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In functional magnetic resonance imaging (fMRI), functional connectivity is conventionally

characterized by correlations between fMRI time series, which are intrinsically

undirected measures of connectivity. Yet, some information about the directionality

of network connections can nevertheless be extracted from the matrix of pairwise

temporal correlations between all considered time series, when expressed in the

frequency-domain as a cross-spectral density matrix. Using a sparsity prior, it then

becomes possible to determine a unique directed network topology that best explains

the observed undirected correlations, without having to rely on temporal precedence

relationships that may not be valid in fMRI. Applying this method on simulated data

with 100 nodes yielded excellent retrieval of the underlying directed networks under

a wide variety of conditions. Importantly, the method did not depend on temporal

precedence to establish directionality, thus reducing susceptibility to hemodynamic

variability. The computational efficiency of the algorithm was sufficient to enable

whole-brain estimations, thus circumventing the problem of missing nodes that otherwise

occurs in partial-brain analyses. Applying the method to real resting-state fMRI data

acquired with a high temporal resolution, the inferred networks showed good consistency

with structural connectivity obtained from diffusion tractography in the same subjects.

Interestingly, this agreement could also be seen when considering high-frequency

rather than low-frequency connectivity (average correlation: r = 0.26 for f < 0.3Hz,

r = 0.43 for 0.3 < f < 5Hz). Moreover, this concordance was significantly better

(p < 0.05) than for networks obtained with conventional functional connectivity based

on correlations (average correlation r = 0.18). The presented methodology thus appears

to be well-suited for fMRI, particularly given its lack of explicit dependence on temporal

lag structure, and is readily applicable to whole-brain effective connectivity estimation.
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INTRODUCTION

In recent years, brain connectivity analysis of functional magnetic resonance imaging (fMRI)
data has become of high interest, particularly as many diseases such as Alzheimer’s and epilepsy
are now understood as cerebral network malfunctions (Fisher et al., 2017; Ofer et al., 2018).
Functional MRI is a non-invasive method that can monitor whole-brain functional activity. In
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resting state fMRI (rs-fMRI), relationships between intrinsic
fluctuations across multiple brain areas are analyzed, giving
rise to the concept of the brain as a network (Biswal et al.,
1995). For connectivity analyses, it is common to consider
functional connectivity (FC), which is retrieved by calculating the
correlation between the time series from different brain areas.
However, this approach exhibits some limitations (Stephan,
2004; Petersen and Sporns, 2015) as it yields only symmetric
connections, with no information on their direction. Moreover,
conventional approaches using raw correlations may reflect
indirect connections between brain areas that are not actually
directly linked.

Of great interest are methods that retrieve information about
the existence and direction of connections, and which can rule
out indirect connections. The effective connectivity (EC) describes
“the influence one neural system exerts over another” (Friston,
1994), or as Aertsen and Preißl (1991) put it, EC is “the simplest
possible circuit diagram that would replicate the observed timing
relations” between observed responses and therefore describes
directed connectivity. Although several different approaches have
been suggested to estimate EC, the most widely used methods for
fMRI data are Granger Causality (Bressler and Seth, 2011) and
Dynamic Causal Modeling (Friston et al., 2003).

Granger causality (GC) exploits temporal precedence between
two time series to estimate the direction of the connections.
It exists both for time domain (Geweke, 1982) and frequency
domain (Geweke, 1984; Baccalá and Sameshima, 2001) data. In
order to estimate GC, usually a vector autoregressive process
is fit to the data, which can be problematic as fMRI signals
typically have a temporal resolution of 1–3 s (Lin et al., 2014),
whereas characteristic time scales of neuronal processes are
in the order of tens to hundreds of milliseconds. Moreover,
temporal relationships between cerebral areas are confounded
by the spatial variability of the hemodynamic response function
(Handwerker et al., 2004). Although MR acquisition sequences
with faster temporal resolutions are becoming increasingly
common (Feinberg et al., 2010; Posse et al., 2012; Akin et al., 2017;
LeVan et al., 2017), neuronal processes still undergo considerable
downsampling in fMRI time series, affecting the reliability of GC
estimates (Seth et al., 2013; Friston et al., 2014a).

Dynamic causal modeling (DCM) is a framework fitting
differential equations to the fMRI data to yield parameters for
the strength of connections, as well as the strength of the
influence of external stimuli on connectivity. In the classical
deterministic DCM, but also stochastic DCM (Li et al., 2011), the
neuronal activity underlying the BOLD response is determined
by a bilinear model, whereas the hemodynamic response is
estimated using the Balloon model (Buxton et al., 1998; Friston
et al., 2000). DCM requires to define a model a priori to test
different specific hypotheses, which can then be compared via
Bayesian model comparison (Penny et al., 2004, 2010; Penny,
2012). While the classical or stochastic DCM is only suited for
task data with known input functions, a DCM for resting state
data was developed recently (Friston et al., 2014b), which fits a
model to the cross-spectrum of the data. However, due to the
computational complexity of the differential equations, DCM is
not suited for whole-brain connectivity analysis. Furthermore,

with growing size of the models, non-identifiability becomes an
issue of increasing severity (Arand et al., 2015; Frässle et al.,
2015).

Aiming to overcome some of the issues outlined above,
we present a methodology to estimate the EC from the
frequency-domain cross-spectral density (CSD). Similar to the
GC approach, the fMRI data are expressed as a multivariate
autoregressive process, which is computationally suitable to
model a large number of nodes in whole-brain datasets. However,
unlike GC or other similar lag-based methods (see Smith
et al., 2011 for a review of several such methods), we do not
make use of temporal precedence to define the directionality
of the estimated connections, thus partially circumventing
hemodynamic confounds on the lag structure of fMRI time
series. Rather, a directed and potentially asymmetric network
is estimated in such a way as to explain the observed cross-
spectral density matrix. As temporal precedence is not enforced,
this is an underdetermined problem with a potentially infinite
number of solutions, so we additionally constrain the network
to have the smallest number of non-zero connections using an L1
minimization on the entries of the connectivity matrix.

One issue when validating EC estimation in real fMRI data
is the lack of an ideal ground truth. One popular approach
is to use information from structural connectivity (SC), which
can be estimated using diffusion-tensor imaging (DTI). Using
tractography algorithms (Wedeen et al., 2008; Reisert et al.,
2013) on the DTI data, the white matter tracts forming
connections between different regions can be reconstructed and
the number of “fibers” (streamlines) can be used as a proxy
for the strength of these connections. SC is commonly used to
constrain the estimation (Gilson et al., 2016; Crimi et al., 2017;
Dang et al., 2018), or may be used independently to validate
the estimated EC (Uddin et al., 2011; Bringmann et al., 2013).
However, there are also clear limitations to such approaches,
as EC is dynamic and potentially brain-state-dependent as
opposed to static SC. As such, while SC is often used as
a proxy for connectivity and reasonable agreement is found
between FC and SC (Li et al., 2012; Finger et al., 2016), we
should not expect complete concordance between SC and EC,
although the two measures should still be consistent with each
other.

In the remaining sections we will briefly explain the
mathematical background and implementation of the
method. In a simulation study, the influence of several
parameters on the estimation will be analyzed. Finally, we
will apply the methodology to real resting-state fMRI data.
In the absence of ideal validation measures in real data, the
consistency of the estimated effective connectivity with the
structural connectivity from white matter tracts will then be
assessed.

MATERIALS AND METHODS

Methodology
Mathematical and Algorithmic Background
We consider networks of n interconnected neuronal populations.
Each population is characterized by neuronal activity yi(t) with
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i ∈ [1, n]. Similar to the GC framework, we assume that the
neuronal activity follows a generic multivariate autoregressive
process

y (t) = x (t) +

∫ t

−∞

G (t − u) y (u) du

= x (t) + G∗y (t) (1)

which describes how the neuronal activity y(t) =

[y1(t), y2(t), . . . , yn(t)]
Tat time point t in each population

depends on the driving “noise” (or external stimuli) x(t) and
the activity in other populations with time lag u via the linear
coupling kernelG(t), whereGij(t) describes the influence of node
j on node i. The coupling can be described by a convolution (“∗”)
of G(t) with the neuronal activity y(t).

Now, in the GC framework, a causal system would then be
assumed by additionally setting G(t) = 0 for negative time lags
t < 0, and the remaining coefficients of G could then be fitted
by linear regression, with non-zero coefficients indicative of a
directed influence of one node on another inferred from their
temporal precedence relationship (Goebel et al., 2003; Duggento
et al., 2016). This approach can also been extended to support
non-linear interactions (Harrison et al., 2003) and couplings that
are dynamically fluctuating over time (Smith et al., 2013; Park
et al., 2017; Samdin et al., 2017). However, as outlined above,
fMRI only indirectly measures neuronal activity in the form of
the BOLD signal, yielding low temporal resolutions and spatially
variable lag structure that confound GC estimates (Deshpande
et al., 2009; Rogers et al., 2010).

Circumventing these issues, we deviate from the GC
framework and do not enforce the causality of G and thus
do not rely on temporal precedence relationships to identify
directed connections. Rather, we rely on the observation that
cross-correlations, which are symmetric and thus undirected,
nevertheless contain information about the underlying directed
(and thus potentially asymmetric) network, notably the presence
of so-called “collider” structures (Ramsey et al., 2010; Pernice
and Rotter, 2013). Based on frequency-domain cross-spectra,
we thus estimate a directed network independently of temporal
precedence relationships.

Applying the Fourier transform to Equation 1, we get ŷ(f ) =
x̂(f ) + Ĝ(f )̂y(f ), where .̂ depicts the Fourier transform of the
respective variable. Assuming that both the intrinsic noise x(t)
and the neuronal activity y(t) are stationary stochastic processes,
the cross-spectral density can be derived (Hawkes, 1971; Pernice
and Rotter, 2013):

〈̂y(f )̂y∗(f )〉 =Ĉ
(
f
)
=

[
1− Ĝ

(
f
)]−1

X̂
(
f
)
[1− Ĝ∗

(
f
)
]
−1

(2)

Ĝ
(
f
)
is the frequency-dependent coupling matrix, 1 the identity

matrix, X̂
(
f
)
=< x̂(f )̂x∗(f ) > depends on the driving noise,

and <,> is the time expectation operator. Noise is assumed to
be independent and Gaussian, so that X̂

(
f
)
is a diagonal matrix

of (unknown) noise variances.
We are ultimately interested in recovering the effective

connectivity Ĝ
(
f
)
of the network of neuronal populations, given

only Ĉ
(
f
)
, the cross-spectral density matrix of the measured

activity y(t). Taking the inverse of the CSD [2] we get

Ĉ−1(f ) =
[
1− Ĝ∗

(
f
)]
X̂−1

(
f
) [
1− Ĝ

(
f
)]

= B∗(f )B(f ) (3)

with B(f ) =
√
X̂

(
f
)−1 [

1− Ĝ
(
f
)]
.

Given an estimate of B(f ), the coupling matrix

Ĝ
(
f
)
= 1−

√
X̂

(
f
)
B(f ) (4)

can be estimated only up to a positive factor
√
X̂

(
f
)
as the

covariance of the intrinsic noise is not known. The matrix B(f ),
nonetheless, gives information about strength, sign and direction
of connections since X̂

(
f
)
is diagonal, although it may affect

the scaling of the estimated weights (For better readability the
dependency of the variables on the frequency is dropped from
here on).

The computation of B from the CSD is, however, not straight
forward, because it is not uniquely defined: Many different
network topologies can give rise to the same CSD.More precisely,
the decomposition of the CSD is only defined up to an arbitrary
unitary transformation U since

Ĉ−1 = B∗B = B∗U∗UB. (5)

To resolve this ambiguity, we assume that the network formed by
the neuronal populations is sparse, which entails minimizing the
L1-norm of the entries of the matrix UB. The corresponding cost
function is

Γ (UB0) = ‖UB0‖1 =
∑

i6=j
|(UB0)ij| =

∑
i6=j

|
∑

k
UikB0,kj|

(6)

where B0 is the initial guess of the decomposition. So the problem
is to find the unitary transform U minimizing the cost function
Γ (UB0) (Pernice and Rotter, 2013; Schiefer and Rotter, 2016)

argminUΓ (UB0)

s.t.UU∗ = 1

Geometrically this optimization can be viewed as a complex
rotation of the cross-spectral density matrix, which can be
implemented using a conjugate gradient descent algorithm
(Abrudan et al., 2008, 2009).

For the estimation of the effective connectivity, each frequency
bin of the CSD is treated separately, leading to a frequency-
dependent connectivity. As starting point B0 for the estimation,
the positive definite matrix square root of Ĉ−1

(
f
)
is chosen.

Threshold From Null Distribution
To exclude statistically non-significant connections in the
estimated connectivity matrix, a threshold for each frequency
is derived from a null distribution. The null distribution is
computed by first splitting the time series into equal segments,
shuffling the segments randomly and differently for each time
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series, and finally computing the CSD on the shuffled segments
using Welch’s method

CSDij, null(f ) =
1

n

∑n

k=1
ŷik

(
f
)
· ŷjσ(k)(f ) (7)

where σ
(
k
)
is a permutation mapping. The shuffling will only

affect the cross-spectra, while the power spectra (diagonal of the
CSD matrix) will be preserved. Calculating connectivities from
this null CSD and assuming that these values are to a great extent
independent, a distribution of effective connectivity values is then
derived. The 2.5 and 97.5% quantiles then yield p < 0.05 lower
and upper thresholds for the connectivity matrices.

Confidence Intervals From Bootstrapping
We also derive confidence intervals for the connection strengths
using bootstrapping. This could also be used to exclude
connections that include zero in their confidence interval.

To derive the confidence intervals, the time series are
again split into segments which are Fourier transformed. These
segments are then drawn randomly with replacement and the
CSD is calculated with the order of the segments kept identical
for each time series

CSDij, bootstrap(f) =
1

n

∑n

k=1
ŷiγ (k)

(
f
)
· ŷjγ (k)(f) (8)

where Ŵ(k) is a permutation with replacement, which is the
same for both time series ŷi and ŷj. Calculating several bootstrap
CSDs and estimating the connectivity thereof, a distribution
of connection strength can be derived for each connection.
Assuming an asymptotic Gaussian distribution of the parameter
values, confidence intervals can then be determined.

Data Acquisition
fMRI Acquisition and Pre-processing
For experiments with real data, all measurements were
performed on a 3 T Prisma scanner (Siemens Healthineers,
Erlangen, Germany). Seven healthy volunteers, five male and
two female in the age between 18 and 49, underwent a 20min
resting-state fMRI scan using the MREG sequence (Hugger et al.,
2011; Assländer et al., 2013) with TR = 0.1 s, TE = 36ms,
FA = 25◦, 64 × 64 × 50 matrix and 3mm isotropic voxel size.
T1-weighted MPRAGE images (TR = 2,000ms, TE = 4.11ms,
FOV= 256mm, 256× 256 matrix, 160 sagittal slices, 1mm slice
thickness) were acquired for anatomic reference. Cardiac and
respiratory fluctuations were additionally recorded with ECG
and abdominal breathing band from the scanner’s physiological
monitoring unit. This study was approved by the Ethics
Committee of the University Medical Center Freiburg. All
subjects gave written informed consent in accordance with the
Declaration of Helsinki. The data is available via the Open
Science Framework repository (https://osf.io/52mf4/).

The fMRI data was motion corrected using FSL. Physiological
noise correction was conducted with RETROICOR (Glover et al.,
2000). The fMRI data sets were registered to their corresponding
T1-images, which were in turn registered to MNI space. The
registered fMRI data sets were parcellated according to the AAL-
atlas and mean activity was calculated within each atlas region,

excluding the cerebellum. The CSD was calculated for each
dataset using Welch’s method with a Hanning window with 50%
overlap between windows.

To ensure that the CSD has full rank to be invertible, the
number of frequency bins needs to be smaller than the degrees
of freedom, i.e., the number of Fast Fourier Transform bins
NFFT <

# time points
# nodes

. As the convolution with the HRF
further reduces the degrees of freedom, the number of frequency
bins was further decreased to the next lower power of two.
Finally, the effective connectivity was extracted from the CSD
for each frequency by sparse optimization as described in section
Mathematical and Algorithmic Background.

DTI Acquisition and Pre-processing
In the absence of a gold standard for validation, a comparison
with structural connectivity was performed. Thus, diffusion-
weighted data was also acquired during the MRI sessions
(61 diffusion directions, TR = 6.6 s, TE = 80ms, b = 1,000
s/mm2, 60 slices, 2mm isotropic voxel size). Using a global
fiber tractography algorithm (Reisert et al., 2013) the structural
connectivity could be extracted by counting streamlines
connecting each pair of brain regions. Fiber endpoints lying
in brain areas not covered by a region in the AAL atlas were
reassigned to the nearest AAL area.

A summary SC matrix across all subjects was also generated
from the individual SC matrices by considering connections
existing in at least two thirds of the subjects.

Simulation Study
As a proof of principle we first applied the method to simulated
fMRI data. Moreover, we investigated the influence of several
parameters on the estimation of the effective connectivity.

For this purpose, a vector autoregressive process of order 50
(VAR[50]) corresponding to a maximum conduction delay of 5 s
was used with an additional contemporaneous term to model
instantaneous self-excitation effects in each node and driving
noise e(t):

y(t) =

50∑

p=0

G(p)y(t − p)+ e(t)

whereG(p = 0) is the identity matrix. To simulate the oscillatory
nature of resting-state fMRI data, the intrinsic activity in each
node of the network was modeled as a noisy superposition of
harmonic oscillations with different phases and frequencies. We
chose a connection probability of each pair of nodes of 15% to
model a sparse network. The coupling matricesG(p), which were
modeled using random Erdős-Rényi networks, were the same
for every lag p, however, they decreased in strength following a
logistic decay. As a last step, the time series were convolved with
the canonical hemodynamic response function (HRF) to simulate
BOLD responses.

Functional magnetic resonance imaging (fMRI) observational
noise is made up of several noise sources like scanner,
physiological and temporal noise. The scanner noise is inherent
in all fMRI data and can be modeled by Gaussian white noise
(Gudbjartsson and Patz, 1995; Welvaert et al., 2011) given
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sufficient signal to noise ratio (SNR). Structured physiological
noise corresponds to respiratory and cardiac oscillations. As
we have a relatively high temporal resolution in our data, we
assumed thatmost of the physiological noise could be filtered out.
Therefore, it was not modeled in the simulated data. Temporal
noise accounts for various sources of fluctuations with temporal
autocorrelation (Purdon andWeisskoff, 1998). This was modeled
using an AR[1] with coupling strength 0.5. Thus, observational
noise with both white “scanner” noise and “temporal” noise in
the form of an AR[1] were added.

We performed 20 simulations with 100 nodes. For each
simulation the same network connectivity was used, but with
different noise realizations. Furthermore, because a fast fMRI
sequence with a TR = 0.1 s was used for the real fMRI
measurements, our simulations of the VAR-process and the
convolution with the HRF were performed with this temporal
resolution with 51,000 data points corresponding to a 85min
measurement.

Connectivity Analysis
Following the procedure outlined in section Methodology, the
connectivity matrices were estimated for each frequency f from
the CSD. The raw estimated connectivities were used directly
for the analysis of the influence of parameters such as length of
the time series. For the final performance analysis, however, the
connectivities were additionally thresholded using the previously
described null distribution and confidence intervals for each
frequency bin. For the null distribution (Equation 7), as the
“connections” in the null connectivity matrices are independent,
only 10 cross-spectral density matrices were calculated per
frequency and all derived connections were pooled to build a
null distribution with 100,000 entries in the histogram. For the
confidence intervals (Equation 8), 1,000 bootstrapped CSDs were
calculated for each frequency.

Simulation study
Various simulations were performed to investigate the influence
of the following parameters:

Length of the time series
Lengths were varied between 3,000 and 51,000 data points in
steps of 6,000 (= 10min). Furthermore, the SNR (ratio of signal
variance to noise variance) was varied between 1 and 5.

Type of observational noise
Data were simulated with either pure white noise, a more realistic
temporally correlated noise, or a mixture of both

e = a(1) · ewhite + a(2) · etemp

where a (1) is 0.3 and a (2) is 0.7. We again varied the SNR
between 1 and 5 and used time series lengths of 20,000 (∼35min)
or 40,000 (∼70min) data points.

Number of observed nodes
If connectivity analyses are performed in a given subnetwork of
interest rather than the whole brain, hidden nodes exerting an
influence on the observed nodes might yield erroneous results.

To investigate this, connectivity estimations were performed
within various fractions of the whole network in steps of 10
nodes, using either 20,000 or 40,000 data points and an SNR of 5.

Hemodynamic variability
In order to investigate the sensitivity of the estimation to
hemodynamic variability, the activity at each node was subjected
to a different random HRF instead of the canonical HRF. The
random HRFs were generated using a double-gamma model,
where the onset times of each gamma function was varied by up
to 5 s, while the dispersion and amplitude parameters were varied
by a factor of up to 5.

Finally, the recovery of an “average” group-level network
was investigated using the 20 simulated realizations of the
same network with an SNR of 5 and a length of 40,000 data
points. After using the null distribution and confidence intervals
to remove non-significant connections, averaging the resulting
networks was not possible since connections did not necessarily
exist in all datasets, so the mean network was defined as
connections existing in at least half of the 20 data sets.

The comparison of the estimated EC with the true
connectivity was done using correlation between the connectivity
matrices. However, the correlation could be high even if
many erroneous connections were detected, as long as all true
connections are also found. Therefore, the area under the
receiver-operator characteristic (ROC) curve (AUC) was also
calculated to gain information about sensitivity of the estimation,
where the ROC curve was obtained by varying the threshold on
the estimated EC matrices.

fMRI data
For real fMRI data, the effective connectivity matrices were also
derived for each frequency and non-significant connections were
removed by calculating the threshold from the null distribution
and deriving the confidence intervals.

To analyse the variability of the derived networks over
subjects, the correlation and area under the ROC curve were
calculated for the EC and SC networks between all subjects for
each frequency. To compute an average connectivity over all
subjects, only connections which existed in at least half of the
subjects (4 in this case) were kept in the connectivity matrix.
While the true underlying connectivity is not known, consistency
was nevertheless assessed between the estimated EC and SC
from DTI. However, because SC is symmetric, the estimated
EC networks were first “mirrored” by adding the transposed
connectivity matrix to the normal connectivity matrix. It was
thus not possible to strictly validate the directionality of the
estimated connections; in the absence of suitable gold standard,
this approach is nevertheless expected to provide a limited degree
of validation in real data.

Furthermore, EC was also compared to standard functional
connectivity, represented by the raw cross-spectral density
between time series from the various regions of interest. The
correlation and AUC values for the comparison between EC
and SC and FC and SC were calculated for each frequency and
each subject. Furthermore, the agreement of SC and EC/FC
was compared by determining the percentage of connections
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FIGURE 1 | (A) Shows the mean correlation of the estimated connectivity matrices and the true connectivity and the area under the ROC-curve for 20 data sets at

different frequencies. The error bars show the standard deviation of the estimated correlation or AUC values over data sets. (B) Shows the correlation between

estimated networks at different frequencies.

FIGURE 2 | (A–C) Shows the correlation of the estimated connectivity matrices and the true connectivity with varying dataset length. (D–F) Shows the area under the

ROC-curve (AUC) for the different lengths. Different colors correspond to different SNR values.

fulfilling each of the three following cases: (1) The connection
is present in both SC and EC/FC, (2) the connection is present
in EC/FC, but not in SC, and (3) the connection is present in

SC, but not EC/FC. All calculated percentages were relative to
the number of connections present either in SC and/or EC/FC.
For FC, connections were thresholded using the null distribution
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in section Threshold From Null Distribution and the mean FC
network was derived by taking only connections existing in at
least half of the subjects. Since the network densities of EC and FC
do not agree, an additional analysis was performed using custom
thresholds on the mirrored EC and FC networks, set to yield a
10% false positive rate of connections present in EC/FC but not
SC.

As the temporal resolution given by the repetition time (TR)
wasmuch higher than in conventional fMRI (1–3 s), the influence
of the TR was also analyzed by downsampling the time series to
TRs between 0.1 and 3 s.

Finally, the default-mode network (DMN) was analyzed as
an example of a well-studied network in literature. The DMN
consists of three main brain areas in each hemisphere: the
medial prefrontal cortex (mPFC), the inferior parietal cortex
(IPC), and the posterior cingulate cortex (PCC). Furthermore,
the hippocampus (HIP) and the temporal cortex (TC) are also
sometimes included in the network. Note that the network
estimation was still performed at the whole-brain level, after
which only the connections within the DMN were examined in
more detail.

RESULTS

Simulation Study
For the simulated data, only the low-frequency bins were
analyzed as the higher frequency bins contained mainly noise
due to the convolution with the canonical HRF. This left three
frequency bins with 0 < f < 0.45 Hz (cf. Figure 1).

Influence of Length of Time Series and SNR
Figures 2A–C show the mean correlation of the estimated
network with the true network for the first three frequency bins
according to measurement time and SNR. Figures 2D–F show
the mean AUC values for the first three frequency bins. The
correlation and AUC increases monotonically with increasing
length of the time series. Moreover, an increase in SNR improves
the estimation.

With increasing measurement time, the correlation of the
networks and the AUC increases strongly. After a measurement
time of ∼35min the slope of the correlation and AUC plot
is shallower. Most of the estimation power is concentrated in
the frequency range between 0 and 0.31Hz, yielding higher
correlation of the estimated networks with the true networks than
the higher frequency bins (see Figure 1). For the first frequency
bin, the correlation reaches a level of close to 0.8 for an SNR of 5.
For the second frequency bin (0.15–0.31Hz), the correlation and
AUC even go beyond 0.8 for high SNR. For the third frequency
bin, the correlation ranges for a measurement time of 85min
between 0.4 for the lower SNR and 0.75 for the higher SNR. The
AUC varies between 0.6 and 0.75, where a value of 0.5 equals pure
chance.

The SNR has a strong influence on the estimation: An
increase of SNR improves the estimation. Higher frequencies
are especially sensitive to measurement time and SNR (cf. 2
C/F). While for a SNR of 5 the estimation is still quite good,
especially for long measurements of 40min and more, the

TABLE 1 | Influence of type of noise.

Noise type\SNR 1 5

LENGTH OF TS: 20,000 DATA POINTS

White 0.462 ± 0.003 0.588 ± 0.003

Mixture 0.414 ± 0.006 0.565 ± 0.004

Temporally correlated 0.410 ± 0.006 0.562 ± 0.005

LENGTH OF TS: 40,000 DATA POINTS

White 0.558 ± 0.003 0.710 ± 0.003

Mixture 0.505 ± 0.002 0.686 ± 0.003

Temporally correlated 0.499 ± 0.001 0.682 ± 0.004

Mean correlation over 20 datasets and the first three frequency bins for different noise

compositions, SNRs and different length of measurement time.

estimation for the lower SNR declines for measurements shorter
than approximately 45min. At shorter measurements the noise
predominates in the CSD. However, at approximately 45min
there is a prominent jump in the correlation and AUC values.
At such long measurement times, sufficient noise averaging
occurs and the true covariance structure can be retrieved
fairly well.

Influence of Type of Noise
Table 1 shows results from the networks simulated using
different noise types, averaged over the three low-frequency bins.

At low SNR, the differences for the various types of noise are
more prominent than at high SNR, where the differences start to
vanish. The difference between themixture of white and temporal
noise and pure temporal noise, however, is not so prominent. An
increase of measurement time improves the estimation itself, but
does not have an influence on the observed differences between
noise types.

Influence of Missing Nodes on the Estimation
Figure 3 shows an increase of estimation power with increasing
fraction of observed nodes (Figure 3A, correlation and
Figure 3B, AUC), indicating the importance of the missing
nodes on the network.

Regarding the variance of the estimation for different network
sizes, a strong decrease in variance with decreasing fraction of
missing nodes can be observed, demonstrating the beneficial
influence of more nodes and therefore more information to
recover the network.

Influence of Hemodynamic Variability
Figure 4 shows the estimation performance under various
degrees of HRF variability as well as a comparison with
multivariate GC (Barnett and Seth, 2014). While both methods
perform well with fixed HRFs, they also show a clear degradation
under variable HRF conditions, although GC is more susceptible
to the confounding influence of the HRF on temporal precedence
information.

Mean Network From All Data Sets
Figure 5 shows the comparison between the true network
(Figure 5A) and the mean estimated network (Figures 5B–D)
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FIGURE 3 | (A) Shows the correlation of the estimated connectivity matrices and the true connectivity as a function of varying network size with missing nodes

present. (B) Shows the corresponding area under the ROC-curve (AUC). Different colors correspond to different frequency bins.

FIGURE 4 | Correlation (A) and AUC (B) of the EC estimation method as a function of HRF variability (blue line). The labels var_k denote simulations performed with

double-gamma HRFs where the onset of the gamma functions was randomly varied between ±k seconds and the dispersion and amplitude parameters were

randomly varied by a factor of up to k with respect to the canonical HRF. For comparison, the red line shows the performance of multivariate Granger Causality

estimation.

for the lowest three frequency bins. Each entry in the matrix
plot corresponds to a directed connection, where the connection
goes from column to line. Red entries in the matrix plot
correspond to positive (excitatory) connections and blue ones
to negative (inhibitory) connections. Moreover, the hue of
the color depicts the strength of the connections. Due to the
random nature of the simulations, there is no structure in
the network that may facilitate visual inspection, but it can
still be observed that strong connections are especially well
estimated.

The titles from Figures 5B–D show the correlation and
AUC values for the mean networks without thresholding
by the null distribution (AUC and rm) and correlation
with applied thresholds to exclude non-significant connections
(rtm). Taking solely the mean over all networks yields high
correlations between 0.8 and 0.9 for the first three frequency
bins. By removing the non-significant connections from
the network using the threshold from the null distribution
and taking only connections which exist in at least 50%
of the estimated networks increases the correlation even
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FIGURE 5 | The estimated connectivity matrices and the true connectivity for three different frequency ranges are depicted. (A) Shows the true connectivity used to

simulate the data, (B–D) Shows the estimated connectivity matrices for the different frequency ranges. The plots show the weighted adjacency matrices of the

network, where red entries stand for connections with positive weights, blue entries for connections with negative weights and white depicts no connection.

Furthermore, the hue of the color depicts the strength of the connection. Correlation and AUC values are given in the title of each plot: rm stands for correlation with

mean network without threshold from null distribution, rtm corresponds to correlation with mean network with threshold from null distribution. All correlations and AUC

values are above 0.8.

further. The area under the ROC curve lies between 0.8
and 0.9.

Real fMRI Data
Applying the threshold from the null distribution and deriving
the confidence intervals from the bootstrapped networks, sparse
networks were achieved in the real fMRI data (see Figure 6).
We separately consider a low frequency band (0–0.31Hz) and
a high frequency band (0.31–5Hz). The estimated average
low and high frequency networks are quite similar (r = 0.6)
and, moreover show a strong similarity between hemispheres
(r = 0.8 for the low frequency network, r = 0.9 for high
frequencies).

The results from the analysis of the variability of the SC and
EC networks over subjects can be seen in Table 2. EC shows

strong variability both for low and high frequencies with a
correlation around 0.2–0.3 and AUC of around 0.6. SC, however,
shows a strong agreement between subjects (r = 0.85 and
AUC= 0.80), showing the high stability of the SC across subjects.

Comparison With DTI Tractography
Due to the lack of a gold standard the estimated EC networks
were compared to SC from DTI. The resulting correlation and
AUC values are displayed in Table 3.

The low frequency network shows some correlation with SC
(r = 0.24 and AUC = 0.56), which is only slightly increased for
the mirrored network (r = 0.26 and AUC = 0.55). For the high
frequency band the agreement between SC and EC is much more
pronounced. For the mirrored network we have a correlation of
r = 0.43 and even for the normal EC the correlation is quite high
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FIGURE 6 | The estimated effective connectivity matrices from fMRI data for low- and high-frequency bands and their mirrored networks and the structural

connectivity from DTI are depicted. (A,B) Show the effective connectivity for low- and high-frequency bands, respectively, (E,F) Show the mirrored estimated

connectivity matrices for the different frequency ranges. For visualization purposes, only connections present in at least two thirds of frequencies in the respective

frequency bands are shown. (C) Shows the structural connectivity and (D) the mean CSD over all subjects and frequencies. The plots show the weighted adjacency

matrices of the network, where red entries stand for positive connections, blue entries for negative connections and white depicts no connection. Furthermore, the

color hue depicts the strength of the connections. The axes refer to indices from the AAL atlas, separated between left and right hemispheres, corresponding to the

regions indicated in the topmost left plot: F, frontal; MT, mesial temporal; O, occipital; P, parietal; BG, basal ganglia; T, temporal.
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TABLE 2 | Variability of networks between subjects.

Correlation r AUC of ROC

Low-frequency band 0.228 ± 0.054 0.552 ± 0.022

High-frequency band 0.256 ± 0.060 0.637 ± 0.035

DTI 0.845± 0.049 0.804 ± 0.042

Correlation and AUC values (mean and standard deviations) calculated between

estimated networks from fMRI and structural connectivity from DTI between subjects.

with 0.41 (cf.Table 3). However, there are still clear discordances,
as seen in the AUC values of 0.62 for the mirrored and 0.60 for
the normal EC.

Figure 6 shows both normal and mirrored estimated
EC networks for the low- and the high-frequency band
(Figures 6A,B,E,F), the SC network (Figure 6C) and the mean
CSD over all subjects and frequencies (Figure 6D). In agreement
with SC, the EC shows strong connectivity in the frontal and
and parietal regions. Moreover, the lack of connections between
frontal and mesial temporal and occipital regions is correctly
identified. Discrepancies are mainly visible along the diagonals
of the top-right and bottom-left quadrants corresponding to
interhemispheric connections between homologous regions.
Differences are also seen close the diagonal of the top-left and
bottom-right quadrants because local short-range connections
are not easily recovered by diffusion tractography. The
high frequency EC network, however, has less pronounced
interhemispheric connections, therefore also yielding higher
correlation with SC.

Comparison With Raw Cross-Spectral Density
The results of EC were also compared to standard functional
connectivity, represented by the cross spectral density
(Figure 6D). Mean CSD shows lower agreement with SC
(r = 0.18 and AUC = 0.56). It can be seen that the EC networks
aremuch sparser than the CSD functional network. Furthermore,
the block of massive inter-hemispheric connections in the
occipital lobe present in the CSD (between regions 20–30 on
the top-right and bottom-left quadrants) vanished in the low
frequency EC network and is very much reduced in the high
frequency EC network.

Figures 7A–C shows coincidence maps, where green entries
depict agreement between SC and EC/FC, bright red entries
connections that are only present in EC/FC but not SC, and
pale red entries connections that are only present in SC but not
in EC/FC. For comparison purposes, the EC/FC networks were
thresholded to have a false positive rate (FPR) of 10% to gain
an insight into the agreement of SC with EC/FC given a fixed
FPR. At this FPR, many SC connections are not reflected in
EC/FC. Nevertheless, the high-frequency EC shows the highest
agreement with SC (Figure 7B). Low-frequency EC and FC show
similar agreement (cf. Table 4), although for low-frequency EC
the agreeing connections are very scattered while for FC the
agreeing connections tend to form clusters.

Figures 7D–F shows histograms of the connection strengths
for connections not present in SC but in EC/FC. Such false
connections (without an underlying structural basis) for low- and

TABLE 3 | Agreement between EC/FC and SC.

Correlation r AUC of ROC

LOW FREQUENCY

G+GT 0.26 0.55

G 0.24 0.56

HIGH FREQUENCY

G+GT 0.43 0.62

G 0.41 0.60

MEAN CSD

CSD 0.18 0.56

Correlation and AUC values between mean estimated effective connectivity networks and

functional connectivity networks from fMRI and structural connectivity from DTI.

high-frequency EC networks are very weak even though they
were statistically significant. In contrast, the connection strengths
of the false connections for CSD range from−0.3 up to 0.6.

To quantify the agreement between SC and EC/FC, the
percentage of connections agreeing between SC and EC/FC,
connections only present in EC/FC, and connections only present
in SC were calculated (see Table 4). For non-adapted network
densities, SC and EC correspond better than CSD, which is
mainly due to the higher number of connections in EC than FC.
For connections present in EC/FC, but not in SC, the percentage
is similar for normal EC and SC. Looking at the networks with
adapted densities, mirrored EC for high frequencies and SC
have the highest agreement; FC and EC for low frequencies
have similar but lower agreement with SC. However, as seen in
Figures 7D–F, “wrong” connections, which are present in EC/FC
but not SC, cover a much broader range for FC than for EC.

Figure 8 depicts the mean correlation and AUC values of all
subjects over all frequencies of EC/FC with SC from DTI. The
correlation and AUC is always higher for mirrored EC networks
than for normal EC networks. The correlation is also higher when
compared to the raw CSD. However, for the AUC there is high
variability and strong overlap between mirrored EC and CSD,
although mirrored EC is still mostly above CSD.

This can also be seen in Table 5, where the statistical
significance of the t-test of EC correlation and AUC values
vs. those from CSD are tested, where correlation values were
z-transformed prior to the t-test. For the correlation at low
frequencies, mirrored EC is better than CSD, but other measures
are not significantly different. However, at high frequencies, both
normal and mirrored EC correlate significantly better than CSD,
but only the mirrored EC shows significantly higher AUC than
the CSD.

Influence of TR/Sampling Rate
The results of the analysis with different TRs are depicted
in Figure 9 for low frequencies (A) and high frequencies (B).
While low frequencies are available at all examined TRs, high
frequencies could only be analyzed at shorter TRs. Each plot
shows the mean correlation of the estimated mirrored EC with
SC for different TRs (blue solid line) and correlation of the
mean network over all subjects with SC (red dashed line). While
the variability between subjects is quite high, the estimated
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FIGURE 7 | Coincidence maps between structural connectivity from DTI and the mirrored low- (A) and high- (B) frequency networks and the cross-spectral density

(C). EC and FC networks were thresholded to yield a false positive rate (FPR) of 10%. Green entries depict connections existing in SC and EC/FC, bright red entries

depict connections only existing in EC/FC. Pale red entries denote connections present in SC but not in EC/FC. (D–F) Shows a histogram of the connection strengths

for connections not present in SC. The red lines depict the threshold chosen to obtain a FPR of 10%.

TABLE 4 | Coincidence of connections in SC and EC/FC.

Connections in SC

and EC/FC(%)

Connections in

EC/FC, not SC(%)

Connections in SC,

not EC/FC(%)

Network density

EC/FC(%)

Network density

SC(%)

Low frequencies 60.6 15.5 (9.9) 22.7 75.7 (43.6) 78

High frequencies 77.1 20.6 (11.6) 2.28 95.1 (49.9) 78

CSD 55.8 11.9 32.3 59.9 78

Low frequencies–adapted FPR 18.5 2.8 77.8 17.1 78

High frequencies–adapted FPR 25.0 2.8 71.3 22.3 78

CSD-adapted FPR 18.6 2.7 78.7 17.1 78

Percentage of connections agreeing between SC and EC/FC. EC networks are mirrored; values for non-mirrored EC are given in brackets. In the last three rows, the percentages of

agreeing connections are shown for mirrored EC and FC whose false positive rate (FPR) was adapted to 10% for a better comparison.

network barely changes with decreasing TR, which is portrayed
by a basically horizontal line for the correlation across different
repetition times, indicating that the method is also appropriate
at slower TRs. Nevertheless, the higher agreement between EC
and SC found at higher frequencies can only be observed at TRs
sufficiently short to observe such frequencies.

Default-Mode Network
From the estimated networks, the default-mode network was
examined more closely. In Figure 10, the DMN is presented for
both the low- and high-frequency bands. In Figures 10A,B, the
low- and high-frequency band networks are shown with dots for
the brain regions connected by red (positive weights) and blue
(negative weights) lines. The width of the lines is proportional

to the connection strength. As both networks are normalized to
their respective strongest connection, the line thickness give only
relative information about connection strength and cannot be
compared directly across frequency bands.

For the low-frequency band the homologous brain areas were
much more connected than for the high-frequency band. In the
low-frequency network, all regions except TC were connected
to their homologous regions. At high frequencies, only TC
and mPFC had connections between homologous brain regions.
Furthermore, the low-frequency network was much sparser,
while the high-frequency network showed many quite strong
connections, which were ordered in a symmetric fashion. For
both networks, mPFC projects to other regions but does not
receive input except from its homologous region in the other
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FIGURE 8 | Correlation (A) and AUC (B) values for the comparison between the estimated networks from fMRI/ CSD matrices and structural connectivity from DTI is

shown at different frequencies.

TABLE 5 | Significance of agreement between EC/FC and SC.

Correlation r AUC of ROC

Test Significant p-value Significant p-value

LOW FREQUENCY

G+GT vs. CSD 1 0.01 0 0.79

G vs. CSD 0 0.84 0 0.24

HIGH FREQUENCY

G+GT vs. CSD 1 <0.001 1 0.02

G vs. CSD 1 <0.001 0 0.15

Test for significance between estimated EC networks from fMRI and pure cross-spectral

density matrices. The correlation and AUC values between estimated networks/CSD and

SC from DTI were used and the mean value calculated for the high and the low frequency

band for each subject.

hemisphere. Also IPC only projects to other regions; however,
it receives input from its homologous region only at low
frequencies. PCC both receives input from mPFC and IPC and
projects further to HIP. The TC mainly receives input but for
high frequencies it also projects to PCC.

DISCUSSION

We presented a method to estimate the effective connectivity
from fMRI data, based on the symmetric cross-spectral density
matrix of the acquired time series. As many different topologies
can give rise to the same cross-spectral structure, the ambiguity in
the estimation is resolved by using a L1-regularization preferring
sparse networks. This is also a popular assumption in the GC
framework, particularly in the case of voxel-wise connectivity

estimation, due to the resulting large number of network nodes
(Valdés-Sosa et al., 2005; Haufe et al., 2010; Garg et al., 2011; Tang
et al., 2012), and is supported by the observation that cerebral
connections tend to be highly selective (Valdés-Sosa et al., 2005;
Sanchez-Bornot et al., 2008).

Simulated Data
As a proof of principle, the method was first applied to simulated
data, where the influence of several parameters was analyzed.

Considering the length of the dataset and the SNR, increasing
the SNR improved the estimation. An increase in the length
of the time series also improved the estimation considerably
up to a measurement time of 40min, after which the increase
became slower (cf. Figure 2). Although the methodology only
depends on the cross-spectral density and not directly on the time
course of the neuronal activity, increasing the length of the time
series yields better estimates of the sample CSD. Furthermore,
increasing the length of the time series allows for a finer
frequency resolution of the CSD. However, long measurements
might be problematic from the point of view of subject comfort
and motion artifacts. Moreover, this assumes data stationarity,
which is questionable for long measurements, particularly given
the prevalence of dynamic connectivity states (Calhoun et al.,
2014; Preti et al., 2016). Hence, a possible solution would be the
acquisition of several shorter measurements and taking the mean
cross-spectrum over the measurements and over connectivity
states.

To further analyse the influence of the type of noise on the
estimation, EC was estimated for pure white noise, pure pink
noise and a mixture of both for different length of time series
and SNR. Pure pink noise and the mixture gave similar results,
mainly due to the high degree of pink noise in the mixed noise.
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FIGURE 9 | Correlation values for the comparison between the estimated networks from fMRI matrices and structural connectivity from DTI is shown for different

repetition times (TR) in the low-frequency (A) and high-frequency (B) bands. The red dashed line shows the correlation of the mean network over subjects with the

structural connectivity from DTI.

For increasing SNR, the difference in estimation power for white,
pink or mixed noise decreases, giving good results also for more
realistic noise. But even for a lower SNR of 1, the difference is
not very striking (cf. Table 1). The loss of estimation power for
temporal noise is due to the correlation between adjacent data
points, which leads to a loss of degrees of freedom and therefore
a loss of information in the CSD. However, the connectivity
information can nonetheless be retrieved from the data unless
data sets are very short and with high temporal autocorrelation.
For higher SNR the information from the true signal dominates
the data, leading to better estimation results.

Often, effective connectivity analyses will only be performed
on a small number of brain nodes of interest. This, however, poses
the problem of missing nodes in the estimation of networks,
which might lead to an erroneous estimation of the connectivity
(Eichler, 2005; Daunizeau et al., 2011; Waldorp et al., 2011).
For example, an indirect influence from a missing node on
two nodes of interest might be interpreted as a spurious link
between those two nodes. Therefore, the proposed method was
applied to various network sizes that were part of larger networks
with unobserved nodes. Not surprisingly, the estimation power
increases monotonically with increasing fraction of observed
nodes of the network (cf. Figure 3). This demonstrates the
importance ofminimizing the number ofmissing nodes. As fMRI
data sets are usually whole brain scans and the computational
efficiency of the proposed method allows for a high number of
nodes (estimation time of a few minutes for a network with a
hundred nodes on a standard computer), this problem can be
overcome by estimating the full network and retrieving the partial
network of interest afterwards.

The reduced dependence on HRF variability in comparison
to lag-based Granger causality (cf. Figure 4) is especially
relevant for fMRI given the indirect nature of the measured
hemodynamic signals. This further confirms previous results
on the possibility to estimate sparse networks from lag-free
covariances (Pernice and Rotter, 2013; Schiefer et al., 2018).
Nevertheless, it is clear that hemodynamic variability still acts as
an important confounder on observed time-series correlations,
so that integrating hemodynamic information, either via separate
HRF estimates (Wu et al., 2013; Proulx et al., 2014) or by

specifically including hemodynamics in the generative model
(Ryali et al., 2011; Friston et al., 2014b) would be beneficial to
EC estimation.

All in all, the analysis of the proposed method on simulated
data proved quite successful, showing high agreement between
the estimated and the true networks (cf. Figure 5). This might in
part be due to the method used to generate the simulated data,
which was closely matched to the estimation model. However,
Pernice and Rotter (2013) also demonstrated good results in
the estimation of networks of leaky integrate-and-fire neurons,
suggesting that the analysis is applicable to a wide variety of
different data types.

fMRI Data
In a second step, the proposed method was applied to fast
fMRI data. Correlating the estimated networks over frequencies
suggested a clustering in two frequency bands: A low-frequency
band from f = 0–0.31Hz and a high-frequency band f = 0.31–
5Hz. Interestingly, high-frequency BOLD signal fluctuations
above 0.1−0.2Hz have rarely been considered in conventional
functional connectivity analyses. However, recently emerged
fast fMRI sequences allow to analyse such higher frequencies,
with multiple studies suggesting that they contain relevant
information (Lee et al., 2013; Yuan et al., 2014; Trapp et al.,
2017). High-frequency connectivity could not be examined in our
simulations as it was completely attenuated by the convolution
with the canonical HRF, but it has been recently reported that
resting-state fMRI may be driven by narrower HRFs with non-
negligible contributions at high frequencies (Chen and Glover,
2015). This is also in line with another recent study that found
that information in Granger causality estimates is carried at
frequencies up to 3Hz in fMRI data (Lin et al., 2015).

The estimated networks showed a strong similarity between
hemispheres (r = 0.8 for the low frequency network,
r = 0.9 for high frequencies), which would be expected.
Both networks showed strong intra-hemispheric connections
in the frontal, occipital and parietal lobes (see Figure 6).
Although the networks for low- and high-frequencies were
similar, the low-frequency network was much sparser and
less symmetric than the high-frequency network. Moreover,
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FIGURE 10 | Networks for low- and high-frequency bands of the default-mode network (DMN). In (A,B), network connections are depicted by lines between regions.

Red lines correspond to positive connections and blue lines to negative connections. Connection strength ranges are illustrated by the line thickness. The connection

strengths for both networks are normalized to the strongest connection in the network. (C,D) Show the same networks (low frequencies C, high frequencies D) where

the network is projected onto a generic brain. Both color and arrow thickness represents absolute connection strengths (The brain networks in (C,D) were visualized

with BrainNet Viewer (http://www.nitrc.org/projects/bnv/) (Xia et al., 2013).

the low-frequency network showed strong inter-hemispheric
connections between homologous brain regions in both
hemispheres, which is less pronounced in the high-frequency
network.

Due to the lack of gold standard, the estimated effective
connectivity networks were compared to structural connectivity
from DTI. While the SC networks were very stable over subjects,

the EC networks showed quite high variability. This is not
very surprising, since the SC network corresponds to the “hard
wiring” of the brain, which is expected to be similar for different
individuals. The EC, however, is estimated from resting-state
data. Although some general patterns evolve in resting-state data,
the processing network might vary strongly between subjects
(Mueller et al., 2013). Furthermore, during the measurement,
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subjects might not always be in perfect resting state, but might let
their mind wander leading to an altered network (Kucyi, 2017).

The comparison between EC and SC yielded relatively low
correlation values, which could be partly attributed to the
symmetry of undirected SC measures. The correlation increased
significantly after mirroring the estimated EC. The agreement
between the high-frequency network and SC was significantly
higher than for the low-frequency network. In part this is due
to the presence of strong inter-hemispheric connections between
almost all homologous brain regions in the low-frequency
band, which is a typical point of discordance with SC (Messé
et al., 2014). For the high-frequency band, however, these inter-
hemispheric connections were less pronounced yielding much
higher agreement between EC and SC. Furthermore, the low-
frequency network is much sparser than both the high-frequency
network and SC, hinting to the idea that for low frequenciesmuch
fewer structural connections are active than for high frequencies
due to relatively short conduction delays between brain areas
leading to activity at higher frequencies. We emphasize again,
however, that comparison with SC cannot be considered a strict
validation, since the static physical connections in SC cannot
represent the dynamic connections active in any given time or
brain state. Moreover, diffusion tractography itself only provides
an imperfect estimate of SC and may miss major structural links,
notably interhemispheric connections (Robinson et al., 2014).
Nevertheless, consistency with SC can still provide some evidence
of a successful EC estimation, especially when considering
functional connections not supported by an underlying structural
connection. However, we cannot draw firm conclusions on the
performance of the method regarding the converse situation,
that is, structural connections that may or may not result
in an identified functional connection. A true validation of
EC in humans would require invasive approaches such as
intracranial EEG, which is employed for clinical purposes in
some epilepsy patients. Unlike the non-invasive DTI approach
used in the current study, intracranial EEG can provide directed
measures of effective connectivity (Wendling et al., 2010;
Entz et al., 2014) and would be well worth investigating in
the future.

As the most widespread technique for functional connectivity
analysis is the computation of undirected, potentially band-
limited correlations, the proposed method was also compared
to the pure cross-spectral density and its agreement with SC.
FC was actually better than the normal, unmirrored EC for
AUC (pAUC = 0.02). However, when considering the mirrored
EC network, there was significantly better agreement than
FC. Moreover, CSD exhibited very high variance both for
correlation and AUC compared to normal and mirrored EC.
Falsely identified connections (without an underlying structural
connection) were very weak for EC but covered a broad range of
connectivity strengths for FC (cf. Figure 7). Thus, the estimated
EC networks showed more consistency with DTI than the
functional networks from CSD. The significance values were
however relatively low, which is due to the low number of
subjects used to estimate the networks.

As typical fMRI sequences have much lower temporal
resolution than the sequence used in this study, the network

estimation was performed on datasets that were retrospectively
downsampled to longer TRs to analyse the influence of the
temporal resolution on the estimation. Correlating the estimated
networks with SC showed a relatively stable estimation of the
networks even at lower temporal resolutions. The overall results
suggest that the measurement length is more important than
the number of data points for a given scan time. Note however,
that only low-frequency networks can be recovered at long TRs.
Higher temporal resolutions was still beneficial for the estimation
of high-frequency connectivity (see Figure 9B), which showed
better estimation performance than low-frequency networks, as
well as preprocessing advantages such as better physiological
noise removal (Lin et al., 2012; Jacobs et al., 2014; Korhonen et al.,
2014).

Finally, the directed connectivity for the default mode network
was retrieved from the estimated network (Figure 10). The low
frequency network is much sparser and less symmetrical than the
high frequency network. Compared to the results of Miao et al.
(2010), who did a Granger causality analysis on the DMN, similar
results are obtained, notably the strong connections from all
other regions to the PCC. However, differences are also observed
in the mPFC where we found mostly outgoing rather than
ingoing connections. One potential cause of this discrepancy
may be the particular sensitivity of the employed MREG
sequence to off-resonances in the mPFC, leading to potential
artifacts (Zahneisen et al., 2012; Assländer et al., 2013). Future
work will focus on further validation of the inferred directed
networks.

CONCLUSION

In this paper we presented a method to estimate the effective
connectivity from whole brain resting-state fMRI scans from
the cross-spectral density in the frequency domain. The
influence of different measurement parameters was analyzed in
simulated fMRI data, notably showing a reduced dependency on
hemodynamic variability compared to lag-based methods such
as Granger Causality. The proposed method was further applied
to resting-state fMRI data, showing improved consistency with
the underlying structural connectivity networks obtained from
DTI tractography in comparison to conventional functional
connectivity.
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