological cases.

2.2 LASSO with a Single Covariate

Next we introduce the LASSO of Tibshirani (1996) in the case with a single covariate. LASSO is

an acronym for Least Absolute Shrinkage and Selection Operator. In the one-parameter case, the

LASSO estimator is the solution to

β̂L = argmin
β̃

1

2

N∑
i=1

(Yi −Xiβ̃)2 + λ|β̃|. (6)

The first term in this objective function is the residual sum of a squares. The second term has two

components: the tuning parameter λ, indexed by sample size, and the penalty term |β̃|. The least

absolute component references the structure of the penalty, λ|β̃|.
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Denote the sign of the least squares estimate as ŝL = sgn(β̂LS) ∈ {−1, 1}. With one parameter,

the LASSO estimate is (Tibshirani, 1996, sec 2.2)

β̂L =

(
β̂LS − ŝL λ

N − 1

)
1

(∣∣β̂LS∣∣ > λ

N − 1

)
(7)

The first part of Equation 7 illustrates the shrinkage: the estimate is the least squares estimate

biased towards zero by λ/(N−1). The second part of Equation 7 illustrates the selection component.

If β̂LS is less than λ/(N − 1) in magnitude, then the LASSO estimate is simply zero.

Equation 7 reveals three shortcomings of LASSO estimation. First, λ must be estimated from

the data. Researchers commonly turn to an AIC or BIC criterion or to cross-validation to select this

tuning parameter. Unfortunately, these three methods may give quite different results, with little

theoretical guidance to choose among them. Second, both large effects and small effects are biased

towards zero by the same amount, λ/(N − 1). A more accurate estimator would shrink smaller

effects but leave larger effects untouched. The third problem arises due to competing demands on

λ/(N − 1). In the left side of the equation, it is a bias term. As such, we want it to go to zero

quickly. In the right side of the equation, though, we see that if λ/(N − 1) goes to zero too quickly,

then we will end up not zeroing out any effects. As we show in Appendix C,3 no LASSO model

indexed by a single λ can produce estimates that are sparse, consistent, and asymptotically normal.

The LASSOplus method proposed in this paper helps to resolve all three issues.

2.3 Single Covariate Adaptive LASSO

Zou (2006) introduced the adaptive LASSO, which extends the LASSO by including parameter-

specific weights that cause differential shrinkage (see also Kenkel and Signorino, 2012). These

weights serve to shrink larger effects less than smaller effects. The adaptive LASSO is a two-stage

estimator. In the first stage, weights that are inversely related to β are constructed. In the second

stage, these weights are used to weight a LASSO problem. The weights are constructed as

ŵ = 1/
∣∣β̂1
∣∣γ (8)

where β̂1 is a first-stage, root-N consistent estimate of βo and γ > 0. With these weights, the

estimator becomes

β̂L(λ) = argmin
β̃

1

2

N∑
i=1

(Yi −Xiβ̃)2 + λŵ|β̃|. (9)

3See also Fan and Li (2001, Remark 1, pp. 1353).

5



In this setting, the univariate adaptive LASSO estimator is

β̂aL(λ,w) =

(
β̂LS − s wλ

N − 1

)
1

(∣∣β̂LS∣∣ > wλ

N − 1

)
. (10)

For a fixed value of λ, the adaptive LASSO estimator has a lower bias for larger effects than smaller

ones. With one effect, the adjustment is trivial, but with hundreds of possible effects, the gains

from differential shrinkage can be substantial.

Several problems emerge with adaptive LASSO estimation. The first is that any number of

methods can return a root-N consistent estimate of β: least squares, ridge regression, or Bayesian

regression models (e.g., Gelman et al., 2008). Second, the decay parameter γ must be either assumed

or estimated from the data, which can grow computationally costly. Third, the adaptive LASSO

inherits the same uncertainty over tuning parameter selection as the LASSO.

2.4 An Empirical Process Approach with a Single Variable

We turn next to LASSO estimation through an empirical process approach. Early seminal works

include Donoho and Johnstone (1994), Candes and Tao (2007), and Bickel, Ritov and Tsybakov

(2009); the approach has been recently popularized in economics in work by Victor Chernozhukov

and colleagues (Belloni and Chernozhukov, 2013; Chernozhukov, Fernández-Val and Melly, 2013;

Belloni et al., 2012; Belloni, Chernozhukov and Hansen, 2011). Harding and Lamarche (2016) have

extended this work to estimating indivdual-level heterogeneous effect in quantile regression panel

models. We recommend Buhlmann and van de Geer (2013) as a particularly accessible introduction

to this line of work.

A central result in this literature is deriving an “Oracle Inequality,” a bound showing that for

a particular value of λ, the excess risk goes to zero at rate 1/N , up to a penalty incurred for not

knowing the true covariates. In the one-parameter case, this inequality is given below:

Lemma 1 Oracle Inequality for the LASSO in the Single Parameter Case

For λ = σ×t×
√

(N − 1), the single-parameter LASSO estimator satistfies the Oracle Inequality4

1

N

{∑
i=1

(
Xi(β̂

L − βo)
)2

+ λ
∣∣β̂L − βo∣∣} ≤ CL1σ

2t2

N
(11)

with probability at least 1− 2 exp {−t2/2}.
4Note that the Oracle Inequality is distinct from the Oracle Property, which we discuss below. Across the

literature, an estimator that satisfies either is called an “oracle estimator,” so we will be clear as to which we are
discussing in each section. We will discuss the two different concepts after introducing the Oracle Property below.
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We denote as t the variable by which we control the probability of the bound holding, i.e. the variable

t enters into both the bound CL1σ
2t2/(N − 1) and the probability of it holding 1− 2 exp {−t2/2}.

We will use C· to denote constants that do not change in N or K.

Though we state the result with K = 1, this approach is most useful in the K > N setting, a

point to which we return below.

2.5 The Multivariate LASSO and its Variants

We now turn to the multivariate setting, where X>i is a vector of K observation-level covariates,

i ∈ {1, 2, . . . , N}. These covariates may include the values of treatment variables, pre-treatment

moderators, and interactions within and between the two. We assume Xi is of length K, where K

is a finite but possibly large number, say in the hundreds or thousands. The kth element of Xi and

β are Xik and βk, and we also assume all fourth moments of [YiX
>
i ] exist.5 We assume the data are

generated as

Yi = X>i β
o + εi (12)

where we desire a sparse representation of the K-dimensional vector β. We are not assuming that

elements of βo are zero, but that some effects are of negligible magnitude.6 Instead, we are seeking

the best representation of the model in which most effects are estimated as zero, so as to allow the

researcher to focus on relevant effects. We return to this point more fully below.

In the multivariate setting, the LASSO estimate is the solution to

β̂L(λ) = argmin
β̃

1

2

N∑
i=1

(Yi −X>i β̃)2 + λ
K∑
k=1

|β̃k|. (13)

The LASSO tends to over-select small effects. Previous research has addressed this problem in two

ways. First, first-stage adaptive weights can be incorporated into the estimation. This leads to the

adaptive LASSO, given above. Alternatively, small coefficients can be trimmed ex post and OLS fit

to the surviving covariates. This approach has been developed in the empirical process framework

discussed above and we focus on the popular LASSO+OLS method of Belloni and Chernozhukov

(2013) below and in our simulations.

We start with the first. In the multivariate setting, the adaptive LASSO gives each parameter

its own weight in the penalty ŵk = 1/|β̂0
k|γ, for some γ > 0 and β0

k a root-N consistent estimate.

5Notation for sample size and number of covariates varies across literatures, with the number of covariates repre-
sented with either p or n. We use K to align with common social science notation.

6We are more precise about differentiating “relevant” and “irrelevant” effects in Appendix B.
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The model is now

β̂aL(λ) = argmin
β̃

1

2

N∑
i=1

(Yi −X>i β̃)2 + λ
K∑
k=1

ŵk|β̃k|. (14)

We move now to the second approach. LASSO+OLS proceeds in two steps. First, a LASSO fit

is used to select an initial set of possible effects. Second, OLS is conducted on the all subsets of the

initial fit, and the OLS fit with residual variance close to the residual variance of the LASSO fit is

selected (Belloni and Chernozhukov, 2013). From our experience, LASSO+OLS serves as a helpful

tool for sparse modeling and variable selection, so we include it both in our software package and

in our simulations below. We provide a more complete discussion of LASSO+OLS in Appendix H.

These methods, pre-estimation weighting and post-estimation selection, raise several concerns.

First, each have tuning parameters that must be selected and, ideally, estimated. As we describe in

Appendix H, LASSO+OLS has three tuning parameters that must be selected. The authors provide

reasonable defaults and algorithms on how to estimate the tuning parameters, but provide no

theoretical guidance as to how to choose them. Similarly, with the adaptive LASSO, the user must

choose a method for estimating the first-stage weights and for the exponent in the weights. A second

area of concern is in generating confidence intervals. The probabilistic bounds in LASSO+OLS

generate confidence intervals (Belloni, Chernozhukov and Hansen, 2011), but require user-tuning

of several parameters. For the adaptive LASSO methods, generating confidence intervals is still a

field of active research.7

2.6 Two Statistical Properties of Sparse Models

We now discuss two statistical properties of sparse models that have been described in the literature.

We present these properties and their relationship to existing methods here in order to set up our

discussion in Section 4 of how and when LASSOplus has these properties. Though the two properties

have similar names, the Oracle Property and Oracle Inequality, they are actually distinct statistical

concepts. The Oracle Property requires that, as N grows, the estimator select the correct effects

and converge in distribution to OLS using only variables from the true subset. This property was

initially cast in the fixed-K, growing-N framework (Fan and Li, 2001; Zou, 2006), but we focus

on the Oracle Property in when N and K can both be thought of as growing (see also Fan and

7Recent work has proposed resampling methods, through either a bootstrap or repeatedly reweighting observations
(Minnier, Tian and Cai, 2011; Chatterjee and Lahiri, 2011). A second strand of research uses normal or truncated-
normal approximations to construct confidence sets on selected effects (Berk et al., 2013; Leeb, Potscher and Ewald,
2015). A third has considered variable selection in terms of nested hypothesis testing and generated p-values (Lockhart
et al., 2014). Our proposed estimator in Section 3 offers a straightforward way of calculating effect uncertainty and
thus offers a clear improvement on existing estimation strategies.
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Peng, 2004). The Oracle Inequality is a predictive property, such that the fitted values are close

to the fitted values from OLS estimated only on the true subset variables. Satisfying the Oracle

Inequality is weaker than satisfying the Oracle Property, as estimating fitted values well is easier

than estimating βo correctly. The key advantage to the Oracle Inequality is that it allows for

analysis when K > N .

The Oracle Property. The adaptive LASSO satisfies the Oracle Property of Fan and Li (2001,

p. 1353, Thm 2). An Oracle estimator must satisfy two conditions. First, it must be consistent

for variable selection, so in-truth non-zero effects are selected and in-truth zero effects are zeroed

out. Second, the estimate has to be consistent and asymptotically normal, with variance equal to

a model fit only to covariates associated with the non-zero effects. In other words, the estimator

achieves the same asymptotic performance as an identical estimator told ex ante by an “oracle”

which effects are zero and which are not. We give a formal definition in Definition 1.

Definition 1 The Oracle Property

Assume the model Yi = X>i β
o + εi with εi mean zero with four finite moments. Let the set S

denote the set of indices of in-truth non-zero elements of β, i.e. S = {k : k ∈ βok 6= 0}.
An Oracle estimator β̂oracle has the following two properties (Zou, 2006, p. 1418):

1. Consistent Variable Selection: limN→∞{k : β̂oraclek 6= 0} = S

2. Optimal Estimation Rate:
√
N
(
β̂oracleS − βoS

)
d→ N (0|S|,Σ

∗
S) where Σ∗S is the asymptotic vari-

ance matrix from the true subset model.

Satisfying the Oracle Property is desirable because it offers asymptotic efficiency gains over the

normal least squares estimator.8 Denote the asymptotic relative efficiency of two estimators of

vector θ, θ̂1 and θ̂2, as

AREθ(θ̂1, θ̂2) = lim
N→∞

E
{
||θ̂1 − θ||22

}
E
{
||θ̂2 − θ||22

} (15)

The asymptotic relative efficiency of an estimator with the Oracle Property will never perform worse

than the least squares estimate, a result we state below:

8As with any estimator, disagreement exists over the desirability of Oracle estimators. On the one hand, Oracle
estimators reduce the tendency of the LASSO to return a large number of false positives with small coefficient
estimates. We find this in our simulations below. On the other hand, a critique offered by Leeb and Potscher (2008),
but first acknowledged in Fan and Li (2001, p. 1348, 1353), showed that Oracle estimators that the superefficiency
property comes at the cost of losing uniform convergence. We refer the reader to Leeb and Potscher (2008) for more
details, but note that LASSOplus has both an Oracle and non-Oracle implementation in Section 3.1.
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Proposition 1 Assume the least squares estimator exists and is unique. Then, an estimator with

the Oracle Property is at least as efficient as the non-Oracle least squares estimator, asymptotically:

AREβo(β̂
LS, β̂Oracle) ≥ 1 (16)

with equality if and only if none of the elements of β0 are 0.

Proof: See Appendix A.

We note that the Oracle Property has been extended by Fan and Peng (2004). The authors

consider the general case of a penalized likelihood and give conditions for the estimates to satisfy

the Oracle Property. Among these are that the bias induced by shrinkage disappear and that the

likelihood eventually swamp the prior. The key assumption, from an applied standpoint, is that

K5/N → 0. Of course this holds when K is fixed. When K is allowed to grow, the result illustrates

that the Oracle Property–basically, getting the model right pointwise and in distribution–requires

quite a bit of data.9

The Oracle Inequality. Again, we take as our benchmark the least squares estimator fit to

only the in-truth-nonzero effects, with the goal of producing an estimator that has similar prop-

erties. The least squares estimator, fit only to true covariates, achieves a predictive risk of order

E
(

1
N
||XS(βoS − β̂LSS )||22

)
= σ2|S|/N , where |S| denotes the number of in-truth non-zero effects.

An Oracle Inequality bounds the predictive order at a rate going to zero as 1/N , so it performs

comparably to OLS on the true subset. Often in these inequalities, though, the bound will include

a penalty that grows in K, as the true model is not known in advance.

The Oracle Inequality in the multivariate case requires two additional constructions. Denote

as XS the subset of X corresponding with in-truth non-zero effects and denote as φo the smallest

eigenvalue of 1
N

∑N
i=1X

>
SXS. The Compatibility Condition holds when φo > 0.10

Proposition 2 Oracle Inequality for the LASSO in the Multivariate Case

For

λ = Cεσ̂
√

(t+ log(K))× (N − 1) (17)

the LASSO estimator satistfies the Oracle Inequality

1

N

{∣∣∣∣Xi(β̂
L − βo)

∣∣∣∣2
2

+ λ
∣∣∣∣β̂L − βo∣∣∣∣

1

}
≤ CLσ̂

2 (t+ log(K))

φ2
0N

(18)

9For example, with 10 covariates, the Oracle Property would require N to be of order 105 = 100, 000.
10The assumption shows up under several formulations. For example, the Restricted Eigenvalue assumption of

Bickel, Ritov and Tsybakov (2009), that all submatrices in X of size |S| are full rank and all components XS{ are
linearly independent of XS .
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with probability at least 1− 2 exp {−t2/2} − Pr(Cεσ̂ ≤ σ).

Corollary The LASSO risk is consistent for the population risk when log(K)/N → 0.

Proof: See Buhlmann and van de Geer (2013, ch. 6.2)

We focus on two insights from the Oracle Inequality. First, it is achieved when λ is of order√
N log(K) and actually allows for closed feasible estimation of the tuning parameter. The results

also highlights that we are paying a “cost” of log(K) for not knowing the true model in advance.

The second is that the requirements are quite mild for consistency. For K covariates, we only need

the sample size N to be of order log(K). For example, then, going from K = 100 to K = 200 would

only require a 15% increase in sample size (= log(200)/ log(100)) to maintain the Oracle Inequality

bound. Relative to the Oracle Property, we see that the Oracle Inequality requires a good bit less

data, but it also guarantees less than the Oracle Property.

2.7 The Bayesian LASSO

LASSOplus is a Bayesian estimator and thus with the above review of recent frequentist based

LASSO methods in mind, we turn to the existing Bayesian LASSO literature. In a Bayesian

framework, the LASSO can be interpreted as the maximum a posteriori (MAP) estimate of a model

with a double-exponential prior Pr(βj|λ) = 1
2λ

exp(−λ|βj|) = DE(λ). The Bayesian LASSO model

of Park and Casella (2008, hereafter PC)11, can be written as

Yi|Xi, β, σ
2 ∼ N (X>i β, σ

2) (19)

βk|λ, σ2 ∼ DE(λ/σ) (20)

λ2 ∼ Γ(δ, ρ) (21)

where we denote as DE(a) the double exponential density f(x; a) = a
2

exp(−a|x|). PC show that

parameterizing the prior on βk with λ/σ instead of λ ensures a unimodal posterior. The prior on

the tuning parameter is over λ2 rather than λ in order to maintain conjugacy in the augmented

model, given below. Any positive value for the shape (δ) and rate parameters (ρ) will give a proper

prior; PC take (δ, ρ) = (1, 1.78). PC complete the hierarchy by assuming Pr(σ2) ∝ 1/σ2, though

any gamma prior on 1/σ2 will maintain conjugacy.

The posterior mode of the Bayesian LASSO is a LASSO estimator. The negative log-posterior

11See also Hans (2009); Kyung, Gill, Ghosh, Casella et al. (2010).
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of β under this model is, up to an additive constant that does not depend on β,

− log
(
Pr
(
β|λ, σ2,DN

))
=

1

σ2

{
1

2

N∑
i=1

(Yi −X>i β)2 + λσ
K∑
k=1

|βk|

}
(22)

∝ 1

2

N∑
i=1

(Yi −X>i β)2 + λσ
K∑
k=1

|βk| (23)

Factoring out 1
σ2 reveals the posterior mode of the PC model is exactly a LASSO estimate with

tuning parameter λ̃ = λσ.

Shrinkage Priors and Scale Mixtures. The normal likelihood above is not conjugate with the

double-exponential prior on β. In order to restore conjugacy, PC augment the parameter space

by representing the double-exponential distribution as a scale mixture of normals with exponential

mixing density (see also West, 1987):

λ̃

2
e−λ̃|βk| =

∫ ∞
0

1√
2πτ 2

k

e−β
2
k/(2τ

2
k ) λ̃

2

2
e−λ̃

2τ2k/2d
(
τ 2
k

)
. (24)

This suggests the following augmented representation of the double exponential prior:

βk ∼ DE(λ/σ)⇒ βk|τ 2
k , σ

2 ∼ N (0, τ 2
kσ

2); τ 2
k ∼ exp(λ2/2) (25)

Under the augmented parameterization, the likelihood and prior for β are both normal and hence

conjugate. Let Dτ = diag(τ 2) and A =
(
X>X +D−1

τ

)−1
. The Gibbs updates are:

β|· ∼ N (AXY, σ2A) (26)

σ2|· ∼ InvGamma

(
(N − 1)/2 +K/2,

1

2

{
N∑
i=1

(Yi −X>i β)2 +
K∑
k=1

β2
k/τ

2
k

})
(27)

1/τ 2
k |· ∼ InvGaussian

(
λσ/|βk|, λ2

)
(28)

λ2|· ∼ Γ(K + δ,
K∑
k=1

τ 2
k/2 + ρ) (29)

where Γ(a, b) denotes a Gamma distribution with shape parameter a and rate parameter b.

Additional methods have implemented different mixing densities within the scale mixture repre-

sentation of shrinkage priors (Polson and Scott, 2012). The “horseshoe prior” of Carvalho, Polson

and Scott (2010) is

βk|λ, λk ∼ N (0, λ2
kλ

2) (30)

λk ∼ C+(0, s) (31)
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where s is taken as either 1 or σ2 and C+(a, b) denotes the half-Cauchy distribution (Gelman, 2006).

The model is so-named because the posterior density places most of its mass at either no shrinkage

or full shrinkage, giving the posterior density a horseshoe shape. The horseshoe prior has proven to

be an excellent default choice in sparse modeling, so we include it in our simulation study below.12

2.8 Shrinkage without Selection

The Bayesian estimators have shown better performance, in terms of mean-squared error and pre-

diction, than their frequentist counterparts; see Kyung, Gill, Ghosh, Casella et al. (e.g. 2010) as

well as our simulations below. These estimators, however, are not sparse. By a sparse Bayesian

model, we mean one where either the mean, median, or mode of the conditional posterior density of

Pr(βk|·) takes on a value of zero with non-zero probability. By the Bernstein-Von Mises Theorem,

we know that the data will swamp the prior and the posterior density will converge to the same

density as the maximum likelihood estimate. The maximum likelihood estimate for a continuous

parameter is never sparse, outside of pathological cases, and therefore neither are these Bayesian

methods. In order to move towards a sparse estimate, the LASSOplus estimator “slows down” the

rate at which the prior disappears asymptotically.

Under existing Bayesian methods, variable selection occurs in one of two ways. One, the variable

may be selected by examining the posterior density of the estimated effect size; see Figure 8 or

Hahn and Carvalho (2015, Section 3). Two, effects may be selected off a summary statistic of

the posterior density. Kyung, Gill, Ghosh and Casella (2010) propose fitting a frequentist LASSO

such that the sums of absolute values of the frequentist method agree with the posterior mean

of the sum of absolute values of the parameters. Carvalho, Polson and Scott (2010) suggest a

threshold for selecting off the parameter-specific weight parameters, a process shown to satisfy the

Oracle Property (Datta and Ghosh, 2013). Hahn and Carvalho (2015) suggest fitting a non-sparse

Bayesian model and then selecting a frequentist model closest to these fitted values.

LASSOplus selects effects off a statistic of the posterior density. It is a sparse approximation to

an underlying posterior density, constructed to achieve the Oracle Property.

3 LASSOplus: The Proposed Method

This section progresses in three parts. First, we introduce the LASSOplus model (Section 3.1).

Second, we describe how we calculate confidence intervals, including how LASSOplus accommodates

12For additional estimators using a scale-mixture normal representation, see Hahn and Carvalho (2015); Bhadra
et al. (2015); Bhattacharya et al. (2015); Leng, Tran and Nott (2014); Griffin and Brown (2012); Armagan, Dunson
and Lee (2012); Griffin and Brown (2010). For a full discussion of this family of shrinkage estimators, see Polson
and Scott (2012).
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repeated observations (Section 3.2). Finally, we briefly discuss how LASSOplus easily accommodates

parametric flexibility (Section 3.3). In Section 4 we detail the statistical properties of the estimator,

including results on the Oracle Property and Oracle Inequality. We then contrast our prior structure

for the parameter-specific weights to alternatives in the earlier literature.

3.1 The LASSOplus Model

The LASSOplus model contains two components. The first, which we term the consistent model,

returns a consistent estimate for each effect. The second component is a thresholding rule, whereby

small effect estimates are trimmed to zero. The LASSOplus estimate consists of the consistent

estimates that are not zeroed out by the thresholding rule. We present each component in turn.

The consistent model. We constructed the prior structure for the LASSOplus with two goals

in mind. First, the log-posterior takes the same functional form as an adaptive LASSO problem.

We show this property below. Second, the posterior mean of λ grows as N1/4K1/2. We show in the

next section how this growth rate helps the LASSOplus estimator achieve the Oracle Property and

satisfy an Oracle Inequality.

The consistent model for LASSOplus can be written as

Yi|Xi, β, σ
2 ∼ N (X>i β, σ

2) (32)

βk|λ,wk, σ ∼ DE (λwk/σ) (33)

λ2|N,K ∼ Γ
(
K
(√

N − 1
)
, ρ
)

(34)

wk|γ ∼ generalizedGamma(1, 1, γ) (35)

γ ∼ exp(1) (36)

with the generalized Gamma density f(x; a, d, p) = p/ad

Γ(d/p)
xd−1 exp{−(x/a)p}.

The prior on β is a reweighted version of that in the PC model. The tuning paramter, λ, was

constructed to grow in N . This growth is evident in the prior on λ2: we replace the δ parameter

in the PC model with K(
√
N − 1). Any value ρ > 0 returns a proper prior; we take ρ = 1. The

Gamma prior on λ2 returns the Gibbs update in Formula 39. Lastly, the priors on the weights were

derived so that joint posterior of (β, {wk}Kk=1) would resemble the adaptive LASSO model. To see

this, note that up to an additive constant that does not depend on β or the weights,

− log
(
Pr
(
β, {wk}Kk=1|λ, σ2, γ

))
=

1

σ2

{
1

2

N∑
i=1

(Yi −X>i β)2 + λσ
K∑
k=1

wk|βk|

}
+

K∑
k=1

wγk . (37)

which combines the elements of equations (8) and (9).
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Our model differs from earlier implementations of adaptive weights from Leng, Tran and Nott

(2014); Alhamzawi, Yu and Benoit (2012); Griffin and Brown (2012, 2010); Kang and Guo (2009)

by placing a prior over wγk rather than wk and γ separately. Like existing methods, we estimate the

decay parameter γ from the data. As we show below in Figure 1, adjusting the parameter allows

the model to adapt to the global level of sparsity in the data. Taking wk = 1 for all k returns the

Bayesian LASSO model prior structure on βk;
13 this model is the implementation of LASSOplus

that does not have the Oracle Property.

Estimation. Estimation is nearly identical to the augmented PC model. We augment the model

as

βk|λ,wk, σ ∼ DE(λwk/σ)⇒ βk|τ 2
k , σ

2, w2
k ∼ N (0, τ 2

kσ
2/w2

k); τ 2
k ∼ exp(λ2/2) (38)

There are only two adjustments to the PC Gibbs sampler:

λ2|· ∼ Γ(K
√
N,

K∑
k=1

τ 2
k/2 + ρ) (39)

1/τ 2
k |· ∼ InvGaussian

(
λwkσ/(|βk|), λ2w2

k

)
(40)

We update wk and γ using a Griddy Gibbs sampler (Tierney, 1994).

The LASSOplus estimator. As with existing methods, the data generating process above does

not return a sparse mode. The LASSOplus estimate is constructed from the estimate βk and a

thresholding function that zeroes out sufficiently small values of |βk|. The threshold was constructed

such that the final estimate achieves the Oracle Property, a point we return to after defining the

estimator itself.

In order to guarantee that we zero out effects in the limit of N , we sample an inflated variance

component, σ2
sp

σ2
sp|· ∼ InvGamma

((
N1−2α − 1

)
/2 +K/2,

1

2

{
N∑
i=1

(Yi −X>i β)2 +
K∑
k=1

β2
k/τ

2
k

})
. (41)

that will enter into the threshold function. The parameter σsp, which is central to the theoretical

properties of LASSOplus, grows approximately as Nασ. We implement the model at α = 1/4, as

this value achieves several desirable theoretical properties as we explain below.

The LASSOplus estimate is constructed from the consistent model and the inflated variance

term σsp. Define as

V k
i = Yi −X>i,−kβ−k (42)

13Note that βk|λ,wk = 1, σ ∼ DE(λ/σ), which is the PC prior for βk.
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the outcome less the estimated values from all effects except the kth. Next, denote the conditional

least squares estimate β̂olsk as

β̂olsk =

∑N
i=1XikV

k
i∑N

i=1X
2
ik

(43)

Conditional on all other parameters in both models, the LASSOplus estimate for the kth element

is then defined as

βplusk |· = βk1

(∣∣β̂olsk ∣∣ ≥ λσspwk
N − 1

)
(44)

As LASSOplus is a Bayesian model, it returns estimates of the full posterior for all parameters.

In the examples below, we select and focus on effects for which the median of the posterior density

is non-zero, med(βplusk |·) 6= 0. We show that selecting off the median LASSOplus estimates serves

as a conservative and powerful rule when trying to identify non-zero effects.

3.2 Approximate Confidence Intervals

A crucial contribution of LASSOplus is uncertainty estimates for model parameters. While the

LASSOplus method returns posterior uncertainty estimates, the following discussion shows how

to calculate approximate confidence intervals. We focus on confidence intervals because credible

intervals are not calibrated to achieve nominal coverage, except in the limit. And as with earlier

work, we found coverage to be sub-nominal with credible intervals (Kyung, Gill, Ghosh and Casella,

2010).

In returning approximate confidence intervals, we sample from the approximate sampling dis-

tribution of the LASSOplus estimator. To do so, we approximate Equation 44 as

βplusk |· ≈ βkΦ

(∣∣∣∣ β̂olskσ̂k
∣∣∣∣ ≥ λσspwk

σ̂k(N − 1)

)
(45)

with σ̂k the variance of βolsk . As our approximation is differentiable, we apply the delta method to

estimate the variance σ2
ci (see Appendix E for details and Efron (2015) for a more general argument).

The asymptotic normal approximation of the delta method may not hold with small samples.

To correct for this, we estimate the error degrees of freedom using Satterthwaite’s approximation,

df ci =

(∑N
i=1(Yi −X>i β)2

)2

∑N
i=1(Yi −X>i β)4

(46)

With an estimate of error degrees of freedom in hand, we exploit the representation of a t-density as a

scale mixture of normals with inverse-gamma mixing density. We draw vci ∼ InvGamma(df ci/2, df ci/2)

and use this value to inflate σ2
ci.

14

14In our simulations, this correction made a noticeable difference only at the smallest sample sizes (N = 50, 100).
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The sampling density of a non-zero univariate LASSO estimate is truncated normal, conditional

on the sign of the mode (Potscher and Leeb, 2009). Our approximation of the sampling density is

then

βcik |· ∼


N
(
βplusk , σ2

civci

)
; βplusk = 0

T N
(
βplusk , σ2

civci, 0,∞
)

; βplusk > 0

T N
(
βplusk , σ2

civci,−∞, 0
)

; βplusk < 0.

(47)

where T N (µ, σ2, l, u) denotes the truncated normal density with mean µ, variance σ2, and support

on (l, u).

The approximate confidence interval is taken from the posterior distribution of βcik . For K

discovered effects, we take K̃ = max(K, 1) and approximate the 1− α0% confidence interval as

CIα0,K̃
=
(
qα0/(2K̃), q1−α0/(2K̃)

)
(48)

where qα̃ is the estimated α̃ quantile of βcik , with a Bonferroni correction for the discovered effects.

Benjamini and Yekutieli (2005, esp. 74–75) show that implementing a Bonferroni-correction off

discovered effects will maintain at least nominal coverage across all discovered effects.

Random effects and uncertainty estimates for designs using repeated unit-level obser-

vations. When researchers have repeated units in their sample, ignoring within-unit correlation

can produce incorrect uncertainty estimates. Our substantive application, which uses a conjoint

experiment by design, features repeated observations at the unit level. Often researchers will utilize

some form of clustered standard errors. LASSOplus implements unit-level random effects for the

same purpose.15

Specifically, assume observation i ∈ {1, 2, . . . , N} as above. Now, assume each observation was

generated by experimental unit j, j ∈ {1, 2, . . . , J}. The function j[i] maps each observation back

to one of the experimental units (Gelman and Hill, 2007).

We include random effects ui as

ui = aj[i] (49)

aj[i] ∼ N (0, σ2
a). (50)

We take the Jeffreys’ prior 1/σ2 on σ2, though a folded-t density may be used (Gelman, 2006).

15For a sweeping discussion and synthesis of related issues, see Stewart (Working Paper).
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3.3 Parametric extensions

Most experimental studies implement a linear (mean) model, given its connection to causal esti-

mands. Researchers may prefer alternative models however, such as a probit model for a binary

outcome. In this case, LASSOplus models this alternative data generating process in a straightfor-

ward way by using the latent variable representation of the probit model (Albert and Chib, 1993).

Briefly, the probit regression models the probability of a positive outcome as

Pr(Yi = 1|Xi, β) = Φ(X>i β) (51)

with Φ(a) representing the cumulative distribution for a standard normal random variable. An

observation-specific random variable is introduced, z∗i , and the problem transforms to

z∗i = X>i β + ei (52)

with ei
i.i.d.∼ N (0, 1). Conditonal on z∗i , the probit regression is a least squares problem with known

variance, and LASSOplus can be applied as above. The latent variable representation also allows

straightforward extension to ordinal, categorical, and censored data (Jackman, 2009).

Expectation-Maximization implementation. While we have certainly worked to produce an

efficient implementation of LASSOplus, the MCMC method given above may be time-consuming

and computationally expensive for large datasets with a large number of possible effects. For

practical research and initial model-fitting, we also implement an EM version of the LASSO-

plus model. We take β, σ2 as the parameters to be estimated and the remaining parameters,{
λ, {1/τ 2

k}Kk=1, {wk}Kk=1, γ
}

, as “missing.”16 As we have calculated all of the conditional posterior

densities or kernels, the EM implementation is straightforward. We defer the details to Appendix

F.

4 Statistical Properties of LASSOplus

In this section, we discuss the statistical properties of LASSOplus. First, we present some prelimi-

nary results that will be used in later results. Second, we derive condtions under which LASSOplus

satisfies the Oracle Property, in both a fixed-K and growing-K setting. Third, we give Oracle

Inequality bounds for both the consistent model and LASSOplus. As the Oracle Inequality is a

frequentist property, we derive these results in terms of the LASSOplus-EM estimates. Fourth, we

compare the LASSOplus prior to several existing Bayesian priors.

16See Figueiredo (2004) for a similar setup for a LASSO model.
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4.1 Preliminary Results

We present here two preliminary results. First, we consider the role of the weights, ŵk. Each weight

is associated with a parameter in the penalty, where we want to downweight the penalty associated

with large effects and upweight the penalty associated with small effects. We first show that the

weights and magnitude of the effect estimates are indeed inversely related.

Lemma 2 The partial derivative of ŵk with respect to |β̂k| is

∂ŵk

∂|β̂k|
= −λ̂

√
1̂

σ2
Var(wk|·) (53)

which is strictly less than zero.

Proof: See Appendix B.

This will allow us to associate the largest weights with the smallest effect estimates, and vice versa.

Second, we bound λ̂:

Lemma 3 When N and K grow at some rate, λ̂ grows as N1/4K1/2.

Proof: See Appendix B.

The bound on λ̂ is a crucial component of both proofs below, as the growth rate of λ̂ and ŵk

determine the LASSOplus-EM estimator and, hence, its statistical properties. We turn next to the

first result.

4.2 Oracle Property and Oracle Inequality for LASSOplus

We now give conditions on N,K for which LASSOplus achieves the Oracle Property. We then show

that both the estimator from the consistent model and LASSOplus each satisfy their own Oracle

Inequality.

Oracle Property of the LASSOplus estimator. As described above in Section 2.5, an esti-

mator that satisfies the Oracle Property meets two conditions. First, it is consistent for variable

selection, so in-truth non-zero effects are selected and in-truth zero effects are zeroed out. Second,

the estimate has to be indistinguishable asymptotically from a consistent, asymptotically efficient,

model fit only to the in-truth non-zero effects. In other words, the estimator achieves the same

performance as an identical estimator told ex ante by an “oracle” which effects are zero and which

are not.

The LASSOplus estimator satisfies both properties in the case of K,N growing, and hence is

an Oracle estimator. We offer the following:
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Proposition 3 Oracle Property of LASSOplus Whenever K is growing in N , but K2/N → 0,

and 1/4 ≤ α < 1, LASSOplus has the two Oracle Properties:

1. Consistent Variable Selection: limN→∞{k : Pr(β̂plusk 6= 0) = 1} = S

2. Optimal Estimation Rate:
√
N
(
β̂plusS − βoS

)
d→ N (0|S|,Σ

∗
S) where Σ∗S is the asymptotic vari-

ance matrix from the true subset model.

with S the set of indices of in-truth non-zero elements of β, i.e. S = {k : k ∈ βok 6= 0}, and. Σ∗S the

asymptotic variance of the least squares estimator fit only to the in-truth non-zero effects.

These properties also hold in the fixed-K setting when 1/4 < α < 1.

Proof: See Appendix C.

Our result of K2/N → 0 is much weaker than that of Fan and Peng (2004), who require

K5/N → 0.17 This difference appears because Fan and Peng (2004) prove their result in some

generality, for general likelihoods and penalties, whereas we are using a normal likelihood and have

a particular penalty function.

Oracle Inequality of the LASSOplus estimator. We next present an Oracle Inequality for

the LASSOplus-EM model, which we formally prove in Appendix D. Standard Oracle Inequality

results generally involve controlling a probabilistic bound on the distance between the estimated

and true regression parameters. As LASSOplus-EM recovers the mode of a Bayesian model, the

probability in the bound is not controlled by the researcher; it is instead estimated endogenously

along with all other parameters. We find that both the consistent model and LASSOplus satisfy

an Oracle Inequality.

The Oracle Inequalities below offer two heuristic insights. First, the consistent model performs

well with prediction when N is of order (K/log(K))2 or less. Therefore, the consistent model

does well when predicting in small-N , large-K settings. Second, LASSOplus satisfies an Oracle

Inequality so long as K is growing, and regardless of N . This comes at the cost of a bound that is

twice that of the consistent model.

Formal statement of the LASSOplus Oracle Inequality. We state the results here but

defer the full set of definitions and derivations to Appendix D. The interested reader will find there

all definitions and assumptions, though we note that the practical insights from the theoretical

derivations are descibed directly above.

17Continuing the example above, for K = 10, achieving the Oracle Property with LASSOplus only requires N of
order 102 = 100 as opposed to 105 = 100, 000.
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Denote as Ŵ the matrix with the weights along the diagonal; C·, i.e. Cλ, Cε, etc., as constants

not changing in N or K; γ̂ the maximal value that can be taken by a weight; |Ŝ| is the estimated

number of large effects; and pλ(Cλ), pε(Cε), and pw(C1, C2, C3) the probabilites with which necessary

bounds are violated. The parameter t is a user-selected term that controls the error, such that the

probability that the bound contains a term exp(−t2/2).

Proposition 4 Oracle Inequality for LASSOplus The LASSOplus-EM model offers two sep-

arate Oracle Inequality results.

Denote as δ̂ = β̂ − βo and δ̂P the subvector of δ̂ corresponding to effects not zeroed out by

LASSOplus. Similarly, let Xp and Ŵp denote the submatrices of X and Ŵ associated with elements

of δ̂p. Then, under the assumptions in Appendix D,

1. So long as

32×
√

(N − 1) ≤ CλCεC2γ̂
2
K

t2

2
+ log(K − |Ŝ|)

(54)

the consistent model will satisfy the Oracle Inequality

1

N

{
||Xδ̂||22 + λσ̂||Ŵ δ̂||11

}
≤ CL1σ̂

2λ̂2|S|

N2

{
Cφ1

λ̂2σ̂2β̂2
(K)

C1 log(|Ŝ|)2
+ Cφ2C2γ̂

}2 (55)

with probability at least 1− exp(−t2/2)− pλ(Cλ)− pε(Cε)− pw(C1, C2, C3).

2. So long as

CλCεC2γ̂
2
K

t2

2
+ log(K − |Ŝ|)

≥ 32 (56)

β̂plus satisfies an Oracle Inequality.

1

N

{
||Xpδ̂

p||22 + λσ̂|Ŵpδ̂
p|11
}
≤ 2

CL1σ̂
2λ̂2|S|

N2

{
Cφ1

λ̂2σ̂2β̂2
(K)

C1 log(|Ŝ|)2
+ Cφ2C2γ̂

}2 (57)

with probability at least 1− exp(−t2/2)− pλ(Cλ)− pε(Cε)− pw(C1, C2, C3).

Proof: See Appendix D.

The Oracle Inequality offers insight when K > N , and LASSOplus performs well in this setting.

We next move on to a comparative look at LASSOplus from a Bayesian perspective.
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4.3 Comparison to Existing Priors

The Oracle Property and Oracle Inequality are both theoretical results. As we designed LASSOplus

for use on real data, we next move on to finite-sample consideration by examining the behavior of

the prior structure over the parameter weights wk. This enables us to compare the prior used in

LASSOplus to other priors used in the literature.

There is, of course, no prior structure that performs well in all situations and for all data sets.

We have generated a prior structure with four properties. First, the prior is concentrated at zero.

This is appropriate for a setting where the researcher confronts hundreds or thousands of effects

and wants to winnow these down to a small subset of relevant ones. Second, the prior places a large

probability on the existence of large effects. For example, a standard normal prior places a 5.0%

prior probability on observing a value larger than 1.96 in magnitude. For a Cauchy prior, this value

is 30.0%; for the horseshoe, 20.0%, and for LASSOplus, 31.39%. The more mass in the tails, the

less posterior inference on large effects will be impacted by the prior. Third, the decay parameter

γ allows the prior to adjust to the level of sparsity implied by the data. Fourth, the prior is less

informative than several existing sparse priors. Conditional on assuming a sparse model, we want

a prior that drives posterior inference as little as possible.

We illustrate the properties of the LASSOplus prior in Figure 1.18 In each plot, the y-axis

contains the prior probability on a log scale and the x-axis contains the magnitude of the effect,

|β|. The left figure plots the unconditional LASSOplus prior

Pr(β) =

∫
Pr(β|γ) Pr(γ)dγ (58)

against the normal, LASSO (double exponential), Cauchy, and horseshoe priors.

The lefthand plot in Figure 1 illustrates how the different priors will handle large, intermediate,

and small effects. The LASSOplus, LASSO, and horseshoe priors all concentrate at zero relative to

the normal and Cauchy. The LASSOplus and horseshoe have the most pronounced spike at zero,

and therefore will be the most aggressive in shrinking small effects to zero. This suggests that the

LASSOplus and horseshoe should make the fewest false positive discoveries. LASSOplus is also

relatively aggressive in shrinking intermediate effects to zero. For example, the normal prior places

a high mass on effects less than 2 in magnitude, and will therefore shrink those the least. For larger

values, say much larger than 4 in magnitude, the normal prior places a vanishingly low probability

and will therefore shrink effect estimates quite a bit. The horseshoe and LASSO both place a

18 The figures were constructed assuming all tuning parameters and the error variance are 1. γ in the unconditional
case is calculated by Formula 36. All densities and integrals were calculated empirically at intervals of 0.005 on the
range from 0.0001 to 99.9951.
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Figure 1: Comparison of Priors. This figure compares our unconditional LASSOplus prior
to other priors (left) and shows the behavior of our conditional LASSOplus prior under different
values of γ (right). The x-axis contains values of β and the y-axis contains the prior density,
Pr(β), on a log scale. We also include the two limiting distributions of the t density, the normal
and Cauchy, as well as the LASSO and horseshoe priors. The sparse priors (LASSO, horseshoe,
LASSOplus) place greater mass at zero than the normal, an effect particularly pronounced for the
horseshoe and LASSOplus priors. The normal prior places the least mass, and enacts the most
shrinkage, on large effects. LASSOplus has the fattest tails, and thereby will have the least impact
on posterior inference for large effects. The righthand plot shows how the decay parameter γ affects
the conditional prior, Pr(β|γ). The larger γ, the more aggressive the shrinkage. For smaller γ, the
more the model is adjusting to large effects. As γ increases, less mass is placed in the tails and
more towards zero. The parameter γ is estimated endogenously within the model.

higher mass on intermediate effects less than approximately 4 in magnitude. This suggests that

the horseshoe and LASSO are more likely to discover intermediate effects, and that the LASSOplus

will be relatively conservative in this range. We find this behavior in the simulations below. The

horseshoe, LASSOplus, and Cauchy all have fatter tails than the LASSO and normal. Of these

three, the LASSOplus has the fattest tails, and therefore will have the least impact on posterior

inference for large effects.

The righthand plot in Figure 1 shows how the decay parameter γ affects the conditional prior,

Pr(β|γ). For a larger γ, the more aggressive the shrinkage is. For smaller γ, the more the model

is adjusting to large effects. As γ increases, less mass is placed in the tails and more towards zero.

23



Unconditional Priors
Prior LASSOplus Normal Cauchy LASSO Horseshoe

Entropy 5.57 2.84 5.06 3.39 3.55
LASSOplus Priors

Prior Unconditional γ = 0.25 γ = 0.5 γ = 1 γ = 2
Entropy 5.57 9.19 5.4 2.02 1.02

Table 1: Comparison of Entropy Across Priors. From an objective Bayesian viewpoint, priors
with a higher entropy are favored. Higher-entropy priors, intuitively, add less information to the
model and have less impact on posterior inference. We present the entropy of the priors shown in
Figure 1. The unconditional LASSO plus has the highest entropy among the unconditional priors.
Among the conditional LASSOplus priors, smaller values of γ correspond with a larger entropy. In
the absence of information about expected effect size, we prefer the conditional LASSOplus prior
with the global decay parameter γ estimated from the data.

The parameter γ is estimated endogenously within the model.

Another way to evaluate different prior distributions is to compare the amount of information

they contribute to posterior inference. Practitioners are naturally wary of results driven by prior

assumptions. A long strand of research has sought to identify reference priors such that the resultant

posterior is dominated by the data (see particularly Bernardo, 1979; Jaynes, 1982; Berger and

Bernardo, 1989; Bernardo, 2005; Berger, Bernardo and Sun, 2009; Berger, 2006). A standard

measure of the information in a prior p with support B is its entropy, with higher values indicating

less prior influence on the posterior:19

H(p) = −
∫
B
p(β) log (p(β)) dβ. (59)

The reference prior is the prior from a class of densities that maximizes the entropy. For a single-

parameter, asymptotically-normal posterior, the reference prior is the Jeffreys’ prior.

We present the entropy of the priors in Table 1. The unconditional LASSOplus has the highest

entropy among sparse priors (LASSO, horseshoe). The unconditional LASSOplus even has higher

entropy than the Cauchy, which is proper but has no finite moments. Among the conditional LAS-

SOplus priors, smaller values of γ correspond with a larger entropy. In the absence of information

about expected effect size and the underlying level of sparsity, we prefer the conditional LASSOplus

prior with the global decay parameter γ estimated from the data.

19 Uninformativeness is not the only consideration when selecting priors; for example, Jeffreys’ prior was originally
motived by invariance concerns, while Gelman et al. (2014, p. 129) argue that prior structure should be selected off
the sensibility of posterior inference.
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5 Application to Subgroup Analysis

Though broadly applicable in a regression framework, we developed LASSOplus for use with sub-

group analysis. We discuss next several issues that arise when using the method for subgroup

analysis, and how our implementation helps address some of these concerns.

Subgroup analysis through repeatedly split sample analyses. In experimental analyses,

subgroup analysis often consists of analysis of repeatedly split samples. For example, authors may

conduct a long series of subgroup analyses by splitting the sample into different groups based on one

dichotomous or dichotomized pre-treatment covariate at a time. A regression model is fit to each

group, and then the marginal effects of the different effects are evaluated within each subsample.

While showing these interactions between treatment conditions and pre-treatment covariates is

theoretically interesting, and often requested by audience members and reviewers, the methodology

employed has a number of limitations. The decision to split subgroups one at a time introduces

both conceptual and statistical concerns. Conceptually, the decision to conduct multiple sepa-

rate subgroup analyses means that we implicitly acknowledge that we have estimated the wrong

model. Take for example the simple moderating effects of two separate pre-treatment variables on

a treatment effect. The fact that the moderating effect of one of these variables is not included

when estimating the moderating influence of another variable implies an awareness of potential

mis-specification. Statistically, the decision to conduct multiple separate subgroup analyses by dis-

carding part of the data each time means the estimates are inefficient. This can be remedied by

allowing for interactions between the treatment condition and the covariate in the same model. But

the proliferation of parameters means that the standard regression framework is ill-equipped to deal

with these situations. The basic reason is simple: the number of parameters quickly proliferates and

hence some sort of stabilization, such as through sparsity, is necessary. We illustrate the advantages

of sparsity-inducing priors below.

5.1 Interpreting Interaction Terms and the Sparsity Assumption

We use LASSOplus to estimate saturated models containing tens, hundreds, or even thousands

of interaction terms. Common, and correct, practice proscribes including interaction terms in the

absence of lower-order terms. We agree. Our implementation of LASSOplus, at its default, fits a

model with all lower-order and interaction terms.

We also want to address the concern that the proposed methodology works only under the

assumption that most of the effects are in truth zero. This assumption may arise from the frequentist

implementation of the LASSO, whose proponents argue for using the “bet on sparsity principle”
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(Hastie, Tibshirani and Friedman, 2010, p. 611–613), arguing that sparse models are to be preferred

over dense models. However, we do not assume that the true effects are zero in any sense. Our prior

places mass 0 at the point 0. This differs from spike-and-slab priors, where the researcher implicitly

places some prior mass on each parameter being zero (Mitchell and Beauchamp, 1988; O’Hara and

Silanapaa, 2009; Gill, 2014, ch. 4.6). Instead, we generate a summary of the posterior that takes

the value zero with some nonzero probability, allowing the data to tell us ex post that some effect

is negligible. We are not assuming that the true value, even after the model is fit, is zero–instead,

we seek the best sparse representation of the outcome in terms of main and subgroup effects.

Furthermore, researchers interested in characterizing every effect are able to do so. The pseu-

doposterior density of each effect is not sparse, as illustrated in our applied example. Researchers

interested in evaluating non-selected effects are able to do so by evaluating this full posterior den-

sity. An important step in any analysis is to look to the data to determine which variables have a

non-negligible effect. LASSOplus provides an answer to this question by returning posterior median

estimates of zero for negligible variables.

Lastly, the researcher may be nervous in interpreting higher-order interaction terms when the

lower-order terms are not selected. The reason is that standard interaction terms cannot be in-

terpreted without referencing their lower-order terms. The problem of interpreting interactions

arises because of a correlation between the lower-order terms and the interaction term: the effect

of one cannot be considered independently of the other (Esarey and Summer, 2015). To solve this

problem, we include interactions terms that are uncorrelated with their lower-order terms. To do

so, first we construct the interaction term through elementwise multiplication, regress this term

on its lower-order terms, and enter the residuals from this regression into LASSOplus. Under this

construction, the effects of interaction terms can be interpreted as the effect above and beyond any

lower-order effects. For a proof, see Appendix G.

5.2 Scope of Method for Subgroup Analysis

The development of the LASSOplus method to, in part, facilitate subgroup analysis had two goals.

The first is to allow the experimentalist to uncover potentially relevant subgroup effects after imple-

menting an experiment. Second, we designed the method to apply from the simplest of experiments

to a conjoint analysis with repeated observations. The analysis of experimental data normally

occurs in two steps. An experiment is designed to test a set of pre-specified hypotheses. Upon

completing an experiment, these hypotheses are then tested, and the point estimates and p-values

for each effect are reported.
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Our method is designed for use in the subsequent analysis. After the inferential stage, researchers

may be interested in higher-order effects, including treatment heterogeneity, when two treatments

have an interactive effect; treatment effect heterogeneity, when the effect of a treatment varies

with a covariate; or targeted treatment effect, when the effect of a treatment interaction varies

with a covariate (Imai and Ratkovic, 2013). Common practice involves repeatedly subsetting the

data on pre-treatment covariates and running separate regressions in each subset. For example,

the researcher may find no treatment effect on average, but may find effects of opposite signs for

males and females in her experimental data. The problem is the sheer number of effects quickly

overwhelms, and researcher-driven repeated subsetting quickly devolves into interaction fishing.

The proposed method provides a means for considering all possible interaction terms and re-

turning a sparse subset estimated as non-zero. The estimation is post-inferential and descriptive,

returning the effects that seem pronounced in this experimental data and might be considered for

further study in the next experiment.

6 Simulation Study

In this section, we compare LASSOplus to several sparse estimators, assessing each method in

terms of discovery of all effects, discovery of small effects, and coverage. We find that LASSOplus

performs competitively across each dimension.

6.1 Setup

Our simulation is motivated by conjoint experiments, where the researcher wants to search through

a large number of treatment/covariate interactions. The simulation mimics an experiment with

3 treatments, having 2, 3, and 4 levels, respectively. We also assume a set of p pre-treatment

covariates, with p ∈ {10, 25, 50, 75, 100}. The design matrix consists of the matrix of treatment

indicators, T , the pre-treatment covariates, X0, and their residualized interactions. We designate

the first level of each treatment as the baseline, dropping it and all of its interactions from X. After

creating all interactions, we are left with a design matrix X with one of {76, 181, 356, 531, 706}
covariates. We run simulations with sample sizes N ∈ {50, 100, 250, 500, 1000, 2500}. For 16/30 of

our simulation setups (53%), we have more observations than covariates.

We assume the following model:

E(Yi|Xi, Ti1, Ti2, Ti3) ∝3Xi2 + 3Xi3 + 3Xi4+ (60)

2× 1(Ti2 = b) + 2× 1(Ti3 = b) + 2× 1(Ti3 = c)+ (61)

Xi2 × 1(Ti2 = b) +Xi2 × 1(Ti3 = c) +Xi2 × 1(Ti2 = a)+ (62)

Xi4 × 1(Ti1 = b) +Xi3 × 1(Ti3 = b) +Xi4 × 1(Ti3 = c) (63)
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with noise from a t5 density and the systematic component is scaled to give a true R2 of 0.5. The

variables in Xi are drawn from a Wishartp(N), and each treatment condition is equiprobable. Each

simulation setting was run 1000 times. The simulation design mimics a situation where there a few

large main effects, some medium-sized average treatment effects, and the remaining interaction

terms are small relative to the other effects.

6.2 Alternative Estimators

We compare LASSOplus to three alternative sparse estimators: the frequentist LASSO, frequentist

adaptive LASSO, and the horseshoe estimator. The LASSO and adaptive LASSO are fit using

glmnet from R package glmnet. First-stage estimates come from ridge regression with the tuning

parameter selected to minimize cross-validated error. The horseshoe prior is implemented in STAN.20

We coded up an implementation of LASSO+OLS with all tuning parameters set at the defaults

suggested by the original authors.

For details on the implementation of additional methods, see Appendix H.

6.3 Results

A primary concern is differentiating relevant from irrelevant effects. As a secondary concern, es-

timators must be responsive to main effects as well as smaller subgroup effects. We first compare

methods based on their ability to reliably pick up the former and not mislead on the latter. We

consider all effects (Figure 2) and smaller interaction effects (Figure 3).

Consider first the results for all effects, in Figure 2. The plots are arranged in rows by the number

of possible effects, with the sample size along the x-axis. Columns contain false positives (left),

false negatives (center), and false discovery rates (right). Starting in the rightmost column, the

LASSOplus has the lowest false positive rate across all settings except for the largest-N , smallest-

K setting, where it is outperformed by the horseshoe. In terms of false negatives, consider first the

setting with K = 76 and K = 181. In this setting, the LASSOplus achieves a false negative rate

either lower than or approximately the same as the horseshoe. As K increases, the horseshoe grows

more aggressive in identifying effects. The LASSO and adaptive LASSO are both more aggressive

than LASSOplus in identifying effects. Across simulation setups, the LASSOplus dominates existing

methods in terms of false discovery rate except for two settings: the largest N , smallest K setting

where the horseshoe performs best and the smallest N , smallest K setting where the LASSO

performs best. LASSO+OLS identifies the fewest correct effects as the sample size grows. As the

20The code for the horseshoe was adapted from the code at http://brandonwillard.bitbucket.org/bayes-horseshoe-
plus/horseshoe-stan-nvm.html, last accessed September 28, 2015. After acceptance, we found that a simpler imple-
mentation can be found in R package rstanarm.
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Figure 2: False Positive, False Negative, and False Discovery Rates, All Effects. Each
row represents the results for a different number of effects. The sample size is along the x-axis.
LASSOplus achieves a lower false positive rate and false discovery rate across simulation settings
(first and third columns), while still maintaining reasonable power in terms of the false negative
rate (middle column).
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number of covariates increases, LASSOplus achieves a lower false discovery rate relative to the

alternative methods. LASSOplus, the horseshoe, adaptive LASSO, and LASSO + OLS all have

false discovery rates that are decreasing in sample size.

Figure 3 contains the same results but considers only the six interactive effects. These effects

are 1/3 the size of the non-zero main effects and 1/2 the size of the average non-zero treatment

effects. Again, plots are arranged in rows by the number of possible effects, with the sample size

along the x-axis. Columns contain false positives (left), false negatives (center), and false discovery

rates (right). We do not report values for the false discovery rates (FDR) if there are no discovered

effects, which is why LASSOplus is missing entries at the lower sample sizes in the FDR column.

We do so in order to differentiate an FDR of zero because there are no discoveries from an FDR of

zero because none of the discovered effects are false.

Figure 3 contains patterns similar to those in Figure 2: the false positive rate is lowest for

LASSOplus, and LASSOplus or LASSO + OLS tends to make the most false negatives aside from

the smallest K setting, where the horseshoe performs worse with large N . Again, the LASSO and

adaptive LASSO are the most aggressive in identifying effects. The pattern among false discovery

rates is similar but more pronounced than that in Figure 2. Aside from a single setting (N=50,

K=76), LASSOplus achieves the lowest false discovery rate among all methods.

These results are consistent with the prior structure illustrated in Figure 1. Both the LASSOplus

and horseshoe have a higher prior density at zero, thereby zeroing out effects more aggressively.

We see this in the higher number of false positives for the horseshoe and LASSO than the adaptive

LASSO. LASSOplus places a lower prior density on intermediate effects and a higher density on

large effects than the horseshoe and LASSO.

Finally we turn to coverage in Figure 4. Columns contain coverage for all nonzero effects (left),

discovered effects (middle), and discovered interactions (right). The gray line at 0.9 is the nominal

rate. We do not return coverage results on in-truth zero effects, as these are close to 1 for all

methods as they all shrink effects towards zero.

Confidence intervals are calibrated to be nominal on discovered effects, with coverage shown in

the middle column. We find coverage from LASSOplus to be nominal or near-nominal on discovered

effects across simulations. The horseshoe estimator consistently returns conservative confidence

intervals. The boostrapped LASSO + OLS returns near-nominal coverage, similar to LASOSplus.

Across most settings, the perturbation confidence intervals of the adaptive LASSO are too narrow.

The lefthand column reports coverage on all nonzero effects. By this measure, LASSOplus generally

outperforms alternative methods, growing closer to nominal in sample size. Across settings, the
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Figure 3: False Positive, False Negative, and False Discovery Rates, Interaction Terms
Only. This figure considers each method’s ability to uncover the six small interaction effects. The
columns contain false positives (left), false negatives (middle), and false discovery rate (right).

horseshoe goes from too narrow at a small N to too wide for large N . The rightmost column reports

coverage on only the six interaction effects that pick up a subgroup effect. LASSOplus performs
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Figure 4: A Comparison of Coverage Across Methods. Columns contain coverage for all
nonzero effects (left), discovered effects (middle), and discovered interactions (right). The gray
line at 0.9 is the nominal rate. Confidence intervals are calibrated to be nominal on discovered
effects. We find coverage from LASSOplus to be nominal or near-nominal on discovered effects
across simulations. The horseshoe estimator consistently returns conservative confidence intervals.
Across most settings, the perturbation confidence intervals are too narrow.

poorly in the small N , small K settings, but as N grows it achieves conservative coverage on these

effects. As with the FDR above, areas where LASSOplus does not show coverage, no effects were

discovered. The horseshoe maintains conservative coverage on these effects, while coverage for the

LASSO and adaptive LASSO grows worse in sample size.

On the whole, the LASSOplus appears successful in identifying effects, identifying small effects,

and in generating approximate confidence intervals with nominal coverage. We next illustrate how
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LASSOplus performs on data from a recent conjoint analysis.

7 Application

To illustrate the proposed method we analyze a conjoint experiment that examines preferences

over different dimensions of international climate agreements (Bechtel and Scheve, 2013). Conjoint

experiments expose subjects to multiple different treatment conditions at once. In this study

the authors varied the expected costs of the agreement, how costs would be distributed across

different groups of countries, the participation rates of countries, the extent to which emissions would

be reduced, the severity of sanctions for violations, and the identity of organizations that would

monitor compliance. The survey was fielded to nationally representative samples in the United

States, United Kingdom, France, and Germany. In the conjoint experiment, respondents considered

two agreements, each with various values for the aforementioned dimensions, and then chose the

agreement they preferred. The authors then transformed the data to examine the probability

that each agreement was chosen as a function of its attributes. To estimate effects the authors

implemented a simple dummy regression framework for each of the dimensions and clustered the

standard errors at the respondent level to account for the repeated observations at the respondent

level.

Figure 5 presents the original results, which we produce using the cjoint package (Strezhnev

et al., 2014) that implements the methods described in Hainmueller, Hopkins and Yamamoto (2014),

which in this case is equivalent to the dummy variable regression used by the original authors. As

can be seen, the different dimensions of international agreements have an impact on support. For

example, as the cost of the agreement goes up, support goes down. The original paper emphasized

other aspects of the design of agreements, such as how increasing the number of participating

countries leads to greater support for the agreement, which the authors took as evidence of the

important role of reciprocity in international agreements (see also Tingley and Tomz, 2013).

The authors then conducted a long series of subgroup analyses by splitting the sample into

different groups based on one dichotomous pre-treatment covariate at a time. Next they estimated

the same dummy variable regression model for each group and then examined whether the marginal

effects of the different conjoint conditions varied. In the main body of the paper they focused on two

effect modifiers: the respondents’ general level of environmentalism and the respondents’ propensity

to engage in reciprocity in a two-player linear public good game that was included in the survey

after the conjoint experiment. They found, for example, that the effect of a high cost agreement on

opposition to the deal was lower for individuals who are environmentalists compared to individuals

who are not environmentalists. The authors also explored a range of other subgroup analyses in
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   Greenpeace

   United Nations

   Indep. commission

   (Baseline = Your government)

WhoMonitors:

   43 dollars

   32 dollars

   11 dollars

   (Baseline = None)

Sanctions:

   80% of current emissions

   60% of current emissions

   (Baseline = 40% of current emissions)

EmissionCuts:

   Rich pay more than poor countries

   Prop. to history of emissions

   Prop. to current emissions

   (Baseline = Only rich)

DistributionOfCosts:

   160 of 192

   80 of 192

   (Baseline = 20 of 192)

CountriesParticipating:

   267 dollars

   213 dollars

   160 dollars

   107 dollars

   (Baseline = 53 dollars)

Cost:

−0.4 −0.2 0.0 0.2
Change in E[Y]

Figure 5: Original Results from Figure 2 in Bechtel and Scheve (2013).

a lengthy supplementary materials section. Importantly, each subgroup analysis was conducted

by subsetting the data to one smaller group and calculating the effects of the conjoint conditions.

LASSOplus achieves the same goal with one line of code.21

To illustrate the application of the LASSOplus algorithm we present the case where a set of

pre-treatment covariates can moderate the effect of a set of treatment variables.22 Conceptually

this is analogous to the case analyzed in Bechtel and Scheve (2013). We estimated the LASSOplus

model using the Gibbs sampler with 30,000 burnin iterations, 30,000 posterior samples, and thinning

21Given available human time and estimation strategies, this was a reasonable approach by the authors. We offer
LASSOplus as an alternative and use this example for illustration purposes only.

22The pre-treatment variables were gender, and dichotomized values of the the Ideology, Environmentalism, and
Reciprocity variables used in the original study, as well as factoral variables for country of the survey, and age (coded
as low, middle and high corresponding to the 33rd and 66th quantiles of the age distribution). There were 67,992
observations and 215 potential effects. Each covariate level is interacted with each level of each treatment.
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Sanctions: 11 dollars

EmissionCuts: 80% of current emissions

EmissionCuts: 40% of current emissions
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CountriesParticipating: 160 of 192

DistributionOfCosts: Only rich
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Figure 6: Estimated effects for non-zero coefficients for main effects. Normal linear model for
outcome. Each conjoint level represented by the category of treatment (e.g., Cost, WhoMonitors)
and the specific level of each treatment (e.g., 53 dollars, United Nations).

every 30 samples, which yielded 1,000 draws from the posterior. LASSOplus selected 41 effects.

We present the non-zero effects and their 95% intervals for the main effects (i.e., non-interacted

variables) in Figure 6 and the non-zero effects for interaction terms in Figure 7.23

We immediately see a number of effects that were strong in the original analysis. Less expensive

agreements and those with broad participation were favored, and expensive agreements and those

with limited participation were less popular. The fact that these main effects do not disappear

within our framework is important, and thus these effects are unlikely to be false positives. More

interestingly we see a number of interactions between pre-treatment covariates and treatment con-

23Uncertainty estimates were calculated by taking the 5th and 95th quantile of the approximate confidence interval
discussed in Section 3.2.
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Ideology: Conservative x DistributionOfCosts: Only rich
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Figure 7: Estimated effects for non-zero coefficients for interaction effects. Normal linear model for
outcome. Each interaction term represented as moderating variable and its level x the category of
treatment and its level. For example, “Ideology: Conservative x WhoMonitors: Your government”
is the interaction between conservative respondents and the conjoint condition of their own country
monitoring the agreement.

ditions. For example, individuals with low environmentalism scores had a positive evaluation of the

agreement when 20 out of 192 countries joined the deal. This contrasts with how these individuals

responded to a treaty with 160 out of 192 countries: in this case they were more opposed to the

agreement. This result was present using the original analysis method in Bechtel and Scheve (2013).

Finally, the effect of the ideology variable also has some interesting results. As in the supple-

mentary materials presented in Bechtel and Scheve (2013), conservatives were less enamored than

liberals in having the monitoring done by Greenpeace, and more enthusiastic about having their

own government conduct the monitoring. Figure 8 plots the posterior distribution of the effects
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for these interaction terms, as well as the interaction with the United Nations serving as the mon-

itoring agency. In the last case, there is substantial support at 0 (no effect) but some of the mass

is negative, indicating an intermediate position between the other two effects, which were cleanly

positive or negative.24

Conservative x Greenpeace Conservative x Own Gov Conservative x UN

−0.05

0.00

0.05

−100 −50 0 50 100 −100 −50 0 50 100 −100 −50 0 50 100
density

va
lu

e

Figure 8: Posterior distribution for interactions between Conservative ideology and monitoring
source.

8 Conclusion

The LASSOplus unifies recent contributions in the sparse modeling literatures and provides com-

petitive performance with substantially more flexibility. The method offers several advantages.

First, unlike existing Bayesian methods, LASSOplus both selects and estimates effects, returning

point estimates and whether the effect is relevant. Second, LASSOplus returns conservative confi-

dence intervals that maintain nominal coverage among discoveries. Third, unlike existing software,

LASSOplus models repeated observations, a boon to experimentalists using the same unit (e.g.,

individuals) several times as is common in conjoint analyses.

We apply the method in the context of analyzing subgroup effects. Given the proliferation of

potential effects that subgroup analyses can generate, a sparse model like LASSOplus is useful.

However, we go beyond the core estimation strategy to show how scaling covariates properly can

24In separate models we allowed for interactions between treatments. We did not see any interactions between
treatment conditions on their own. For example, there is no interaction between the cost of the agreement and extent
of other country participation. For a similar observation and discussion see Tingley and Tomz (2013).
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allow for straightforward identification of causal effects under our estimation framework. We also

show that the same scaling can generate interaction effects that can be interpreted independent of

their lower-order terms. This proves useful in interpreting models where higher-order effects are

selected but lower-order terms are not.

We contrast LASSOplus to other LASSO based approaches in great detail, including unpacking

different types of Oracle results. We also conduct one of the most systematic simulation studies

to date, comparing LASSOplus to many of these alternatives. The simulation study and applica-

tion to the data from a recent experiment highlight the method’s use and efficacy. We find that

the method performs well relative to the frequentist LASSO, adaptive LASSO, and LASSO+OLS

models in terms of effect discovery and coverage. But the LASSOplus comes with the additional

aforementioned advantages. We show with real world data that the method returns many results

uncovered by the authors through their own split-sample regressions, but does so within a coherent

statistical framework.

Another advantage of the LASSOplus is substantial flexibility. For example, the method easily

extends to other parametric models, such as the probit and type 1 and 2 tobit. Finally, we make

a software package available, sparsereg, in the R programming language that implements the

methodology discussed in this paper. Future work will involve extending the method to panel

data, censored data, and various modes of causal inference: propensity score methods, instrumental

variable methods, mediation methods, and selection models.
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A Proof of Relative Efficiency of Oracle Estimator and

OLS.

Proof: Denote as XS the submatrix of X for which βk 6= 0 and the Gram matrix for X as

lim
N→∞

1

N

N∑
i=1

X>i Xi = ΣX (64)

and in block-partition form

ΣX =

ΣSS ΣSS{

Σ>
SS{ ΣS{S{

 (65)

ΣX is invertible, since the least squares estimate exists and is unique. Since ΣX is invertible, every

square submatrix of ΣX is also invertible.

The asymptotic relative efficiency of the least squares estimate and Oracle estimate is then

lim
N→∞

σ2

N
Tr {Σ−1}

σ2

N
Tr
{

Σ−1
SS

} =
Tr {Σ−1}
Tr
{

Σ−1
SS

} (66)

By the block inverse partition formula,

Tr
(
Σ−1
X

)
= Tr


ΣSS ΣSS{

Σ>
SS{ ΣS{S{

−1 (67)

= Tr

{(
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)−1
}
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(68)

Consider the first summand inside the parentheses on the r.h.s. and apply Morrison-Woodbury-

Sherman(
ΣSS − ΣSS{Σ−1

S{S{Σ
>
SS{

)−1

= Σ−1
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By Cauchy-Schwarz, the term ΣS{S{ − Σ>
SS{Σ

−1
SS is positive semi-definite, see e.g. Tripathi (1999,

esp. the last line of the proof of Theorem 1.1.). By symmetry, we get an analogous result for the

second summand in side the trace operator,

This gives
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and therefore an estimator with the Oracle Property is asymptotically more efficient than least

squares.

To establish when equality holds, if X = XS, then clearly the asymptotic relative efficiency is

1. For only if, the inequality above is an equality only when Tr
(

Σ−1
S{S{

)
= 0, which is not possible

unless X = XS.

B Preliminaries

We offer three sets of preliminary results. First, we show that the weights, ŵk, and magnitude of

|β̂k| are inversely related. Second, we formally differentiate between “large” and “small” estimates.

This will help us derive bounds on ŵk. Third, we provide a bound on λ̂. Note that we refer to the

kth order statistic of vector a as a(k), where a(1) is the smallest element of a.

B.1 Inverse relationship between weights and effect size.

Proposition 5

∂ŵk

∂|β̂k|
= −λ̂

√
1̂

σ2
Var(wk|·) < 0. (72)

Derivation: The weights are calculated as

ŵk = E(wk|·) =

∫∞
w=0

we
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Denote as A = e
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√
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. Then,
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√
1̂
σ2Adw +

∫∞
w=0

wAdw
∫∞
w=0

wλ̂

√
1̂
σ2Adw(∫∞

w=0
Adw

)2 (74)

= −λ̂

√
1̂

σ2

{∫∞
w=0

w2Adw∫∞
w=0

Adw
−
(∫∞

w=0
wAdw∫∞

w=0
Adw

)2
}

(75)

= −λ̂

√
1̂

σ2
Var(wk|·) (76)

where moving the derivative under the integral in the first line is allowed by the monotone conver-

gence theorem.

This result allows us to associate the largest weight, ŵ(K) with the smallest estimate, β̂(1), the

second largest weight with the second smallest estimate, and so on. In general, weight ŵ(k) is

associated with |β̂|(K−k+1)
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B.2 Separating large and small weights and effect estimates.

We next distinguish between weights near zero from weights close to the maximal value γ̂. This is

our equivalent of either assuming the estimates are “well-separated” (Belloni and Chernozhukov,

2013), or separating “relevant” from “irrelevant” effects (Buhlmann and van de Geer, 2013). The

key difference is that these authors separate large and small “true” effects, whereas we separate large

and small estimated effects. As is common in the literature, our bounds will be more informative

the better we can distinguish between zero- and non-zero effect estimates.

We separate the weights into two groups. In the kernel for Pr(wk|·), the numerator in Equation

73, is approximately exponential for large |βk|, small wk, and is approximately constant for |βk| ≈ 0,

wk large. Define as

pk(C1, C2) = max

{
Pr

(
ŵk >

C1 log(Ŝ)

λσ̂|β̂k|

)
,Pr

(
ŵk < C2γ̂

)}
; C1 > 0, 0 < C2 < 1 (77)

where the first inequality allows us to bound with some high probability small weights from above

and the second, larger weights from below. We use this distinction to differentiate between weights

tending to zero (the lefthand set) and those tending to the maximum (the righthand set).

Ŝ =

k : Pr

ŵk > C1 log
(∣∣Ŝ∣∣)

λσ̂|β̂k|

 < Pr
(
ŵk < C2γ̂

) . (78)

The log(|Ŝ|) term on the left comes from using the union bound applied to {pk}Kk=1 and a subex-

ponential (rather than subgaussian) bound applied to each value pk, as the kernel is approximately

exponential in this range. Define

Pr(max(pk) > C3 log(K)) = pw(C1, C2, C3). (79)

such that, with probablity at least pw(C1, C2, C3), the weights can be bounded by one of the bounds

above, i.e. is either “small” or “large.”

Lastly, denote as C1 the value that satisfies

Pr

(
ŵk >

C1 log(|Ŝ|)
λ̂σ̂|β̂k|

)
= Pr

(
ŵk ≤

C1

λ̂σ̂|β̂k| log(|Ŝ|)

)
(80)

which will give us a lower bound on all ŵk with probability at least pw(C1, C2, C3).
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B.3 Bounding the tuning parameter λ̂.

Given the results above, we can bound λ̂. For the Oracle results below, we need to bound λ̂ from

below, though we note that a similar upper bound of the same order of N,K can be found using

the strategy below.

As λ2|· ∼ Γ(
√
NK, 1

2

∑K
k=1 τ̂

2
k + ρ), this gives

λ̂2 =

√
NK

1
2

∑K
k=1 τ̂

2
k + ρ

. (81)

Change of variables gives λ|· ∼ generalizedGamma
(

2× (1
2

∑K
k=1 τ̂

2
k + ρ)−1/2, 2

√
NK, 2

)
, which

gives the estimate

λ̂ =
Γ̃(
√
NK + 1/2)/Γ̃(

√
NK)√

1
2

∑K
k=1 τ̂

2
k + ρ

(82)

with Γ̃() the Gamma function. Note λ̂2 ≥ (λ̂)2 and if
√
NK > 1, then Γ(3/2)2(λ̂)2 = 4

π
(λ̂)2 > λ̂2.

Lastly,

1/τ 2
k |· ∼ InvGaussian

(
λwkσ/|βk|, w2

kλ
2
)
⇒ (83)

K∑
k=1

τ̂ 2
k =

K∑
k=1

|β̂k|
λ̂ŵkσ̂

+
1

λ̂2ŵ2
k

(84)

and we use the bound

K∑
k=1

τ̂ 2
k ≤
|Ŝ| × |β̂(K)|
λ̂ŵ(1)σ̂

+
|Ŝ|

(λ̂)2ŵ2
(1)

+

(
K − |Ŝ|

)
|β̂|(K−|Ŝ|−1)

λ̂ŵ(K−|Ŝ|−1)σ̂
+

(
K − |Ŝ|

)
(λ̂)2ŵ2

(K−|Ŝ|−1)

(85)

≤
|Ŝ|β̂2

(K)

C1 log(Ŝ)
+
|Ŝ|σ̂2β̂2

k

C2
1 log(Ŝ)2

+

(
K − |Ŝ|

)
|β̂|(K−|Ŝ|−1)

λ̂C2γ̂σ̂
+

(
K − |Ŝ|

)
(λ̂)2C2

2 γ̂
2 (86)

=
|Ŝ|β̂2

(K)

(
C1 log(Ŝ) + σ̂2

)
C2

1 log(Ŝ)2
+

(
K − |Ŝ|

)
|β̂|(K−|Ŝ|−1)

λ̂C2γ̂σ̂
+

(
K − |Ŝ|

)
(λ̂)2C2

2 γ̂
2 (87)

The first line follows from the inverse relationship between |β̂k| and ŵk; the second comes from the

lower bounds on ŵk in Ŝ and Ŝ{. The third line is just simplifying.
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Combining inequalities gives

4

π
(λ̂)2 ≥ λ̂2 =

√
NK

1
2

∑K
k=1 τ̂

2
k + ρ

(88)

⇒ (λ̂)2 ≥ π

4
×

√
NK

|Ŝ|β̂2
(K)(C1 log(Ŝ)+σ̂2)

2C2
1 log(Ŝ)2

+
(K−|Ŝ|)|β̂|(K−|Ŝ|−1)

2λ̂C2γ̂σ̂
+

(K−|Ŝ|)
2(λ̂)2C2

2 γ̂
2 + ρ

(89)

⇒ λ̂ ≥ π

4
×

√
NK

λ̂|Ŝ|β̂2
(K)(C1 log(Ŝ)+σ̂2)
2C2

1 log(Ŝ)2
+

(K−|Ŝ|)|β̂|(K−|Ŝ|−1)

2C2γ̂σ̂
+

(K−|Ŝ|)
2λ̂C2

2 γ̂
2 + ρλ̂

(90)

where the second line comes from substituting from Inequality 87 and the third from multiplying

both sides by 1/λ̂. Cross-multiplying gives a quadratic equation in λ̂ of the form ã(λ̂)2 + b̃λ̂+ c̃ > 0

where25

ã =
|Ŝ|β̂2

(K)

(
C1 log(Ŝ) + σ̂2

)
2C2

1 log(Ŝ)2
+ ρ (91)

b̃ =

(
K − |Ŝ|

)
|β̂|(K−|Ŝ|−1)

2C2γ̂σ̂
(92)

c̃ = −

π
4

√
NK −

(
K − |Ŝ|

)
2C2

2 γ̂
2

 . (93)

The quadratic equation gives

λ̂ ≥
−

(K−|Ŝ|)|β̂|(K−|Ŝ|−1)

2C2γ̂σ̂
+

√{
(K−|Ŝ|)|β̂|(K−|Ŝ|−1)

2C2γ̂σ̂

}2

+ 4

{
λ̂|Ŝ|β̂2

(K)(C1 log(Ŝ)+σ̂2)
2C2

1 log(Ŝ)2
+ ρ

}
×
{
π
4

√
NK − (K−|Ŝ|)

2C2
2 γ̂

2

}
2
|Ŝ|β̂2

(K)(C1 log(Ŝ)+σ̂2)
2C2

1 log(Ŝ)2
+ 2ρ

(94)

which, for growing N and K, is of order N1/4K1/2 by the bound in 94.

C The Oracle Property for LASSOplus

We derive conditions for when LASSOplus possesses the Oracle Property in the case of K,N

growing. The proof progresses in four steps. First, we derive the conditions for which the posterior

density β converges to the same distribution as the least squares estimate. Second, we show that

βplus is consistent in variable selection. Third, we show how a model without the adaptive weights

will not be consistent in variable selection. Fourth, we combine the results using Slutsky’s Theorem.

25We use the convention 0 log 0 = 0
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Asymptotic behavior of β. The conditional posterior density of β is multivariate normal and

given in Equation (26). The vector β shares a limiting distribution with the least squares estimate

when limN→∞
(

1
N
X>X + 1

N
D−1
τ

)−1
= limN→∞

(
1
N
X>X

)−1
. Therefore, it suffices to identify the

rates of N,K for which 1
τ2k

= op(N) for all k.

Since 1/τ 2
k has positive support, we need only find when its posterior mean

E
(

1

τ 2
k

∣∣∣∣·) =
λwkσ

|βk|
(95)

grows at a rate less than N . Consider first the case where |βk| is converging to a number away

from zero. Then, we know λwk is Op(1), since the kernel for wk is approximately exponential in

the case of λ|βk| large. Therefore, 1/τ 2
k = op(N). Consider the next case, where |βk| is converging

to zero. Then, if βk is consistent, wk → γ = Op(1) and βk will go to zero at 1/
√
N . This implies

1/N×λwkσ/|βk| is of order K1/2N−1/4 which must go to zero. Therefore, β is consistent and shares

the same limiting distribution as the least squares estimator when K2/N → 0.

Consistency in variable selection for βplus Next, we give the requirements on N,K such that

plim Pr
(
βplusk = 0

)
= 1 (βok = 0). We assume K2/N → 0. Under this condition, β−k is consistent

for βo−k, and we can write β̂spk = βok + uk/
√
N for a sufficiently large N with Var(uk) <∞.

The asymptotic probability of a variable being selected is

plim Pr(βplusk 6= 0) = lim
N→∞

Pr

(∣∣∣∣βok +
uk√
N

∣∣∣∣ > λwkσsp
N − 1

)
(96)

Recall σsp = Op (Nα) and λ = Op(N
1/4K1/2). Consider the case βok = 0, such that wk → γ = Op(1):

plim Pr(βplusk 6= 0|βok = 0) = lim
N→∞

Pr

(
|uk| >

√
N
λwkσsp
N − 1

∣∣∣∣βok = 0

)
(97)

= lim
N→∞

Pr (|uk| > Cu0) (98)

= 0 if K1/2Nα−1/4 →∞ (99)

The value Cu0 is Op(K
1/2Nα−1/4), so propertly zeroing out all in-truth-zero effects occurs when

α > 1/4 for fixed K or when K grows in N at any rate when α = 1/4.

Next, consider the case β0
k 6= 0, so λwk = Op(1):

plim Pr(βplusk 6= 0|βok 6= 0) = lim
N→∞

Pr

(
|βok| >

λwkσsp
N − 1

∣∣∣∣βok 6= 0

)
(100)

= lim
N→∞

Pr (|uk| > Cu1) (101)

= 1 if Nα−1 → 0. (102)
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since Cu1 = O(Nα−1).

Therefore, βplusk is consistent for variable selection so long as K1/2Nα−1/4 →∞ and Nα−1 → 0.

This will always be achieved for 1 > α ≥ 1/4, if K grows in N , and 1 > α > 1/4 for fixed K. Under

these conditions, βplusk satisfies the first Oracle condition.

The model with no weights and no variance inflation. We consider the normal LASSO,

where wk = 1 ∀ k and α = 0. In this case, β still shares the same limiting distribution as the

least squares estimate so long as K2/N → 0. Setting α = 0 in Equation 100 shows that in-

truth-zero effects are zeroed out when K1/2N−1/4 → ∞, or equivalenlty K2/N → ∞. But, K2/N

cannot approach both zero and infiinity, so both conditions cannot be met. Therefore, as has been

observed several times (Fan and Li, 2001; Buhlmann and van de Geer, 2013; Zou, 2006), the LASSO

estimator, if tuned for consistency, will over-select small effects with some positive probability.

The Oracle Property. Denote as Splus the vector which takes on a value of 1 in element k if the

effect is selected by the rule in the previous section and a 0 otherwise. Under the conditions on N,K

and α given above, we have shown that plim Splusk = 1(β0
k 6= 0); ∀k. Let ⊗ denote the Hadamard

(elementwise) product between two vectors. The LASSOplus estimate is βplus = β ⊗ Splus, where

we have shown that β and the β̂LS share the same limiting distribution. By Slutsky’s Theorem, this

converges to a normal random variable with mean E(β̂LS ⊗ Splus) and variance Var(β̂LS ⊗ Splus),
which is simply the least squares variance for all non-zero elements of βo. Taken together, this gives

plim 1(βplusk = 0) = 1(βok = 0) and

√
N
(
β̂plusSo − β

o
So

)
d→ N (0|So|,Σ

0
So) (103)

which are the two Oracle Properties.

D The Oracle Inequality for LASSOplus

We shift now from the Oracle Property to the Oracle Inequality. Denote Ŵ the K ×K diagonal

matrix with Ŵkk = ŵk > 0 and δ̂ = β̂ − βo. Parts of this section follow the argument in Buhlmann

and van de Geer (2013).

D.1 Assumptions

Assumption 1 Weighted Compatibility Condition For all δ̂ in the set that satisfies ||δ̂S{||1 ≤
3||δ̂S||11, it holds that

||ŴS δ̂S||21 ≤
δ̂>ΣX δ̂|S|

φ2
0

. (104)
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Denoting
̂̃
δ = ŴS δ̂S, this condition can also be expressed as

|| ̂̃δS||21 ≤ ̂̃δ
>
Ŵ−1ΣXŴ

−1̂̃δ|S|
φ2

0

. (105)

for all ||Ŵ−1
S{ δ̂S{||1 ≤ 3||Ŵ−1

S δ̂S||11

For a variation of this compatibility condition expressed as a restricted eigenvalue condition, see

Bickel, Ritov and Tsybakov (2009); Belloni and Chernozhukov (2013). Some version of this as-

sumption on the design is standard in the literature, as it is used to combine the L2 empirical loss

with the L1 penalty. We illustrate below.

We make the following assumption to simplify the analysis. The assumption has two implica-

tions. The first, common in the literature (Liu and Yu, 2013), assumes iid Gaussian errors. The

second restricts this analysis to the case of in-truth sparse, linear models. The former can be relaxed

using Talagrand style bounds, and the second can be relaxed to include a nonparametric setup. We

reserve both extensions to future work though we note that the development builds off what is done

here (for examples, see Buhlmann and van de Geer, 2013; Belloni and Chernozhukov, 2013).

Assumption 2 Data-Generating Process The data are generated as

Yi = X>i β
o + εi (106)

such that εi
i.i.d.∼ N (0, σ2) and limK→∞ |S|/K = 0 where |S| =

∑K
i=1 1(β0

k 6= 0). We further assume

Xi and βo are finite and bounded.

Our final assumption is similar to the assumption that the model be in-truth sparse, but instead

we need an assumption on the distribution of estimated effects. We require that estimated weights

be distributed with a few small values and a large number of large ones, or equivalently that there

be a few large estimated effects and a large number of small ones.

Assumption 3 Sufficient sparsity condition The thresholds that determine |Ŝ| and |Ŝ{| are

selected such that the weights satisfy

∑
k∈Ŝ

exp

(
− 1

32

λ̂2ŵ2
kσ̂

2

(N − 1)σ2

)
≤
∑
k′∈Ŝ{

exp

− 1

32

λ̂2ŵ2
(K−|Ŝ|−1)

σ̂2

(N − 1)σ2

− exp

(
− 1

32

λ̂2ŵ2
k′σ̂

2

(N − 1)σ2

)
(107)
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The better the non-zero and in-truth-zero effects are separated, the wider the gap above. Trivially,

taking |Ŝ| = 0 → ŵ(1) = ∞ satisfies the bound, with K > 1. The assumption is most easily

satisfied when there are a few small large effects and a large number of small effects, as in the cases

we consider.

For clarity, we present the probabilistic bounds derived in Appendix B that we use in the proofs

below:

1. Probability of bounds on large or small estimate: 1− pw(C1, C2, C3)

2. Probability of bounding residual variance: 1− pε(Cε) = Pr(Cεσ̂
2 > σ2)

3. Probability of bounding tuning parameter: 1− pλ(Cλ) = Pr(λ̂2 > Cλ
√
NK)

By the union bound, the probability of all of these conditions holding is at least 1−pw(C1, C2, C3)−
pε(Cε)− pλ(Cλ).

D.2 The consistent model

Bounding the excess risk. Start with the excess risk for the consistent model and simplify, as

||Y −Xβ̂ ||22 + λ̂σ̂||Ŵ β̂||11 ≤ ||Y −Xβ̂o||22 + λ̂σ̂||Ŵβo||11 (108)

||Xδ̂||22 + λ̂σ̂||Ŵ β̂||11 ≤ 2ε>XŴ−1Ŵ (β̂ − βo) + λ̂σ̂||Ŵβo||11 (109)

||Xδ̂||22 + λ̂σ̂||Ŵ β̂||11 ≤ 2
K∑
k=1

|ε>Xk/(ŵkσ̂)||σ̂ŵkδ̂k|+ λ̂σ̂||Ŵβo||11. (110)

We follow Buhlmann and van de Geer (2013) and select λ so as to bound 4
∑K

k=1 |ε>Xk/(ŵkσ̂)|,
so that we dominate the random part of the problem. For arbitrary k, Assumption 2 allows us to

use symmetrization and the Chernoff bound to get

Pr(4|ε>Xk/(ŵkσ̂)| > λ̂) ≤ 2 exp

(
− 1

32

λ̂2ŵ2
kσ̂

2

(N − 1)σ2

)
. (111)
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The union bound, ŵ(1) ≤ ŵ(k′); k
′ ∈ Ŝ, and ŵ(K−|Ŝ|−1) ≤ ŵk; k ∈ Ŝ{ gives

Pr(4 max
1≤k≤K

|ε>Xk/(ŵkσ̂)| > λ̂) ≤
∑

1≤k≤K

2 exp

(
− 1

32

λ̂2ŵ2
kσ̂

2

(N − 1)σ2

)
(112)

=
∑
k∈Ŝ

2 exp

(
− 1

32

λ̂2ŵ2
kσ̂

2

(N − 1)σ2

)
+
∑
k′∈Ŝ{

2 exp

(
− 1

32

λ̂2ŵ2
k′σ̂

2

(N − 1)σ2

)
(113)

= 2(K − |Ŝ|) exp

− 1

32

λ̂2ŵ2
(K−|Ŝ|−1)

σ̂2

(N − 1)σ2

+

∑
k∈Ŝ

2 exp

(
− 1

32

λ̂2ŵ2
kσ̂

2

(N − 1)σ2

)
+
∑
k′∈Ŝ{

2 exp

(
− 1

32

λ̂2ŵ2
k′σ̂

2

(N − 1)σ2

)
− 2 exp

− 1

32

λ̂2ŵ2
(K−|Ŝ|−1)

σ̂2

(N − 1)σ2


(114)

≤ 2(K − |Ŝ|) exp

− 1

32

λ̂2ŵ2
(K−|Ŝ|−1)

σ̂2

(N − 1)σ2

 (115)

= 2 exp

− 1

32

λ̂2ŵ2
(K−|Ŝ|−1)

σ̂2

(N − 1)σ2
+ log(K − |Ŝ|)

 (116)

where the second to last line comes from the Assumption 3. Bounding the exponent in the last line

gives

− 1

32

λ̂2ŵ2
(K−|Ŝ|−1)

σ̂2

(N − 1)σ2
+ log(K − |Ŝ|) (117)

≤− 1

32

CλCεC2γ̂
2
K
√
N − 1

(N − 1)
+ log(K − |Ŝ|) (118)

with probability at least 1− pλ(Cλ)− pε(Cε)− pw(C1, C2, C3). With the same probability, we want

to then bound by the exponent by −t2/2:

− 1

32

CλCεC2γ̂
2
K√

N − 1
+ log(K − |Ŝ|) ≤ −t2/2 (119)

⇒ N − 1 ≤

{
1

32
× CλCεC2γ̂

2
K

t2

2
+ log(K − |Ŝ|)

}2

(120)

We see then that the LASSOplus consistent model controls the random component, with probability

at least 1− pλ(Cλ)− pε(Cε)− pw(C1, C2, C3)− exp(−t2/2) so long as Inequality 120 is met. In the

limit, this requires N is growing at rate less than (K/ log(K))2.
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Geometric bounds. We next move towards the Oracle Inequality, noting that the argument in

this section is now standard in the literature(see, e.g. Bickel, Ritov and Tsybakov (2009); Chatterjee

(2014); Buhlmann and van de Geer (2013, esp. 6.2, which we follow). Statements in this section

hold with probability at least 1 − pλ(Cλ) − pε(Cε) − pw(C1, C2, C3) − exp(−t2/2) and under the

restrictions on N,K directly above.

Continuing from the righthand side of Inequality 110 gives

2
K∑
k=1

|ε>Xk/(ŵkσ̂)||σ̂ŵkδ̂k|+ λ̂σ̂||Ŵβo||11 ≤
1

2
λ̂σ̂||Ŵ δ̂||11 + λ̂σ̂||Ŵβo||11 (121)

by our probabilistic bound on λ. Continuing Inequality 110 on the lefthand side gives

||Xδ̂||22 + λ̂σ̂||Ŵ β̂||11 = (122)

||Xδ̂||22 + λ̂σ̂||ŴSβ̂S||11 + λ̂σ̂||ŴS{ β̂S{||11 ≥

||Xδ̂||22 + λ̂σ̂|ŴSβ
o
S|11 − λ̂σ̂||ŴS δ̂S||11 + λ̂σ̂||ŴS{ β̂S{||11

(123)

by the triangle inequality. Combining Inequalities 121 and 123 gives

||Xδ̂||22 + λ̂σ̂|ŴSβ
o
S|11 − λ̂σ̂||ŴS δ̂S||11 + λ̂σ̂||ŴS{ β̂S{||11 ≤

1

2
λ̂σ̂||Ŵ δ̂||11 + λ̂σ̂||Ŵβo||11 (124)

⇒ 2||Xδ̂||22 − 2λ̂σ̂||ŴS δ̂S||11 + 2λ̂σ̂||ŴS{ β̂S{||11 ≤ λ̂σ̂||Ŵ δ̂||11 (125)

⇒ 2||Xδ̂||22 + λ̂σ̂||ŴS{ β̂S{||11 ≤ 3λ̂σ̂||ŴS δ̂S||11 (126)

where the lines come from substitution, simplification, ||Ŵ δ̂||11 = ||ŴS δ̂S||11 + ||ŴS{ δ̂S{||11. This result

also gives us ||ŴS{ β̂S{||11 ≤ 3||ŴS δ̂S||11.

Continuing,

2||Xδ̂||22 + λ̂σ̂||Ŵ δ̂||11 = 2||Xδ̂||22 + λ̂σ̂||ŴS{ β̂S{||11 + λ̂σ̂||ŴS δ̂S||11 (127)

≤ 4λ̂σ̂||ŴS δ̂S||11 (128)

≤ 4λ̂σ̂

√
δ̂>ΣX δ̂|S|

φ2
0

(129)

= 4λ̂σ̂

√
δ̂>X>Xδ̂|S|

Nφ2
0

(130)

≤ ||Xδ̂||22 + 4
λ2|S|
Nφ2

0

(131)
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where we use the inequality (a− 2b)2 ≥ 0⇒ a2 + 4b2 ≥ 4ab. Simplifying gives a preliminary Oracle

Inequality:

2||Xδ̂||22 + λ̂σ̂|Ŵ δ̂| ≤ ||Xδ̂||22 + 4
λ2|S|
Nφ2

0

(132)

⇒ 1

N

{
‖|Xδ̂||22 + λ̂σ̂|Ŵ δ̂|

}
≤ CLλ

2|S|
N2φ2

0

(133)

where we have inserted CL since the the 4 is an arbitrary constant that can be adjusted by choosing

a different bound on the random component.

Bounding the compatibility condition constant. Unlike the standard LASSO setup, our

weighted compatibility condition involves the matrix ŴS which may grow of N,K. At the one

extreme, the diagonal elements of ŴS may all be in Ŝ, so they are growing as 1/(λσ̂|βk|); k ∈ Ŝ. At

the other extreme, all elements of ŴS may be be in Ŝ{, so they are approximately γ̂. There then

exist constants Cφ1 , Cφ2 that satisfy

φ2
0 ≥ Cφ1

λ̂2σ̂2β̂2
(K)

C1 log(|Ŝ|)2
+ Cφ2C2γ̂ (134)

with probability at least 1− pw(C1, C2, C3).

Statement of Oracle Inequality for consistent model. We next give our Oracle Inequality

for the consistent model.

1

N

{
||Xδ̂||22 + λσ̂||Ŵ δ̂||11

}
≤ CL1σ̂

2λ̂2|S|
N2φ2

0

. (135)

Using the bound in Inequality 134 gives

1

N

{
||Xδ̂||22 + λσ̂||Ŵ δ̂||11

}
≤ CL1σ̂

2λ̂2|S|

N2

{
Cφ1

λ̂2σ̂2β̂2
(K)

C1 log(|Ŝ|)2
+ Cφ2C2γ̂

}2 (136)

which will hold with probability at least 1− pλ(Cλ)− pε(Cε)− pw(C1, C2, C3)− exp(−t2/2) so long

as Inequality 120 is met.

D.3 Results for LASSOplus

The results for LASSOplus are similar to those from the consistent model. LASSOplus-EM is

essentially an adaptive LASSO with endogenously estimated weights plus a threshold to zero out

small effects. As in the theoretical analyses in Buhlmann and van de Geer (2013, ch. 7.8) , we

find that the adaptive LASSO and thresholded LASSO achieve similar Oracle bounds, but our

LASSOplus bound is twice that of the consistent model.
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Probabilistic bound on LASSOplus-EM. The basic approach with LASSOplus is to endoge-

nously estimate parameter-specific weights and generate an inflated the variance component so as

to threshold small effects. For our consistent model, our probabilistic bound (see Inequality (117))

took the form

− 1

32

λ̂2ŵ2
(K−|Ŝ|−1)

σ̂2

(N − 1)σ2
+ log(K − |Ŝ|) ≤ −t

2

2
(137)

The problem is that the first term is Op(
√
K/
√
N), meaning that as the sample size grows, the

probabilistic bound will not be met. LASSOplus-EM inflates the variance to get a bound as follows:

− 1

32

λ̂2ŵ2
(K−|Ŝ|−1)

σ̂2
sp

(N − 1)σ2
+ log(K − |Ŝ|) ≤ −t

2

2
(138)

which now makes the first term Op(
√
KN2α/

√
N). Setting α = 1/4, our default, makes the first

term Op(
√
K), which will dominate the log(K − |Ŝ|) term for large enough K, regardless of N .

Specifically, it will hold whenever {
CλCεC2γ̂

2
K

t2

2
+ log(K − |Ŝ|)

}2

≥ 322 (139)

Therefore, LASSOplus-EM will bound the empirical process for sufficiently large K.

Oracle Inequality for LASSOplus-EM. LASSOplus achieves an Oracle bound regardless of

N , but at the cost of increasing the bound. Denote as δ̂p, Xp, Ŵp the elements of δ̂ and columns of

X and Ŵ that are associated with non-zero elements of LASSOplus-EM, and δ̂p{ and Xp{ , Ŵp{ the

complements of these terms. We know then

1

N

{
||Xδ̂||22 + λσ̂||Ŵ δ̂||11

}
(140)

=
1

N

{
||Xpδ̂p||22 + ||Xp{ δ̂p{||22 + 2δ̂p>X>p Xp{ δ̂p{ + λσ̂||Ŵpδ̂p||11 + λσ̂||Ŵp{ δ̂p{ ||11

}
. (141)

Combining with the Oracle Inequality for the consistent model gives

1

N

{
||Xpδ̂p||22 + λσ̂||Ŵpδ̂p||11 + λσ̂||Ŵpδ̂p||11

}
≤ CL1σ̂

2λ̂2|S|

N2

{
Cφ1

λ̂2σ̂2β̂2
(K)

C1 log(|Ŝ|)2
+ Cφ2C2γ̂

}2 −
1

N

{
||Xp{ δ̂p{||22 + 2δ̂>p X

>
p Xp{ δ̂p{ + λσ̂||Ŵp{ δ̂p{||11

}
(142)

≤ CL1σ̂
2λ̂2|S|

N2

{
Cφ1

λ̂2σ̂2β̂2
(K)

C1 log(|Ŝ|)2
+ Cφ2C2γ̂

}2 +
1

N

{
||Xpδ̂p||22 − λσ̂||Ŵp{ δ̂p{||11

}
(143)

≤ 2CL1σ̂
2λ̂2|S|

N2

{
Cφ1

λ̂2σ̂2β̂2
(K)

C1 log(|Ŝ|)2
+ Cφ2C2γ̂

}2 (144)
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where the first line is just rearranging, the second uses the inequality −2ab ≤ a2 + b2, and the

third come from re-applying the Oracle bound from the consistent model to the second term in the

second line.

We see that LASSOplus-EM satisfies an Oracle Bound without the constraints on N and K

required by the consistent model, but this comes at the cost of a looser bound.

E Variance Estimation

We sample from the approximate sampling distribution of the the LASSOplus estimator at each

Gibbs update:

βk1

(∣∣β̂spk ∣∣ ≥ λwkσsp
N − 1

)
(145)

≈ βkΦ

{∣∣∣∣∣∣β̂spk /σ̂ls∣∣− λwkσsp
σ̂ls × (N − 1)

∣∣∣∣} (146)

= βkΦ

{√
N − 1

∣∣∣∣∣∣β̂spk /σ∣∣− λwkσsp
σ × (N − 1)

∣∣∣∣} (147)

= g
(
βk, β̂

sp
k , σ, σsp, λ, wk

)
(148)

where Φ(a) is the cumulative distribution for a standard normal random variable and we approxi-

mate the standard error of the least squares coefficient as σ̂ls ≈ σ/
√
N − 1. Define

zk =
√
N − 1

∣∣∣∣∣∣β̂spk /σ∣∣− λwkσsp
σ × (N − 1)

∣∣∣∣ (149)

pk = Φ {zk} (150)

Define the vector of partial derivatives

∇g
(
βk, β̂

sp
k , σ, σsp, λ, wk

)
=

[
∂g(·)
∂βk

,
∂g(·)
∂β̂spk

,
∂g(·)
∂σ

,
∂g(·)
∂σsp

,
∂g(·)
∂λ

,
∂g(·)
∂wk

]>
(151)

=



pk

βk × φ(zk)×
√
N − 1/σ sgn(β̂spk )

βk × φ(zk)×
√
N − 1

(
−
∣∣β̂spk ∣∣
σ2 + λwkσsp

σ2×(N−1)

)
βk × φ(zk)×

√
N − 1× λwk

σ×(N−1)

βk × φ(zk)×
√
N − 1× wkσsp

σ×(N−1)

βk × φ(zk)×
√
N − 1× λσsp

σ×(N−1)


(152)

and the 6× 6 matrix

V = diag
[
Var(βk),Var(β̂spk ),Var(σ),Var(σsp),Var(λ),Var(wk)

]
(153)
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where we are assuming zero covariance between elements. All elements of V are calculated ana-

lytically from the variance of the conditional pseudoposterior densities except for Var(wk) which

is calculated from the approximate density used in the griddy Gibbs sampler. Our approximate

variance is then

σ̂2
j = ∇g>(·)V∇g(·) (154)

.

F EM Updates for LASSOplus-EM

For our EM implementation, we treat in βplus−EM and σ2 as parameters and the remaining param-

eters as “missing,” i.e. to be estimated. As we have already calculated the conditional posterior

densities for all parameters, the EM updates is straightforward.

Standardize Y and all columns of X to be mean-zero, sample variance one. Initialize ∀k : β̂k ←
uk with uk

i.i.d.∼ N (0, 0.01); σ̂2 ← ||Y −Xβ̂||22/N ; λ̂← 1; ŵk ← 1.

At each given step, the most current updates from the previous steps are used. To convergence,

• E-steps

1. ∀k : (̂1/τ 2
k )← λ̂ŵkσ̂/|β̂k|; τ̂ 2

k ← |β̂k|/(λ̂ŵkσ̂) + 1/(λ̂2ŵ2
k)

2. λ̂← Γ̃(
√
NK+1/2)/Γ̃(

√
NK)√

1
2

∑K
k=1 τ̂

2
k+ρ

; λ̂2 ←
√
NK

1
2

∑K
k=1 τ̂

2
k+ρ

with Γ̃() the gamma function.

3. ∀k: update ŵk via numerical integration using kernel Pr(wk|·) ∝ e
−wγ̂−λ̂w

√
1̂
σ2
|β̂k|

4. Update γ̂ via numerical integration using kernel Pr(γ|·) ∝ γe−
∑K
k=1 ŵ

γ
k−γ

• M-Steps

• σ̂2 ←
∑N
i=1(Yi−X>i β̂)2+

∑K
k=1(β̂k)2× 1̂

τ2
k

N+K
; 1̂
σ2 ← N+K−2∑N

i=1(Yi−X>i β̂)2+
∑K
k=1(β̂k)2× 1̂

τ2
k

• Conditional M -steps: ∀k : β̂k ←
∑N
i=1Xik(Yi−

∑
k′ 6=kXik′ β̂k′ )

(N−1)+ 1̂

τ2
k

where it is understood that at update

k̃, updated estimates of
{
β̂1, β̂2, . . . , β̂k̃−1

}
are used.

LASSOplus updates:

• σ̂2
sp ←←

∑N
i=1(Yi−X>i β̂)2+

∑K
k=1(β̂k)2× 1̂

τ2
k√

N+K

• β̂plusk ← β̂k1
(∣∣∑N

i=1Xik(Yi −
∑

k′ 6=kXik′ β̂k′)
∣∣ > λ̂ŵk

√
σ̂2
sp

)
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G Independence between Adjusted Higher-Order Terms

and Lower-Order Terms

We prove first that, under the residualized construction, the least squares coefficient on the a higher-

order interaction term is uncorrelated with the coefficients on lower-order terms. By this means,

the effect of the higher-order term does not vary with its lower-order components, and hence can

be interpreted on its own. We then extend the result to the conditional pseudoposterior density of

the estimates.

Denote the N ×1 vector of outcomes Y , N ×L matrix of lower-order terms Xlower and vector of

mean-zero, equivariant errors ε. Define as Xinter = [Xinter]i =
∏

1≤l′≤L xil′ , the elementwise product

of the lower-order terms. Assume [Xlower|Xinter] is full rank. Using parameters {β0, ~βl, βinter}, define

the model, with ~βl an L× 1 vector and the others scalars, as

Y = Xlower
~βl +Xinterβinter + ε. (155)

Define the matrices

X = [Xlower|Xinter] (156)

Mlower = IL − (Xlower)(X
>
lowerXlower)

−1X>lower (157)

X̃inter = MlowerXinter (158)

Xadjust = [Xlower|X̃inter] (159)

The vector X̃inter is the residualized interaction term described in the text, giving parameterization

Y = Xlower
~̃
βl + X̃interβ̃inter + ε (160)

where the error vector ε, stays unchanged since the two parameterizations differ only by a linear

transformation of the covariates.

The covariance of the least squares estimates in the first parameterization is proportional to the

inverse of the cross product of the design matrix. Using the block-partition matrix formula gives

(X>X)−1 =

(X>lowerXlower) X>lowerXinter

X>interXlower X>interXinter

−1

(161)

=

(X>lowerXlower − 1
c0

X>lowerXinterX
>
interXlower

)−1

− 1
c0

(X>lowerXlower)
−1X>lowerXinter

− 1
c0
X>interXlower(X

>
lowerXlower)

−1 1
c0

 (162)
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with the constant c0 = X>interXinter −X>interXlower(X
>
lowerXlower)

−1X>lowerXinter. This implies

Cov(β̂inter, β̂k) ∝ −
[

1

c0

(X>lowerXlower)
−1X>lowerXinter

]
j

for j ∈ {1, 2, . . . , L} (163)

In general, this covariance will not be zero, suggesting that under the normal parameterization the

effect of the interaction term varies with movements in its lower order terms. Repeating the same

exercise with a model parameterized in terms of X̃inter gives

Cov

(̂̃
βinter,

̂̃
βk

)
∝ −

[
1

c0

(X>lowerXlower)
−1X>lowerX̃inter

]
j

(164)

= −
[

1

c0

(X>lowerXlower)
−1X>lowerMlowerXinter

]
j

(165)

= 0 for j ∈ {1, 2, . . . , L} (166)

Therefore, under the parameterization with residualized interaction terms, the marginal effect of

each interaction term is uncorrelated with that of its lower order terms. To extend to the mul-

tivariate case, assume the full design matrix of all effects is full-rank, and all other effects have

been partialed out. The case of K > N requires an assumption similar to the restricted eigenvalue

assumption (Bickel, Ritov and Tsybakov, 2009), that all submatrices of size L + 2 are full rank

and all components of the submatrices not in X are linearly independent of X. Partialing out with

respect to the other covariates in either case leaves the results unchanged.

Next, we show the result holds for the conditional pseudoposterior density under a conditional

independent normal prior, as with the augmented LASSOplus. Assume [~β>l , βinter]
> ∼ N (0L+1, D)

with D an (L+ 1)× (L+ 1) diagonal matrix with positive entries along the diagonal. In this case,

the conditional posterior of [~β>l , βinter]
> under a normal likelihood takes the form

Pr([~β>l , βinter]
>|·) ∼ N (A−1X>Y, σ2A−1) (167)

with A = X>X +D. Carrying through the same derivation as above gives the posterior covariance

between βL+1, the parameter on the interaction term, and βk, 1 ≤ j ≤ L, as

A−1
j,L+1 ∝ −

[
1

c′0
(X>lowerXlower +D1:L,1:L)−1X>lowerXinter

]
j

for j ∈ {1, 2, . . . , L} (168)

which will not be 0, in general. In this case, the constant c′0 = (Xinter + DL+1,L+1)>(Xinter +

DL+1,L+1)−X>interXlower(X
>
lowerXlower +D1:L,1:L)−1X>lowerXinter.

Considering the residualized interaction term instead of the standard term gives

A−1
j,L+1 ∝ −

[
1

c′0
(X>lowerXlower +D1:L,1:L)−1X>lowerX̃inter

]
j

= 0 for j ∈ {1, 2, . . . , L} (169)
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H Alternative Estimators

For the LASSO and adaptive LASSO, we found the BIC statistic of Wang and Leng (2007) per-

formed poorly when K > N , sometimes including dozens of false positives. We instead use a

standard BIC statistic where we take the degrees of freedom as the number of non-zero coefficients

(Zou, Hastie and Tibshirani, 2007).

In terms of uncertainty estimates, we implement the approximate confidence intervals for the

LASSOplus. We use the posterior intervals for the horseshoe model. For the frequentist LASSO

and adaptive LASSO, we implement the perturbation method of Minnier, Tian and Cai (2011). For

p ∈ {1, 2, . . . , P} for some large P , the method requires fitting

β̂alasso,p(λ|w·, g·) = argmin
β

N∑
i=1

gpi (Yi −X>i β)2 + λ
K∑
k=1

wk|βk|; (170)

wk = 1/|β0
k| (171)

where the weights are gpi
i.i.d.∼ exp(1). For the LASSO, we simply take wk = 1 for all k. Minnier,

Tian and Cai (2011) prove that the set {β̂alasso,p(λ|w·, g·)}Pp=1 will achieve nominal coverage asymp-

totically, though the result does not hold for the LASSO. We fit the perturbation method to both

for comparison. We found the perturbation method performs better than the parametric bootstrap

suggested by Chatterjee and Lahiri (2011, 2013), so we do not present the results.

We next move on to the LASSO+OLS method of Belloni and Chernozhukov (2013), hereafter

BC.The empirical process approach selects the tuning parameter in order to bound 2 max
(
ε>X·k

)
with some high probability. BC note that, up to a scale parameter σ, the tuning parameter value can

be simulated quite easily, and they define Λ(1−αsig|X) as the 1−αsig quantile of 2 max
(
ε>X·k/σb

)
for E(εi|Xi) = 0; Var(εi|Xi) = σ2

b as approximated through a simulation.

Second stage variable selection. Tuning λ in order to satisfy the Oracle Inequality will gen-

erally over-select effects. The reason is that the LASSO induces bias in the coefficient estimaates,

and that bias leaves a gap for irrelevant effects that are correlated with the relevant effects to be

drawn in and selected. Several methods in the empirical process framework have used the Oracle

Inequality-tuned LASSO to over-select covariates and then, in a second stage, select a subset of

these.

One way to do so is simply thresholding the LASSO estimates, so

β̂thresh = β̂L � 1
(∣∣β̂L∣∣ > τ

)
(172)
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where the inequality and multiplication � are taken elementwise. A second option is to take then re-

run OLS on variables that survive the threshold. Define Xthresh as the submatrix of X corresponding

with elements of β̂thresh(τ) that are not zero. Then,

β̂thresh+OLS(τ) = (X>threshXthresh)
−1X>threshY. (173)

In the case Xthresh is rank-deficient, either ridge regression or partial least squares can be used (Liu

and Yu, 2013). The post LASSO OLS estimator is then β̂thresh+OLS(0), which is simply OLS used

on all selected LASSO covariates.

Belloni and Chernozhukov (2013) propose a different means of selecting a subset of relevant

effects and eliminating the first-stage LASSO bias. Denote Q(θ) = ||Y −Xθ||22. The select τ such

that

tγ = max
t≥0

Q
(
β̂thresh+OLS(τ)

)
−Q

(
β̂L
)
≤ γ (174)

for γ ≤ 0. Taking γ = 0 returns the sparsest OLS-reflated model that generates a lower residual

sum of squares than the LASSO estimator. We follow the suggestion of Belloni and Chernozhukov

(2013, expr 2.14) and take γ =
{
Q
(
β̂thresh+OLS(0)

)
−Q

(
β̂L
)}

/2 in the simulations.
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