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Sparse Estimation of Polynomial and Rational

Dynamical Models
Cristian R. Rojas, Member, IEEE, Roland Tóth, Member, IEEE, and Håkan Hjalmarsson, Fellow, IEEE

Abstract—In many practical situations, it is highly desirable to
estimate an accurate mathematical model of a real system using
as few parameters as possible. At the same time, the need for an
accurate description of the system behavior without knowing its
complete dynamical structure often leads to model parameteriza-
tions describing a rich set of possible hypotheses; an unavoidable
choice, which suggests sparsity of the desired parameter estimate.
An elegant way to impose this expectation of sparsity is to estimate
the parameters by penalizing the criterion with the ℓ0 “norm”
of the parameters. Due to the non-convex nature of the ℓ0-norm,
this penalization is often implemented as solving an optimization
program based on a convex relaxation (e.g., ℓ1/LASSO, nuclear
norm, . . .). Two difficulties arise when trying to apply these
methods: (1) the need to use cross-validation or some related
technique for choosing the values of regularization parameters
associated with the ℓ1 penalty; and (2) the requirement that the
(unpenalized) cost function must be convex. To address the first
issue, we propose a new technique for sparse linear regression
called SPARSEVA, with close ties with the LASSO (least absolute
shrinkage and selection operator), which provides an automatic
tuning of the amount of regularization. The second difficulty,
which imposes a severe constraint on the types of model structures
or estimation methods on which the ℓ1 relaxation can be applied,
is addressed by combining SPARSEVA and the Steiglitz-McBride
method. To demonstrate the advantages of the proposed approach,
a solid theoretical analysis and an extensive simulation study are
provided.

Index Terms—AIC, BIC, cross-validation, LASSO, model struc-
ture selection, sparse estimation, Steiglitz-McBride method, sys-
tem identification.

I. INTRODUCTION

SYSTEM identification is a discipline that deals with the
problems of estimating models of dynamic systems from

input-output data. Even though its birth is dated back in the era
of classical automatic control during the 60’s and 70’s, by now
it has become a mature field with many successful applications
in areas such as economics, mechatronics, ecology, biology,
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communications and transportation [1]–[4]. It also has a close
connection with allied fields such as statistics, econometrics,
machine learning and chemometrics [5].

For a system identification procedure to be successful, two
main ingredients are needed: data containing measured infor-
mation about the dynamics of the system, and prior knowledge.
Data is provided by an identification experiment, while the prior
knowledge has to be supplied (directly or implicitly) by the
user, in the form of assumptions or prejudices. One of the most
important prejudices is the selected model structure and the
corresponding model set within which the identification method
should find an estimate of the plant. Such a selection is rather
complicated as it is outmost desired to estimate an accurate
model of the real system using as few parameters as possible.
While accuracy is clearly related to the performance of the
application on which the model will be used, the desire for a
minimal parametrization is based on the parsimony principle
(Occam’s razor) and the utilization complexity in terms of
control synthesis, prediction, etc. Since an optimal choice in
this question is rarely known a priori, a user in identification
typically proposes a model structure capable of explaining a
rich set of possible dynamics, and lets the data decide which
sub-structure is appropriate to use. This is commonly achieved
by employing model structure selection tools (such as AIC,
BIC/MDL, cross-validation, etc.). These tools can be seen as
imposing a sparsity pattern on the parameters, because they
determine a model sub-structure (where the estimated model
should be found), by forcing some of the parameters of the
overall model structure to be exactly equal to zero. Therefore,
model structure selection can be interpreted as the process of
imposing a sparsity prejudice.

Many techniques for sparse estimation have been success-
fully used for model structure selection in linear regression set-
tings. For example, in Forward Selection regressors are added
one by one according to how statistically significant they are
[6]. Forward Stage-wise Selection and Least Angle Regression

(LARS) [7] are refinements of this idea. Backward Elimination

is another approach with a long history. Here regressors are
removed one by one based on the same concept of statistical
significance. Another class of methods employ all regressors,
but use thresholding to force insignificant parameters to become
zero [8]. In [9], a Bayesian approach to sparse estimation is
developed. Yet another class of methods that can handle all
regressors at once use regularization, i.e., a penalty on the size
of the parameter vector is added to the cost function. The Least

Absolute Shrinkage and Selection Operator (LASSO) [10] and
the Non-Negative Garrote (NNG) [11], are early approaches
based on the idea of using regularization to enforce sparsity.
The LASSO, for example, is based on the minimization of a
least-squares cost function plus the ℓ1 norm of the parameter

0018-9286 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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vector (which is known to enforce sparsity). More precisely the
LASSO criterion is

min
θ∈Rng

V (θ,DN ) (1a)

s.t. ‖θ‖1 ≤ ε (1b)

where V is the least-squares cost function based on a data set
DN with N samples. For linear regression setups, the above
problem is convex. In fact, one way of viewing (1) is as a
convex relaxation of the combinatorial problem of minimizing
VN (θ) under a constraint on the size of the support of θ.

Integral to many of the approaches is the use of cross-
validation or some information criterion, e.g., the Akaike

Information Criterion (AIC) or Generalized Cross-Validation

(GCV). For example, such methods can be used to determine
the constant ε in (1). This means solving (1) and then evaluating
the performance of the estimate using, e.g., GCV, for different
values of ε and then picking the best ε. While different search
strategies for the best ε can be derived, a drawback is that it is
necessary to solve (1) multiple times [12], [13]. For large prob-
lems, this can be prohibitive. As a first contribution, we turn the
problem “upside down,” starting with a linear regression struc-
ture, and then appeal to AIC to come up with an “efficient” way
to choose the design parameter (which corresponds to ε in (1b)).
We provide an asymptotic analysis of the proposed estimator,
called SPARSEVA, which was originally proposed in [14].

An additional complication with the LASSO and most sparse
estimation methods is that they can only be applied to model
structures of a linear regression type (i.e., where the cost
function to be minimized by the estimator is quadratic in the pa-
rameters). Some extensions, however, have been conceived for
estimators based on the minimization of a convex loss function
[15, Ch. 8]. This class of estimators can be easily implemented
by using convex optimization tools. For estimators arising from
a non-convex loss function, it is much more difficult to impose
sparsity, because their implementation can suffer from multiple
local minima [15, Ch. 9].

Confinement to estimators with a convex loss function (iden-
tification criterion) is very restrictive. This is because, in pre-
diction error minimization, many Linear Time-Invariant (LTI)
model structures (such as ARMAX, Output-Error, and
Box-Jenkins [2]) give rise to a non-convex loss function of
the prediction. Even model structures for which this prediction
error function is known to have a single global minimum
(e.g., ARMA structures [2]) may end up having multiple local
optima if an ℓ1 regulation term is added to it to impose sparsity.

In this paper, our second contribution is to extend the use
of convex relaxation techniques for sparsity to general LTI
rational Output Error (OE) type of model structures estimated
using Prediction Error Methods (PEM), where we allow the
noise to be colored. To this end, we first combine SPARSEVA,
and the Steiglitz-McBride method, which is a technique for the
estimation of OE models. Since the Steiglitz-McBride approach
reduces the estimation problem of OE models to solving a se-
quence of least-squares estimation problems, which are convex
optimization programs, we can apply a LASSO penalty to this
sequence. This allows to impose sparsity in the resulting plant
model, in case the output noise is white. We also extend this
approach to general colored noise situations by using a pre-
filtering approach with a high-order ARX, which is a recently
proposed extension of the Steiglitz-McBride method [16].

The paper is organized as follows. The notation used in the
sequel is described in Section II. Section III introduces the
problem formulation. A description of the techniques proposed
is given in Section IV, where we present the SPARSEVA
approach (for linear regression), revisit the classical Steiglitz-
McBride method, and describe a technique for the sparse esti-
mation of rational plant models, called OE-SPARSEVA, based
on the combination of the first two methods. In Section V, we
establish the theoretical asymptotic properties of SPARSEVA
and its variants. Section VI presents several simulation exam-
ples that show the properties of our proposed methods. Finally,
the paper is concluded in Section VII. For the reader’s conve-
nience, most proofs have been collected in the appendices.

II. NOTATION

X ⊙ Y denotes the Hadamard or element-wise multiplica-
tion between two matrices X and Y of the same dimensions.
Furthermore, ‖x‖2W := x⊤Wx for W = W⊤ ≻ 0, ‖x‖22 :=
x⊤x and ‖x‖1 :=

∑n
i=1 |xi| with x = [x1 . . . xn]

⊤. Cond(A)
is the condition number of a matrix A in the 2-norm, i.e.,
Cond(A) := ‖A‖‖A−1‖ where ‖A‖ denotes the maximum
singular value of A. Notice that Cond(A) = Cond(A−1) ≥ 1.
I
s2
s1

:= {i ∈ Z | s1 ≤ i ≤ s2} denotes an index set. The vector
containing the signs of a vector x ∈ R

n (in terms of values
±1) is denoted by Sgn(x), while the support of x is denoted
by Supp(x) := {i ∈ I

n
1 | [x]i 	= 0}. For a given T ⊂ I

n
1 , xT

denotes the projection of x to the support T , i.e., [xT ]i := [x]i
if i ∈ T and 0 otherwise.
XN

p→ X denotes convergence in probability [17]. Fur-
thermore, AN = Op(BN ) means that, given an ε > 0, there
exists a constant M(ε) > 0 and an N0(ε) ∈ N such that for
every N ≥ N0(ε), P{|AN | ≤ M(ε)|BN |} ≥ 1− ε. Similarly,

AN = op(BN ) means that AN/BN
p→ 0, and AN ≍p BN

means that, given an ε > 0, there are constants 0 < m(ε) <
M(ε) < ∞ and an N0(ε) ∈ N such that for every N ≥ N0(ε),
P{m(ε) < |AN/BN | < M(ε)} ≥ 1− ε. xN ∈ As N (x0, P )
means that the sequence of random variables {xN} converges
in distribution to a normal distribution with mean x0 and
covariance P .

In general, all asymptotic statements (of the form yN → y)
are with respect to the number of data samples N tending to
infinity.

III. PROBLEM SETUP

The most general setup to be considered in this paper is
introduced now. Consider the stable discrete-time LTI data-
generating system

yt =
Bo(q)

Ao(q)
ut +

Co(q)

Do(q)
et (2)

where et is a Gaussian white noise sequence of zero mean and
variance σ2 > 0, ut is a quasi-stationary signal [2], and

Ao(q) = 1 + ao1q
−1 + · · ·+ aona

q−na (3a)

Bo(q) = bo1q
−1 + · · ·+ bonb

q−nb (3b)

Co(q) = 1 + co1q
−1 + · · ·+ conc

q−nc (3c)

Do(q) = 1 + do1q
−1 + · · ·+ dond

q−nd (3d)
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with q the time-shift operator, θo = [ao1 . . . aona
bo1 . . . bonb

]
and ηo = [co1 . . . conc

do1 . . . dond
]. Due to physical insights or

simply to the generality of the representation, we assume as
prior knowledge that only few of the parameters θo are actually
nonzero. Note that for notational convenience, no feedthrough

term is assumed. Based on measurements DN := {ut, yt}Nt=1,
our goal is to estimate a model of this system in the form

yt =
B(q)

A(q)
ut +

C(q)

D(q)
ǫt (4)

where

A(q) = 1 + a1q
−1 + · · ·+ ana

q−na (5a)

B(q) = b1q
−1 + · · ·+ bnb

q−nb (5b)

C(q) = 1 + c1q
−1 + · · ·+ cnc

q−nc (5c)

D(q) = 1 + d1q
−1 + · · ·+ dnd

q−nd . (5d)

In this paper, we assume that the model structure (4) contains
the true system (2), i.e., there is no undermodelling.

As an intermediate step in the development of a general
sparse estimation procedure for rational model structures (4),
we will first concentrate on systems and model structures
where D(q) = A(q), Do(q) = Ao(q) and C(q) = Co(q) = 1.
For these restricted model structures, the Maximum Likelihood

(ML) and the PEM methods are equivalent to a linear regression
problem [2].

IV. METHODS

In this section, we propose a method for the estimation of
model structure (4) which takes into account (possible) sparsity
in the parameter vector. To this end, first we present a new
method called SPARSEVA (a sparse LASSO-type estimator)
for linear regression problems, originally proposed in [14],
which provides automatic tuning of its regularization parame-
ters. Next, we will revisit the Steiglitz-McBride method, a well
established iterative technique for the estimation of OE model
structures, based on the solution of a series of linear regression
problems. Finally, we show how to combine these two proce-
dures, the SPARSEVA and Steiglitz-McBride methods, in order
to estimate general sparse rational model structures.

A. SPARSEVA

1) Assumptions: As mentioned at the end of Section III, we
will first focus on model structures that can be written as a linear
regression. Assume that the data is generated by

YN = ΦNθo + EN (6)

where θo ∈ R
ng , EN ∼ N (0, σ2IN ) (with σ2 > 0), ΦN ∈

R
N×ng and YN ∈ R

N . Furthermore, To := Supp(θo) where To
contains the indexes (positions) of the non-zero elements of θo,
while T̄o := I

ng

1 \ To denotes the positions of the zeros. The
model chosen to capture the dynamics of (6) is

YN = ΦNθ + EN (7)

where θ ∈ R
ng is unknown (which also means that To is a

priori unknown). With respect to ΦN and its relation to EN ,

we will assume that:

1) N−1Φ⊤
NΦN

p→ Γ ≻ 0 as N → ∞;

2) V (θ̂LSN ,DN )
p→ σ2 as N → ∞;

3)
√
N(θ̂LSN − θo) ∈ As N (0, σ2M), where M is a non-

singular matrix.

Here,

V (θ,DN ) :=
1

N
(YN − ΦNθ)⊤(YN − ΦNθ) (8)

is the least-squares cost (ℓ2-loss of the prediction), and

θ̂LSN :=
(

Φ⊤
NΦN

)−1
Φ⊤

NYN (9)

is the least-squares estimate.
A particular case of interest for us is the ARX model structure

A(q)yt = B(q)ut + ǫt (10)

which corresponds to structure (4) with C(q) = 1 and D(q) =
A(q). This ARX structure can be written in the linear re-
gression form (7) where YN := [yna+1 . . . yN ]⊤, EN :=
[ǫna+1 . . . ǫN ]⊤, θ := [a1 . . . ana

b1 . . . bnb
]⊤ and

ΦN =

⎡

⎢

⎣

−yna
· · · −y1 una

· · · una−nb+1

...
...

...
...

−yN−1 · · · −yN−na
uN−1 · · · uN−nb

⎤

⎥

⎦
.

(11)

(For the sake of simplicity, we assume that na ≥ nb.)
Remark 4.1: Assumptions 1–3 are not necessary conditions

in order to obtain estimates with nice statistical properties (as
seen in Section V). For example, in case σ = 0, i.e., the data
is noiseless, then the least-squares estimate will be exactly
equal to θo for N ≥ ng. The case where σ2 > 0 is certainly
more interesting and practically relevant for system identifica-
tion. Depending on the particular model structure considered,
general sufficient conditions for Assumptions 1–3 to hold are
global identifiability of the model structure and persistence of
excitation of the input signal [2].

Remark 4.2: Notice that Assumptions 1–3 also hold if ΦN is
deterministic and satisfies N−1Φ⊤

NΦN → Γ > 0 as N → ∞.
2) Method: The method we propose for estimating a sparse

θ is based on the following steps:

i) Compute the ordinary least-squares estimate θ̂LSN via (9).

ii) Obtain a sparse estimate θ̂N by solving

min
θ∈Rng

‖θ‖1 (12a)

s.t. V (θ,DN ) ≤ V
(

θ̂LSN ,DN

)

(1 + εN ) (12b)

where εN > 0 and ng := na + nb. The choice of εN will
be discussed later.

iii) Finally, re-estimate the non-zero elements of θ̂N using or-
dinary least-squares. More precisely, let T correspond to

the indexes of the non-zero elements in θ̂N . Define ΦN,T
to be the matrix formed from the columns of ΦN listed
in T and then compute the least-squares estimate of a θ
of reduced dimension based on the model (7) with ΦN,T .
Thresholding is used to determine which parameters are
zero.
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When Steps i) and ii) are used, we call this method SPAR-
SEVA (SPARSe Estimation based on VAlidation), and the esti-
mate is denoted as θ̂N . When Step iii) is also used, we call the
method SPARSEVA-RE, indicating that the non-zero param-
eters are re-estimated (using least-squares); the corresponding

estimate is denoted θ̂RE
N .

For Step ii), we will also consider the following criterion:

min
θ∈Rng

‖wN ⊙ θ‖1 (13a)

s.t. V (θ,DN ) ≤ V
(

θ̂LSN ,DN

)

(1 + εN ) (13b)

where wN ∈ R
ng

+ is given by [wN ]i := 1/|[θ̂LSN ]i|γ with i ∈ I
ng

1

and γ > 0 being an arbitrary constant. We denote the method
obtained from Step i) and (13) by A-SPARSEVA (Adaptive

SPARSEVA) and the corresponding estimate by θ̂AN ; the method
with all three steps, in this case, is denoted as A-SPARSEVA-

RE and the corresponding estimate is θ̂A−RE
N . This adaptive

version is inspired by the adaptive LASSO [18]. The proposed
estimation scheme is summarized in terms of Algorithm 1.
The specific choice of εN is discussed later. It is important to
highlight that both (12) and (13) are convex for linear regression
problems.

Algorithm 1 A-SPARSEVA-RE

Require: a data record DN = {ut, yt}Nt=1 of (2) and the
model structure (10) characterized by the parameters
θ = [a1 . . . bnb

]⊤ ∈ Θ ⊆ R
ng . Assume that DN is

informative w.r.t. (10), see [2].
1: Compute θ̂LSN via (9).
2: Set εN = 2ng/N (or εN = (ng logN)/N ) and compute

V (θ̂LSN ,DN ).

3: Obtain the sparse estimate θ̂AN by solving (13). (In the

non-adaptive case, solve (12) to obtain θ̂N )
4: Based on a threshold 0 ≤ ε∗ ≪ 1, select a minimal T ⊆

Supp(θ̂AN ) such that ‖θ̂AN,T − θ̂AN‖
1
≤ ε∗‖θ̂AN‖1.

5: Estimate θA−RE
N via (9) with ΦN,T .

6: return estimated model (10).

3) Discussion of the Method: The idea behind SPARSEVA
is based on Akaike’s Information Criterion (AIC). Let Dval

N
denote a fresh validation data set (corresponding to a different
realization of ΦN and the noise EN ). Then, for linear regression
problems, c.f. [2], it is easily shown that

Eval

{

Eest

{

V
(

θ̂LSN ,Dval
N

)}}

=

(

1+
2ng

N

)

Eest

{

V
(

θ̂LSN ,DN

)}

(14)

where Eest{�} (Eval{�}) denotes expectation with respect to the
noise in the estimation (validation) data set.

The relation (14) suggests that a way to perform model
selection without using a validation data set is to minimize

(

1 +
2ng

N

)

V
(

θ̂LSN ,DN

)

(15)

with respect to ng, the number of estimated parameters. This
is Akaike’s AIC (or Final Prediction Error, FPE) criterion for
model selection.

In view of this, with the choice εN = 2ng/N , (12) can be
seen as a way to estimate a sparse (due to the ℓ1-norm) model

such that its performance is similar to V (θ̂LSN ,Dval
N ). Thus,

unlike for the LASSO, there is a natural choice of the “regu-
larization” parameter εN for SPARSEVA, which corresponds
to a particular level set of the ℓ2-loss function (8), in which
the loss of the sparse solution is expected to lie. In the LASSO
case, the ℓ2 cost of the prediction error is minimized for a given
sparsity level, i.e., ‖θ‖1 < ε, see (1). As the ℓ1 norm of the
optimal estimate for θ is generally unknown, it is much harder
in practice to develop a selection scheme for ε in the LASSO
method. This is the motivation for introducing (12).

It should be noted that the convex optimization program

min
θ

‖θ‖1 (16a)

s.t. V (θ,DN ) ≤ ε (16b)

has been used before for signal recovery in the compressive
sensing context [19], [20], i.e., when the number of observa-
tions N is less than the number of estimated parameters ng. Our
contribution lies in the suggestion to use εN according to (12),
in particular with εN chosen by the AIC rule εN = 2ng/N , and
in the adaptive version (13) inspired by [18].

The use of a threshold ε∗ in Step 4 of Algorithm 1 to

determine the support of θ̂AN is considered merely for numerical
purposes: many numerical methods for solving (12) or (13)

(e.g., CVX [21]) deliver a solution θ̂AN which is sparse only
up to some numerical precision (e.g., 10−10). The choice of ε∗
should be made according to the precision of the method used
to solve (12) or (13) (typically an order of magnitude larger
than such tolerance). In practice, since such tolerances are much
smaller than the achievable statistical accuracy, the effect of
thresholding with ε∗ is negligible1 (in statistical terms). Notice
that for the theoretical results of Section V we assume infinite
numerical precision, hence we take ε∗ = 0.

B. Steiglitz-McBride Method

Consider now an Output-Error (OE) model structure,

yt =
B(q)

A(q)
ut + ǫt (17)

which corresponds to (4) with C(q) = D(q) = 1. It is well

known, see [2], that the least-squares estimator θ̂LSN :=

(Φ⊤
NΦN )

−1
Φ⊤

NYN (where ΦN is given as in (11)) is biased,
and the cost function of PEM for this model structure is non
convex, hence its minimization is difficult and may suffer from
local minima.

One technique for estimating models of type (17) from least-
squares estimates is the so-called Steiglitz-McBride method
[22]. The idea of this method is to iteratively pre-filter ut and

yt by 1/Â(k)(q) resulting in the filtered data set D(k)
N , where

Â(k)(q) is an estimate of the A(q) polynomial (at step k).

1Many sparse estimation methods rely in practice on a final thresholding step
for support set recovery (as Step 4 in Algorithm 1), sometimes even without
explicitly saying so.
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Then, least-squares estimation is applied on D(k)
N , assuming a

model structure such as (10), which gives estimates Â(k+1)(q)

and B̂(k+1)(q). This procedure is usually initialized by taking

Â(0)(q) = 1, and stopped when the estimates Â(k)(q) and

B̂(k)(q) do not change much from one iteration to the next.
The Steiglitz-McBride algorithm has been extensively stud-

ied in the literature [23], [24]. In particular, it is known to give
unbiased estimates only if the true system belongs to an OE
structure (17), and its global convergence properties are still
largely an open problem. In addition, the Steiglitz-McBride is
not asymptotically efficient for (17).

In [16], an interesting extension of the Steiglitz-McBride
algorithm has been developed, which gives consistent estimates
even for Box-Jenkins model structures (4). This extension is
based on a preliminary step, where a high order ARX model

AHO(q)yt = BHO(q)ut + ǫt (18)

with

AHO(q) = 1 + aHO
1 q−1 + · · ·+ aHO

m q−m (19a)

BHO(q) = bHO
1 q−1 + · · ·+ bHO

m q−m (19b)

is fitted to DN , and used then to pre-filter the data, i.e., to
generate the signals

yFt := ÂHO(q)yt, uF
t := ÂHO(q)ut.

This filtered data is then used in place of the original input
and output signals of (17) on which the Steiglitz-McBride
procedure is executed, resulting in estimates of the polynomi-
als A(q) and B(q). The intuition behind this method is that

1/ÂHO(q) should be a reasonable estimate of the noise model
Co(q)/Do(q), hence the pre-filtering stage should “whiten” the
noise (as seen from the output). This means that the standard
Steiglitz-McBride method could then deliver a consistent esti-
mate of the polynomials A(q) and B(q).

An important issue regarding the Steiglitz-McBride method

is the stability of the pre-filters Â(k) and AHO: these filters
are not guaranteed to be stable, so if at some iteration the es-
timated filter is unstable, the Steiglitz-McBride method cannot
continue. One way to overcome this issue is to split the unstable

filter Â(k) as Â
(k)
+ Â

(k)
− , where Â

(k)
+ is stable and Â

(k)
− is anti-

stable (the constant factor can be arbitrarily assigned to any of

these factors), pre-filter the data forward in time using 1/Â
(k)
+ ,

and then use the filter 1/Â
(k)
− backwards in time. This technique

has been used in other contexts within system identification
(e.g., [25]) and it preserves the second-order properties of the
Steiglitz-McBride method (since it corresponds to the time-
domain equivalent of the Sanathanan-Koerner method [26]).

Some results on the accuracy of the extended Steiglitz-
McBride method are detailed in Section V.

C. Estimation of Sparse Output-Error Models

As mentioned in Section I, SPARSEVA and ℓ1-penalized
estimators cannot be directly applied to model structures such
as (4), because the PEM cost function is non convex. How-
ever, techniques such as Steiglitz-McBride, which rely on

least-squares optimization, can be directly extended to use ℓ1-
penalized estimators in order to deliver sparse models.

Algorithm 2 OE-SPARSEVA with Steiglitz-McBride

Require: a data record DN = {ut, yt}Nt=1 of (2) and the
model structure (17) characterized by the parameters
θ = [a1 . . . bnb

]⊤ ∈ Θ ⊆ R
na+nb . Assume that DN is

informative w.r.t. (17) and (17) is globally identifiable
on Θ [2].

1: Let m ≫ na and fit using least-squares the high order
ARX model described by (18) to the measurements DN ,

resulting in ÂHO(q) and B̂HO(q).
2: Filter the data DN as

yFt := ÂHO(q)yt, uF
t := ÂHO(q)ut.

3: Set k = 0, and let Â(0)(q) = 1, B̂(0)(q) = 0 and

consequently θ̂
(0)
N = 0.

4: repeat

5: k ← k + 1 and filter the data DF
N = {uF

t , y
F
t }

N
t=1 as

y
F(k)
t :=

1

Â(k−1)(q)
yFt , u

F(k)
t :=

1

Â(k−1)(q)
uF
t .

6: Fit, using least-squares, a model of the form

A(k)(q)y
F(k)
t = B(k)(q)u

F(k)
t + ǫ

(k)
t (20)

resulting in the estimates Â(k), B̂(k) and the associated

parameter vector θ̂
(k)
N .

7: until θ̂
(k)
N has converged or the maximum number of

iterations is reached.
8: Apply A-SPARSEVA (with least-squares re-estimation) to

the model

A(q)y
F(k+1)
t = B(q)u

F(k+1)
t + ǫ

(k+1)
t . (21)

9: return estimated model (17).

Based on the previous discussion, Algorithm 2 provides
estimation of sparse rational OE models (17).

Remark 4.3: Note that in Step 8, A-SPARSEVA can be used
to impose several different sparsity patterns on the A(q) and
B(q) polynomials. For example, if we only want to impose
sparsity on A(q), then the ℓ1-norm in the cost function of
(13) can be modified so that only the coefficients of A(q) are
included.

Remark 4.4: Based on validation data, optimization of εN
can also be applied to recover the exact sparsity structure
of θ. However, re-optimizing such quantity (using e.g. cross-
validation) is equivalent to optimizing for the regulariza-
tion parameter in a standard LASSO estimator (inclusion of

V (θ̂LSN ,DN ) in (12b) is not necessary). This might refine the
results for relatively small data-lengths N under considerable
noise, but at the expense of a much higher computational load.
Hence a clearly important feature of the proposed SPARSEVA
scheme is an automatic choice of εN guaranteeing a reliable
performance.
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Fig. 1. Geometry of (12). In (a), a sparse solution (θ2 = 0) is obtained but
not in (b).

V. MAIN RESULTS

In this section, we present the main technical results about
the asymptotic properties of the introduced methods. For the-
oretical purposes, we neglect numerical errors due to finite
precision, hence we assume for simplicity that ε∗ = 0.

A. SPARSEVA

We will first investigate the theoretical properties of SPAR-
SEVA and its adaptive variant.

1) Consistency: Regarding consistency of the estimator
w.r.t. (6), we have the following results:

Theorem 5.1 (Consistency of (A-)SPARSEVA): Under the
assumptions of Section IV-A-1, and θo 	= 0, the SPARSEVA
and A-SPARSEVA estimators are consistent in probabil-

ity (i.e.2 θ̂
(A)
N

p→ θo) if and only if εN → 0. In particular,

‖θ̂(A)
N − θo‖2 = Op(N

−1/2 +
√
εN ) uniformly in θo.

Proof: See Appendix B. �

Corollary 5.1 (Exact Order of Consistency): Subject to the
assumptions of Theorem 5.1, if εN → 0, but NεN → ∞, then

‖θ̂(A)
N − θo‖2 ≍p

√
εN (c.f. Section II for the definition of ≍p).

Proof: See Appendix C. �

2) Sparseness: Since V (θ,DN ) is quadratic, the constraint
(12b) corresponds to an ellipsoid Ω in Θ ⊆ R

ng . The solution
to (12a) will be on the boundary of the smallest ℓ1-ball that
intersects this ellipsoid, see Fig. 1(a). When the ellipsoid has
a shape as in Fig. 1(a), then, as can be seen, the solution will
be sparse. However, with a more tilted ellipsoid as in Fig. 1(b),
the solution will not be sparse. The shape of the ellipsoid is
determined by the regressor matrix ΦN .

Various measures to ensure sparsity have been suggested, e.g.
[27], [28]. The adaptive SPARSEVA (13) is inspired by [18].
We now establish the exact conditions on εN for the adaptive
SPARSEVA to generate sparse estimates (recovery of the true
support of θo).

Theorem 5.2 (Sparseness of the Adaptive SPARSEVA): Un-
der the assumptions of Section IV-A-1 together with εN → 0
and θo 	= 0, A-SPARSEVA (13) satisfies the sparseness prop-

erty (i.e., P{Supp(θ̂AN ) = Supp(θo)} → 1) if NεN → ∞. If
NεN → ∞ does not hold, then A-SPARSEVA does not have
the sparseness property.

Proof: See Appendix C. �

Remark 5.1: It can be shown that when the regressors are
orthonormal, i.e., N−1Φ⊤

NΦN = I , then Theorem 5.2 holds
also for SPARSEVA. �

2The notation θ̂
(A)
N

refers either to θ̂N or θ̂A
N

, depending on the context.

3) Adaptive SPARSEVA and the Oracle Property: From
the preceding results, the adaptive SPARSEVA possesses the
sparseness property if and only if εN is chosen such that εN →
0 and NεN → ∞. On the other hand, by Corollary 5.1, such a
choice of εN gives rise to a non efficient estimator (since the

order of convergence of θ̂AN to θo would be
√
εN , strictly larger

than N−1/2). One way to overcome this efficiency-sparseness
tradeoff is to add Step iii) (see Section IV) so that the non-
zero parameters are re-estimated using least-squares. Our next
result shows that the estimator obtained from the third step of
the adaptive SPARSEVA is asymptotically normal and efficient.

Theorem 5.3 (The Oracle Property): Consider the assump-
tions in Theorem 5.2 and that NεN → ∞. Then,

√
N
(

θ̂A−RE
N − θo

)

∈ As N (0,M−1)

where M is the information matrix when it is known which
elements of θo are zero.

Proof: See Appendix D. �

Remark 5.2: We remark that it is clear from the proof of

Theorem 5.3 that such result holds if we replace the use of θ̂AN
as an estimator of the location of the non-zero components of
θo by any other

√
N -consistent estimator of such components.

For example, Remark 5.1 implies that Theorem 5.3 holds for
SPARSEVA-RE when the regressors are orthonormal. �

4) Minimax Rate Optimality: Say that we are interested

in an estimate θ̂N of θo such that the risk R(θ̂N , θo) :=

E{‖θ̂N − θo‖22} is small. Since the risk R depends on the
unknown true value θo, it is relevant to study the worst-case

performance, supθo∈Rng R(θ̂N , θo). In particular, we will focus
on the rate of decay of R with respect to the number of samples
N . The following definition is appropriate:

Definition 5.1 (Minimax Rate Optimality): The estimator

θ̂N is minimax rate optimal over the class of all estimators

of θo, if supθo∈Rng R(θ̂N , θo) converges to zero at the same

rate as inf δ̂∈Rng supθo∈Rng R(δ̂, θo), where δ̂ ranges over all
estimators of θo based on the observation vector YN .

The conditions for adaptive SPARSEVA and its re-estimated
version to be minimax rate optimal are as follows:

Theorem 5.4 (Minimax Rate Optimality): Under the

Assumptions IV-A-1, A-SPARSEVA (13) and θ̂A−RE
N are

minimax rate optimal if and only if εN = Op(N
−1).

Proof: See Appendix E. �

Remark 5.3: Theorem 5.4 shows that A-SPARSEVA and
A-SPARSEVA-RE cannot be minimax-rate-optimal and have
the oracle property at the same time. This fundamental trade-
off is present in all model selection procedures, as shown in
[29], [30].

Remark 5.4: The oracle property (Theorem 5.3) seems to
contradict the Cramér-Rao inequality, according to which the
covariance of an unbiased estimator (which does not assume
the sparsity structure of the parameter being estimated) cannot
be smaller than the inverse of the full Fisher information
matrix (which does not assume such sparsity pattern). In fact,
there is no apparent contradiction: all sparse estimators are
indeed “super-efficient”, in the sense that they can beat the
Cramér-Rao bound (when they are tuned to enjoy the oracle
property). The reason is that these estimators are not unbiased,
but only asymptotically unbiased, and they rely on non-smooth
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functions, such as the ℓ1 norm, so the conditions for the Cramér-
Rao inequality do not hold for these estimators. This is a well
known issue (see [29]), as sparse estimators can be seen as a
combination of model structure selection and estimation (or
“pre-test estimators”), resembling Hodges-type super-efficient
estimators. This, of course, does not come for free: as seen in
the previous remark, if a sparse estimator is tuned to satisfy the
oracle property, it looses its minimax rate optimality.

Remark 5.5: Notice that the scaling of the parameters in
θo does not seem to play a major role in the estimation
performance of Algorithm 2, at least asymptotically in N ,
since A-SPARSEVA weights the ℓ1 norm by the inverse of the

estimates in θ̂LSN , which compensates for the relative size of the
components of θo.

Remark 5.6: As seen in the theorems of this section, the
consistency, sparseness, oracle and minimax-rate-optimality
properties do not depend on constant factors in εN , but only
on its asymptotic rate as a function of N . This comes from
the fact that the described properties are asymptotic in nature,
which means that constant factors may affect the finite sample
behavior of the estimator, but their effect becomes negligible
for large N . The irrelevance of constant factors is also common
in the consistency of standard model selection criteria; see, e.g.,
[3, Section 11.5].

B. Steiglitz-McBride Method

The modified Steiglitz-McBride method presented in this pa-
per, which includes a stabilization scheme (based on reflecting
the unstable poles of the prefilter) and a high order ARX pre
filtering step, is due to Y. Zhu [16]. This method, as well as
the original Steiglitz-McBride algorithm, can be expected to be
globally convergent if the signal to noise ratio is sufficiently
high (c.f. [23]), but its global convergence properties in the
general case are not well understood yet. However, prelimi-
nary results seem to indicate that the equilibrium point of the
modified method is a consistent and asymptotically efficient
estimator of Ao(q) and Bo(q) for general Box-Jenkins model
structures3 (4).

C. OE-SPARSEVA

The combination of A-SPARSEVA and the modified
Steiglitz-McBride method, OE-SPARSEVA, as presented in
Section IV-C, can be expected to have attractive asymptotic
properties. Indeed, by combining the theoretical results of its
components, we obtain the following result:

Theorem 5.5 (Properties of OE-SPARSEVA): Under the as-
sumptions of Section III, OE-SPARSEVA (assuming conver-
gence of the Steiglitz-McBride iterations)

1) is consistent in probability if and only if εN → 0,
2) has the sparseness property, for εN → 0 and θo 	= 0, if

and only if NεN → ∞,
3) has the oracle property if εN → 0 and NεN → ∞.

Proof: See Appendix F. �

3Even though it is possible to propose variants of Algorithm 2, where
either, e.g., ridge regression or a sparse estimator are used instead of least-
squares in Steps 1 or 6, preliminary results show that Zhu’s method is already
asymptotically efficient when the iterations from Steps 4–7 of OE-SPARSEVA
are convergent. This suggests that not much may be gained by considering other
variants of Algorithm 2.

D. Equivalence With Other Sparse Estimators

Next, we show how the introduced A-SPARSEVA estimator
is related to the LASSO and the NNG (resembling the proof
of the duality result in [31, Theorem 3]). First, consider the
adaptive version of the LASSO estimator (1) (for γ = 1), which
was first introduced in [18]:

min
θ∈Rng

V (θ,DN ) (22a)

s.t. ‖wN ⊙ θ‖1 ≤ εL. (22b)

This estimator can be written in the Lagrangian form

ΛL(θ, λL) = V (θ,DN ) + λL (‖wN ⊙ θ‖1 − εL) (23)

with λL≥0. The optimum of (22) is obtained at the optimum of

max
λL≥0

min
θ∈Rng

ΛL(θ, λL). (24)

Similarly, (13) has the Lagrangian:

ΛS(θ, λS) = ‖wN ⊙ θ‖1
+ λS

(

V (θ,DN )− V
(

θ̂LSN ,DN

)

(1 + εN )
)

. (25)

Notice that both V (�,DN ) and ‖ � ‖1 are convex functions,
V (�,DN ) is strongly convex and all constraints satisfy the
constraint qualification, hence solutions of (24) and (25), i.e.,

(θ̂L(ǫL), λ
∗
L(ǫL)) and (θ̂S(εS), λ

∗
S(εS)) are unique with no du-

ality gap.

For a given εL, let εN be such that V (θ̂LSN ,DN )(1 + εN ) is
equal to the minimum value of (22). For this choice of εN ,
the feasibility sets UL := {θ ∈ R

ng : ‖wN ⊙ θ‖1 ≤ εL} and

US :={θ∈R
ng :V (θ,DN )≤V (θ̂LSN ,DN )(1+εN )} are convex

and intersect at exactly one point,4 θ̂L(εL) = θ̂S(εN) (c.f.
Fig. 1). The reverse of this argument also holds respectively.
This shows that if λ∗

S 	= 0 and λ∗
L 	= 0, then there is a bijective

relation between εL and εN such that θ∗ := θ̂S(εN ) = θ̂L(εL).
Notice, however, that this relation (which is induced by the
KKT conditions of (23) and (25)) is dependent on the optimal
solution θ∗, i.e., it is data-dependent (the center of US depends

on θ̂LSN and its shape depends on ΦN ).
As a next step, consider the NNG in the form of

min
w̄∈Rng

V (w̄ ⊙ θ̂LSN ,DN ) + λN‖w̄‖1 (26a)

s.t. w̄ ≥ 0 (26b)

which provides the parameter estimate θ̂NNG
N := w̄∗ ⊙ θ̂LSN with

w̄∗ being the optimum of (26). Introduce a new variable θ =

w̄ ⊙ θ̂LSN which, if substituted into (26), gives

min
θ∈Rng

V (θ,DN ) + λN‖wN ⊙ θ‖1 (27a)

s.t. θ ⊙ θ̂LSN ≥ 0 (27b)

as [wN ]i := 1/|[θ̂LSN ]i|. Therefore, by comparing (27) and (24),
as observed in [18], we see that the NNG corresponds to
the adaptive LASSO with an additional sign constraint (via
a suitable, data-dependent, bijection between λN and the
optimal λ∗

L).

4If θS �= θL both belong to US ∩ UL, then both achieve the minimum of
(22). However, (θS + θL)/2 also belongs to US ∩ UL (since it is a convex set),
and due to the strong convexity of V , V ([θS + θL]/2,DN ) < V (θS,DN ),
contradicting the optimality of θS and θL. This means that the optimum of (22)
is unique and that US ∩ UL is a singleton.
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Based on the previous derivations, the conclusion is that
A-SPARSEVA, the adaptive LASSO and the NNG can be all
seen as the same sparse estimator under a specific choice of
their regularization (penalization) parameter (and an additional
sign constraint for the NNG). This highlights that the real ad-
vantage of the A-SPARSEVA scheme is the automatic selection
of this parameter, implicitly ensuring either the oracle or the
minimax rate optimality properties.

We should emphasize again, however, that the relation be-
tween A-SPARSEVA, the adaptive LASSO and the NNG is in
general data-(or θ∗-) dependent. This means that, even though
their regularization paths are equivalent (modulo monotonic
transformations of their regularization parameters), it does not
seem possible in general to derive a simple, explicit formula
to describe these connections without having first to solve the
respective convex optimization problems. In other words, the
automatic tuning provided by SPARSEVA cannot be easily
translated to the LASSO or NNG formulations.

VI. NUMERICAL EXAMPLE

In this section, we will provide numerical evidence of the
performance of the methods developed in Section IV.

A. SPARSEVA

We illustrate the properties and performance of the
SPARSEVA approach and compare it with other methods using
Example 4.1 in [27]. In this example,

Ao(q) = 1, Bo(q) = 3q−1 + 1.5q−2 + 2q−5

Co(q) = 1, Do(q) = Ao(q) = 1.

This system has a Finite Impulse Response (FIR) structure,
which corresponds to a simple regression setup. To identify it
from data based on the previously proposed estimation scheme,
consider the model structure (10) with na = 0 and nb = 8,
which results in the true parameter vector

θo = [3 1.5 0 0 2 0 0 0]⊤.

Notice that θo is rather sparse. For the purpose of identification,
estimation and validation data sets have been generated. Ac-
cording to the experimental conditions discussed in [27], each
data set has been constructed in terms of a regression matrix
ΦN with N independently generated rows where in each row
the components are standard normal with a correlation between
the ith and the jth terms of 0.5|i−j|. This corresponds to N
number of independent experiments for each row, collected into
ΦN , which have been conducted on the system with a single
output measurement yt generated by an AR filtered white noise:
ut − 0.5ut−1 =

√
1− 0.25wt with wt ∼ N (0, 1).

Under these conditions, 100 estimation and 100 validation
data sets have been generated for each “data length” N ∈ {10 +
10k}10k=1 resulting in 11 × 100 estimation and validation data
records. The average Signal to Noise Ratio5 (SNR) has been
−3.97 dB.

Using these data sets, SPARSEVA is compared to the follow-
ing methods: LS-ORACLE: least-squares estimate of θ using
ΦTo (prior knowledge of the non-zero parameters). Note that

5The SNR is defined as SNR := 10 · log10(‖yt − vt‖
2
2/‖vt‖

2
2) where

vt = (Co(q)/Do(q))et.

Fig. 2. MSE as a function of the sample size N .

this is the ideal estimator and by the Cramér-Rao lower bound
w.r.t. the true support of θo}, no other estimator can perform
better. However, it cannot be applied in practice as the optimal
model structure is unknown. LASSO-GCV is the LASSO,

min
θ∈Rng

V (θ,DN ) + λ‖θ‖1 (28)

where the regularization parameter λ is chosen according to
generalized cross-validation [32], i.e., the λ that minimizes

V (θ̂N ,DN )

(1− p(λ)/N)2
(29)

is chosen. Here p(λ) is the number of effective parameters
defined as

p(λ) =Tr
{

ΦN

(

Φ⊤
NΦN + λW †)−1

Φ⊤
N

}

(30a)

W =Diag
(

|θ̂N |
)

(30b)

with | · | taken element-wise. Four variants of SPARSEVA are
included: SPARSEVA-AIC/BIC where the constraint εN is
chosen as AIC (εN = 2ng/N) and BIC (εN = (ng logN)/N).
A-SPARSEVA-AIC/BIC are the two corresponding adaptive
versions. Notice that the BIC choice for εN satisfies the con-
dition for sparseness (see Theorem 5.2).

Fig. 2 shows the Mean-Squared Error (MSE) of the param-
eter estimate as a function of the sample size for 100 Monte-
Carlo simulations. Re-estimation is used for the SPARSEVA-
methods. The threshold ε∗ for determining which parameters
are zero and non-zero, respectively, was (somewhat arbitrarily)
set to 10−5. Also re-estimation was tried for LASSO-GCV,
but was found to perform worse than no re-estimation and has
therefore not been included. It can be seen that above N =
70, the MSE of A-SPARSEVA with BIC constraint becomes
visually undistinguishable from the MSE of LS-ORACLE;6 this
agrees with the Oracle property, which implies that the differ-
ence between these MSE’s should vanish asymptotically with
N . Fig. 3 shows the average number of correctly estimated zero

6The collapse of the two MSE curves is due to the inherent randomness of the
Monte Carlo simulations, not to the equality of the actual MSE of the estimators
for N ≥ 70.
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Fig. 3. Percentage of correctly identified zero elements as a function of the
sample size N .

Fig. 4. Percentage of correctly identified non-zero elements as a function of
the sample size N .

parameters, and we see that this estimator has the best ability to
determine where the zero elements are located. However, from
Fig. 2 it can be seen that for small sample sizes the performance
of this estimator is worse than for almost all other estimators.
From Fig. 4, which shows the average number of correctly
estimated non-zero parameters, it is clear that this is due to that
this estimator has problems to identify which elements of θo are
non-zero for small sample sizes.

B. OE-SPARSEVA

Consider the data-generating system (2) described by the
following polynomials:

Ao(q)=1−0.1972q−2−0.2741q−8, Bo(q)=q−5−8.336q−7

Co(q)=1, Do(q) = 1.

This system obviously has an OE type of noise structure. To
identify this system, consider the model structure (17) with
na = 8 and nb = 8. Even if this corresponds to a rather accu-

rate guess of the original order of the polynomials involved, the
true parameter vector

θo = [0 − 0.1972 0 0 0 0 0 − 0.2741

0 0 0 0 0 1 0− 8.3365]

corresponding to the data-generating system is rather sparse.
Again, a Monte-Carlo study is set up, with 100 estimation

and 100 validation data records generated by the system for
each data length N ∈ {200 + 50k}37k=1, resulting in 37 × 100
estimation and validation data records with length in the in-
terval [200, 2000]. During each computation, u and e have
been considered as independent realizations of two white noise
sequences with normal distributions ut ∼ N (0, 1) and et ∼
N (0, σ2) respectively. To study the effect of a change in the
power of the noise for this case, the generation of the data
sequences has been repeated for various standard deviations
variances σ ∈ {0.0087, 0.275, 1.54, 8.71} corresponding to av-
erage SNR’s: 30 dB, 15 dB, 7.5 dB, 0 dB respectively. This
resulted in a total of 4× 37× 100 = 14800 estimation and
validation data sets defining a serious Monte-Carlo study under
various conditions.

Using these data sets, the OE-SPARSEVA described by
Algorithm 2, with BIC type of εN , LS re-optimization and
maximum number of iterations being equal to 50, and the OE
algorithm of the Identification Toolbox of MATLAB have been
applied to estimate the system in the considered model set. In
order to fairly assess the quality of the estimates, an SMB-
ORACLE estimator in terms of the Steiglitz-McBride method
has been also applied with the priori knowledge of which
elements of θo is zero. The results are compared in terms of

• The MSE of the prediction ŷθ̂N on the validation data:

MSE =
1

N
E

{

∥

∥

∥y(k)− ŷθ̂N (k)
∥

∥

∥

2

2

}

(31)

computed as an average over each 100 runs for a given N
and σ2.

• The average of the fit score or the Best Fit Rate (BFR) [33]:

BFR = 100% ·max

⎛

⎝1−

∥

∥

∥
y(k)− ỹθ̂N (k)

∥

∥

∥

2

‖y(k)− ȳ‖2
, 0

⎞

⎠ (32)

where ȳ is the mean of y and ỹθ̂N is the simulated model
output based on the validation data.

• The ℓ1 parameter estimation error: ‖θ̂ − θo‖1.
• The percentage of correctly estimated zero elements.

The average results of the 100 Monte-Carlo runs in each
cases is given in Fig. 5 and the mean and standard deviation of
the parameters are given in the SNR = 7.5 dB, N = 2000 case
in Table I. From these results it follows that in the low noise
cases (SNR = 30 dB, 15 dB) the proposed OE-SPARSEVA
scheme correctly estimates the true support of θo, i.e., it cor-
rectly identifies the underlying model structure of the system
and hence it achieves the same results as the SMB-ORACLE
approach. The performance difference of the OE approach and
the SMB-ORACLE suggests that the reduction of the estima-
tion error can be relatively large by using OE-SPARSEVA in
these cases not mentioning the value of really finding which
parameters have no role at all in the considered model structure.
When the noise increases to a moderate level (SNR = 7.5 dB),
for small data lengths we can observe that OE-SPARSEVA
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Fig. 5. Monte Carlo simulation results with various SNR’s and data lengths N . (a) SNR 30 dB; (b) SNR 15 dB; (c) SNR 7.5 dB; (d) SNR 0.0 dB.

loses the benefits of the regularized optimization scheme by
over-estimating the possibly non-zero parameters and achieving
worse results than the OE approach. Increasing the number
of data points results in a quick recovery of the algorithm
and around N = 800 it starts achieving similar results as the
SMB-ORACLE. We can see that the performance of OE-
SPARSEVA asymptotically converges to the SMB-ORACLE
approach while the OE approach has a much slower conver-
gence rate. The same behavior can be observed in the SNR =
0 dB case. However, initially, the OE approach provides better
estimates due to misclassification of the zero elements for this
high-noise/low-sample-size scenario. The point of recovery is
around N = 1000 samples, where the correct estimation of the

support becomes more than 50%. This is followed by a slow,
but much steeper convergence to the performance of the SMB-
ORACLE than the OE method. Note that this performance loss
is mainly due to the inaccurate estimation of the pre-filters and
the small sample size for the BIC scheme.

VII. CONCLUSION

In this manuscript, we have presented two contributions to
the problem of sparse estimation of rational plant structures.

The first contribution is the elimination of the need for
using cross-validation to tune the regularization parameters,
by proposing a new technique, called SPARSEVA, inspired
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TABLE I
BIAS AND VARIANCE RESULTS OF THE PARAMETER ESTIMATES BY THE

SMB-ORACLE, OE AND THE OE-SPARSEVA METHODS IN THE

SNR = 7.5 dB, N = 600 CASE

by the philosophy behind Akaike’s criterion. Numerical sim-
ulations have shown that the adaptive version of this method
performs most favorably. On these examples, the “AIC”

choice εN = (1 + 2ng/N)V (θ̂LSN ,DN ) seems to give a good
balance between sparsity and model fit. Thus, this method
has the potential to provide a good estimate in one shot.
When the focus is on sparseness, the “BIC” choice εN =

(ng log(N)/N)V (θ̂LSN ,DN ) ensures this property.
As a second contribution, we have shown that by combin-

ing SPARSEVA with a high-order ARX pre-filtering based
Steiglitz-McBride method, an efficient approach can be derived
for the estimation of general rational LTI plant model structures
in which the underlying data-generating system is represented
by a sparse parameter vector. A main benefit of the method,
inherited from SPARSEVA, is that the regularization parameter
(or tuning quantity) is automatically chosen, not requiring
cross-validation. The derived approach can be used to recover
the dynamical structure of the system, i.e., for model structure
selection, even in case of heavy over-parametrization or colored
noise settings provided that a sufficiently large data set is
available. The latter has been demonstrated by an extensive
simulation based Monte-Carlo study.

The theory developed in the paper is asymptotic in nature.
An interesting topic for future research is to explore the small-
sample/low-SNR behavior of SPARSEVA, and to consider
corrected versions of AIC or BIC (as choices for εN ) under
these conditions.

APPENDIX A

NOTATION USED IN APPENDICES

The notation

η :=
N

σ2
V (θ̂LSN ,DN ) (33a)

ξ :=
[

Φ⊤
NΦN

]−1
Φ⊤
NEN = θ̂LSN − θo (33b)

will be used throughout the appendices.

APPENDIX B

Proof of Theorem 5.1

The proof will be based on the following formulation of (12)
and (13).

Lemma II.1: It holds that

η/N → 1 in probability as N → ∞;
√
Nξ ∈ As N (0, σ2M), where M ≻ 0.

Furthermore, problems (12) and (13) can be rewritten as

min
θ∈Rng

‖ω ⊙ θ‖1 (34a)

s.t. σ2εNη ≥ ‖θ − (θo + ξ)‖2ΓN
(34b)

where ΓN := Φ⊤
NΦN , ω = [1 · · · 1]⊤ ∈ R

ng for (12) and ω =
wN for (13).

Proof: See Appendix G. �

To simplify the notation, define

Ω :=
{

θ ∈ R
ng | ‖θ − (θo + ξ)‖ΓN

≤
√

σ2εNη
}

(35)

as the constraint set of (34).
Lemma II.2 (Optimality Achieved on the Boundary): The

optimum of (34), when the elements of w are strictly positive,
is achieved at θ = 0 if 0 ∈ Ω, otherwise it is achieved on the
boundary of Ω, and no nonzero interior point of Ω can be an
optimum point of (34).

Proof: See Appendix G. �

Since η/N
p→ 1 and since7

1

N
‖z‖2ΓN

=
1

N
z⊤ΓNz ≥ {λmin(Γ ) + op(1)}‖z‖22

for every z ∈ R
ng , (34) gives that

‖θ̂N − θo‖2 ≤‖θ̂N − θ̂LSN ‖2 + ‖θ̂LSN − θo‖2

≤ ‖θ̂N − θ̂LSN ‖ΓN√
N
(

√

λmin(Γ ) + op(1)
) + ‖θ̂LSN − θo‖2

≤
√

σ2εNη

N

[

λ
−1/2
min (Γ ) + op(1)

]

+ ‖ξ‖2

=σλ
−1/2
min (Γ )

√
εN + op(1) +Op(N

−1/2)

which implies that θ̂N
p→ θo if εN → 0. Conversely, assume

that lim infN→∞ εN = δ > 0, i.e., that there is a subsequence
{Nk}k∈N ∈ N such that for all k ∈ N, εNk

> δ/2 (say). As-
sume without loss of generality that N1 is large enough so that,
with probability 1− δ (δ > 0), |‖N−1

k ΓNk
‖ − ‖Γ‖| < ‖Γ‖/2

for all k ∈ N; denote this event by S∗. Consider the neighbor-

hood U := {θ ∈ R
ng : ‖θ − θo‖2 < σ

√

(δ/12)‖Γ‖−1} of θo.
Then, since for all k ∈ N and x ∈ R

ng , under S∗, it holds that

1

Nk
‖x‖2ΓNk

=
1

Nk
x⊤ΓNk

x ≤
∥

∥N−1
k ΓNk

∥

∥ ‖x‖22 ≤ 3

2
‖Γ‖‖x‖22

and ‖θ − (θo + ξ)‖2 ≤ ‖θ − θo‖2 + ‖ξ‖2, it follows that under
S∗:

Ω ⊇

⎧

⎨

⎩

θ ∈ R
ng :

√

3

2
‖Γ‖‖θ − (θo + ξ)‖2 ≤

√

σ2εNk
η

Nk

⎫

⎬

⎭

=

{

θ ∈ R
ng : ‖θ − (θo + ξ)‖2 ≤

√

2σ2

3‖Γ‖
√
εNk

√

η

Nk

}

⊇
{

θ ∈ R
ng : ‖ξ‖2 ≤

√

σ2δ

3‖Γ‖

√

η

Nk
− ‖θ − θo‖2

}

.

7The condition limN→∞ N−1ΓN = Γ denotes element-wise convergence
of N−1ΓN to Γ . Since the eigenvalues of a matrix are continuous functions of
its elements [34, Appendix D], such condition implies the convergence of the
eigenvalues of N−1ΓN to the eigenvalues of Γ (appropriately sorted).
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This implies that, for all k ∈ N,

P{U⊂Ω,S∗} ≥P

{

‖ξ‖2<
√

σ2δ

3‖Γ‖

√

η

Nk
−
√

σ2δ

12‖Γ‖ , S∗

}

=P

{

‖ξ‖2 <

√

σ2δ

12‖Γ‖ + op(1), S∗

}

→P {S∗} = 1− δ

because
√
Nξ ∈ As N (0, σ2M), i.e., ξ = op(1). Since δ was

arbitrary, this shows that lim supN→∞ P{U ⊂ Ω} = 1, that is,
θ = θo is an interior point of the constraint set of (34) with non-
negligible probability for N = Nk as k → ∞. On the other
hand, by Lemma II.2 the optimum of (34) is achieved on the
boundary of Ω (or at θ = 0 	= θo),8 which means that

lim inf
N→∞

P

{

∥

∥

∥
θ̂
(A)
N − θo

∥

∥

∥

2
> min

{

σ

√

δ

12‖Γ‖ , ‖θ
o‖2
}}

>0

i.e., (A-)SPARSEVA is not consistent in probability if εN � 0.

Proof of Corollary 5.1

The corollary follows from the fact (c.f. Lemma II.2) that the
optimum of (34) is achieved on the boundary of the constraint
set Ω (or at θ = 0 	= θo), whose size has order εN , larger than
N−1/2.

APPENDIX C

PROOF OF THEOREM 5.2

Without loss of generality, let us assume that To =
{1, . . . , n1}, with n2 := ng − n1 > 0. Note that such a con-
dition can be satisfied by reordering the columns of Φ in (6).
Then, the following result holds:

Lemma III.1 (Conditions for Sparseness): Under the stated
assumptions for (34), and θo 	= 0, the optimal solution of

(34) (with ω = wN ), θ̂AN = [(θ̂A,1
N )

⊤
(θ̂A,2

N )
⊤
]
⊤

, with θ̂A,i
N ∈

R
ni (i = 1, 2), satisfies Supp(θ̂A,2

N ) = I
n1

1 and Supp(θ̂A,2
N ) =

∅, i.e., recovery of the true support To holds, if the following
conditions hold:

• ΓN ≻ 0,
•
√

σ2εNη < 0.5
√

λmin(ΓN )min{|[θo]i| : i ∈ I
n1

1 },
• |ξi| < |[θo]i|, for all i ∈ I

n1

1 ,

•
√
nCond(ΓN )‖ξ(2)a ‖∞+

√

σ2εNη

λmin

(

Γ−1
N

)

{1 + Cond(ΓN )}
∥

∥Γ−1
N

∥

∥

∥

∥

∥
w

(1)
N

∥

∥

∥

2
√

∥

∥

∥
w

(1)
N

∥

∥

∥

2

2
+mini∈In2

1

∣

∣

∣

[

w
(2)
N

]

i

∣

∣

∣

2

≤
√

σ2εNη
λmin

(

Γ−1
N

)

√

∥

∥Γ−1
N

∥

∥

mini∈In2
1

|
[

w
(2)
N

]

i
|2

√

∥

∥

∥w
(1)
N

∥

∥

∥

2

2
+
∥

∥

∥w
(2)
N

∥

∥

∥

2

2

where wN =: [(w
(1)
N )

⊤
(w

(2)
N )

⊤
]⊤, according to the parti-

tion of θ̂AN and ξ
(2)
a corresponds to those ξi which are

associated with the parameters of A in θo,2.

8For A-SPARSEVA, since the elements of wN are zero with probability 0,
we can restrict ourselves to the event where they are strictly positive.

Proof: See Appendix G. �

Let us first assume that NεN → ∞. To establish the sparse-
ness of A-SPARSEVA, we just need to show that the conditions
of Lemma III.1 hold with probability tending to 1 as N → ∞.
In particular, these conditions can be written as

• Γ + op(1) ≻ 0,

• σ
√
εN + op(1) < 0.5

√

λmin(Γ ) min
i∈In1

1

|[θo]i|+ op(1),

• Op(N
−1/2) < |[θo]i|, for all i ∈ I

n1

1 ,

• Op(N
−1/2) + σ

√

λmax(Γ){1 + Cond(Γ)}λmax(Γ
−1)·

•
√
εNOp(N

−γ/2)≤σ
√
εN (λmin(Γ

−1)/
√

λmax(Γ−1))(1 +
op(1)).

Since εN → 0, NεN → ∞ and γ > 0, all these conditions
hold (separately) with probability tending to 1 as N → ∞. By
Boole’s inequality [35], the probability that all of them hold
simultaneously tends to 1 as N → ∞. Hence, by Lemma III.1,
A-SPARSEVA has the sparseness property.

Let us assume now that NεN → ∞ does not hold. Problem
(34) can be written as

min
θ1,θ2

‖ω(1) ⊙ θ1‖1 + ‖ω(2) ⊙ θ2‖1

s.t. σ2εNη ≥
[

θ1−(θo,1+ξ(1))
θ2−ξ(2)

]⊤
ΓN

[

θ1−(θo,1+ξ(1))
θ2−ξ(2)

]

.

(36)

By Theorem 5.1, ‖θ̂AN − θo‖2 = Op(N
−1/2), which implies

that ‖θ̂A,1
N − (θo,1 + ξ(1))‖22 = Op(N

−1). Letting θ̂A,1
N fixed,

it follows from (36) that θ̂A,2
N = 0 if and only if θ̂AN =

[(θ̂A,1
N )

⊤
0]⊤ satisfies the constraint in (36), i.e., if

σ2εNN + op(N)

≥
[

θ̂A,1
N −

(

θo,1 + ξ(1)
)

−ξ(2)

]⊤
ΓN

[

θ̂A,1
N −

(

θo,1 + ξ(1)
)

−ξ(2)

]

≥ (λmin(Γ ) + op(1))

×
(

N‖θ̂A,1
N −

(

θo,1 + ξ(1)
)

‖22 +N‖ξ(2)‖22
)

= σ2λmin(Γ )N‖ξ(2)‖22 +Op(1). (37)

As
√
Nξ(2)∈AsN (0, σ2M2) for some M2 > 0, N‖ξ(2)‖22/

σ2 has asymptotically a distribution with unbounded support,
hence the probability that (37) holds does not tend to 1 as
N → ∞. Hence, in this case A-SPARSEVA does not have the
sparseness property (only if NεN → ∞).

APPENDIX D

PROOF OF THEOREM 5.3

Denote by θ̂oracleN the least-squares estimate, which is ob-
tained with the exact knowledge of the true support To, i.e.,
with (9) using ΦN,To . Furthermore, let M be the asymptotic
information matrix of θ assuming knowledge of To and SN
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be the event that Supp(θ̂AN ) = To. The complement of SN is
denoted by S̄N . This gives that, for every x ∈ R

ng ,

P{[NM ]
1
2

(

θ̂A−RE
N − θo

)

≤ x}

= P
{

[NM ]
1
2

(

θ̂A−RE
N − θo

)

≤ x|SN

}

P{SN}

+ P
{

[NM ]
1
2

(

θ̂A−RE
N − θo

)

≤ x, S̄N

}

= P
{

[NM ]
1
2

(

θ̂oracleN − θo
)

≤ x
}

P{SN}

+ P
{

[NM ]
1
2

(

θ̂A−RE
N − θo

)

≤ x
}

P{S̄N}

where ≤ is taken component-wisely, and M1/2 denotes the
positive definite square root of M . Therefore,

∣

∣

∣P
{

[NM ]
1
2

(

θ̂A−RE
N − θo

)

≤ x
}

−P
{

[NM ]
1
2

(

θ̂oracleN − θo
)

≤ x
}∣

∣

∣

=
∣

∣

∣P
{

[NM ]
1
2

(

θ̂oracleN − θo
)

≤ x
}

(P{SN} − 1)

+P
{

[NM ]
1
2

(

θ̂A−RE
N − θo

)

≤ x
}

P{S̄N}
∣

∣

∣

≤
[

P
{

[NM ]
1
2

(

θ̂oracleN − θo
)

≤ x
}

+ 1
]

P{S̄N}
≤ 2P{S̄N}. (38)

Hence, if F (x) denotes the cumulative standard normal distri-
bution function, then (38) implies that

lim
N→∞

∣

∣

∣P
{

[NM ]
1
2

(

θ̂A−RE
N − θo

)

≤ x
}

− F (x)
∣

∣

∣

≤ lim
N→∞

|P
{

[NM ]
1
2

(

θ̂A−RE
N − θo

)

≤ x
}

− P
{

[NM ]
1
2

(

θ̂oracleN − θo
)

≤ x
}

|

+ lim
N→∞

∣

∣

∣
P
{

[NM ]
1
2

(

θ̂oracleN − θo
)

≤ x
}

− F (x)
∣

∣

∣

≤ 2 lim
N→∞

P{S̄N}

+ lim
N→∞

∣

∣

∣P
{

[NM ]
1
2

(

θ̂oracleN −θo
)

≤ x
}

−F (x)
∣

∣

∣=0

(39)

since θ̂AN has the sparseness property (i.e., limN→∞ P{S̄N} =

0), and θ̂oracleN is asymptotically efficient and normal. Equation

(39) shows that θ̂A−RE
N has the Oracle property.

APPENDIX E

PROOF OF THEOREM 5.4

First notice that inf δ̂∈Rng supθo∈Rng R(δ̂, θo) ≍p N−1. To

see this, note that the estimator θ̂LSN is minimax optimal because
it coincides with the maximum likelihood estimator of θo

(which is known to be minimax, see e.g., [36, Section 5.3.2]),
and for this estimator, the worst-case risk decays asymptotically
as N−1.

Consider now the case εN = Op(N
−1). Then, by

Theorem 5.1, supθo∈Rng R(θ̂AN , θo)=Op(N
−1), which shows

that A-SPARSEVA is minimax rate optimal. To show that
A-SPARSEVA-RE is also minimax rate optimal, denote
by L the subspace of R

ng consisting of all points θ ∈ R
ng

such that θT̄A = 0 with TA = Supp(θ̂AN ); in other words,
L is the set of parameter values with the same support as
A-SPARSEVA. By definition, for all N sufficiently large,

L ∩Ω 	= ∅ with high probability, because θ̂AN ∈ L ∩Ω
with high probability. This implies that, for N sufficiently

large, θ̂A−RE
N ∈ Ω with high probability, since otherwise

V (θ̂A−RE
N ,DN ) > V (θ̂AN ,DN ), contradicting the optimality

of V (θ̂A−RE
N ,DN ). This observation implies, by following

a similar argument as in the proof of Theorem 5.1, that

supθo∈Rng R(θ̂A−RE
N , θo) = Op(N

−1).
The necessity of the condition εN = Op(N

−1) for minimax
rate optimality follows from [29, Theorem 2.1] (see also [30,
Theorem 1]). To apply this theorem, restrict εN to a subse-
quence {Nt}t∈N such that NtεNt

→ ∞ as t → ∞. For this sub-
sequence, according to Theorem 5.2, both A-SPARSEVA and
A-SPARSEVA-RE have the sparseness property, which implies,

by [29, Theorem 2.1], that Nt supθo∈Rng R(θ̂ANt
, θo) → ∞.

Hence, A-SPARSEVA and A-SPARSEVA-RE are not minimax
rate optimal, unless εN = Op(N

−1).

APPENDIX F

PROOF OF THEOREM 5.5

The three properties follow from Theorems 5.1, 5.2
and 5.3 (with the asymptotic efficiency of the modified
Steiglitz-McBride method), respectively, if the assumptions of
Section IV-A-1 hold. Therefore, we need to show that such
assumptions are valid.

The third assumption in Section III-A1 follows directly from
the asymptotic efficiency of the modified Steiglitz-McBride
method.

To verify the first two assumptions, notice that the Steiglitz-
McBride iterations (steps 4–7 of Algorithm 2) deliver a polyno-

mial Â(k+1)(q) which is an asymptotically efficient estimate of

Ao(q), i.e., Â(k+1)(q) = Ao(q) +Op(N
−1/2). In addition, the

data satisfies asymptotically an ARX structure of the form

Ao(q)y
o,F
t = Bo(q)u

o,F
t + vt

where vt = HN (q)et, with {et} a Gaussian white noise se-
quence of variance σ2 and {HN (q)} a sequence of filters
such that sup|z|=1 |HN (z)− 1| = op(1) [37, Theorem 3.1].

Therefore, the application of the filter 1/Â(k+1)(q) yields data
{uF

t , y
F
t } such that

u
F(k)
t = ũo,F

t + op(1)

y
F(k)
t = ỹo,Ft + op(1)

where {ũo,F
t , ỹo,Ft } are such that

Ao(q)ỹ
o,F
t = Bo(q)ũ

o,F
t + et.

The regressor matrix fed to A-SPARSEVA-RE then satisfies

Φ
(k)
N = Φo

N + op(1)

where Φ0
N is the regressor matrix obtained from {ũo,F

t , ỹo,Ft }.
Therefore

1

N

(

Φ
(k)
N

)⊤
Φ
(k)
N =

1

N
(Φo

N )⊤ Φo
N + op(1)

due to the law of large numbers (see e.g., [2, Theorem 2.B.1]).
Appealing again to [2, Theorem 2.B.1], we obtain

1

N

(

Φ
(k)
N

)⊤
Φ
(k)
N

p→ Γ ≻ 0
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for some Γ ≻ 0. This verifies the second assumption of
Section IV-A-1. Finally, notice that

V (θ,DN )

=
1

N

∥

∥

∥
Y F
N − Φ

(k)
N θ
∥

∥

∥

2

2

=
1

N

∥

∥

∥

∥

∥

θ −
(

(

Φ
(k)
N

)⊤
ΦN

)−1
(

Φ
(k)
N

)⊤
Y F
N

∥

∥

∥

∥

∥

2

2

+
1

N

(

Y F
N

)⊤
[

I − Φ
(k)
N

(

(

Φ
(k)
N

)⊤
Φ
(k)
N

)−1
(

Φ
(k)
N

)⊤
]

Y F
N

where Y F
N = [yF1 · · · yFN ]

⊤
, hence

V
(

θ̂LSN ,DN

)

=

1

N

(

Y F
N

)⊤
[

I − Φ
(k)
N

(

(

Φ
(k)
N

)⊤
Φ
(k)
N

)−1

(Φ
(k)
N )⊤

]

Y F
N .

Now,

Φ
(k)
N

(

(

Φ
(k)
N

)⊤
Φ
(k)
N

)−1
(

Φ
(k)
N

)⊤

=
1

N
Φ
(k)
N

(

1

N

(

Φ
(k)
N

)⊤
Φ
(k)
N

)−1
(

Φ
(k)
N

)⊤

=
1

N
{Φo

N + op(1)}
{

1

N
(Φo

N )⊤Φo
N + op(1)

}−1

{Φo
N + op(1)}⊤

=
1

N
{Φo

N + op(1)}
{

(

1

N
(Φo

N )⊤Φo
N

)−1

+ op(1)

}

{Φo
N + op(1)}⊤

= Φo
N

(

(Φo
N )⊤ Φo

N

)−1

Φo
N )⊤ + op(1)

where we have used [2, Theorem 2.B.1] in the last step.
Therefore,

V
(

θ̂LSN ,DN

)

=
1

N

(

Y F
N

)⊤
[

I − Φ
(k)
N

(

(

Φ
(k)
N

)⊤
Φ
(k)
N

)−1
(

Φ
(k)
N

)⊤
]

Y F
N

=
1

N

(

(Y o
N )⊤ + op(1)

)

·
[

I−Φo
N

(

(Φo
N )⊤ Φo

N

)−1

(Φo
N )⊤+op(1)

]

·(Y o
N + op(1))

= σ2 + op(1)

using [2, Theorem 2.B.1] again. This verifies the first assump-
tion of Section IV-A-1, which concludes the proof.

APPENDIX G

PROOF OF AUXILIARY RESULTS

Proof of Lemma II.1

The first two assertions follow from the assumptions in
Section IV-A-1. Furthermore, expanding (8) and using that

(I − ΦN (Φ⊤
NΦN )

−1
Φ⊤

N ) is idempotent gives

N · V (θ,DN ) =
∥

∥

∥
θ −
(

Φ⊤
NΦN

)−1
Φ⊤
NYN

∥

∥

∥

2

ΓN

+
∥

∥

∥

(

I − ΦN

(

Φ⊤
NΦN

)−1
Φ⊤
N

)

EN

∥

∥

∥

2

2
(40)

For θ̂LSN = (Φ⊤
NΦN )

−1
Φ⊤

NYN , (40) reveals that

1

σ2
V
(

θ̂LSN ,DN

)

=
1

N

∥

∥

∥

∥

1

σ

(

I − ΦN

(

Φ⊤
NΦN

)−1
Φ⊤
N

)

EN

∥

∥

∥

∥

2

2

.

These two observations imply that

(1 + εN )V
(

θ̂LSN ,DN

)

≥ V (θ,DN )

or, equivalently,

εNV
(

θ̂LSN ,DN

)

≥
∥

∥

∥
θ −
(

θo +
(

Φ⊤
NΦN

)−1
Φ⊤
NEN

)∥

∥

∥

2

ΓN

.

Proof of Lemma II.2

If 0 ∈ Ω, then it trivially follows that θ = 0 is the unique
optimum of (34). Now let us assume for the rest of the proof
that 0 	∈ Ω. Notice that ‖ω ⊙ ·‖1 is a norm in R

ng . Since Ω
is a closed set in the topology of ‖ · ‖ΓN

, it is also closed in
the topology of ‖ω ⊙ ·‖1 (since all norms in R

ng are topo-
logically equivalent [38, Problem 15.7]). Hence, dist(Ω, 0) =
inf{‖w ⊙ θ‖1 : θ ∈ Ω} =: δ > 0, and there is an element θ∗ ∈
Ω such that ‖w ⊙ θ∗‖1 = δ. Such θ∗ is an optimum of (34).
Let us assume that an interior point of Ω, say θ̄, achieves
‖ω ⊙ θ̄‖1 = δ, and consider a neighborhood U := {θ ∈ Ω :

‖ω ⊙ (θ − θ̄)‖1 < λ} ⊂ Ω, where λ < δ. Then the point θ̃ =
((‖ω ⊙ θ̄‖1 − λ/2)/‖ω ⊙ θ̄‖1)θ̄ satisfies

‖ω ⊙ (θ̃ − θ̄)‖1 =

∥

∥

∥

∥

ω ⊙
[(‖ω ⊙ θ̄‖1 − λ/2

‖ω ⊙ θ̄‖1

)

θ̄ − θ̄

]∥

∥

∥

∥

1

=

∥

∥

∥

∥

‖ω ⊙ θ̄‖1 − λ/2

‖ω ⊙ θ̄‖1
− 1

∥

∥

∥

∥

‖ω ⊙ θ̄‖1 =
λ

2

hence θ̃ ∈ U ⊂ Ω, but

‖ω ⊙ θ̃‖1 =

∥

∥

∥

∥

ω ⊙
[(‖w ⊙ θ̄‖1 − λ/2

‖ω ⊙ θ̄‖1

)

θ̄

]∥

∥

∥

∥

1

= |δ − λ/2| < δ.

Based on the above relation, θ̃ achieves a lower cost than θ̄. This
contradiction implies that no interior point of Ω can be optimal.

Proof of Lemma III.1

First notice that due to the second and third assumptions of
the lemma, ‖θ − (θo + ξ)‖2ΓN

≤ σ2εNη can hold only if θ =

[θ(1)θ(2)]
⊤

with θ(i) ∈ R
ni (i = 1, 2) and θ

(1)
k 	= 0 for every

k ∈ I
n1

1 . Otherwise, if [θ(1)]k = 0 for some k ∈ I
n1

1 ,

|[θo]k| = |[θ(1)]k − [θo]k| ≤

√

√

√

√

n
∑

i=1

[θi − ([θo]i + ξi)]
2

= ‖θ − (θo + ξ)‖2 ≤ 1
√

λmin(ΓN )
‖θ − (θo + ξ)‖ΓN

≤ 0.5 min
i∈In1

1

(∣

∣

∣

[

θo,11

]

i

∣

∣

∣

)

which is a contradiction. Now, let us further partition θ(2) as

θ(2) =: [(θ
(2)
a )

⊤
(θ

(2)
b )

⊤
]
⊤

, where θ2a corresponds to those [θ(2)]i
which are associated with the parameters of A, and partition
wN and ξ accordingly. Note that these parameters are exactly

the zero parameters allocated at A. θ
(2)
a is defined respectively.
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Our goal is to show that this partition leads to a contradiction if
na > 0.

By the assumptions of the lemma, 0 	∈ Ω, hence by
Lemma II.2, the optimum lies in the boundary of Ω. There-
fore, the optimality conditions for problem (34), omitting the
complementary conditions, are [39, Section 28]

0 ∈ ∂θ
(

‖ω ⊙ θ‖1 + (μ/2)
[

‖θ − (θo + ξ)‖2ΓN
− σ2εNη

])

μ ≥ 0, ‖θ − (θo + ξ)‖2ΓN
= σ2εNη (41)

for some μ, where ∂θf(θ) denotes the subdifferential of a
function with respect to θ. Note that the regularity conditions
for (41) to be necessary and sufficient hold, since the constraint
set contains an interior point, e.g., θ = θo + ξ. After some
algebra, using facts such as ∂‖x‖1 = Sgn(x), and the partition
of θ, θo and w, we can rewrite (41) as

⎡

⎣

θ(1) − (θo,1 + ξ(1))

θ
(2)
a − ξ

(2)
a

−ξ
(2)
b

⎤

⎦ = − 1

μ
Γ−1
N

⎡

⎢

⎣

w
(1)
N ⊙ Sgn

(

θ(1)
)

w
(2)
N,a ⊙ Sgn

(

θ
(2)
a

)

w
(2)
N,b ⊙ Sgn(0)

⎤

⎥

⎦
,

μ ≥ 0, ‖θ − (θo + ξ)‖2ΓN
= σ2εNη. (42)

We can partition Γ−1
N according to the partition of θ as

Γ−1
N =:

⎡

⎣

M11 M1,a M1,b

Ma,1 Ma,a Ma,b

Mb,1 Mb,a Mb,b

⎤

⎦

which, together with (42), gives

θ(2)a = − 1

μ

[

Ma,a −Ma,bM
−1
b,bMb,a

] [

w
(2)
N,a ⊙ Sgn

(

θ(2)a

)]

+ ξ(2)a −Ma,bM
−1
b,bξ

(2)
b

− 1

μ

[

Ma,1 −Ma,bM
−1
b,bMb,1

] [

w
(1)
N ⊙ Sgn(θo,1)

]

.

(43)

Note that Ma,a −Ma,bM
−1
b,bMb,a ≻ 0 (since ΓN > 0,

[34, Theorem 7.7.6]). Therefore, (43) and the assumptions of

the lemma imply the sparseness of θ̂AN by noting that

0 <

na
∑

i=1

[

w
(2)
N,a

]

i
|
[

θ(2)a

]

i
| = q⊤θ(2)a =

− 1

μ
q⊤
[

Ma,a−Ma,bM
−1
b,bMb,a

]

q+q⊤
(

ξ(2)a −Ma,bM
−1
b,bξ

(2)
b

− 1

μ

[

Ma,1 −Ma,bM
−1
b,bMb,1

] [

w
(1)
N ⊙ Sgn(θo,1)

]

)

< 0 (44)

where q = w
(2)
N,a ⊙ Sgn(θ

(2)
a ), which is a contradiction. How-

ever, to establish (44) we still need to prove that the first term
of the second line of (44) dominates the second term. To this
end, notice first that

μ ≥ 1
√

σ2εNη

√

λmin

(

Γ−1
N

)

√

∥

∥

∥w
(1)
N

∥

∥

∥

2

2
+
∥

∥

∥w
(2)
N,a

∥

∥

∥

2

2

μ ≤ 1
√

σ2εNη

√

∥

∥Γ−1
N

∥

∥

√

∥

∥

∥w
(1)
N

∥

∥

∥

2

2
+
∥

∥

∥w
(2)
N

∥

∥

∥

2

2
.

Based on these inequalities, we have

1

μ
|q⊤
[

Ma,a −Ma,bM
−1
b,bMb,a

]

q|

≥ 1

μ
λmin

{

Ma,a −Ma,bM
−1
b,bMb,a

}∥

∥

∥w
(2)
N,a

∥

∥

∥

2

2

≥
√

σ2εNη‖w(2)
N,a‖22

√

‖Γ−1
N ‖
√

∥

∥

∥w
(1)
N

∥

∥

∥

2

2
+
∥

∥

∥w
(2)
N

∥

∥

∥

2

2

1
∥

∥

∥

∥

(

Ma,a −Ma,bM
−1
b,bMb,a

)−1
∥

∥

∥

∥

≥

√

σ2εNη
∥

∥

∥w
(2)
N,a

∥

∥

∥

2

2
√

∥

∥Γ−1
N

∥

∥

√

∥

∥

∥
w

(1)
N

∥

∥

∥

2

2
+
∥

∥

∥
w

(2)
N

∥

∥

∥

2

2

1
∥

∥

∥

∥

∥

[

Ma,a Ma,b

Mb,a Mb,b

]−1
∥

∥

∥

∥

∥

≥

√

σ2εNη
∥

∥

∥w
(2)
N,a

∥

∥

∥

2

2
√

∥

∥Γ−1
N

∥

∥

√

∥

∥

∥w
(1)
N

∥

∥

∥

2

2
+
∥

∥

∥w
(2)
N

∥

∥

∥

2

2

λmin

{[

Ma,a Ma,b

Mb,a Mb,b

]}

≥
√

σ2εNη

∥

∥

∥
w

(2)
N,a

∥

∥

∥

2
mini∈In2

1
|[wN ]i|2

√

∥

∥

∥w
(1)
N

∥

∥

∥

2

2
+
∥

∥

∥w
(2)
N

∥

∥

∥

2

2

λmin

(

Γ−1
N

)

√

∥

∥Γ−1
N

∥

∥

(using [34, Section 0.7.3 and Theorem 4.3.15]) and
∣

∣

∣
q⊤
(

ξ(2)a −Ma,bM
−1
b,bξ

(2)
b

− 1

μ

[

Ma,1 −Ma,bM
−1
b,bMb,1

] [

w
(1)
N ⊙ Sgn(θo,1)

]

)∣

∣

∣

∣

<
∥

∥

∥
ξ(2)a

∥

∥

∥

2

∥

∥

∥
w

(2)
N,a

∥

∥

∥

2
+
∥

∥

∥
Ma,bM

−1
b,b

∥

∥

∥

∥

∥

∥
ξ
(2)
b

∥

∥

∥

2

∥

∥

∥
w

(2)
N,a

∥

∥

∥

2

+

√

σ2εNη
{

‖Ma,1‖+‖Ma,b‖
∥

∥

∥M−1
b,b

∥

∥

∥‖Mb,1‖
}∥

∥

∥w
(1)
N

∥

∥

∥

2

∥

∥

∥w
(2)
N,a

∥

∥

∥

2
√

λmin

(

Γ−1
N

)

√

∥

∥

∥w
(1)
N

∥

∥

∥

2

2
+
∥

∥

∥w
(2)
N,a

∥

∥

∥

2

2

<
∥

∥

∥ξ(2)a

∥

∥

∥

2

∥

∥

∥w
(2)
N,a

∥

∥

∥

2
+

‖Ma,b‖
λmin(Mb,b)

∥

∥

∥ξ
(2)
b

∥

∥

∥

2

∥

∥

∥w
(2)
N,a

∥

∥

∥

2

+

(

‖Ma,1‖+
‖Ma,b‖‖Mb,1‖
λmin(Mb,b)

)

√

σ2εNη
∥

∥

∥
w

(1)
N

∥

∥

∥

2

∥

∥

∥
w

(2)
N,a

∥

∥

∥

2
√

∥

∥

∥
w

(1)
N

∥

∥

∥

2

2
+
∥

∥

∥
w

(2)
N,a

∥

∥

∥

2

2

<
∥

∥

∥ξ(2)a

∥

∥

∥

2

∥

∥

∥w
(2)
N,a

∥

∥

∥

2
+

‖Γ−1
N ‖

λmin

(

Γ−1
N

)

∥

∥

∥ξ
(2)
b

∥

∥

∥

2

∥

∥

∥w
(2)
N,a

∥

∥

∥

2

+

√

σ2εNη

λmin

(

Γ−1
N

)

{

1+

∥

∥Γ−1
N

∥

∥

λmin

(

Γ−1
N

)

}

∥

∥Γ−1
N

∥

∥

∥

∥

∥
w

(1)
N

∥

∥

∥

2

∥

∥

∥
w

(2)
N,a

∥

∥

∥

2
√

∥

∥

∥
w

(1)
N

∥

∥

∥

2

2
+
∥

∥

∥
w

(2)
N,a

∥

∥

∥

2

2

≤ √
ngCond(ΓN )

∥

∥

∥ξ(2)a

∥

∥

∥

∞

∥

∥

∥w
(2)
N,a

∥

∥

∥

2

+

√

σ2εNη

λmin

(

Γ−1
N

)

1 + Cond(ΓN )}
∥

∥Γ−1
N

∥

∥

∥

∥

∥w
(1)
N

∥

∥

∥

2

∥

∥

∥w
(2)
N,a

∥

∥

∥

2
√

∥

∥

∥
w

(1)
N

∥

∥

∥

2

2
+ min

i∈In2
1

∣

∣

∣

[

w
(2)
N

]

i

∣

∣

∣

2
.

These inequalities, together with the last assumption in
Lemma III.1, imply (44). This concludes the proof.
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